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Reaction theory for three charged clusters
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A theory of three-body reactions is presented, applicable to atomic and nuclear interactions, in which the
colliding systems may be charged and composite, subject to the condition that the total energy lies below the
threshold for breakup of any of the three bound systems. A variational principle for elements of the scattering
matrix is derived, and a decomposition of each trial function into open- and closed-channel parts is presented
that allows for the use of a subsidiary minimum principle for the systematic improvement of the closed-channel
component. A detailed analysis of the structure of the trial functions is provided through a representation of the
exact wave function in terms of the solution of integral equations of the Faddeev type, generalized to allow for
long-range Coulomb interactions between péilsough the appearance of Coulomb-distorted Green'’s func-
tions in the kernel of the integral equatjoas well as for the internal structure of the clusters. The integral
equations provide a general foundation for the theory. In particular, they lead to a formal justification of the
variational identity presented here and serve to determine how the closed-channel component of the trial
function is to be defined to establish the subsidiary minimum principle.
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[. INTRODUCTION multiparticle dynamics of the bound clusters, affecting the
structure of the closed-channel part of the configuration-
Significant advances have been made in recent years gpace wave function, may be treated effectively using famil-
the development of a theory of reactions involving threeiar procedures of the Rayleigh-Ritz typ&]. The variational
charged particle§1,2]. Calculational procedures have beenprinciple is derived in Sec. Il with a method that is best
devised 3] that avoid difficulties associated with the compli- described as heuristic since orders of limits and integration
cated asymptotic form of the three-body wave function, and'® exchanged with no justification provided. This is no
impressive achievements have been repoiftéd]. The cause for concern, however, since the well-formulated Fad-
Merkuriev theory, on the other had,2], deals directly and deev integral equations may be invoked to provide an alter-
rigorously with these matters with the aid of an extension ofhative derivation, rather more awkward and indirect, but one
the Faddeev integral equation formulatis] to include the  that avoids this defect; this was as shown earlier in a closely
effects of long-range Coulomb interactions in the construcrelated problem involving neutral, structureless particles
tion of the Green’s functions that appear in the kernel of thd 11,12. A separation of a scattering trial function into open-
integral equation. Applications of the theory have appeare@nd closed-channel parts is not unique. A particular choice is
recently[7] which, while still limited in scope, indicate the Proposed that allows for the use of a subsidiary minimum
feasibility of the approach. principle to improve the accuracy of the closed-channel com-
It seems reasonable to assume that this class of three-bo@¢nent in a systematic way. The integral-equation formula-
charged-particle collision problems will come under compu-tion is useful in this regard, since it provides detailed infor-
tational control in the near future. In this case it is appropri-mation on the structure of the wave function.
ate to consider, as the next logical extension, the effects of
internal structure of the constituents of the three-body scat- Il. VARIATIONAL PRINCIPLE
tering system, for energies below the threshold for fragmen-
tation of any of the clusters. Since the three-body asymptot- We seek an approximation procedure to determine the
ics are unchanged in this extension much of the Merkuriewscattering amplitudes;; , where the channel indexcorre-
theory remains applicable; this will be the underlying as-SPonds to a projectile incident on a two-body bound state.
sumption in the developments described below. A generalifor the moment each of the three bodies may themselves be
zation of the Faddeev integral equations to apply to thre€harged bound systems; a more explicit description of the
Composite SystemS, with |0ng_range Coulomb interaction§cattering model is pOStpOHEd for a while. With the resolvent
ignored, was described some time 46h The modification ~ defined asG(E)=(E—H)™* the scattering amplitude may
of that theory to allow for bound systems carrying a netPe represented d43]
charge is presented here in Sec. Ill. This provides the basis

for a channel-decomposition of the wave function, whichin ~ T;= lim (E—E)(®|”|G(E)|®|")(E-E)),
turn leads to integral identities for elements of the scattering E—Ej+i0+
matrix. Momentum-space integral equations may be replaced (2.)

by an equivalent set of coupled differential equations which

might provide computational advantaggd. In particular, where (I)J“) is the asymptotic outgoing wave, distorted to
variational methods in configuration space can be useful, agccount for the presence of a Coulomb interaction between
demonstrated for the proton-deuteron sys{difi], and the the colliding systems in the initial state. The incoming final-
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state functionCDi(‘) is similarly defined and the channel en- wave function satisfy K,— E0)|q>g—)>:o with V=H
ergiesE; and E; are taken to be equal. To obtain a more —H,, a Hermitian potential energy. Then, since
useful form we write E—E;)|[®{")=[E-H+H

—E;]|@(") and setG(E)(E—H)=1, valid for InE>0, to (H-Eplej™)=—H-Ep[T™). 28
obtain Eq. (2.7) may be put in the form
T =lim(E—E)(®||GE)H-E)®{"), (2.2 Ty = (D |(Ej—H) ™), 2.9

with the limit understood as I approaching zero from a relation that can serve as a convenient starting point for
above. Now writing (®{|(E-E)=(®{)|(E-H+H  approximate evaluatiofl4].

