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Initial condition for quark-gluon plasma evolution
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We recently proposed an approach to high-energy nuclear scattering, which treats the initial stage of heavy-
ion collisions in a sophisticated way. We are able to calculate macroscopic quantities like energy density and
velocity flow at the end of this initial stage, after the two nuclei having penetrated each other. In other words,
we provide the initial conditions for a macroscopic treatment of the second stage of the collision. We address
in particular the question of how to incorporate the soft component properly. We find almost perfect ‘‘Bjorken
scaling’’: the rapidity coincides with the space-time rapidity, whereas the transverse flow is practically zero.
The distribution of the energy density in the transverse plane shows typically a very ‘‘bumpy’’ structure.
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I. INTRODUCTION

Unfortunately there does not exist a single formalism a
to account for a complete nucleus-nucleus collision. Rat
we have to—at least for the moment—divide the react
into different stages~see Fig. 1! and try to understand them
as well as possible. There is, first of all, the primary inter
tion when the two nuclei pass through each other. Sinc
very high energies the longitudinal size is, due to the gam
factor, almost zero~of the order 0.1 fm at RHIC!, all the
nucleons of the projectile interact with all the nucleons of
target instantaneously. In such a primary interaction m
partons are created, which interact~in the preequilibrium
stage! before reaching an equilibrium, referred to as t
quark-gluon plasma. The system then expands, passing
phase transition~or sudden crossover! into the hadron gas
stage. The density decreases further until the collision ra
no longer large enough to maintain chemical equilibrium,
there are still hadronic interactions, until finally the particl
‘‘freeze out’’; i.e., they continue their way without furthe
interactions.

The equilibrium stage is often treated macroscopically
solving hydrodynamical equations. Here, usually very s
plified initial conditions are used, like flat distributions
space-time rapidity. This could be done much better by c
culating the initial conditions for the hydrodynamical evol
tion on the basis of a realistic model for the primary intera
tions.

We recently presented a completely new approach@1–3#
for hadronic interactions and the initial stage of nuclear c
lisions, referred to asNEXUS, where we provide a rigorou
treatment of the multiple scattering aspect. Questions of
ergy conservation are clearly determined by the rules of fi
theory, for both cross section and particle production cal
lations, which is not the case in all of the correspond
models used so far to calculate the initial stage. In addit
we introduced~currently only to leading order! so-called en-
hanced diagrams, responsible for screening and diffractio
was not the idea to create another model with some m
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features, but to provide a model which is theoretically co
sistent and therefore much more realistic than all the
proaches used before. We are therefore usingNEXUS in order
to determine macroscopic quantities after the first sta
when the two nuclei have traversed each other, such
these quantities may be used as initial conditions for a m
roscopic treatment of the later stages of the collision.

Calculating, for example, energy densities from a mo
like NEXUS or any other model for primary interactions is n
trivial. We know the momenta of all the partons, and we m
calculate the energy density of the partonic system o
given hypersurface~constantt), as shown in Fig. 2. Here
only the ‘‘resolvable’’~or hard! partons are considered~dots
on the hyperbola representing a hypersurface!. But this is
certainly not the correct answer for the quantity of intere
since there are many ‘‘unresolved’’~or soft! partons around,
which contribute to the energy density in a significant fas
ion. The problem can be solved by using the string mod
which is nothing but an attempt to treat the ‘‘soft parton
implicitly. The soft partons represent the string betwe
‘‘kinks,’’ the latter ones representing the hard partons; s
Fig. 3. Thus we are able to calculate energy densities
nucleus-nucleus collisions, taking properly into account s
and hard~resolvable and unresolvable! contributions.

The outline of this paper is as follows: we first revie

FIG. 1. The different stages of heavy-ion collisions.
©2002 The American Physical Society02-1
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briefly the basic elements of theNEXUS model before we
discuss in somewhat more detail the role of strings in t
approach and the dynamics of strings. We then procee
calculate energy densities for a given proper time, taking i
account the hard and soft partons.

