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Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional
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We investigate the effects of the spin-isospin channel of the Skyrme energy functional on predictions for
Gamow-Teller distributions and superdeformed rotational bands. We use the generalized Skyrme interaction
SkO8 to describe even-even ground states and then analyze the effects of time-odd spin-isospin couplings, first
term by term and then together via linear regression. Some terms affect the strength and energy of the
Gamow-Teller resonance in finite nuclei without altering the Landau parameterg08 that to leading order
determines spin-isospin properties of nuclear matter. Though the existing data are not sufficient to uniquely
determine all the spin-isospin couplings, we are able to fit them locally. Altering these coupling constants does
not change the quality with which the Skyrme functional describes rotational bands.
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I. INTRODUCTION

Effective interactions for self-consistent nuclear struct
calculations are usually adjusted to reproduce ground-s
properties in even-even nuclei@1#. These properties depen
only on terms in the corresponding energy functional that
bilinear in time-reversal-even~or ‘‘time-even’’! densities and
currents@2#. But the functional also contains an equal nu
ber of terms bilinear in time-odd densities and currents~see
Refs. @2,3#, and references quoted therein!, and these terms
are seldom independently adjusted to experimental data.~For
the sake simplicity we refer below to terms in the function
as time even or time odd, even though strictly speaking
mean the densities and currents on which they depend.! The
time odd terms can be important as soon as time-reve
symmetry~and with it Kramers degeneracy! is broken in the
intrinsic frame of the nucleus. Such breaking obviously o
curs for rotating nuclei, in which the current and spin-or
time-odd channels~linked to time-even channels by th
gauge symmetry! play an important role. Time-odd term
also interfere with pairing correlations in the masses of o
A and odd-odd nuclei@4–6# and contribute to single-particl
energies@7–9# and magnetic moments@10#. Finally, the spin-
isospin channel of the effective interaction determines dis
butions of the Gamow-Teller~GT! strength.

The latter are the focus of this paper. We explore
effects of time-odd couplings on GT resonance energies
strengths, with an eye toward fixing the spin-isospin part
the Skyrme interaction. As discussed in our previous st
@11#, there are many good reasons for looking at this chan
first. For instance, a better description of the GT respo
should enable more reliable predictions forb-decay half-
lives of very neutron-rich nuclei. Those predictions in tu
may help us identify the astrophysical site ofr-process nu-
cleosynthesis, which produces about half of the heavy nu
with A.70.

Our goal is an improved description of GT excitations
0556-2813/2002/65~5!/054322~19!/$20.00 65 0543
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a fully self-consistent mean-field model. To this end, we tr
excited states in the quasiparticle random phase approx
tion ~QRPA!, with the residual interaction taken from th
second derivative of the energy functional with respect to
density matrix. This approach is equivalent to the sma
amplitude limit of time-dependent Hartree-Fock-Bogoliub
~HFB! theory. We proceed by taking the time-odd coupli
constants in the Skyrme energy functional to be free par
eters that we can fit to GT distributions. We then check t
the coupling constants so deduced do not spoil the desc
tion of superdeformed~SD! rotational bands.

Our formulation is nonrelativisitic. In relativistic mean
field theory~RMF! @12,13#, the time-odd channels, referre
to as ‘‘nuclear magnetism,’’ are not independent from t
time-even ones because they arise from the small com
nents of the Dirac wave functions. For rotational states,
time-odd effects have been extensively tested and show
be important for reproducing experimental data~see, e.g.,
Ref. @14#!. Only the current terms and spin-orbit terms play
role there, however, and the time-odd spin and spin-isos
channels of the RMF have never been tested against ex
mental data.

This paper is structured as follows. In Sec. II we revie
properties of the Skyrme energy functional. Section III r
views existing parametrizations of the functional, with pa
ticular emphasis on time-odd terms. Our main results are
Sec. IV, where we present calculations of GT strength a
discuss the role played by the time-odd coupling consta
Section V describes calculations of moments of inertia
selected SD bands. Section VI contains our conclusions.
supplement our results with six Appendices that prov
more detailed information on local densities and curre
~Appendix A!, early parametrizations of time-odd Skyrm
functionals ~Appendix B!, the limit of the infinite nuclear
matter ~Appendix C!, Landau parameters of Skyrme fun
tionals~Appendix D! and of the Gogny force~Appendix E!,
©2002 The American Physical Society22-1



e

on
th

o
lid

io
le
-

s

na
h
a
T
t

be
o

na
in

ing
e
l

la

c
gy

e
sing

ard
for
ere
ur-
in-

on,

be
es,
me-

dis-
y
f
gy

ou-

ing
lect

in

M. BENDER, J. DOBACZEWSKI, J. ENGEL, AND W. NAZAREWICZ PHYSICAL REVIEW C65 054322
and the residual interaction in finite nuclei from Skyrm
functionals~Appendix F!.

II. A GENERALIZED SKYRME ENERGY FUNCTIONAL

A. Basics of energy density theory

Many calculations performed with the Skyrme interacti
can be viewed as energy-density theory in the spirit of
Hohenberg-Kohn-Sham approach@15#, originally introduced
for many-electron systems. Nowadays, energy density the
is a standard tool in atomic, molecular, cluster, and so
state physics@16#, as well as in nuclear physics@17#. The
starting point is an energy functionalE of all local densities
and currentsr, t, JJ, s, T, andj that can be constructed from
the most general single-particle density matrix

r̂[r~r ,s,t;r 8,s8,t8!5(
k

vk
2ck* ~r 8,s8,t8!ck~r ,s,t!

~1!

~see Appendix A for more details!, wherer , s, andt are the
spatial, spin, and isospin coordinates of the wave funct
The Hohenberg-Kohn-Sham approach maps the nuc
many-body problem for the ‘‘real’’ highly correlated many
body wave function on a system of independent particle
so-called Kohn-Sham orbitalsck . The equations of motion
for ck are derived from the variational principle

dE50⇒ĥck~r ,s,t!5ekck~r ,s,t!, ~2!

where the single-particle Hamiltonianĥ is the sum of the
kinetic term t̂ and the self-consistent potentialG that is cal-
culated from the density matrix

ĥ5
dE
dr̂

5 t̂1Ĝ@ r̂ #. ~3!