—E;), and proceeding as above, we arrive at the form In terms of the model scattering system discussed in more
detail in Sec. Ill, below, let us consider a Hamiltonian of the
Tij=(®{ 7 |(H-E)d|™) form H=h+K+V, whereK is the total kinetic energy of the

. =) +) three clusters in the center-of-mass frame ®nd=> ;v is
+lim((H-E)®{ [G(E)(H-E)®|"’). (2.3  the sum of interactions between pairs. Our notation is such
that a pair of particles selected from the three is denoted, as
a subscript, by the number of the thifehissing particle.(A
more explicit notation for Jacobi coordinates, momenta, and
kinetic-energy operators may be found, for example, in Ref.
G=G+[1+G,(H-E)]G, (2.4) [11]:) For simplicity, we assume that qnly'on'e of the threg

bodies, taken as particle 3, is composite; its internal Hamil-

whereG,(E) is a trial Green’s function, with IrE>0 at this  tonian is denoted ah and its ground-state wave function

A variational principle for the scattering amplitude is ob-
tained with the introduction, in Eq2.3), of the resolvent
identity

point. We define satisfies
(B~ p)=Gy(E,—in)(H—E) [, hlx)=elx- 219
(2.5 In addition, the particles are taken to be distinguishable. The
w]'fj(Ej+i7,)EG(Ej+i 77)(|-|_|5j)c1)}+>; more general case can be treated by similar methods. Fol-

lowing Merkuriev[1] we write, for each pair,
these functions approach, in the limjt-0+, the scattered —
portions of the trial final-state wave functioenoted as i i Vi

¥(7) and the exact initial-state wave functi¢denoted as where the long-range contribution’ represents the Cou-
\”1'/].(+)), respectively. With these substitutions, and with thelomb interaction between particles in paiwhen all three
allowance for the fact that surface terms encountered in paparticles are well separated and vanishes when the pair is
tial integrations may be ignored whepis positive, identity ~ close [15]. We then make the identificatiof,=h+K
(2.3 may be rewritten as +V¢, with V=32 v/ . The asymptotic state is represented
as|®{)=|x&{)). An essential feature of the Merkuriev
theory is the demonstration that a well-defined procedure is
available for the solution of the asymptotic wave equation
(K+V +e—Eg)|£7)=0 [16], as well as for the construc-
tion of the asymptotic resolvenE( K—V¢—¢)~1. An ap-
+((H- Ei)q)f7)|q,j(Ej +in) proximation procedure for determining this Green’s function
was describedl], starting with an eikonal first approxima-
+((H-E)T(E-in)|T;(Ej+in)}. (2.6 tion that builds in the effects of the long-range Coulomb
interaction and is then followed by the use of a linear integral
By interchanging the order of integral and limit and Combin-equation to account for its shorter range component.
ing terms, we deduce that An application to elastic scattering of the variational prin-
ciple obtained from Eq(2.7) would provide a trial scattered
wave function ;") which could be systematically improved
using a method outlined below. Use of this function in Eq.

. _ oy (2.9 gives an approximate breakup amplitude which, while
with ‘I:'(t )=q)i( )+\Pi(t . The replacement of the scattered nonvgriational, I?jit))es not involve IC;he ?inal-state scattered
waveW (") by a trial function provides a variational estimate wave which is difficult to estimate. To illustrate in the sim-
of the scattering amplitude, one that is correct to first ordeplest context how a subsidiary minimum principle may be
assuming that the trial functions introduce only first-orderysed to evaluate the closed-channel component of the wave

Tij=(®{ " |(H-E) ")

