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Reaction theory for three charged clusters

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 22 January 2002; published 25 April 2002!

A theory of three-body reactions is presented, applicable to atomic and nuclear interactions, in which the
colliding systems may be charged and composite, subject to the condition that the total energy lies below the
threshold for breakup of any of the three bound systems. A variational principle for elements of the scattering
matrix is derived, and a decomposition of each trial function into open- and closed-channel parts is presented
that allows for the use of a subsidiary minimum principle for the systematic improvement of the closed-channel
component. A detailed analysis of the structure of the trial functions is provided through a representation of the
exact wave function in terms of the solution of integral equations of the Faddeev type, generalized to allow for
long-range Coulomb interactions between pairs~through the appearance of Coulomb-distorted Green’s func-
tions in the kernel of the integral equation! as well as for the internal structure of the clusters. The integral
equations provide a general foundation for the theory. In particular, they lead to a formal justification of the
variational identity presented here and serve to determine how the closed-channel component of the trial
function is to be defined to establish the subsidiary minimum principle.

DOI: 10.1103/PhysRevC.65.054605 PACS number~s!: 21.45.1v, 03.65.Nk, 24.10.2i, 25.10.1s
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I. INTRODUCTION

Significant advances have been made in recent year
the development of a theory of reactions involving thr
charged particles@1,2#. Calculational procedures have be
devised@3# that avoid difficulties associated with the comp
cated asymptotic form of the three-body wave function, a
impressive achievements have been reported@4,5#. The
Merkuriev theory, on the other hand@1,2#, deals directly and
rigorously with these matters with the aid of an extension
the Faddeev integral equation formulation@6# to include the
effects of long-range Coulomb interactions in the constr
tion of the Green’s functions that appear in the kernel of
integral equation. Applications of the theory have appea
recently@7# which, while still limited in scope, indicate th
feasibility of the approach.

It seems reasonable to assume that this class of three-
charged-particle collision problems will come under comp
tational control in the near future. In this case it is approp
ate to consider, as the next logical extension, the effect
internal structure of the constituents of the three-body s
tering system, for energies below the threshold for fragm
tation of any of the clusters. Since the three-body asymp
ics are unchanged in this extension much of the Merkur
theory remains applicable; this will be the underlying a
sumption in the developments described below. A gener
zation of the Faddeev integral equations to apply to th
composite systems, with long-range Coulomb interacti
ignored, was described some time ago@8#. The modification
of that theory to allow for bound systems carrying a n
charge is presented here in Sec. III. This provides the b
for a channel-decomposition of the wave function, which
turn leads to integral identities for elements of the scatter
matrix. Momentum-space integral equations may be repla
by an equivalent set of coupled differential equations wh
might provide computational advantages@9#. In particular,
variational methods in configuration space can be usefu
demonstrated for the proton-deuteron system@10#, and the
0556-2813/2002/65~5!/054605~10!/$20.00 65 0546
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multiparticle dynamics of the bound clusters, affecting t
structure of the closed-channel part of the configurati
space wave function, may be treated effectively using fam
iar procedures of the Rayleigh-Ritz type@8#. The variational
principle is derived in Sec. II with a method that is be
described as heuristic since orders of limits and integra
are exchanged with no justification provided. This is
cause for concern, however, since the well-formulated F
deev integral equations may be invoked to provide an al
native derivation, rather more awkward and indirect, but o
that avoids this defect; this was as shown earlier in a clos
related problem involving neutral, structureless partic
@11,12#. A separation of a scattering trial function into ope
and closed-channel parts is not unique. A particular choic
proposed that allows for the use of a subsidiary minim
principle to improve the accuracy of the closed-channel co
ponent in a systematic way. The integral-equation formu
tion is useful in this regard, since it provides detailed info
mation on the structure of the wave function.

II. VARIATIONAL PRINCIPLE

We seek an approximation procedure to determine
scattering amplitudesTi j , where the channel indexj corre-
sponds to a projectile incident on a two-body bound sta
For the moment each of the three bodies may themselve
charged bound systems; a more explicit description of
scattering model is postponed for a while. With the resolv
defined asG(E)5(E2H)21 the scattering amplitude ma
be represented as@13#

Ti j 5 lim
E→Ei1 i01

~E2Ei !^F i
~2 !uG~E!uF j

~1 !&~E2Ej !,

~2.1!

where F j
(1) is the asymptotic outgoing wave, distorted

account for the presence of a Coulomb interaction betw
the colliding systems in the initial state. The incoming fina
©2002 The American Physical Society05-1
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LEONARD ROSENBERG PHYSICAL REVIEW C65 054605
state functionF i
(2) is similarly defined and the channel e

ergiesEj and Ei are taken to be equal. To obtain a mo
useful form we write (E2Ej )uF j

(1)&5@E2H1H
2Ej #uF j

(1)& and setG(E)(E2H)51, valid for ImE.0, to
obtain

Ti j 5 lim~E2Ei !^F i
~2 !uG~E!~H2Ej !F j

~1 !&, ~2.2!

with the limit understood as ImE approaching zero from
above. Now writing ^F i

(2)u(E2Ei)5^F i
(2)u(E2H1H

2Ei), and proceeding as above, we arrive at the form

Ti j 5^F i
~2 !u~H2Ej !F j

~1 !&

1 lim^~H2Ei !F i
~2 !uG~E!~H2Ej !F j

~1 !&. ~2.3!