The existence theorem for the effective energy functio
makes no statement about its structure. The theoretical c
lenge is to find an energy functional that incorporates
relevant physics with as few free parameters as possible.
density functional approach as used here is equivalent to
local density approximation to the nuclearG matrix @18#.

The energy functional investigated here in detail descri
the particle-hole channel of the effective interaction only. F
the treatment of pairing correlations, the energy functio
has to be complemented by an effective particle-particle
teraction that is constructed in a similar way from the pair
density matrix; see Ref.@19# for details. We use here th
simplestT51 ~like-particle! pairing functional proportiona
to the square of the local pair density as described in@11#. As
discussed there, it affects only the HFB part of our calcu
tion.

B. The Skyrme energy functional

Within the local-density approximation, the energy fun
tional is given by the spatial integral of the local ener
densityH(r )
05432
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The energy density is composed of the kinetic termHkin , the
Skyrme energy densityHSkyrme that describes the effectiv
strong interaction between the nucleons, and a term ari
from the electromagnetic interactionHem

H5Hkin1HSkyrme1Hem. ~5!

For the electromagnetic interaction, we take the stand
Coulomb expression, including the Slater approximation
the exchange term. The energy functional discussed h
contains all possible terms bilinear in local densities and c
rents and up to second order in the derivatives that are
variant under reflection, time-reversal, rotation, translati
and isospin rotation@20#.

Time-reversal invariance requires the energy density to
bilinear in either time-even densities or time-odd densiti
so the Skyrme energy density can be separated into a ‘‘ti
even’’ partH even and a ‘‘time-odd’’ partH odd:

HSkyrme5 (
t50,1

(
t352t

t

~Htt3
even1Htt3

odd!. ~6!

The sum runs over the isospint and its third componentt3.
Only the t350 component of the isovectort51 terms con-
tribute to nuclear ground states and the rotational bands
cussed later, while thet3561 components contribute onl
to charge-exchange~e.g., GT! excitations. In the notation o
Refs. @3,20#, the time-even and time-odd Skyrme ener
densities read

Htt3
even5Ct

rr tt3
2 1Ct

Drr tt3
Dr tt3

1Ct
tr tt3

t tt3
1Ct

¹Jr tt3
¹•Jtt3

1Ct
JJJtt3

2 , ~7!

Htt3
odd5Ct

sstt3
2 1Ct

Dsstt3
•Dstt3

1Ct
Tstt3

•Ttt3
1Ct

¹s~¹•stt3
!2

1Ct
j j tt3

2 1Ct
¹ jstt3

•¹3 j tt3
. ~8!

Isospin invariance of the Skyrme interaction makes the c
pling constants independent of the isospinz projection. All
coupling constants might be density dependent. Follow
the standard ansatz for the Skyrme interaction, we neg
such a possibility except inCt

r andCt
s , for which we restrict

the density dependence to the following form:

Ct
r@r0#5Ct

r@0#1~Ct
r@rnm#2Ct

r@0# !S r0

rnm
D a

, ~9!

Ct
s@r0#5Ct

s@0#1~Ct
s@rnm#2Ct

s@0# !S r0

rnm
D j

. ~10!

Herer0 is the isoscalar scalar density andrnm is its value in
saturated infinite nuclear matter. The exponenta that speci-
fies the density dependence ofCt

r@r0# must be about 0.25 for
the incompressibility coefficientK` to be correct@21–24#.
Although this fact does not restrict the analogous power
2-2
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Ct
s@r0#, Eq. ~10!, we keepj equal toa for simplicity here.

Usually we will consider energy functionals that are inva
ant under local gauge transformations@3#, which generalize
the Galilean invariance of the Skyrme interaction discus
in Ref. @2#. Gauge invariance links three pairs of time-ev
and time-odd terms in the energy functional

Ct
j52Ct

t , Ct
J52Ct

T , Ct
¹ j51Ct

¹J . ~11!

These relations fix all orbital time-odd terms, leaving on
time-odd terms corresponding to the spin-spin interact
with free coupling constants. Relations~11! lead to a simpli-
fied form of Eqs.~6!–~8!,

HSkyrme5 (
t50,1

(
t352t

t

@Ct
rr tt3

2 1Ct
sstt3

2 1Ct
Drr tt3

Dr tt3

1Ct
Dsstt3

•Dstt3
1Ct

t~r tt3
t tt3

2 j tt3
2 !

1Ct
T~stt3

•Ttt3
2JJtt3

2 !1Ct
¹J~r tt3

¹•Jtt3

1stt3
•¹3 j tt3

!1Ct
¹s~¹•stt3

!2#. ~12!

The time-even terms of the energy functional can be dire
related to nuclear bulk properties such asE/A, the saturation
density rnm, incompressibility, symmetry energy, surfac
and surface symmetry energy, and spin-orbit splittings. T
remaining time-odd terms cannot.

We will set the coupling constantCt
¹s to 0. The term it

multiplies comes from a local two-body tensor force cons
ered in Skyrme’s original papers@25# and discussed by
Stancuet al. @26#, but omitted in all modern Skyrme param
etrizations except the force SL1 introduced by Liuet al. @27#,
which has not been used since.