II. NEXUS MODEL

The most sophisticated approach to high-energy hadr
interactions is the so-called Gribov-Regge theory@4#. This is
an effective field theory, which allows multiple interaction
to happen ‘‘in parallel,’’ with phenomenological objec
called ‘‘Pomerons’’ representing elementary interactions@5#.
Using the general rules of field theory, one may express c
sections in terms of a couple of parameters characterizing
Pomeron. Interference terms are crucial, as they assure
unitarity of the theory.

A big disadvantage is the fact that cross sections and
ticle production are not calculated consistently: the fact t
energy needs to be shared between many Pomerons in
of multiple scattering is well taken into account when co
sidering particle production~in particular in Monte Carlo
applications!, but not for cross sections@6#.

Another problem is the fact that at high energies, one a
needs a consistent approach to include both soft and
processes. The latter ones are usually treated in the fra
work of the parton model, which only allows the calculatio
of inclusive cross sections.

We recently presented an approach@1–3# for hadronic
interactions and the initial stage of nuclear collisions, wh

FIG. 2. The naive method: only the resolvable partons are c
sidered to determine the energy density on a hypersurface~dots on
hyperbola!.

FIG. 3. Between resolvable partons~thick lines! there are in
addition unresolvable partons~thin lines!, which are not treated
explicitly. Their contribution is considered implicitly via strings.
05490
s
to
o

ic

ss
he
the

r-
t

ase
-

o
rd
e-

h

is able to solve several of the above-mentioned problems.
provide a rigorous treatment of the multiple-scattering
pect, such that questions of energy conservation are cle
determined by the rules of field theory, both for cross sect
and particle production calculations. In both cases, energ
properly shared between the different interactions happen
in parallel. This is the most important aspect of our approa
which we consider a first necessary step to construct a c
sistent model for high-energy nuclear scattering.

We first considerpp scattering. An elementary interactio
is given as a sum of soft, semihard, and hard contributio
T2→25Tsoft1Tsemi1Thard, as discussed in detail in Ref.@3#.
We have a hard contributionThard, when the the first partons
on both sides are valence quarks; a semihard contribu
Tsemi, when at least on one side there is a sea quark~being
emitted from a soft Pomeron!; and finally we have a sof
contribution, when there is no hard scattering at all~see Fig.
4!. Thard is calculated using the standard techniques of p
turbative QCD,Tsoft is parametrized, andTsemi is calculated
as a convolution ofTsoft andThard. We have a smooth tran
sition from soft to hard physics: at low energies the s
contribution dominates, at high energies the hard and se
hard ones, and at intermediate energies~that is where experi-
ments are performed presently! all contributions are impor-
tant.

Let us consider nucleus-nucleus (AB) scattering. The
nucleus-nucleus scattering amplitude is defined by the s
of contributions of diagrams, corresponding to multiple
ementary scattering processes between parton constituen
projectile and target nucleons. These elementary scatter
are the sum of soft, semihard, and hard contributions:T2→2
5Tsoft1Tsemi1Thard. A corresponding relation holds for th
inelastic amplitudeT2→X . We introduce ‘‘cut elementary
diagrams’’ as being the sum over squared inelastic am
tudes, (X(T2→X)(T2→X)* , which are graphically repre
sented by vertical dashed lines, whereas the elastic am
tudes are represented by solid lines:

This is very handy for treating the nuclear scattering mod
We define the model via the elastic scattering amplitu
TAB→AB which is assumed to consist of purely parallel e
ementary interactions between partonic constituents,

n-

FIG. 4. The soft elastic scattering amplitudeTsoft ~left!, the hard
elastic scattering amplitudeThard ~middle!, and one of the three
contributions to the semihard elastic scattering amplitudeTsemi