A variational principle for the scattering amplitude is o
tained with the introduction, in Eq.~2.3!, of the resolvent
identity

G5Gt1@11Gt~H2E!#G, ~2.4!

whereGt(E) is a trial Green’s function, with ImE.0 at this
point. We define

C̃ i t~Ei2 ih![Gt~Ei2 ih!~H2Ei !F i
~2 ! ,

~2.5!
C̃ j~Ej1 ih![G~Ej1 ih!~H2Ej !F j

~1 ! ;

these functions approach, in the limith→01, the scattered
portions of the trial final-state wave function~denoted as
C̃ i t

(2)! and the exact initial-state wave function~denoted as

C̃ j
(1)!, respectively. With these substitutions, and with t

allowance for the fact that surface terms encountered in
tial integrations may be ignored whenh is positive, identity
~2.3! may be rewritten as

Ti j 5^F i
~2 !u~H2Ej !F j

~1 !&

1 lim
h→01

$^C̃ i t~E2 ih!u~H2Ej !F j
~1 !&

1^~H2Ei !F i
~2 !uC̃ j~Ej1 ih!&

1^~H2Ei !C̃ i t~E2 ih!uC̃ j~Ej1 ih!&%. ~2.6!

By interchanging the order of integral and limit and comb
ing terms, we deduce that

Ti j 5^C i t
~2 !u~H2Ej !uF j

~1 !&1^~H2Ei !C i t
~2 !uC̃ j

~1 !&,
~2.7!

with C i t
(2)5F i

(2)1C̃ i t
(2) . The replacement of the scattere

waveC̃ j
(1) by a trial function provides a variational estima

of the scattering amplitude, one that is correct to first or
assuming that the trial functions introduce only first-ord
errors.

The identity~though not the variational property! is pre-
served with the choiceC i t

(2)5F i
(2) . Consider the three

body breakup channeli 50 and let the distorted asymptot
05460
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wave function satisfy (H02E0)uF0
(2)&50 with V̄[H

2H0 , a Hermitian potential energy. Then, since

~H2Ej !uF j
~1 !&52~H2Ej !uC̃ j

~1 !&, ~2.8!

Eq. ~2.7! may be put in the form

Ti j 5^F i
~2 !u~Ej2H0!C̃ j

~1 !&, ~2.9!

a relation that can serve as a convenient starting point
approximate evaluation@14#.

In terms of the model scattering system discussed in m
detail in Sec. III, below, let us consider a Hamiltonian of t
form H5h1K1V, whereK is the total kinetic energy of the
three clusters in the center-of-mass frame andV5( i 51

3 v i is
the sum of interactions between pairs. Our notation is s
that a pair of particles selected from the three is denoted
a subscript, by the number of the third~missing! particle.~A
more explicit notation for Jacobi coordinates, momenta, a
kinetic-energy operators may be found, for example, in R
@11#.! For simplicity, we assume that only one of the thr
bodies, taken as particle 3, is composite; its internal Ham
tonian is denoted ash and its ground-state wave functio
satisfies

hux&5«ux&. ~2.10!

In addition, the particles are taken to be distinguishable. T
more general case can be treated by similar methods.
lowing Merkuriev @1# we write, for each pair,

v i5 v̄ i1v i
, , ~2.11!

where the long-range contributionv i
, represents the Cou

lomb interaction between particles in pairi when all three
particles are well separated and vanishes when the pa
close @15#. We then make the identificationH05h1K
1V,, with V,5( i 51

3 v i
, . The asymptotic state is represent

as uF0
(2)&5uxj0

(2)&. An essential feature of the Merkurie
theory is the demonstration that a well-defined procedur
available for the solution of the asymptotic wave equat
(K1V,1«2E0)uj0

(2)&50 @16#, as well as for the construc
tion of the asymptotic resolvent (E2K2V,2«)21. An ap-
proximation procedure for determining this Green’s functi
was described@1#, starting with an eikonal first approxima
tion that builds in the effects of the long-range Coulom
interaction and is then followed by the use of a linear integ
equation to account for its shorter range component.

An application to elastic scattering of the variational pri
ciple obtained from Eq.~2.7! would provide a trial scattered
wave functionC̃ j t

(1) which could be systematically improve
using a method outlined below. Use of this function in E
~2.9! gives an approximate breakup amplitude which, wh
nonvariational, does not involve the final-state scatte
wave which is difficult to estimate. To illustrate in the sim
plest context how a subsidiary minimum principle may
used to evaluate the closed-channel component of the w
function we consider a nuclear scattering problem with
pulsive Coulomb interactions~and return in the following to
the case of attractive interactions!. Suppose that pair 1 is
bound in the initial state and that neither of the other t
5-2
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REACTION THEORY FOR THREE CHARGED CLUSTERS PHYSICAL REVIEW C65 054605
pairs can bind. Letf1 denote the ground-state wave functio
for the pair of particles 2 and 3; it satisfies

~h1k11v1!uf1&5«1uf1&. ~2.12!