+ lim (@ (E—in)|(H—E)D| )

n—0+

Ty = (Wi I(H=Ep[@f)+((H=-Epwi [T{"),

errors. _ o . function we consider a nuclear scattering problem with re-
The identity (though not the variational propejtys pre-  pulsive Coulomb interactiong&nd return in the following to
served with the choicel{'=®{). Consider the three- the case of attractive interactionsSuppose that pair 1 is

body breakup channék=0 and let the distorted asymptotic bound in the initial state and that neither of the other two
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pairs can bind. Lety, denote the ground-state wave function The minimum property follows from the fact that the energy

for the pair of particles 2 and 3; it satisfies E lies below the threshold of the continuous spectrum of the
modified HamiltonianA [17,18. Given an improved esti-
(h+kit+vy)|p1) =21 ¢1). (212 mate of the closed-channel functim, more accurate esti-

S mates of the open-channel functioRsand Q may be ob-
The total kinetic energy has been decomposeKasky  yaineq by application of the variational principle derived
Ky, \.N'th Ky den.otlng th_e klnetlc-gnergy operator assocl-fqy, identity (2.7). The potential advantage of this procedure
ated with the relative motion of particle 1 and the pair. jioq in the fact that the multiparticle complexities of the
We now introduce the modified Hamiltonian closed-channel component of the wave function can be re-
N duced systematically with the aid of the minimum principle.
h=h—=z|x)(xI. 213 \we have previously described how this procedure is to be
. modified to preserve the minimum principle when, as is usu-
whose spectrum, owing to the propeftyy) =0, differs from  ally the case, the bound-state functignis imprecisely
that of h only in that the ground-state level has been dis-known[8,19.
placed upward by an amount It follows that while the Note that Eq.(2.16 has the formal solution|M)
segment of the continuous spectrumthfrepresenting states _ G(E)| J) with
with three free particles at infinity, has a threshold at energy
&, the corresponding spectrum Bf=H—z|x)(x| begins at G(E)=(E—HA)"L. (2.20
zero energy. This provides the basis for a minimum principle
for scattering energies that lie below the threshold of theThe minimum principle for the closed-channel functidnis
continuous spectrum of the modified Hamiltonian Thus applicable to the approximate determination @{E), a
separating off the open-channel part of the wave functiormodified resolvent that appears prominently in the integral-
explicitly, we write [with superscript(+) understood when equation formulation of Sec. Ill.

not explicitly indicated The procedure described above is readily extended to ac-
count for a finite number of bound states in each channel.
|‘1’(1+)>=|¢>1P>+ |xQ)+[M), (2.19 For attractive Coulomb pair interactions this is of course not

possible and one must proceed differently. An infinite Ryd-
and consider the Schidnger equation, withE now the berg series of bound states may be incorporated into the
physical energy, written as wave function through the introduction of a Coulomb
Green’s function for each pair that consists of oppositely
(H=E)| Py =(Ki+e1+vo+v3—E)| 1 P)+(K+e+V charged patrticles, as shown in Sec. IV. Anticipating that de-
N velopment we look for the wave function in the form
—E)[xQ)+(H=E)[M)+e[x)(xIM)

=o0. (2.19 (W) =107 + Ry +[M)), (220

(While this channel decomposition is not unique, the moreWhere a contrlbutloniDJ associated with the incident wave

general analysis of the structure of the wave function giver{n channel;, satisffying the S.c.:hnljnge'r 'equatio.n asyrr!ptoti-'

in Sec. IV leads directly to the optimum forjiiVe suppose cally, has been introduced; its explicit form_ls provided in

that a first approximation to the wave function has been ob-SeC]'c IV. In place of Eq(2.19 the wave equation now takes

tained and we seek an improvement in the closed—channérl1e orm

function M as the solution of the inhomogeneous equation (H— E,-)I\I’}+))=(Kj+sj+V—vj— Ej)|<D}+))
(H=E)|M)=—1J), (2.19 +(H=E)[R))+(H—E))|M;)

where the square-integrable functidis defined by +e|x){(xIM;). (2.22

13)=(K,+&,+v,+03—E)|¢,P)+V]|xQ), (2.17  SettingR;=3;R], whereR; contains the bound states for the
pairi in the region where particlieis well separated from the

with V=33_,3;. According to Eq.(2.15 we still have the pair, we require thatFﬂ—EJ-)|Mj>= —13;), with

condition
[9)=(Kj+ e+ V=0, = E)|®] )+ 2 (V=0))[R)).