~right!.
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INITIAL CONDITION FOR QUARK-GLUON PLASMA . . . PHYSICAL REVIEW C65 054902
scribed byT2→2. The amplitude is therefore a sum of man
terms. Having defined elastic scattering, inelastic scatte
and particle production are practically given, if one emplo
a quantum-mechanically self-consistent picture. Let us n
consider inelastic scattering: one has of course the same
allel structure; just some of the elementary interactions m
be inelastic, some elastic. The inelastic amplitude bein
sum over many terms—TAB→X5( iTAB→X

( i ) —has to be
squared and summed over final states in order to get
inelastic cross section, which provides interference te
(X(TAB→X

( i ) )(TAB→X
( j ) )* . These can be conveniently express

in terms of the cut and uncut elementary diagrams, as sh
in Fig. 5. One has to be careful about energy conservat
all the partonic constituents~lines! leaving a nucleon~blob!
have to share the momentum of the nucleon. So in the
plicit formula one has an integration over momentum fra
tions of the partons, taking care of momentum conservat
This formula is the master formula of the approach, allow
calculations of cross sections as well as particle product
In the latter case, the master formula provides probab
distributions for the momenta taken by the Pomerons and
remnants. A very detailed description with many applicatio
and comparisons with data can be found in@3#.

So far we described only the basic version of the mod
In reality we also consider triple-Pomeron vertices to low
order, as discussed in detail in Ref.@3#. We do not yet con-
sider higher orders; nor do we consider the case where
two legs of the triple Pomeron are connected to differ
nuclei. All this is work in progress.

III. HADRONIC STRUCTURE OF CUT POMERONS

In order to develop our multiple-scattering theory, we u
a simple graphical representation of a cut Pomeron: nam
a thick vertical dashed line connecting the external legs r
resenting nucleon components, as shown in Fig. 6. T
simple diagram hides somewhat the fact that there is a c
plicated structure hidden in this Pomeron, and the purpos
this section is to discuss in particular the internal structure
the Pomeron.

Let us start our discussion with the soft Pomeron. Ba

FIG. 5. Example of a cut multiple-scattering diagram
with cut ~dashed lines! and uncut~solid lines! elementary diagrams
~Pomerons!.
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on Veneziano’s topological expansion one may conside
soft Pomeron as a ‘‘cylinder,’’ i.e., the sum of all possib
QCD diagrams having a cylindrical topology; see Fig. 7.
discussed in detail in@3#, the ‘‘nucleon components’’ men
tioned earlier, representing the external legs of the diagr
are always quark-antiquark pairs, indicated by a dashed
~antiquark! and a solid line~quark! in Fig. 7. Important for
the discussion of particle production are of course cut d
grams; therefore, we show in Fig. 7 a cut cylinder represent
ing a cut Pomeron: the cut plane is shown as two vert
dotted lines. Let us consider the half-cylinder—for examp
the one to the left of the cut—representing an inelastic a
plitude.

We may unfold this object in order to have a planar re
resentation, as shown in Fig. 8. Here, the dotted vertical li
indicate the cuts of the previous figure, and it is there wh
the hadronic final-state hadrons appear. Lacking a theore
understanding of this hadronic structure, we simply appl
phenomenological procedure, essentially a parametriza
We require the method to be as simple as possible, wit
minimum of necessary parameters. A solution coming cl
to these demands is the so-called string model: each cut
is identified with a classical relativistic string. A Lorentz
invariant string breaking procedure provides the transform
tion into a hadronic final state; see Fig. 9.

The phenomenological microscopic picture which sta
behind this procedure was discussed in a number of revi
@7–9#: the string end-point partons resulting from the inte

FIG. 6. Symbol representing a cut Pomeron.

FIG. 7. Cut soft Pomeron represented as a cut cylinder. The g
areas represent unresolved partons.
2-3
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DRESCHER, LIU, OSTAPCHENKO, PIEROG, AND WERNER PHYSICAL REVIEW C65 054902
action appear to be connected by a color field. With the p
tons flying apart, this color field is stretched into a tub
which finally breaks up, giving rise to the production of ha
rons and to the neutralization of the color field.