The total kinetic energy has been decomposed asK5k1
1K1 , with K1 denoting the kinetic-energy operator asso
ated with the relative motion of particle 1 and the pair.

We now introduce the modified Hamiltonian

ĥ5h2«ux&^xu. ~2.13!

whose spectrum, owing to the propertyĥux&50, differs from
that of h only in that the ground-state level has been d
placed upward by an amount«. It follows that while the
segment of the continuous spectrum ofH, representing state
with three free particles at infinity, has a threshold at ene
«, the corresponding spectrum ofĤ5H2«ux&^xu begins at
zero energy. This provides the basis for a minimum princi
for scattering energies that lie below the threshold of
continuous spectrum of the modified HamiltonianĤ. Thus
separating off the open-channel part of the wave funct
explicitly, we write @with superscript~1! understood when
not explicitly indicated#

uC1
~1 !&5uf1P&1uxQ&1uM &, ~2.14!

and consider the Schro¨dinger equation, withE now the
physical energy, written as

~H2E!uC1
~1 !&5~K11«11v21v32E!uf1P&1~K1«1V

2E!uxQ&1~Ĥ2E!uM &1«ux&^xuM &

50. ~2.15!

~While this channel decomposition is not unique, the m
general analysis of the structure of the wave function giv
in Sec. IV leads directly to the optimum form.! We suppose
that a first approximation to the wave function has been
tained and we seek an improvement in the closed-cha
function M as the solution of the inhomogeneous equatio

~Ĥ2E!uM &52uJ&, ~2.16!

where the square-integrable functionJ is defined by

uJ&5~K11«11v21v32E!uf1P&1V̄uxQ&, ~2.17!

with V̄5( i 51
3 v̄ i . According to Eq.~2.15! we still have the

condition

~K1V,1«2E!uxQ&1«ux&^xuM &50, ~2.18!

which is satisfied, formally, as uxQ&5(E2K2V,

2«)21«ux&^xuM &. The asymptotically decaying solution o
Eq. ~2.16! may be identified as the function that minimize

M5~M uJ&1^JuM &1^M u~Ĥ2E!M &. ~2.19!
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The minimum property follows from the fact that the ener
E lies below the threshold of the continuous spectrum of
modified HamiltonianĤ @17,18#. Given an improved esti-
mate of the closed-channel functionM, more accurate esti
mates of the open-channel functionsP and Q may be ob-
tained by application of the variational principle derive
from identity~2.7!. The potential advantage of this procedu
lies in the fact that the multiparticle complexities of th
closed-channel component of the wave function can be
duced systematically with the aid of the minimum princip
We have previously described how this procedure is to
modified to preserve the minimum principle when, as is u
ally the case, the bound-state functionx is imprecisely
known @8,19#.

Note that Eq. ~2.16! has the formal solutionuM &
5Ĝ(E)uJ& with

Ĝ~E!5~E2Ĥ !21. ~2.20!

The minimum principle for the closed-channel functionM is
applicable to the approximate determination ofĜ(E), a
modified resolvent that appears prominently in the integ
equation formulation of Sec. III.

The procedure described above is readily extended to
count for a finite number of bound states in each chan
For attractive Coulomb pair interactions this is of course
possible and one must proceed differently. An infinite Ry
berg series of bound states may be incorporated into
wave function through the introduction of a Coulom
Green’s function for each pair that consists of opposit
charged particles, as shown in Sec. IV. Anticipating that
velopment we look for the wave function in the form

uC j
~1 !&5uF j

~1 !&1uRj&1uM j& , ~2.21!

where a contributionF j
(1) associated with the incident wav

in channelj, satisfying the Schro¨dinger equation asymptoti
cally, has been introduced; its explicit form is provided
Sec. IV. In place of Eq.~2.15! the wave equation now take
the form

~H2Ej !uC j
~1 !&5~K j1« j1V2v j2Ej !uF j

~1 !&

1~H2Ej !uRj&1~Ĥ2Ej !uM j&

1«ux&^xuM j&. ~2.22!

SettingRj5( iRj
i , whereRj

i contains the bound states for th
pair i in the region where particlei is well separated from the
pair, we require that (Ĥ2Ej )uM j&52uJj&, with

uJj&5~K j1« j1V2v j2Ej !uF j
~1 !&1(

i
~V̄2 v̄ i !uRj

i &.

~2.23!