2.2
which is satisfied, formally, as|yQ)=(E—K-V¢’ (223
—&) | x)(x|M). The asymptotically decaying solution of We observe that);) in this form is normalizable even when
Eq. (2.16 may be identified as the function that minimizes the asymptotic form ofR}) contains terms corresponding to
(an arbitrary number ¢fbound states in channelThus the
M=(M[I)+IIM)+(M|(H=E)M). (2.19  bound-state wave function provides convergence in the vari-

(K+Vi+e—E)|[xQ)+&lx)(xIM)=0, (2.18
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able measuring the separation of the particles in the pair an@omparison of these two equations, using standard operator
convergence in the remaining region is provided by the poalgebra, leads to the relation
tential V—v;. The validity of the minimum principle for

IM;), based on a functional of the for(@.19), then follows.
To complete the solution of Eq2.22) we require that, with

Ti=Ta+T1lx)G(x|T:. (3.9

M;j=3;M},
(K+V +h+v—E)|R)+e[x)(xIM)=0, (2.29

which is satisfied formally agR})=G;i(E;)e|x)(xIM}),
with

G/(E)=[E—(K+V‘+h+v;)] L. (2.25

With the expectation value of both sides taken with respect
to x, this becomes
Ty=V1+ W07, (3.10

where the effective potential for pair 1 has been defined as

Vi={(x|Talx). (3.1))

A decomposition of this Green’s function in a form conve- The effective scattering operator for this pair consisting of

nient for approximate evaluation is given in Sec. lll.

Ill. EFFECTIVE THREE-BODY INTEGRAL EQUATIONS

As a preliminary to the study of the structure of the resol-
vent G(E) we begin with an examination of the Green’s
function defined in Eq(2.25. Settingi =1 for definiteness

we define the related operator
G(E)=[E—(K+V‘+h+v7)] 7%, (3.0
and consider the resolvent identity

G1=G1+ G| x)(x|G;. (3.2

Since the kernel of this integral equation is separable a for-
mal solution is available. To put this representation in useful
form we introduce some notation. We define the Green’s

functions Go(E)=(E—Ho) ' and Go(E)=(E—Hg) *.

Noting the relations
Golx)=IX)(E-K=VH) 1, (3.39

(X|Go=(E—K—-Vi—g) " Lx], (3.3b

we see that the identity analogous to that shown in(B@)
may be expressed as

Go(E)=Go(E)+|x)G(E) (x|, (3.9
with

G(E)=u(E)(E-K—V‘=g)™ % (3.5

particle 2 and cluster 3, in the presence of the spectator 1 and
the background long-rang Coulomb potential, is given by

To={x|T1lx)- (3.12

After these preliminaries we return to E§.2) and obtain
from it, after some algebrg20], the representation

G1=G1+2Gy x)u ' [G+0T,Glu Xx|Ge. (3.13

Another relation, useful in the expression of a bound-state
pole contribution toZ; in terms of that inG,, is obtained
from the expectation value of the relatios,;=G,
+GoT1Gy; we readily find that

<X|Gl|X>:(E_K_Ve—g)71+(E_K_V€_8)71
X,TZL(E_K_V{/—S)il_ (314)

The analogous relations for subsystem 2 is obtained from the
above by switching indices. For pair 3, however, consisting
of particles 1 and 2 treated here as structureless, we have, in
place of Egs(3.11) and(3.12, the somewhat simpler rela-
tions

Va3=v3+03(E- K=V 1y, (3.15

and
T3=v3+va(E—K—-Vi—g) 173, (3.19

A representation of the full Green’s functi@(E) analo-
gous to that derived above for the subsystem resol@g(iE)
is obtained by fairly straightforward generalization. Thus we

for notational convenience we have introduced the abbrevidntroduce the auxiliary operatdF, the solution of the inte-

tion

u(E)=e(E—K—-V9H 1 (3.6)

gral equation

To proceed we define scattering operators as solutions of thene solution obtained by iteration has the form

linear integral equations
Ti=v1+v1GoT, 3.7
and

T=V+VG,T. (3.17
3
T=> T,+T., (3.18
=1

a relation which serves to define the connected partThe
effective potential may then be expanded as
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4
V=Zl Vo, (3.19

with the effective pair potentials defined, as described earlier,

by

Vi=(x|Tilx), i=1,2,3. (3.203

The effective three-bodyconnected interaction is given by

Va=(xITelx), (3209
and the extension of E¢3.10 is
T=V+VGT, i=12234. (3.2

PHYSICAL REVIEW &5 054605

The incident Coulomb-distorted wave introduced earlier is
now defined more explicitly as

|q)](+)>=|d’jq](+)>!