III. EXISTING PARAMETRIZATIONS

The coupling constants of the time-odd Skyrme ene
functional are usually taken from the~antisymmetrized! ex-
pectation value of a Skyrme force@2#. When so obtained, the
16 coupling constants of the energy functional~12! are
uniquely linked to the ten parameterst i , xi , W0, anda of
the standard Skyrme force@see Appendix B and Eq.~B2!#.
Only a few parametrizations rigidly enforce these relatio
however. Among them are the forces of Ref.@21# ~e.g., Zs),
SkP@19#, the Skyrme forces of Tondeur@28#, the recent pa-
rametrizations SLy5 and SLy7@24#, and SkX @29#. Most
other parametrizations neglect theJJ2 term obtained from the
two-body Skyrme force, settingCt

T50. Some authors do thi
for practical reasons; theJJ2 term is time-consuming to cal
culate, and its contribution to the total binding energy
rather small. Other authors~see, e.g., Ref.@30#! find that
including it with a coupling dictated from the HF expectatio
value of the Skyrme force can lead to unphysical solutio
and/or unreasonable spin-orbit splittings. For spher
shapes, theJJ2 term contributes to the time-even energy de
sity in the same way as the neglected tensor force. One m
therefore argue that by including the tensor force one co
counterbalance the unwantedJJ2 term exactly@30#. This ar-
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gument, however, applies neither to deformed shapes no
time-odd fields. Moreover, neglecting this term often viola
self-consistency on the QRPA level~see below!.

Although one might disagree with the rationale for n
glecting theJJ2 terms, it is not easy to adjust the couplin
constantsCt

T to spectral data. Large values forCt
T can be

ruled out because they spoil the previously obtained ag
ment for single-particle spectra, but there are broad regi
of values where they influence the usual time-even obs
ables too weakly to be uniquely determined@31#. Only once
in the published literature has there been an attempt to d
@32#.

All first-generation Skyrme interactions, e.g., SI, SII@33#,
and SIII @30#, used a three-body delta force instead of
density-dependent two-body delta-force to obtain reason
nuclear-matter properties. The three-body interactions le
a51 for Ct

r in Eq. ~9!, but a different density dependence
the Ct

s . a51 is too large to get the incompressibilityK`

right, and causes a spin instability in infinite nuclear mat
@34# and finite nuclei@35# ~again only within a microscopic
potential framework!. Both problems are cured with smalle
values of a ~between 1/6 and 1/3@23#! but the second-
generation interactions that did so still had problems in
time-odd channels, giving a poor description of spin a
spin-isospin excitations and prompting several attempts
describe finite nuclei with extended Skyrme interactio
Krewaldet al. @36#, Waroquieret al. @37#, and Liuet al. @27#,
for example, introduced additional three-body momentu
dependent forces. Waroquieret al.added an admixture of the
density-dependent two-body delta force and a three-b
delta force, while Liuet al. considered a tensor force. Bu
none of these interactions has been used subsequently.

Van Giai and Sagawa@38# developed the more durabl
parametrization SGII, which gave a reasonable descriptio
GT resonance data known at the time and is still used tod
The fit to ground state properties was made without theJJ2

terms, however, even though they were used in the QR
Consequently, in such an approach, the QRPA does not
respond to the small-amplitude limit of time-dependent HF

All these attempts to improve the description of the tim
odd channels impose severe restrictions on the coupling
linking them to the HF expectation value of a Skyrme forc
leading to one difficulty or another. The authors of Re
@18,39# proceed differently, treating the Skyrme energy fun
tional as the result of a local-density approximation. T
interpretation of the Skyrme interaction as an energy-den
functional, besides relaxing the restrictions on the time-o
couplings, endows the spin-orbit interaction with a mo
flexible isospin structure@40–42# than can be obtained from
the standard Skyrme force@43#. Some of the parametriza
tions used here will take advantage of that freedom. But
authors of Ref.@39# include only time-odd terms that ar
determined by gauge invariance; the other couplings are
tatively set to zero (Ct

s5Ct
Ds50). Such a procedure is rea

sonable when describing natural parity excitations within
~Q!RPA, but the neglected spin-spin terms are crucial for
unnatural parity states that we discuss.

In this study, we use the energy-functional approach~12!
2-3
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with fully independent time-even and time-odd coupli
constants. Our hope is that this more general formula
will improve the description of the GT properties while lea
ing the good description of ground-state properties in e
nuclei untouched.

IV. GIANT GAMOW-TELLER RESONANCES

The repulsive interaction between proton particles a
neutron holes in theJp511 ~spin-isospin! channel gives rise
to a giant charge-exchange resonance in all nuclei with
cess neutrons. The centroid of the resonance~which typically
has a width of 5–10 MeV! can be roughly parametrized b
the simple formulaEGT2EF526A21/3218.5(N2Z)A21,
whereEF is the centroid of the Fermi resonance@44#. This
formula, however, captures only average behavior; in
vidual cases depend on single-particle structure, and in
ticular the spin-orbit splitting.

The ability to model GT resonances is crucial for pred
tions of nuclearb decay. Just as the low-lyingE1 strength is
depleted by the giant dipole resonance, so the low-lying
strength, responsible forb decay, is affected by the GT reso
nance. Since one of our future goals is an improved calc
tion of b-decay rates in nuclei along ther-process path, it is
important to develop a reliable description of the GT gia
resonance.

A. Residual interaction in finite nuclei

Non-self-consistent calculations often use the resid
Landau-Migdal interaction in the spin-isospin channel

v res~r ,r 8!5N0@g08d~r2r 8!

1g18k8•d~r2r 8!k#~s•s8!~t•t8!, ~13!

whereN0 is a normalization factor@see Eq.~D5!# andk and
k8 are defined in Appendix B. In most applications, only t
s-wave interaction with strengthg08 is used, and the matrix
elements of the force are not antisymmetrized. The unde
ing single-particle spectra are usually taken from a para
etrized potential, e.g., the Woods-Saxon potential. Typ
values forg08 , obtained from fits to GT-resonance system
ics, are 1.4<g08<1.6 @45–47#. ~See Ref.@48# for an early
compilation of data.! Sometimes this approach is formulate
in terms of the residual interaction between antisymmetri
states. The results are similar, e.g.,g0851.54 in the double-
b-decay calculations by Engelet al. @49#. More complicated
residual interactions, such as boson-exchange poten
have been used as well; see, e.g., Refs.@50–52#. Borzov
et al.use a renormalized one-pion exchange potential in c
nection with al 50 Landau-Migdal interaction of type~13!
@53#.