We observe thatuJj& in this form is normalizable even whe
the asymptotic form ofuRj

i & contains terms corresponding t
~an arbitrary number of! bound states in channeli. Thus the
bound-state wave function provides convergence in the v
5-3
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LEONARD ROSENBERG PHYSICAL REVIEW C65 054605
able measuring the separation of the particles in the pair
convergence in the remaining region is provided by the
tential V̄2 v̄ i . The validity of the minimum principle for
uM j&, based on a functional of the form~2.19!, then follows.
To complete the solution of Eq.~2.22! we require that, with
M j5( iM j

i ,

~K1V,1h1 v̄ i2Ej !uRj
i &1«ux&^xuM j

i &50, ~2.24!

which is satisfied formally asuRj
i &5Gi(Ej )«ux&^xuM j

i &,
with

Gi~E!5@E2~K1V,1h1 v̄ i !#
21. ~2.25!

A decomposition of this Green’s function in a form conv
nient for approximate evaluation is given in Sec. III.

III. EFFECTIVE THREE-BODY INTEGRAL EQUATIONS

As a preliminary to the study of the structure of the res
vent G(E) we begin with an examination of the Green
function defined in Eq.~2.25!. Settingi 51 for definiteness
we define the related operator

Ĝ1~E!5@E2~K1V,1ĥ1 v̄1!#21, ~3.1!

and consider the resolvent identity

G15Ĝ11Ĝ1«ux&^xuG1 . ~3.2!

Since the kernel of this integral equation is separable a
mal solution is available. To put this representation in use
form we introduce some notation. We define the Gree
functions G0(E)5(E2H0)21 and Ĝ0(E)5(E2Ĥ0)21.
Noting the relations

Ĝ0ux&5ux&~E2K2V,!21, ~3.3a!

^xuG05~E2K2V,2«!21^xu, ~3.3b!

we see that the identity analogous to that shown in Eq.~3.2!
may be expressed as

G0~E!5Ĝ0~E!1ux&G~E!^xu, ~3.4!

with

G~E!5u~E!~E2K2V,2«!21; ~3.5!

for notational convenience we have introduced the abbre
tion

u~E!5«~E2K2V,!21. ~3.6!

To proceed we define scattering operators as solutions o
linear integral equations

T15 v̄11 v̄1G0T1 ~3.7!

and

T̂15 v̄11 v̄1Ĝ0T̂1 . ~3.8!
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Comparison of these two equations, using standard oper
algebra, leads to the relation

T15T̂11T̂1ux&G^xuT1 . ~3.9!

With the expectation value of both sides taken with resp
to x, this becomes

T15V11V1GT1 , ~3.10!

where the effective potential for pair 1 has been defined

V15^xuT̂1ux&. ~3.11!

The effective scattering operator for this pair consisting
particle 2 and cluster 3, in the presence of the spectator 1
the background long-rang Coulomb potential, is given by

T15^xuT1ux&. ~3.12!

After these preliminaries we return to Eq.~3.2! and obtain
from it, after some algebra@20#, the representation

G15Ĝ11«Ĝ1ux&u21@G1GT1G#u21^xuĜ1«. ~3.13!

Another relation, useful in the expression of a bound-st
pole contribution toT1 in terms of that inG1 , is obtained
from the expectation value of the relationG15G0
1G0T1G0 ; we readily find that

^xuG1ux&5~E2K2V,2«!211~E2K2V,2«!21

3T1~E2K2V,2«!21. ~3.14!

The analogous relations for subsystem 2 is obtained from
above by switching indices. For pair 3, however, consist
of particles 1 and 2 treated here as structureless, we hav
place of Eqs.~3.11! and ~3.12!, the somewhat simpler rela
tions

V35 v̄31 v̄3~E2K2V,!21V3 ~3.15!

and

T35 v̄31 v̄3~E2K2V,2«!21T3 . ~3.16!

A representation of the full Green’s functionG(E) analo-
gous to that derived above for the subsystem resolventGi(E)
is obtained by fairly straightforward generalization. Thus w
introduce the auxiliary operatorT̂, the solution of the inte-
gral equation

T̂5V̄1V̄Ĝ0T̂. ~3.17!

The solution obtained by iteration has the form

T̂5(
i 51

3

T̂i1T̂c , ~3.18!

a relation which serves to define the connected partT̂c . The
effective potential may then be expanded as
5-4
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REACTION THEORY FOR THREE CHARGED CLUSTERS PHYSICAL REVIEW C65 054605
V5(
i 51

4

Vi , ~3.19!

with the effective pair potentials defined, as described ear
by

Vi5^xuT̂i ux&, i 51,2,3. ~3.20a!

The effective three-body~connected! interaction is given by

V45^xuT̂cux&, ~3.20b!

and the extension of Eq.~3.10! is

Ti5Vi1ViGTi , i 51,2,3,4. ~3.21!

Relation ~3.10! for a subsystem scattering operator is e
tended to the full system as

T5V1VGT, ~3.22!

which can be put in Faddeev form, modified by the prese
of the three-body potentialV4 @21,8#. Thus we have the rep
resentation

T5(
i 51

4

(
j 51

4

iT j , ~3.23!

with the components satisfying

iT j5Tid i j 1(
lÞ j

iT lGTj , ~3.24a!

iT j5Tid i j 1(
lÞ i

TiGlT j . ~3.24b!