We now consider a semihard Pomeron of the ‘‘sea-s
type, where we have a hard parametrization QCD~pQCD!
process in the middle and a soft evolution at the end; see
10. We generalize the picture introduced above for the
Pomeron. Again, we assume a cylindrical structure. For
example of Fig. 10, we have the picture shown in Fig. 11:
shaded areas on the cylinder ends represent the soft Po
ons, whereas in the middle part we draw explicitly the glu
lines on the cylinder surface. We apply the same proced
as for the soft Pomeron: we cut the diagram and prese
half-cylinder in a planar fashion; see Fig. 11. We observe
difference compared to the soft case: there are three pa
~dots! on each cut line: apart from the quark and antiquark
the end, we have a gluon in the middle. We again apply
string picture, but here we identify a cut line with a so-call
kinky string, where the internal gluons correspond to inter
kinks. The underlying microscopic picture will be present

FIG. 8. Planar representation of a half-cylinder obtained fr
cutting a cylinder diagram~see Fig. 7!.

FIG. 9. The string model: each cut line~dotted vertical lines!
represents a string, which decays into final-state hadrons~circles!.
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by three color-connected partons: the gluon connected by
color field to the quark and to the antiquark. The stri
model provides then a ‘‘parametrization’’ of hadron produ
tion; see Fig. 12. The procedure described above can be
ily generalized to the case of complicated parton ladders
volving many gluons and quark-antiquark pairs. One sho
note that the treatment of semihard Pomerons is jus
straightforward generalization of the string model for s
Pomerons, or one might see it the other way around: the
string model is a natural limiting case of the kinky strin
procedure for semihard Pomerons. In a similar way one m
treat Pomerons of valence type.

The general picture should be clear from the above
amples: in any case, no matter what type of Pomeron, u
solved soft partons play a very important role. In the stri
model, they represent the string pieces between the hard
tons. In case of single-Pomeron exchange in proton-pro
scattering, particle production can be treated in a phen
enological fashion via the hadronization of two~in general
kinky! strings. In nuclear collisions, the situation is mo
complicated, since we have many Pomerons and co
quently many strings—closely packed—which interact w
each other. Nevertheless, we can use the string pictur
calculate energy densities by considering the strings a
earlier stage before they hadronize.

FIG. 10. A simple diagram contributing to the semiha
Pomeron of the ‘‘sea-sea’’ type.

FIG. 11. Cylindrical representation of a contribution to the sem
hard Pomeron~left figure! and planar diagram representing the co
responding half-cylinder~right figure!.
2-4
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INITIAL CONDITION FOR QUARK-GLUON PLASMA . . . PHYSICAL REVIEW C65 054902
It should be noted finally that particle production from c
Pomerons is not the whole story. Cutting the complete d
gram, one has as well to cut the projectile and target re
nants, which may or not be excited. High-mass excitati
are as well considered as strings.

IV. DYNAMICS OF STRINGS

The string dynamics is derived from the Nambu-Goto L
grangian, which has been constructed based on invaria
arguments. The corresponding equation of motion for
string is a wave equation, with a solution@10–12,3#

X~r ,t !5X01
1

2 F E
r 2t

r 1t

g~j!djG , ~1!

for the four-vectorX(r ,t), having already assumed that th
initial spatial extension of the string is zero. The quantityX0
represents the formation point of the string, which coincid
with the position of the nucleon-nucleon interaction being
the origin of the string formation. The spacelike variabler
represents the position along the string for given timet,
whereas the functiong defines the initial velocity,

g~r !5Ẋ~r ,t !u t50 . ~2!