where ¢; is the ground-state wave function of the pgir
satisfying an equation of the form shown in Eg.12 for
j=1. The relative motion of this pair and the projectile, par-
ticle j, is described by a modified plane wave satisfying the
wave equation

4.2

Kjelaf ") =(Ej—eplaj ™), 4.3
with outgoing-wave boundary conditions. Here we have de-
finedK;.=K;+w;, wherew; is an auxiliary potential intro-
duced to account for the monopole component of the Cou-

Relation (3.10 for a subsystem scattering operator is ex-lomb interaction acting, in the asymptotic region, between

tended to the full system as

T=V+ V4T, (3.22

which can be put in Faddeev form, modified by the presenc
of the three-body potential, [21,8]. Thus we have the rep-

resentation
4 4
7=> > Tl (3.23
=1j=1
with the components satisfying
'TI=T8;+> 'T'gT;, (3.24a
]
1#i

The derivation of the three-body extension of E&13 be-
gins with the resolvent identity

G=G+Ge|x)x|G, (3.25

which, in parallel with the derivation of Eq3.13, may be
converted to the form

G=G+eG|x)u G+GT0lu Y x|Gs. (3.26

the center of mass of the pair and the projectile. The limit in
Eq. (4.1) is evaluated by identifying the residue at the bound-
state pole in the scattering operat@y appearing in Eqg.
3.243. We setj =1 temporarily, and refer to Eq3.14) for

is evaluation. To isolate the pole contribution we introduce
the expansion

G1(E)=0,(E)+G1(E)U,0,(E), (4.9
where

(4.5

represents the multipole component of the asymptotic Cou-
lomb interaction and

U1=vg+vg—wl

01(E)=[E—(h+k;+v;+Ky)] ™t (4.6

is the resolvent for the pair from which the pole contribution

01p(E)=| 1 )(E—&1—Kyo) X1 4.7

is extracted. The replacement gf with g;p in EqQ. (4.4
definesG,p, and provides us with the relation

(XIG1plx)=(xlg1p|x) + (x|G1U1g1p|x). (4.9

With the use of Eq(3.14) we have the separatidh =7;p
+T1q, With 7, free of the pole singularity.
Now from Eq.(3.26) combined with Eq(4.1) we see that

This relation serves as the starting point for an analysis of théhe factoré|<l>(l+)> stands to the right in the expression for
structure of the wave function in a manner that allows for thehe wave function, but only the part & that contributes to
presence of subsystem bound states and propagators to ff pole need be retained. We identify that part by writing the
exhibited explicitly. eigenvalue equatiof2.12 as

IV. WAVE FUNCTION AND SCATTERING AMPLITUDES |¢>1)=Q1(81)8|X><X| ¢1>: (4.9
The structure of the resolvent operator displayed in Eqwith
(3.26 provides the basis for the derivation of a channel de-
composition of the wave function of the type anticipated in gi(e1)=[e,—(h+ky+ovy)] % (4.10

Egs.(2.14) and(2.21). The starting point is provided by the

representation This suggests that we introduce the resolvent identity

[Ty=lim  G(E)|[®{")E-E). 4.1 G(E)=01(e1)+ G(E)(V + K+ 81— E)d1(e1),
E—Ej+i0+ (4.1
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with brackets in Eq(4.17). With g,;p given by the bound-state
pole term shown in Eg4.7) we arrive at the form

Vl:l)2+U3_W1. (412
. o IPLind=1a0") +(E—e1—Kye) ™ X pa | Wy | DLH)),

We keep only the first term on the right in E@.11), apply (4.20

the adjoint of Eq.(4.9), the representatiod.7), and the

wave equatior(4.3) to verify the relation with the limit Im E—0+understood, and with22]

lim  U(E)(x|Giplx)&(x|81(s1)| P (E-Ey) Wi=U;+U;G,U;. (4.2

E—E +i0+ ) o
There remains a contribution to the closed-channel compo-

=[f,0i"). (4.13  nent|My;,0, the full expression of which is recorded below.
] . ) The first term in the expansiog;=g;p+0d;q having
Here we definedfor j=1, 2, or 3 to allow for the extension heen accounted for we consider the second, nonsingular

specified below term. With the aid of Eqs(3.33 and(3.6) we find that
1) =u(x(1+GjU))| ¢)). (4.14 G| x)=(1+GV)|y)u, (4.22
The form of Eq.(3.243 leads to the wave-function decom- fom which we obtain
position
4 |Quing = U(x|g1W4| i) (4.23
|‘P}+)>:i§l [, (415  The complete form fofM ;.o is now determined as