A much simpler residual interaction in the GT channel
a separable~or ‘‘schematic’’! interaction,v res5kGT(s•s8)
3(t•t8), where the strengthkGT has to be a function ofA.
This interaction is widely used in global calculations
nuclearb decay@54,55#. Sarrigurenet al. @56# use it for a
description of the GT resonances in deformed nuclei w
quasiparticle energies obtained from self-consistent
05432
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1BCS calculations. They estimatekGT from the Landau pa-
rameters of their Skyrme interaction.~The same prescription
is used in their calculations ofM1 resonances@57#.! But
however useful this approach may be from a technical po
of view, it is not self-consistent. Nor is it equivalent to usin
the original residual Skyrme interaction; see, e.g., the disc
sion in Ref.@46#.

A truly self-consistent calculation, by contrast, should
terpret the QRPA as the small-amplitude limit of tim
dependent HFB theory. The Skyrme energy functional u
in the HFB should then determine the residual interact
between unsymmetrized states in the QRPA:

v res5
d2E

dr~r1 ,s1 ,t1 ;r2 ,s2 ,t2!dr~r18 ,s18 ,t18 ;r28 ,s28 ,t28!
.

~14!

The actual form of the residual interaction that contributes
the QRPA matrix elements of 11 states is outlined in Appen
dix F.

GT distributions are also affected by the particle-parti
channel of the effective interaction, but mainly at low en
gies. Local paring functionals as employed here might ca
divergencies when used in QRPA, see, e.g., Ref.@11#. Our
choice for theT51 like-particle pairing interaction, how
ever, has vanishing matrix elements in the 11 channel and
therefore contributes nothing to the residual interaction. T
T50 proton-neutron pairing has no effect in our HFB calc
lations, but affects the low-energy tail of the GT streng
distribution. Its contribution is crucial for the proper descri
tion of b decay. The GT resonance is not materially alter
@11#, so we can safely neglect the particle-particle interact
here.

B. GT strength distributions from existing Skyrme
interactions

Before exploring the time-odd degrees of freedom of
generalized Skyrme energy functional, we analyze the p
formance of existing parametrizations when relations~B2!
are used. We examine the forces SkP@19#, SGII @38#, SLy4,
SLy5 @24#, SkO, and SkO8 @58#, which all provide a good
description of ground-state properties but differ in deta
SkP uses an effective massm* /m51 and is designed to
describe both the mean-field and pairing effects.1 All other
forces have smaller effective masses, so thatm* /m'0.9
(SkOx) or evenm* /m'0.7 ~SGII, SLyx). SGII represents
an early attempt to get good GT response properties fro
standard Skyrme force. SLy4 and SLy5 are attempts to
produce properties of pure neutron matter together w
those of normal nuclear ground states. SkO and SkO8 are
recent fits that include data from exotic nuclei, with partic
lar emphasis on isovector trends in neutron-rich Pb isotop
they complement the spin-orbit interaction with an expli

1Since the effective mass scales the average density
single-particle states, it might visibly influence the GT streng
distribution.
2-4
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isovector degree-of-freedom@42#. All other parametrizations
use the standard prescriptionC0

¹J53C1
¹J .

Residual interactions are often summarized by the Lan
parameters that appear in Eq.~13!. The parameters can b
derived as the corresponding coupling constants when
~14! is evaluated for infinite spin-saturated symmet
nuclear matter~see Appendix D!. In the literature, the infinite
nuclear matter~INM ! properties of the Skyrme interaction
are usually calculated from Eqs.~B2!. For the generalized
energy functional~12! discussed here, the time-even IN
properties such as the saturation density, energy per par
effective mass, incompressibility, symmetry coefficient, a
the time-even Landau parametersf i , f i8 are unchanged, bu
properties of polarized INM and expressions for the tim
odd Landau parametersgi and gi8 are different. We derive
them in Appendix D. Here we are most concerned with
Landau parameters in the spin and spin-isospin channel

g05N0~2C0
s12C0

Tbr0
2/3!, ~15a!

g085N0~2C1
s12C1

Tbr0
2/3!, ~15b!

g1522N0C0
Tbr0

2/3, ~15c!

g18522N0C1
Tbr0

2/3, ~15d!

whereN0 is given by Eq.~D5! and b5(3p2/2)2/3. Values
for some typical Skyrme interactions appear in Table
Higher-order Landau parameters are zero for the Sky
functional~12!. Some of these values differ from those giv
elsewhere because, unlike other authors, we insist on ex
the same effective interaction in the HFB and QRPA. T
coupling constantsC0

T andC1
T are fixed by the gauge invari

ance of the energy functional, which means thatC1
T50 for

SGII, SLy4, and SkO, because theJJ2 term was omitted in the
corresponding mean-field fits. For these interactionsg1850
andg08'0.9. For SkP and SLy5, and SLy7,C1

T is relatively

TABLE I. Landau parameters for various Skyrme interactio
from relations~B2! and the Gogny forces D1 and D1s. Missin
entries are zero by construction.

Force g0 g1 g2 g08 g18 g28

SkM* 0.33 0.94
SGII 0.62 0.93
SkP 20.23 20.18 0.06 0.97
SkI3 1.89 0.85
SkI4 1.77 0.88
SLy4 1.39 0.90
SLy5 1.14 0.24 20.15 1.05
SLy6 1.41 0.90
SLy7 0.94 0.47 0.02 0.88
SkO 0.48 0.98
SkO8 21.61 2.16 0.79 0.19
SkX 20.63 0.18 0.51 0.53
D1 0.47 0.06 0.12 0.60 0.34 0.08
D1s 0.48 20.19 0.25 0.62 0.62 20.04
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large ~see Table IV!, leading to a largeg18'1.0, but a can-
cellation between two terms makesg08'0.0.

Table I also gives values for the Landau parameters
culated for the Gogny forces D1@59# and D1s@22# from the
expressions provided in Appendix E. In the spirit of th
Gogny force as a two-body potential, one has no freedom
choose the time-odd terms independently from the time-e
ones. ~Note that the Gogny force, however, employs t
same local-density approximation for the densi
dependence as the Skyrme energy functional that contrib
to the l 50 Landau parameters.! The higher-order Landau
parameters are uniquely fixed by the finite-range part of
Gogny force.