We will consider here a special class of strings: name
those with a piecewise constant functiong,

g~r !5vk for
Ek21

k
<r<

Ek

k
, 1<k<n, ~3!

for some integern. We use for the string tensionk51
GeV/fm. The set$Ek% is a partition of the interval@0,E#,
with E being the string energy,

05E0,E1,•••,En21,En5E, ~4!

and$vk% representsn constant four-vectors. Such strings a
called kinky strings, withn being the number of kinks an
the n vectorsvk being called kink velocities. The functiong
must be symmetric and periodic, with the period 2E/k. This
definesg everywhere, and Eq.~1! is the complete solution o

FIG. 12. The ‘‘kinky’’ string model: the cut line~vertical dotted
line! corresponds to a kinky string, which decays into hadro
~circles!.
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the string equation, expressed in terms of the initial condit
g. In the case of kinky strings the latter is expressed in ter
of the kink velocities$vk% and the energy partition$Ek%.

What has all this to do with cut Pomerons? So far nothi
and to establish a link, we have to provide some mapp
from the language of Pomerons and partons into the
guage of strings. We discussed earlier that a cut Pome
may be identified with two sequences of partons of the ty

q2g2g2•••2g2q̄, ~5!

representing all the partons on a cut line. We identify suc
sequence with a kinky string by requiring

parton5kink, ~6!

which means we identify the partons of the above seque
with the kinks of a kinky string, such that the partition of th
energy is given by the parton energies,

Ek2Ek215energy of partonk, ~7!

and the kink velocities are just the parton velocities,

vk5
momentum of partonk

Ek2Ek21
. ~8!

We consider massless partons, so that the energy is equ
the absolute value of the parton momentum. An exampl
shown in Fig. 13. We have six partons—a quark and an
quark, with four gluons in between—symbolically displaye
in the first subfigure, with a total center-of-mass syst
~c.m.s.! energy of 14 GeV. One sees that the perturbat
gluons play an important role in the beginning of the mov
ment, and later from 2 GeV on, the longitudinal charac
dominates. A string breaks typically after 1GeV/k, with k
being the string tension, which gives much importance to
perturbative gluons.

V. ENERGY DENSITIES FROM STRINGS

Based on the string formalism, we are now able to cal
late energy densities. As discussed above, a stringS is a
two-dimensional surfaceX(r ,t) in Minkowski space, whose
intersection with the surface,

t22z25t2, ~9!

defines uniquely a curveSt , which we refer to as ‘‘string at
given proper timet.’’ Our aim is to calculate the energy
density and the velocity flow at a given proper timet—in
other words, along the curveSt .

Let us consider a small string pieceDSt—in other words,
a segment of the string curveSt between two neighboring
points A and B, being sufficiently close so that the strin
piece may be considered as pointlike. According to relativ
tic string theory, the four-momentum of this string piece
the laboratory system is given as

DPlab5E
A

BH ]X~r ,t !

]t
dr1

]X~r ,t !

]r
dtJ . ~10!

s

2-5
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FIG. 13. Partons of ane1e2 annihilation
event with As514 GeV in thez-x plane. The
figure in the left upper corner shows the momen
in the pz-px plane.
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The partial derivatives can be expressed in terms of the
tial velocity g as

]X~r ,t !

]t
5

1

2
@g~r 1t !1g~r 2t !#, ~11!

]X~r ,t !

]r
5

1

2
@g~r 1t !2g~r 2t !#. ~12!

This velocity function is known, in fact it is defined via th
mapping of a system ofn partons into string language:

g~r !5vk for
Ek21

k
<r<

Ek

k
, 1<k<n, ~13!

wherevk is the four-velocity of thekth parton divided byg,
and the differenceEk2Ek21 is its energy. So the four
momentum of a string segment can be easily expresse
terms of the original parton momenta.

We use hyperbolic coordinates

q05t5At22z2, q15x, q25y, q35h5 1
2 ln

11z/t

12z/t
,

~14!

wherez is considered to be the coordinate along the be
axis, andt is the time. The variablesx and y are the trans-
verse coordinates. For givent andh, we define a frameFh
via a Lorentz boost with boost rapidityh. The four-
momentum of the above-mentioned string piece is given

DPm5Ln
mDPlab

n , ~15!

with the corresponding transformation tensorL.
We are now going to calculate the energy-momentum t

sor Tmn for a string piece in the frameFh . The general
definition in kinetic theory is
05490
i-
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m

s
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Tmn~qW !5E d3p

E
pmpn f ~qW ,pW !, ~16!

whereqW is a position vector, andf is the phase space densi
~particles per phase space volume! for a given time. For our
pointlike string piece we have, in principle,

f ~qW ,pW !5d~pW 2DPW !d~qW 2QW !. ~17!