A 1 _ v/
and, with the aid of the limiting relatio.13), the represen- [Mying =G{[V*+ Ky t+e,—E]| ¢1P11inC>+V|XQlyin&}'24)
tation '

This analysis can be extended to include the scattered-
5 +g|2¢1 i7|}|qu§+)>. wave part of the expression shown in H4.16. We make

(Wi ) =eG|x)ut :
use of Eq.(3.24b to write

(4.16
The extension made here to include the initial charjre? i7'27i5i|+n§i TG T, (3.24H)
is immediate; the verification of this form fgi=3 requires

separate treatment, given in the Appendix. with 7; expanded aS;p+ 7o . In parallel with the derivation

Results just obtained allow us to develop a channel deyf £, (4.20 we find, for channel§=1 or 2 andi=1 or 2,
composition of the wave function. As a first step we consider
a nuclear scattering problefdeuteron scattering by a tightly . B
bound nucleus would provide an examplavolving only [P =1Pj,inc) 8ij + (E—&i = Kic) ~X(fil gz] n%;i mT!
repulsive Coulomb interactions. We assume that each pair

can support a single bound state. The incident channel is 1 (+)

taken asj=1. Then, with the first term on the right in Eqg. +G (1= 6y) |fiqj ) (429
(4.16 written as| ¥ j,o) 6; , and referring back to E¢4.14),

we have Turning now to the contribution arising from the final-

~ state interactior7;o we make use of E(4.22) to obtain
V10 =eGlx)(xI(1+G U [@Y7). (4.1

This form may be decomposed as Q1) =1Q).ind 8ij + G Tig(1~ &)

|\P1,in(>:|¢1P1,in(‘>+|XQ1,inc>+|M1,in(‘>’ (4.18

with expressions for these channel functions obtained as fol-
lows. We make use of Eq$4.11) and (4.9 to find and fori=4 we have

+> > TngmT'Jlf;q}“), (4.26

1#] m#i

Glx)e(x|#1ay”)

= |10+ GV + Kict &1~ E 4101 7).
(4.19  The complete closed-channel contribution is

|Qj‘>=g§j “T'|f0). (4.27

The resolvent identity4.4), along with the decomposition IMD=G{[V' +Kic+ &~ E]| P}y +V[xQ})}.
91=01p+ 010, is now used to expand the second term in (4.28
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Results for channel articles 1 and 2 interacting in initial

or final statesrequire a slightly different treatment, given in Toj=Toj,inct (&5 |§_ 7'|f05). (4.39
the Appendix. These results combine to give the desired !
channel decomposition The termT; inc arises from the first term on the right in Eq.

i(+)) _ i i i (4.26) for Q} . Replacinggjq with g; (as justified above we
|\Pl ) |¢1PJ>+|XQJ>+|MJ>' (4.29 are led to the expression
It should be emphasized that with all subsystem bound _ (+)

7 in) = W[ T). 4.3
states separated off, as done above, the fun@ipappear- Qi ine) = ulx| g W ;) (4.39
ing in the second term on the right in E(#.28 behaves A more convenient form is obtained using the relation
asymptotically as a three-body outgoing wdgee, for ex- g;W,=G;U;. We may then apply the identitys;=G,
ample, Ref[11] for a review of the kinematics for this pro- +Ggu;G; and make use of Eq$3.3b and(3.5) to obtain
ces$. Then, with the additional “protection” coming from
the potentialV, the function that is operated upon by the Tojine= lIm  (E=Eo}(®4|G(U;+0;G;U;)|®| ™).
modified resolven(G is normalizable. The conclusion that EoEotio (4.36
M} is asymptotically decaying is then valid, as required for '
the applicability of the minimum principle discussed in Sec.Writng Eq. (3.5 as G=(E-K-V'—g) '—(E—K
Il If a finite number of subsystem bound states exist they—V¢) 1, and recognizing that the second term on the right
must all be separated off using a straightforward extension afoes not contribute in the limit, we have
the procedure described above. Clearly, a different approach

is required to treat problems such as electron-atom impact Tojine= (PG5 |(U;+;G;U)) [ @] )). (4.37
ionization where attractive Coulomb interactions appear. We i , o i ,
return to this matter below. In atomic physics applications we deal with attractive

Scattering amplitudes may be determined by applicatiorpomomb in;eractions. For such p.robllems a_different channel
of the rule given in Eqs(2.1) and (4.1) and results given in decomposition of the wave function is required, not only to