Figures 1 and 2 show the summed GT strengthB(GT) in
208Pb and 124Sn, calculated with all the selected Skyrm
forces. The ground-state energies are calculated as desc
in Ref. @11#, and all strengths are divided by 1.262, following
common practice, to account for GT quenching. Althou
the GT resonance in208Pb comes out at about the right e
ergy for SGII, SLy4, SkO, and SkO8, it is too low for SkP
and SLy5. These latter two interactions also leave too m
GT strength at small excitation energies. It is tempting
interpret these findings in terms of the Landau parameters
these interactions. Schematic models suggest@1# that an in-
crease ofg08 results in an increased resonance energy
more GT strength in the resonance. The nucleus208Pb indeed
behaves in this way, as can be seen in Fig. 1. The forces
and SLy5, with small values ofg08 , yield more low-lying
strength and a lower resonance energy than the remai
forces which correspond tog08'0.9.

In 124Sn, however, this simple picture does not hold,
Fig. 2 shows. The resonance energies are similar~and close

FIG. 1. Summed GT strength in208Pb calculated with severa
Skyrme interactions, each corresponding to the Landau param
g08 and g18 as indicated. The experimental resonance energy, ta
from Ref. @46#, is indicated by an arrow.
2-5
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to the experimental value! for SkP, SLy5, SkO, and SkO8
forces with very different values ofg08 , while SGII and SLy4
push the resonance energy too high. Only the amount of
low-lying strength seems to scale withg08 . It is interesting,
though, that the related forces SLy4 and SLy5~which predict
very similar single-particle spectra, but have quite differe
GT residual interactions! agree with the schematic model
that SLy4, with largerg08 , puts the GT resonance at a high
excitation energy.

It is clear that the scaling predicted by the schema
model is too simple, and Fig. 3 demonstrates this clea
There we show the calculated strengthsBres in the GT reso-
nances relative to the sum-rule valueBtot53(N2Z), and the
calculated GT resonance energiesEcalc relative to the experi-
mental valuesEexpt. @For 90Zr, 112Sn, 124Sn, and208Pb we
usedEexpt59.4, 8.9, 13.7, and 15.5 MeV, respectively@46#.
Note that the calculated resonance energy depends on a
scription ~see Ref.@11#! not strictly dictated by the QRPA.#
The scatter nearg08'0.9, in both the resonance energy and
the amount of low-lying strength, shows that other combi
tions of parameters in the residual interaction besidesg08 af-
fect the GT distribution. This is not entirely surprising give
the complexity of finite nuclei and of the interaction~14!. In
Sec. IV C we quantify these other important combinatio
and discuss their effects.

But another factor, this one determined by the time-ev
part of the Skyrme functional, affects the GT distribution: t
underlying single-particle spectrum. Since GT transitions
especially sensitive to proton spin-orbit splittings, sm
changes in the time-even part of the force can, in princip
move the GT resonance considerably. Sensitivity to the s
orbit splitting is particularly obvious in90Zr, where detailed
information has been obtained from a recent experimen
Wakasaet al. @60#. Unlike in 124Sn and208Pb, which respond
to a GT excitation in a collective way, the90Zr GT spectrum

FIG. 2. Same as in Fig. 1 except for124Sn.
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is dominated by two single-particle transitions, from the ne
tron 1g9/2 state to the proton 1g9/2 and 1g7/2 states. The
difference between the locations of the two peaks in the
spectrum is the sum of the proton 1g spin-orbit splitting and
a contribution from the residual interaction~which can be
expected to increase the difference!. As Fig. 4 shows, all
interactions, whatever their value forg08 , overestimate this
difference; the resonance energy is always too large, e
when the residual interaction is switched off completely.

Most Skyrme interactions give spin-orbit splittings
heavy nuclei that are too large@61#. We can therefore expec
errors in their predicted GT strength distributions@45,47#.
Figure 5 shows errors in the predicted spin-orbit energies
the same forces as in Fig. 3. Interactions such as SkI3, S
or SLy4 that overestimate the proton spin-orbit splittin

FIG. 3. Deviation of the calculated GT resonance energy fr
experiment,Ecalc2Eexpt, and fraction of the GT strength in th
resonanceBres/Btot versus Landau parameterg08 , calculated for
several Skyrme interactions~as indicated in the lower right pane!
in 90Zr, 112Sn, 124Sn, and 208Pb. Experimental values are take
from Ref. @46#.
2-6
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give the largest resonance energies~and tend to overestimat
them!. The best interaction, in view of the combined info
mation from Figs. 3 and 5, appears to be SkO8. Therefore,
below, we use its time-even energy functional for furth
exploration of the time-odd terms.

We have included some new forces in Fig. 5; in a rec
paper@62#, Sagawaet al. attempt to improve the spin-orb
interaction for the standard Skyrme forces SIII, SkM* , and
SGII, aiming at better GT-response predictions. They gen
alize the spin-orbit interaction through the conditionC0

¹J

'22C1
¹J and include theJJ2 term with a coupling given by

Eq. ~B2!. Although the modified forces SkM* -u and SGII-u
give slightly better descriptions of GT resonances than
original interactions, they generate unacceptable errors in
tal binding energies and do not substantially improve
overall description of single-particle spectra in208Pb.

A few remarks are in order before proceeding. The sp
orbit splittings shown in Fig. 5 are calculated from intrins
single-particle energies. Since experimental data are obta
from binding-energy differences between even-even and
jacent odd-mass nuclei, core polarization induced by the
paired nucleon, which depends partly on time-odd chann
of the interaction@7,8#, alters single-particle energies. Th
effect is largest in small nuclei~of the order of 20% in16O),
decreasing rapidly with mass number@8#.