Knowing that a string with zero width is a mathematic
idealization, we introduce a Gaussian-type smearing func
W(q), normalized as*W(q)4pq2dq51. So we define

f ~qW ,pW !5d~pW 2DPW !W~ iqW 2QW i !, ~18!

with the norm in hyperbolic coordinates being given as

iqW i5A~q1!21~q2!21t2~q3!2. ~19!

The energy-momentum tensor for the complete string is t
just the sum over all string pieces, which gives

Tmn~qW !5 (
string segments

DPmDPn

DP0
W~ iqW 2QW i !. ~20!

We define a local comoving frame via the four-velocity

um~qW !5
nm~qW !

Anm~qW !nm~qW !
, ~21!

with

nm~qW !5T0m~qW !. ~22!

This allows then the calculation of the energy density in
comoving frame,
2-6
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INITIAL CONDITION FOR QUARK-GLUON PLASMA . . . PHYSICAL REVIEW C65 054902
e~qW !5Tmn~qW !um~qW !un~qW !, ~23!

and the flow velocity

vW ~qW !5uW ~qW !/u0~qW !. ~24!

VI. RESULTS

In the following, we show results for different high
energy reactions. All the calculations are done at the pro
time t51 fm/c, and we suppress writing this variable in th
following. We use always a widths50.5 fm for smearing
function W(q). We define the rapidity fieldyz(x,y,h) as

yz~x,y,h!5
1

2
ln

11vz~x,y,h!

12vz~x,y,h!
, ~25!

wherevz(x,y,vz) is thez component of the velocity field.
As a reference, we first show results for a single str

without kinks, having an energy of 50 GeV, as may occur
electron-positron annihilation. In Fig. 14, we plot the ener
density e(x,y,h) as a function ofx and h for y50. As
expected, the energy density is peaked aroundx50, whereas
it is distributed evenly inh between limits defined by the
energy of the string. Since there is a cylindrical symme
with respect to thez axis, it is no surprise that the energ
density as a function ofx and y for h50 shows a narrow

FIG. 15. Energy density in thex-y plane ath50 for a single
string of energy 50 GeV.

FIG. 14. Energy density in thex-h plane aty50 for a single
string of energy 50 GeV.
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peak aroundx5y50, as seen in Fig. 15. The rapidity fiel
yz(x,y,h) as a function ofx andh for y50 is shown in Fig.
16, where we observe roughlyyz(x,y,h)5h. The other
components of the velocity field are zero.

Kinky strings show a very similar behavior. As a result
the transverse momenta introduced via the kinks, the cy
drical symmetry is slightly distorted, and we observe as w
very small but finite values for the transverse components
the velocity fields. Since the results are so close to the sim
string discussed above, we do not show the figures here

Next we consider proton-proton scattering at 50 Ge
Here we have usually several strings, the minimum num
being 2, plus two remnants~which may be strings in case o
high-mass excitation!. In the example considered here, w
have altogether four strings, with respective energies of 1
GeV, 9.3 GeV, 7.6 GeV, and 15.8 GeV. Since the strings h
different masses and are not sitting in the c.m.s. system,
energy densitye(x,y,h) as a function ofx andh for y50
does not show such a flat behavior as in the case of a
string, as seen in Fig. 17, but we observe a peak ath50,
whose value is roughly 2.5 times bigger than the one fo
string. However, the energy density as a function ofx andy
for h50 shows as well a narrow peak aroundx5y50, as
shown in Fig. 18, and the rapidity fieldyz(x,y,h) is roughly
equal toh; see Fig. 19.