The derivation of the three-body extension of Eq.~3.13! be-
gins with the resolvent identity

G5Ĝ1Ĝ«ux&^xuG, ~3.25!

which, in parallel with the derivation of Eq.~3.13!, may be
converted to the form

G5Ĝ1«Ĝux&u21@G1GTG#u21^xuĜ«. ~3.26!

This relation serves as the starting point for an analysis of
structure of the wave function in a manner that allows for
presence of subsystem bound states and propagators
exhibited explicitly.

IV. WAVE FUNCTION AND SCATTERING AMPLITUDES

The structure of the resolvent operator displayed in
~3.26! provides the basis for the derivation of a channel
composition of the wave function of the type anticipated
Eqs.~2.14! and ~2.21!. The starting point is provided by th
representation

uC j
~1 !&5 lim

E→Ej 1 i01

G~E!uF j
~1 !&~E2Ej !. ~4.1!
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The incident Coulomb-distorted wave introduced earlier
now defined more explicitly as

uF j
~1 !&5uf jqj

~1 !&, ~4.2!

where f j is the ground-state wave function of the pairj,
satisfying an equation of the form shown in Eq.~2.12! for
j 51. The relative motion of this pair and the projectile, pa
ticle j, is described by a modified plane wave satisfying t
wave equation

K jcuqj
~1 !&5~Ej2« j !uqj

~1 !&, ~4.3!

with outgoing-wave boundary conditions. Here we have
finedK jc5K j1wj , wherewj is an auxiliary potential intro-
duced to account for the monopole component of the C
lomb interaction acting, in the asymptotic region, betwe
the center of mass of the pair and the projectile. The limit
Eq. ~4.1! is evaluated by identifying the residue at the boun
state pole in the scattering operatorTj appearing in Eq.
~3.24a!. We setj 51 temporarily, and refer to Eq.~3.14! for
this evaluation. To isolate the pole contribution we introdu
the expansion

G1~E!5g1~E!1G1~E!U1g1~E!, ~4.4!

where

U15v2
,1v3

,2w1 ~4.5!

represents the multipole component of the asymptotic C
lomb interaction and

g1~E!5@E2~h1k11v11K1c!#
21 ~4.6!

is the resolvent for the pair from which the pole contributi

g1P~E!5uf1&~E2«12K1c!
21^f1u ~4.7!

is extracted. The replacement ofg1 with g1P in Eq. ~4.4!
definesG1P , and provides us with the relation

^xuG1Pux&5^xug1Pux&1^xuG1U1g1Pux&. ~4.8!

With the use of Eq.~3.14! we have the separationT15T1P
1T1Q , with T1Q free of the pole singularity.

Now from Eq.~3.26! combined with Eq.~4.1! we see that
the factorĜuF1

(1)& stands to the right in the expression f

the wave function, but only the part ofĜ that contributes to
the pole need be retained. We identify that part by writing
eigenvalue equation~2.12! as

uf1&5ĝ1~«1!«ux&^xuf1&, ~4.9!

with

ĝ1~«1!5@«12~ ĥ1k11v1!#21. ~4.10!

This suggests that we introduce the resolvent identity

Ĝ~E!5ĝ1~«1!1Ĝ~E!~V11K1c1«12E!ĝ1~«1!,
~4.11!
5-5
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LEONARD ROSENBERG PHYSICAL REVIEW C65 054605
with

V15v21v32w1 . ~4.12!

We keep only the first term on the right in Eq.~4.11!, apply
the adjoint of Eq.~4.9!, the representation~4.7!, and the
wave equation~4.3! to verify the relation

lim
E→E11 i01

u~E!^xuG1Pux&«^xuĝ1~«1!uF1
~1 !&~E2E1!

5u f 1q1
~1 !&. ~4.13!

Here we defined~for j 51, 2, or 3 to allow for the extension
specified below!

u f j&5u^xu~11GjU j !uf j&. ~4.14!

The form of Eq.~3.24a! leads to the wave-function decom
position

uC j
~1 !&5(

i 51

4

uC j
i ~1 !&, ~4.15!

and, with the aid of the limiting relation~4.13!, the represen-
tation

uC j
i ~1 !&5«Ĝux&u21Fd i j 1G(

lÞ j

iT l G u f jqj
~1 !&.

~4.16!

The extension made here to include the initial channelj 52
is immediate; the verification of this form forj 53 requires
separate treatment, given in the Appendix.

Results just obtained allow us to develop a channel
composition of the wave function. As a first step we consi
a nuclear scattering problem~deuteron scattering by a tightl
bound nucleus would provide an example! involving only
repulsive Coulomb interactions. We assume that each
can support a single bound state. The incident channe
taken asj 51. Then, with the first term on the right in Eq
~4.16! written asuC1,inc&d i j , and referring back to Eq.~4.14!,
we have

uC1,inc&5«Ĝux&^xu~11G1U1!uF1
~1 !&. ~4.17!