C. GT resonances from generalized Skyrme functionals

We turn now to generalized energy functionals in whi
the time-odd coupling constantsCt

s , Ct
Ds , andCt

T are treated
as free parameters; that is, we no longer insist that the in
action correspond to a two-body Hamiltonian with mat
elements that should be antisymmetrized. As we showe

FIG. 4. Same as in Fig. 1 except for90Zr. The very de-
tailed experimental data are from a recent experiment by Wak
et al. @60#.
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Sec. IV B, values of the Landau parameterg08 alone are in-
sufficient to link the properties of the GT resonance to
coupling constants of the energy density functional. In t
section, using the time-even functional of SkO8, we study
the dependence of the GT resonance on several other c
binations of the coupling constants as well. Because the
scalar time-odd terms do not affect the GT transitions,
focus here on the isovector coupling constantsC1

s , C1
Ds ,

andC1
T .

1. Study of C1
s
†rnm‡

We begin with the simplest case, assuming that~i! the
functional is gauge invariant,~ii ! all time-odd coupling con-
stants are density independent, and~iii ! the spin-surface term
can be neglected, i.e.,C1

Ds50. The only remaining free pa
rameter in the spin-isospin channel isC1

s , which is directly
related to the Landau parameters via Eqs.~15b! and ~15d!:

C1
s5

1

2N0
~g081g18!, ~16!

whereg18 is fixed byC1
T @also in Eq.~15d!#. Figure 6 shows

results for the GT resonance energy wheng08 is systemati-
cally varied from its SkO8 value by alteringC1

s . We have
chosen only nuclei that can be expected to exhibit a col
tive response to GT excitations. Noncollective contributio
may show up, however, when the coupling constants

sa

FIG. 5. Relative errors in the spin-orbit splitting~calculated
from the intrinsic single-particle energies! for the forces, nuclei, and
states indicated. Only splittings between states which are b
above or both below the Fermi surface are included. Other state
affected by core polarization and cannot be safely described by
mean field@7,8#. The forces SLy5-SkO are ordered according
their values forg08 ~see Fig. 3!. SGII-u and SkM* -u are two recent
forces with modified spin-orbit interactions tailored for future use
GT resonance studies@62#.
2-7



c

c
nc

fo
th
-
.
t
e

lu

ne

n
an
ex
ity

de
e
he
ti-

sity

e
-

e

rgy

ell
hat
so-

the

nc
T

of
leus
or
ve

h in

M. BENDER, J. DOBACZEWSKI, J. ENGEL, AND W. NAZAREWICZ PHYSICAL REVIEW C65 054322
changed. In124Sn, for example, a state below the resonan
collects a lot of strength for small values ofg08 . Only by
increasingg08 does one push that strength into the resonan
Similarly, in 112Sn a state about 5 MeV above the resona
increasingly collects strength asg08 grows.

As the underlying single-particle spectra are the same
all the cases in Fig. 6, the differences are due entirely to
value of g08 . With increasingg08 , the resonance energy in
creases and more strength is pushed into the resonance
increase ofEres is nearly linear, but the lines for differen
nuclei have different slopes. It is gratifying that the curv
for Ecalc2Eexpt all have a zero around the same point,g08
'1.2. This value is much smaller than the empirical va
g08'1.8 derived earlier@63,51,52# for at least two reasons:~i!
the influence of the single-particle spectrum and~ii ! the in-
clusion in the residual interaction of ap-wave force charac-
terized byg18 . The latter means thatg0850 does not corre-
spond to a vanishing interaction in the spin-isospin chan

2. Study of C1
s
†0‡

Thus far we have chosen not to letC1
s depend on the

density. Little is known about the empirical density depe
dence of the time-odd energy functional and time-odd L
dau parameters calculated from a ‘‘realistic’’ one-boson
change potential in DBHF show only a very weak dens
dependence@64#. Because the kinetic spin termC1

Ts1t3
•T1t3

,
when evaluated in INM, also contributes to the density
pendence of the Landau parameters, the density depend
of that term must either be small or nearly canceled by ot
time-odd terms. In any event, in the following, we inves
gate what happens whenC1

s depends on the~isoscalar! den-

FIG. 6. Deviation of calculated and experimental GT resona
energies~lower panel! and a fraction of the GT strength in the G
resonance~upper panel! for 112Sn, 124Sn, and208Pb, calculated with
SkO8 and a modified residual spin-isospin interaction.C1

T is kept at
the Skyrme-force value andC1

Ds is set to zero.C1
s is chosen to be

density-independent and varied to get 0<g08<2.4. g1850.19 in all
cases.
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sity in the ‘‘standard’’ way~10!. All nuclei we look at have
finite neutron excess, which means that the central den
should be slightly smaller thanrnm.

If g08 andg18 are fixed in saturated INM, there is one fre
parameterC1

s@0#, with which one can vary the density de
pendence~10!. (C1

s@rnm# is fixed by the valueg08@rnm#
51.2, and we set the exponentj50.25, as it is in the time-
even energy functional SkO8.! We continue here to assum
that gauge invariance holds, and thatC1

Ds50.
We vary the parameterC1

s@0# between2C1
s@rnm# and

2C1
s@rnm#. Figure 7 shows the spatial dependence ofC1

s@r#
for several values of the ratiox[C1

s@0#/C1
s@rnm#. By chang-

ing C1
s@0#, one can change both the GT resonance ene

and the amount of the low-lying strength, even withg08@rnm#
kept constant. As Fig. 8 shows, an increase ofC1

s@0# for a
given g08 has almost the same effect as an increase ofg08 for
a givenC1

s@0#. Thus, the INM Landau parameters do not t
the whole story in a finite nucleus. Figures 7 and 8 show t
the spin-spin coupling has the largest effect on the GT re
nance when it is located at or even slightly outside
nuclear radius.

e

FIG. 7. Spatial dependence ofC1
s@r# for various values ofx

[C1
s@0#/C1

s@rnm#, see Eq.~10!, and g08 fixed at 1.2. The valuex
51 corresponds to no density dependence. For larger valuesx,
the residual interaction becomes more repulsive outside the nuc
than inside. Whenx50, C1

s@r# vanishes at large distances, and f
negative values ofx, the residual interaction becomes attracti
outside the nucleus. The density profiler(r ) used in this plot cor-
responds to208Pb.