Eqs. (4.25—(4.29. We then have, fo, j=1,2,3, ju_stify the expressions derived ab(_)v_e for t_hg scatteri_ng_ma-
trix but also to preserve the subsidiary minimum principle
T;j= lim (E—E)(q 7|Ply, (4.30 for the closed-channel component. We therefore retrace our
E—Ej+i0+ . steps, starting once again with Ed.1) for the wave func-

tion, combined with Eqs(3.26) and(3.244 for the Green's
where|qj’(’)) satisfies an equation of the form of E4.3)  function G(E) and scattering operatof7!. With the en-
with incoming-wave boundary conditions. We then find thattrance channel taken temporarily to joe 1, we note that the
first term on the right in Eq(4.17) reduces, unchanged, to
T =T, incdi +(f,q ) |2 E [T+ g Y(1— 591 the expregsion shown in E@.19. YVith regard to the sec-
(7] mzi ond term in Eq.(4.17), of the formG|x)e(x|G,U|®{"),
we may wish to separate off a finite number of bound-state
pole contributions to the Green’s functi@y, but if an in-
finite number of bound states exist for the pair the difficulty
regarding the minimum principle would remain. Here, to be
T; inc:<q)§7)|wj|q)](+)> (4.32  specific, we leave the Green’s function as it stands but “ex-
’ pose” it as a final-state propagator by first introducing the
arises from the first term on the right in Et.25 for P;  resolvent identity
[23]. WA A4
We now consider the matrix elemefig;, j=1, 2, and 3, G=G1+G(v2tv3)Gy, (4.39

representing the amplltude 'for' breakup of the boun_d state 0efmd then making the replacemésimilar to that made in Eq.
pair j upon impact with particlg. Following the notation of

x|f,0f"). (4.30

where

Sec. I, the final-state wave function is represented a£3.25)]
(—)y = (—) i 3 _ (=) = A A
Lq;\ole> |X§O > with (K+V +e Eo)|§0 > 0. We then G1|X>8<X|G1:G1_G1 (439)
. (=) At this stage we have a contribution to the complete wave
Toj= lim (E-Eo)(& 1Qj), (4.33 function ¥, of the form
E—Ep+i0O+
Vijne=|6105") 4 Rend + Mg, (440

after taking into account the fact that the functiddsand
M; Igcl_< the appropriate singularity_and there_fore vanish inyiip
the limit. For the same reason the final-state interactibgs

appearing in expressidd.26) for Q} may be replaced b¥; IR ind=(G1—G1)Uq D) (4.42)
since the bound-state pole term makes no contribution in the ’
limit. Then, with the notatior?'=3{_, 7', we have and
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CN_ ATyl (+) N/ T , wave function into open- and closed-channel components
M1jng = GIVZ| #1070+ (V=00) [Rand]. - (442 from which the elements of the scattering matrix are identi-
The analysis of the scattered-wave part of the expressiofied, as shown in Sec. IV. A solution of the integral equations
shown in Eq.(4.16 proceeds as was done previously, with presents a formidable task and while approximation methods
the introduction of expansiof8.245) for the scattering op- are available(separable representations of the effective po-
erator. For the final-state interaction we use Bq14) in the  tentials have proved useful in the paste have focused at-
form tention here on the application of well-studied variational
methods. Two principal advantages are gained in the use of
u"1GT.G=(xIG;—Gp)|x)u, (3.14)  the channel-decomposition of the wave function as a model
o . _ for the choice of trial functions. First, convergence difficul-
which is reduced further by writin@;—Go=G1v;Go and  {jes that can arise, in standard variational treatments, when
using the a_djomt pf Eq(3.3b. In this way we arrive at the imprecisely known subsystem bound states and propagators
representation, foy=1, 2, or 3, are introduced, are avoided when such functions are con-
T 4 i i tained in the structure of the wave function, as in E429
|\I,J'( )>_|¢Jq1( )>5‘J+|RJ’>+|M1>' (443 and (4.43, rather than appearing only in the asymptotic
with forms.[One simply treats these functions, formally, as exact
until acted upon by the Hamiltonian in a variational expres-
i . g sion such as that shown in E@.7) and only then are the
IR))=1IRj i) 8ij + (Gi— Gi)vil x)G g« 2# T approximations introduceHIn addition, the closed-channel
b component of the wave function has been so defined, in
_, +) terms of a modified Hamiltonian from whose spectrum the
+G 1= |lfiq7) (444 three-body continuum segment has effectively been pro-
jected out, as to allow the use of a Rayleigh-Ritz type of
and minimum principle as an aid in its construction, as described
in Sec. Il. More generally, we have attempted here to provide
|M}>=G[Vj|¢jq}+))5ij +(V—v_i)|R})]. (4.45 a consistent framewo_rk for multiparticle thensions of tt_ech-
niques developed, with some success, in recent studies of
As remarked earlier in the discussion following Eg.23,  three-body collision processes.