This form may be decomposed as

uC1,inc&5uf1P1,inc&1uxQ1,inc&1uM1,inc&, ~4.18!

with expressions for these channel functions obtained as
lows. We make use of Eqs.~4.11! and ~4.9! to find

Ĝux&«^xuf1q1
~1 !&

5uf1q1
~1 !&1Ĝ@V11K1c1«12E#uf1q1

~1 !&.

~4.19!

The resolvent identity~4.4!, along with the decomposition
g15g1P1g1Q , is now used to expand the second term
05460
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brackets in Eq.~4.17!. With g1P given by the bound-state
pole term shown in Eq.~4.7! we arrive at the form

uP1,inc&5uq1
~1 !&1~E2«12K1c!

21^f1uW1uF1
~1 !&,

~4.20!

with the limit ImE→01understood, and with@22#

W15U11U1G1U1 . ~4.21!

There remains a contribution to the closed-channel com
nentuM1,inc&, the full expression of which is recorded below

The first term in the expansiong15g1P1g1Q having
been accounted for we consider the second, nonsing
term. With the aid of Eqs.~3.3a! and ~3.6! we find that

«Ĝux&5~11ĜV̄!ux&u, ~4.22!

from which we obtain

uQ1,inc&5u^xug1QW1uF1
~1 !&. ~4.23!

The complete form foruM1,inc& is now determined as

uM1,inc&5Ĝ$@V11K1c1«12E#uf1P1,inc&1V̄uxQ1,inc&%.
~4.24!

This analysis can be extended to include the scatte
wave part of the expression shown in Eq.~4.16!. We make
use of Eq.~3.24b! to write

iT l5Tid i l 1 (
mÞ i

TiGmT l , ~3.24b8!

with Ti expanded asTiP1TiQ . In parallel with the derivation
of Eq. ~4.20! we find, for channelsj 51 or 2 andi 51 or 2,

uPj
i &5uPj , inc&d i j 1~E2« i2Kic!21^ f i u H(

lÞ j
(
mÞ i

mT l

1G21~12d i j !J u f jqj
~1 ! &. ~4.25!

Turning now to the contribution arising from the fina
state interactionTiQ we make use of Eq.~4.22! to obtain

uQj
i &5uQj , inc&d i j 1GH TiQ~12d i j !

1(
lÞ j

(
mÞ i

TiQGmT l J u f jqj
~1 ! &, ~4.26!

and for i 54 we have

uQj
4&5G(

lÞ j

4T l u f jqj
~1 !&. ~4.27!

The complete closed-channel contribution is

uM j
i &5Ĝ$@Vi1Kic1« i2E#uf i Pj

i &1V̄uxQj
i &%.

~4.28!
5-6
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Results for channel 3~particles 1 and 2 interacting in initia
or final states! require a slightly different treatment, given i
the Appendix. These results combine to give the des
channel decomposition

uC j
i ~1 !&5uf1Pj

i &1uxQj
i &1uM j

i &. ~4.29!

It should be emphasized that with all subsystem bou
states separated off, as done above, the functionQj

i appear-
ing in the second term on the right in Eq.~4.28! behaves
asymptotically as a three-body outgoing wave~see, for ex-
ample, Ref.@11# for a review of the kinematics for this pro
cess!. Then, with the additional ‘‘protection’’ coming from
the potentialV̄, the function that is operated upon by th
modified resolventĜ is normalizable. The conclusion tha
M j

i is asymptotically decaying is then valid, as required
the applicability of the minimum principle discussed in Se
II. If a finite number of subsystem bound states exist th
must all be separated off using a straightforward extensio
the procedure described above. Clearly, a different appro
is required to treat problems such as electron-atom imp
ionization where attractive Coulomb interactions appear.
return to this matter below.

Scattering amplitudes may be determined by applica
of the rule given in Eqs.~2.1! and ~4.1! and results given in
Eqs.~4.25!–~4.29!. We then have, fori, j 51,2,3,

Ti j 5 lim
E→Ei1 i01

~E2Ei !^qi8
~2 !uPj

i &, ~4.30!

whereuqj8
(2)& satisfies an equation of the form of Eq.~4.3!

with incoming-wave boundary conditions. We then find th

Ti j 5Tj , incd i j 1^ f iqi8
~2 ! u(

lÞ j
(
mÞ i

@mT l1G21~12d i j !#

3u f jqj
~1 ! &. ~4.31!

where

Tj , inc5^F j
~2 !uWj uF j

~1 !& ~4.32!

arises from the first term on the right in Eq.~4.25! for Pj
i

@23#.
We now consider the matrix elementT0 j , j 51, 2, and 3,

representing the amplitude for breakup of the bound stat
pair j upon impact with particlej. Following the notation of
Sec. II, the final-state wave function is represented
uF0

(2)&5uxj0
(2)& with (K1V,1«2E0)uj0

(2)&50. We then
have

T0 j5 lim
E→E01 i01

~E2E0!^j0
~2 !uQj&, ~4.33!

after taking into account the fact that the functionsPj and
M j lack the appropriate singularity and therefore vanish
the limit. For the same reason the final-state interactionsTiQ

appearing in expression~4.26! for Qj
i may be replaced byTi

since the bound-state pole term makes no contribution in
limit. Then, with the notationT l5( i 51

4 iT l , we have
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T0 j5T0 j , inc1^j0
~2 ! u(

lÞ j
T l u f jqj

~1 ! &. ~4.34!