FIG. 8. Variation of the GT resonance energy and the strengt
the resonance when the ratiox[C1

s@0#/C1
s@rnm# of parameters de-

fining the density dependence ofC1
s@r# in Eq. ~10! is varied. Sym-

bols and scales are as in Fig. 6.
2-8
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3. Study of C1
Ds

The termC1
Dss1t3

•Ds1t3
is sensitive to spatial variations o

the isovector spin density. Unlike its~isoscalar! time-even
counterpartC0

Drr0Dr0, it should not be called a ‘‘surface
term’’ because the spatial distribution ofs1 is determined by
a few single-particle states that do not necessarily vary
most at the nuclear surface. In discussing the effects of
term, we continue to fixC1

T at its Skyrme-force value via
gauge invariance and chooseC1

s to be density-independen
and fixed from Eq.~16! with g08@rnm#51.2. We then vary
C1

Ds over the range of630 MeV fm5, covering the values
obtained from the original Skyrme forces. As seen in Fig
an increase ofC1

Ds by 30 MeV fm5 has nearly the same effec
on the GT resonance energies as a decrease ofg08 by 0.2,
again demonstrating that the value ofg08 does not completely
characterize the residual interaction in finite nuclei. A n
feature ofC1

Ds , apparent from the curves for112Sn and208Pb
in Fig. 9, is the ability to move the resonance around
energy without changing its strength.

4. Study of C1
T

Finally, we investigate the influence on the GT streng
distribution of the termC1

Ts1t3
•T1t3

, which determinesg18

@see Eq.~15d!#. As this term is linked by gauge invarianc
~11! to the time-evenJJ1

2 term, a fully self-consistent variation
of C1

T would require refitting the whole time-even sector
the Skyrme functional.@Note that our approach removes th
constraints~B2! that link Ct

T to the time-even coupling con
stantsCt

t and Ct
Dr . The constraint was retained, howeve

when SkO8 was constructed.# We leave that task for the fu
ture, using a gauge-invariance breaking-energy functio
here withC1

TÞC1
J to obtain constraints onC1

T for future fits.
Figure 10 shows the change in the GT resonance wheng18 is
varied in the range21<g18<1. Increasingg18 increases the
energy of the GT resonance for a giveng08 . Changingg18 by
0.2 has nearly the same effect on the GT resonance ener
changingg08 by 0.2. ~This means thatg0851.2, g1850.2, as
used here, is consistent with the lower end of the val
1.4<g08<1.6, g1850.0 given in Refs.@45–48#.! As the

FIG. 9. Variation of the GT resonance energy and the stren
in the resonance whenC1

Ds is varied. Symbols and scales are
in Fig. 6.
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curves for 208Pb and 112Sn demonstrate, however, th
amount of strength in the resonance does not necess
change wheng18 is varied.

D. Regression analysis of the GT resonances

In the previous subsection we explored the dependenc
the GT resonance energies and strengths on particular t
odd coupling constants of the Skyrme functional while kee
ing the other coupling constants fixed. These results sh
that the GT properties depend on all the coupling consta
simultaneously, and the effect of varying one coupling co
stant may be either enhanced or cancelled by a variatio
another one. In such a situation, linear regression is nee
to quantify the influence of the coupling constants.

We analyze the situation by supposing that the GT en
gies and strengths are linear functions of four coupling c
stants, i.e.,

Ereg
GT5e01e1C1

s@0#1e2C1
s@rnm#1e3C1

Ds1e4C1
T ,

~17a!

Breg
GT5b01b1C1

s@0#1b2C1
s@rnm#1b3C1

Ds1b4C1
T .

~17b!

In our linear regression method, the coefficientsei andbi are
determined by a least-square fit of expressions~17a! and
~17b! to the given sample ofN calculated QRPA results
Ecalc

GT (n) and Bcalc
GT (n), n51, . . . ,N. The calculatedBcalc

GT (n)
values have been quenched by the usual factor of 1.262.

The sample of QRPA calculations covers the physica
interesting range of values for the coupling constants.
present here results from a sample defined by the hyperc

g0850.6~0.2!1.8, seven values, ~18a!

C1
s@0#/C1

s@rnm#521~1!2, four values, ~18b!

C1
Ds5240~20!40, five values, ~18c!

th

FIG. 10. Variation of the GT resonance energy and the stren
in the resonance whenC1

T ~and thusg18) is varied.C1
s is readjusted

for each value ofC1
T so thatg0851.2. Symbols and scales are as

Fig. 6.
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C1
T5240~10!0, five values, ~18d!

i.e., for the sample ofN5700. We useg08 instead ofC1
s@0#

for the regression analysis to avoid combinations of the c
pling constants that leaveg08 too far from 1.2, the value ad
vocated in Sec. IV C.

The left panels in Figs. 11 and 12 contain histograms

FIG. 11. Distribution of differences between calculated GT re
nance energies and those from the regression analysis, wit
points from the sample~left panels! and with a reduced sampl
~right panels!.

FIG. 12. Same as in Fig. 11 except for the strength in the
resonance.
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deviations

dEGT~n!5Ecalc
GT ~n!2Ereg

GT , ~19a!

dBGT~n!5Bcalc
GT ~n!2Breg

GT ~19b!

between the calculated and fitted energies and strength
112Sn, 124Sn, and 208Pb. The widths of these distribution
illustrate the degree to which the linear regression exp
sions~17! are able to describe the results of the QRPA c
culations. One can see that the fit GT resonance energie
generally within about61 MeV of the calculated ones, an
the fit strengths within about66.

As can be seen from Figs. 6, 8, 9, and 10, the depende
of both the resonance energy and the strength in the r
nance on the coupling constants is not linear for the en
region of coupling constants. Although our sample is
stricted to the area around the reasonable values, at time
leave the region where the regression can safely be
formed. Furthermore, for certain combinations of the co
pling constants~especially at a weak coupling!, there are
competing states that carry strength similar to that of the
‘‘resonance.’’~These states often merge into the resonanc
a larger coupling.! Finally, the resonance can be fragment
into many~sometimes up to 15! states. Therefore, we remov
certain areas of parameter space where the determinatio
either the energy or the strength of the GT resonance is
biguous. Such areas are almost always singled out by
ticularly large deviations from the fitted values.