Let us consider gold-gold collisions at RHIC
(200A GeV). In Fig. 20, we show the energy densi

FIG. 16. Rapidity field in thex-h plane aty50 for a single
string of energy 50 GeV.

FIG. 17. Energy density in thex-h plane aty50 for a proton-
proton collision at 50 GeV.
2-7
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e(x,y,h) as a function ofx andh for y50. For a fixed value
of x, we observe a similar shape as for proton-proton sca
ing: a broad distribution with a smooth peak around zero.
course, the magnitude is much bigger. Considering, howe
the variation withx for given h, we observed large fluctua
tions: pronounced peaks followed by deep valleys. If we
gard the energy density as a function ofx andy for h50, as
shown in Fig. 21, we observe correspondingly several pe
overlying the general roughly rotationally symmetric stru
ture, which increases towards the center. To investigate
origin of these fluctuations, we show in Fig. 22 the distrib
tion of the number of nucleons~projectile plus target! pro-
jected to the planez50, in units nucleons per fm2. From a
spherically symmetric nuclear density, we expect a rotati
ally symmetric distribution of this projection, increasing t
wards the center (x5y50). This is also what one observe
roughly. But looking more closely, we clearly observe lar
fluctuations with pronounced peaks. And even more, th
peaks correspond exactly to the peaks in the energy de
distribution, which proves that the fluctuations in ener
density are due to geometrical fluctuations in the distribut
of nucleons. We finally consider rapidity and velocity field
in Fig. 23 the rapidity fieldyz(x,y,h) and in Fig. 24 thex
componentvx(x,y,h) of the velocity field, both as a function
of x andh for y50. We observe roughlyyz5h andvx close
to zero. So the velocity field is practically purely longitudin
and shows the so-called ‘‘Bjorken scaling’’ (yz5h).

FIG. 18. Energy density in thex-y plane ath50 for a proton-
proton collision at 50 GeV.

FIG. 19. Rapidity field in thex-h plane aty50 for a proton-
proton collision at 50 GeV.
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FIG. 20. Energy density in thex-h plane aty50 for a central
gold-gold collision at 200A GeV.

FIG. 21. Energy density in thex-y plane ath50 for a central
gold-gold collision at 200A GeV.

FIG. 22. Projected nucleon density in thex-y plane for a central
gold-gold collision at 200A GeV.
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VII. SUMMARY

We presented a way to calculate macroscopic quant
like energy density or velocity~or rapidity! fields at an early
stage of a nucleus-nucleus collision at ultrarelativistic en
gies. The calculation is based on a sophisticated treatme
the primary interactions, when the two nuclei are travers
each other, using the parton-based Gribov-Regge m
NEXUS. The important point is an appropriate treatment
soft partons, which contribute substantially and which
usually completely neglected. InNEXUS, soft and hard phys-
ics are considered consistently: hard partons are treated
plicitly based on pQCD; soft ones are included implicit
using the string picture. This allows a quite reliable calcu
tion of the above-mentioned macroscopic quantities.

We analyzed single strings, proton-proton scattering,

FIG. 23. Rapidity field in thex-h plane aty50 for a central
gold-gold collision at 200A GeV.
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heavy-ion collisions. In the latter case, we find almost perf
‘‘Bjorken scaling’’: the rapidityyz coincides with the space
time rapidity h, whereas the transverse flow is practica
zero. This is often employed as an initial condition for h
drodynamical treatments. However, theh dependence of the
energy density does not show a well-defined plateau co
sponding to ‘‘boost invariance.’’ Furthermore, the distrib
tion of the energy density in the transverse plane shows t
cally a very ‘‘bumpy’’ structure, which fluctuates
considerably from event to event.

ACKNOWLEDGMENTS

This work has been funded in part by the IN2P3/CNR
~PICS 580! and the Russian Foundation of Basic Researc
~RFBR-98-02-22024!. H.J.D. acknowledges support from
NASA Grant No. NAG-9246.

FIG. 24. Velocity field (x component! in the x-h plane aty
50 for a central gold-gold collision at 200A GeV.
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