The termT0 j , inc arises from the first term on the right in Eq
~4.26! for Qj

i . ReplacinggjQ with gj ~as justified above!, we
are led to the expression

uQj , inc&5u^xugjWj uF j
~1 !&. ~4.35!

A more convenient form is obtained using the relati
gjWj5GjU j . We may then apply the identityGj5G0
1G0v̄ jGj and make use of Eqs.~3.3b! and ~3.5! to obtain

T0 j , inc5 lim
E→E01 i01

~E2E0!^F0
~2 !uG~U j1 v̄ jGjU j !uF j

~1 !&.

~4.36!

Writing Eq. ~3.5! as G5(E2K2V,2«)212(E2K
2V,)21, and recognizing that the second term on the rig
does not contribute in the limit, we have

T0 j , inc5^F0
~2 !u~U j1 v̄ jGjU j !uF j

~1 !&. ~4.37!

In atomic physics applications we deal with attracti
Coulomb interactions. For such problems a different chan
decomposition of the wave function is required, not only
justify the expressions derived above for the scattering m
trix but also to preserve the subsidiary minimum princip
for the closed-channel component. We therefore retrace
steps, starting once again with Eq.~4.1! for the wave func-
tion, combined with Eqs.~3.26! and ~3.24a! for the Green’s
function G(E) and scattering operatoriT j . With the en-
trance channel taken temporarily to bej 51, we note that the
first term on the right in Eq.~4.17! reduces, unchanged, t
the expression shown in Eq.~4.19!. With regard to the sec-
ond term in Eq.~4.17!, of the formĜux&«^xuG1U1uF1

(1)&,
we may wish to separate off a finite number of bound-st
pole contributions to the Green’s functionG1 , but if an in-
finite number of bound states exist for the pair the difficu
regarding the minimum principle would remain. Here, to
specific, we leave the Green’s function as it stands but ‘‘
pose’’ it as a final-state propagator by first introducing t
resolvent identity

Ĝ5Ĝ11Ĝ~ v̄21 v̄3!Ĝ1 , ~4.38!

and then making the replacement@similar to that made in Eq.
~3.25!#

Ĝ1ux&«^xuG15G12Ĝ1 . ~4.39!

At this stage we have a contribution to the complete wa
function C1 of the form

C1,inc5uf1q1
~1 !&1uR1,inc&1uM1,inc&, ~4.40!

with

uR1,inc&5~G12Ĝ1!U1uF1
~1 !& ~4.41!

and
5-7



sio
ith

tia
-

or
t
ve
re
m

e
pl
ac
ns

t
io
d.
fo
ta
o

he
ize

’s
hi
ng

nts
ti-
ns
ods
o-

-
al
e of
del
l-
hen
tors
on-

tic
act
s-

l
, in
he
ro-
of
ed
ide
h-
s of

ce

po-

ong
nel

s.

b

LEONARD ROSENBERG PHYSICAL REVIEW C65 054605
uM1,inc&5Ĝ@V1uf1q1
~1 !&1~V̄2 v̄1!uR1,inc&]. ~4.42!

The analysis of the scattered-wave part of the expres
shown in Eq.~4.16! proceeds as was done previously, w
the introduction of expansion~3.24b8! for the scattering op-
erator. For the final-state interaction we use Eq.~3.14! in the
form

u21GTiG5^xuGi2G0!ux&u, ~3.148!

which is reduced further by writingGi2G05G1v̄ iG0 and
using the adjoint of Eq.~3.3b!. In this way we arrive at the
representation, forj 51, 2, or 3,

uC j
i ~1 !&5uf jqj

~1 !&d i j 1uRj
i &1uM j

i &, ~4.43!

with

uRj
i &5uRj , inc&d i j 1~Gi2Ĝi !v̄ i ux&GF(

lÞ j
(
mÞ i

mT l

1G21~12d i j !G u f jqj
~1 !& ~4.44!

and

uM j
i &5Ĝ@Vj uḟ jqj

~1 !&d i j 1~V̄2 v̄ i !uRj
i &]. ~4.45!

As remarked earlier in the discussion following Eq.~2.23!,
the function operated on by the modified resolventĜ in Eq.
~4.45! is normalizable owing to the presence of the poten
V̄2 v̄ i even when the functionRj

i contains terms correspond
ing to an infinite number of bound states in channeli. The
functionM j is then normalizable in this form, as required f
its proper identification as the closed-channel componen
the determination of the scattering matrix from the full wa
function. The fact that it decays asymptotically is also
quired, as mentioned, for the applicability of the minimu
principle.