the function operated on by the modified resolvénin Eq.
(4.45 is normalizable owing to the presence of the potential ACKNOWLEDGMENT

V—7v,; even when the functioR} contains terms correspond- Thi K di by the National Sci

ing to an infinite number of bound states in channelhe Is work was supported in part by the National Science
. . . A - Foundation under Grant No. PHY-0070525.

functionM; is then normalizable in this form, as required for

its proper identification as the closed-channel component in

the determination of the scattering matrix from the full wave APPENDIX

function. The fact that it decays asymptotically is also re-

quired, as mentioned, for the applicability of the minimum

principle.

Here we complete the derivation of the channel decompo-
sition of the wave functiofiEq. (4.15] involving channel 3,
in which the structureless particles 1 and 2 are bound along
with the composite particle 3. The bound state in this channel
is of the product form|¢s)=|x&s), with (Ks+vs3)|&s)
With the recognition of significant progress currently be- = (€3~ ¢)|€3). As in the text, the analysis begins with Egs.
ing made in the computation of three-body scattering ampli{4-1—(4.3) with the resolvent represented by E(%26) and
tudes, accounting for effects of long-range Coulomb interac{3.24. The statement in the text that E@.16 holds forj
tions, inquiries into the possibility of multiparticle extensions =3 is verified as follows. The expansion
become relevant. One may be interested, for example, in the
§tuc_iy of deutgron—nqcleus scattering, or eleptrop-impa}ct ion- G=0g;+GV3s, (A1)
ization of helium with frozen-core approximations lifted.

With one or more of the three particles composite, and for, . 3 by i ;
scattering energies lying below the threshold for fragmentaR-NIth V'=vytva=Ws, IS used in place of Eq4.11. The

! . asymptotic form ofw; represents the monopole Coulomb
tion of any of.the clusters_, eX|§t|ng formal treayments 0finteraction between the two bound clusters. We find that
three-body collision theory involving charged particlés?]

can be extended, as shown here, with the introduction of .
effective potentials that account for virtual excitations of the A ld(H)\ — (+)\ — (+)
clusters. In terms of these potentials a set of generalized (x|2Gs| ®57') E—(kstvz+Kse) €305 7) =1¢3057),
Faddeev integral equations was establistied Sec. 1) (A2)
which, by virtue of the use of Coulomb-modified Green'’s

functions in the kernel, are mathematically well defined. Thisand observe that only the first term on the right in E4l)
allows for a rigorously valid decomposition of the scatteringcontributes to the limiE—E; in Eq. (4.1). To evaluate the

V. SUMMARY
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limit, the relation between the scattering operaigand re-
solventG3, given by Eq.(3.14') with i=3, is used, along
with the identity

PHYSICAL REVIEW &5 054605

|Qaing = U x|g3oWa| D). (A5)

Expressions given in the text for the wave-function compo-

nents are now completed with the specification, jferl, 2,

G3=03+G3U303. (A3)

This extends Eq(4.4), with Us=v{+v5—w3. The limit is
now evaluated by replacingi in Eq. (A3) by its bound-state
pole term and this leads to EGt.16).

We may represent the wave function components in the
form shown in Eq.(4.29, now extended to include the en-
trance channgl=3 and exit channédl=3. In obtaining these
results we make use of EqAl) and (A3) along with the

identity G=G,+GVG,. Thus we define

1
g3— &)~ Kz E—e3—Kge

|P3,inc>: |qf?>+)>+ E_(
X (bl W5 DS, (Ad)

with W3=U3+U3G3U5. The extension of Eq4.23 is

or 3:

e 1
P}y =IPgnc) 3+
’ E—(e3—¢e)— K3 E—e3—Kge

><<f3|§j ngsmf'w(l—ésj)lqu}”» (A6)

|Q13>: |Q3,inc> 3

+ G Taq(1—83)+ 2, X Toqd™ '1fiqi™)
I#] m#3

(A7)

[as in Eq.(4.26 with i=3] and

IM?)=G{V3| p3P?) + V[ xQP)}. (A8)
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