V. SUMMARY

With the recognition of significant progress currently b
ing made in the computation of three-body scattering am
tudes, accounting for effects of long-range Coulomb inter
tions, inquiries into the possibility of multiparticle extensio
become relevant. One may be interested, for example, in
study of deuteron-nucleus scattering, or electron-impact
ization of helium with frozen-core approximations lifte
With one or more of the three particles composite, and
scattering energies lying below the threshold for fragmen
tion of any of the clusters, existing formal treatments
three-body collision theory involving charged particles@1,2#
can be extended, as shown here, with the introduction
effective potentials that account for virtual excitations of t
clusters. In terms of these potentials a set of general
Faddeev integral equations was established~in Sec. III!
which, by virtue of the use of Coulomb-modified Green
functions in the kernel, are mathematically well defined. T
allows for a rigorously valid decomposition of the scatteri
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wave function into open- and closed-channel compone
from which the elements of the scattering matrix are iden
fied, as shown in Sec. IV. A solution of the integral equatio
presents a formidable task and while approximation meth
are available~separable representations of the effective p
tentials have proved useful in the past! we have focused at
tention here on the application of well-studied variation
methods. Two principal advantages are gained in the us
the channel-decomposition of the wave function as a mo
for the choice of trial functions. First, convergence difficu
ties that can arise, in standard variational treatments, w
imprecisely known subsystem bound states and propaga
are introduced, are avoided when such functions are c
tained in the structure of the wave function, as in Eqs.~4.29!
and ~4.43!, rather than appearing only in the asympto
forms. @One simply treats these functions, formally, as ex
until acted upon by the Hamiltonian in a variational expre
sion such as that shown in Eq.~2.7! and only then are the
approximations introduced.# In addition, the closed-channe
component of the wave function has been so defined
terms of a modified Hamiltonian from whose spectrum t
three-body continuum segment has effectively been p
jected out, as to allow the use of a Rayleigh-Ritz type
minimum principle as an aid in its construction, as describ
in Sec. II. More generally, we have attempted here to prov
a consistent framework for multiparticle extensions of tec
niques developed, with some success, in recent studie
three-body collision processes.
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APPENDIX

Here we complete the derivation of the channel decom
sition of the wave function@Eq. ~4.15!# involving channel 3,
in which the structureless particles 1 and 2 are bound al
with the composite particle 3. The bound state in this chan
is of the product formuf3&5uxj3&, with (k31v3)uj3&
5(«32«)uj3&. As in the text, the analysis begins with Eq
~4.1!–~4.3! with the resolvent represented by Eqs.~3.26! and
~3.24!. The statement in the text that Eq.~4.16! holds for j
53 is verified as follows. The expansion

Ĝ5ĝ31ĜV3ĝ3 , ~A1!

with V35v11v22w3 , is used in place of Eq.~4.11!. The
asymptotic form ofw3 represents the monopole Coulom
interaction between the two bound clusters. We find that

^xu«ĝ3uF3
~1 !&5

«

E2~k31v31K3c!
uj3q3

~1 !&5uj3q3
~1 !&,

~A2!

and observe that only the first term on the right in Eq.~A1!
contributes to the limitE→E3 in Eq. ~4.1!. To evaluate the
5-8
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limit, the relation between the scattering operatorT3 and re-
solventG3 , given by Eq.~3.148! with i 53, is used, along
with the identity

G35g31G3U3g3 . ~A3!

This extends Eq.~4.4!, with U35v1
,1v2

,2w3 . The limit is
now evaluated by replacingg3 in Eq. ~A3! by its bound-state
pole term and this leads to Eq.~4.16!.

We may represent the wave function components in
form shown in Eq.~4.29!, now extended to include the en
trance channelj 53 and exit channeli 53. In obtaining these
results we make use of Eqs.~A1! and ~A3! along with the
identity Ĝ5Ĝ01ĜV̄Ĝ0 . Thus we define

uP3,inc&5uq3
~1 !&1

«

E2~«32«!2K3c

1

E2«32K3c

3^f3uW3uF3
~1 !&, ~A4!

with W35U31U3G3U3 . The extension of Eq.~4.23! is
ey

ev

in
a

er
re
ed
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uQ3,inc&5u^xug3QW3uF3
~1 !&. ~A5!

Expressions given in the text for the wave-function comp
nents are now completed with the specification, forj 51, 2,
or 3:

uPj
3&5uP3,inc&d3 j1

«

E2~«32«!2K3c

1

E2«32K3c

3^ f 3u(
lÞ j

(
mÞ3

mT l1G~12d3 j !u f jqj
~1 ! &, ~A6!

uQj
3&5uQ3,inc&d3 j

1GH T3Q~12d3 j !1(
lÞ j

(
mÞ3

T3QGmT l J u f jqj
~1 ! &

~A7!

@as in Eq.~4.26! with i 53# and

uM j
3&5Ĝ$V3uf3Pj

3&1V̄uxQj
3&%. ~A8!
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