After reducing the sample in this way, we obtain the h
tograms in the right panels of Figs. 11 and 12. These ill
trate the quality of the regression fits obtained for sample
N5542, 664, and 618 in112Sn, 124Sn, and 208Pb, respec-
tively. Tables II and III list the corresponding values of th
regression coefficients, as well as the standard deviations
the GT energies and strengths within each of the sample

Figures 11 and 12 and the standard deviations obtaine
the reduced and full samples~Tables II and III! show that the
description obtained by removing a small number of poi
beyond the region of linearity is quite good. The GT res
nance energies are now reproduced within about6200 keV
or less. The description of the resonant GT strengths is
improved, especially in112Sn, although here the linear re

-
all

T

TABLE II. Coefficientsei obtained by the regression analysi
Eq. ~17a!, of the QRPA GT resonance energies in the reduc
sample~see text!. The standard deviationssE from this sample are
compared to thesE~full ! from the full sample ofN5700 points.

112Sn 124Sn 208Pb

e0 5.58100 10.16000 8.19600
e1 0.00305 0.00488 0.00674
e2 0.02696 0.03981 0.06099
e3 0.01690 0.03474 0.05897
e4 20.01189 20.01767 20.02198

sE 0.0479 0.199 0.114
sE~full ! 0.585 0.865 0.520
2-10
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GAMOW-TELLER STRENGTH AND THE SPIN-ISOSPIN . . . PHYSICAL REVIEW C65 054322
gression cannot work too well because the strengths satu
at strong coupling. Nevertheless, the coefficients listed
Tables II and III allow a fairly reliable estimate of the QRP
values for any combination of the coupling constants. T
values of the coefficients in Tables II and III show th
C1

s@rnm# and C1
Ds strongly influence properties of the G

resonance, and that both the energies and the reso
strengths increase when these coupling constants incre
C1

T has a weaker effect in the opposite direction, whileC1
s@0#

is less important still.
Without presenting detailed results, we report here on

other attempts at regression analysis. We tried to analyze
results for all the three nuclei112Sn, 124Sn, and208Pb, simul-
taneously by adding termse5(N2Z) and b5(N2Z) to the
regression formulas~17!. Linear scaling might be obtaine
by analyzing the QRPA results for very many nuclei, whe
the effects due to shell structure could average out. In
small sample, shell structure is obviously important. We a
tried the regression analysis withC1

T529.172 MeV fm5

fixed at its SkO8 value~see Table IV!, and without the terms
e4 andb4 in the regression formulas~17!, so that the func-
tional’s gauge invariance was preserved. The results were
significantly different from those whenC1

T was allowed to
vary freely.

For the SkO8 coupling constants~see Table IV!, we obtain
Ereg

GT58.3, 14.2, and 14.2 MeV in112Sn, 124Sn, and208Pb,
andBreg

GT5100 in 208Pb. These values are close to the cor
sponding experimental data: 8.9, 13.7, 15.5 MeV, from R
@46#, and ;3(N2Z)/1.262. It is not possible, however, to
find values of the four coupling constants that reprodu
these four experimental data points exactly. The reaso
that the matrix of corresponding regression coefficients
almost singular, resulting in absurdly large values of the c
pling constants. Clearly a determination of the coupling c
stants from experiment would require more data. Althou
charge-exchange measurements have been made on
nuclei, we require spherical even-even nuclei that are not
against vibrations. To fit the relevant coupling constants
data, we would need, at the minimum, the ability to tre
deformed nuclei. Meanwhile, we can make a simple cho
of time-odd coupling constants from the analysis in Fig.
The values

TABLE III. Same as in Table II except for the strengths of t
GT resonances.

112Sn 124Sn 208Pb

b0 21.86000 11.75000 80.62000
b1 0.00963 0.03107 0.03079
b2 0.06143 0.25120 0.18620
b3 0.09146 0.30510 0.33850
b4 20.01730 20.10280 20.09688

sB 0.608 2.10 2.74
sB~full ! 5.20 3.44 3.82
05432
ate
n

e

ant
se.

o
he

e
ur
o

ot

-
f.

e
is

is
-
-
h
any
ft

o
t
e
.

C1
s@0#5C1

s@rnm#5120 MeV fm3,

C1
Ds50,

C1
T529.172 MeV fm5 ~20!

~see Table IV! give g0851.2 andg1850.19, which are in ac-
cord with the data we discuss. But these values by no me
constitute a fit and are not unique.

V. A CONSISTENCY CHECK: SUPERDEFORMED
ROTATIONAL BANDS

Another phenomenon in which the time-odd part of t
Skyrme energy density functional plays a role is the hig
spin rotation of very elongated nuclei. In this section w
demonstrate that reasonable values for the spin-isospin
pling constants found when analyzing the GT strength
consistent with the description of superdeformed rotatio
bands.

When a nucleus rotates rapidly, there appear strong
rent and spin one-body densities along with the usual part
densities that characterize stationary~time-even! states. The
time-odd densities are at the origin of strong time-odd me
fields. There are already many self-consistent studies
high-spin states available; see, e.g., reviews in Refs.@12,65–
67#. The role and significance of the time-odd mean-fie
terms, however, has not been carefully studied. Basic
tures of high-spin states can often be well described by m
els that use phenomenological mean fields of the Woo
Saxon or Nilsson type, where no time-odd terms a
explicitly present in the one-body potential.~The time-odd
densities are, however, present there through the time-
cranking term.! For the Gogny interaction@59#, or within the
standard RMF models@12#, they cannot be independentl
modified; the Gogny interaction is defined as a two-bo
force ~where the time-odd terms show up as exchan
terms!, while all time-odd terms appearing in standard RM
models are fixed by Lorentz invariance. Within the Skyrm
framework, the time-odd terms in superdeformed rotatio
states were analyzed in an exploratory way in Refs.@3,20#.

Unlike the GT response, rotational bands are influen
by both isoscalar and isovector time-odd channels of the
fective interaction. In fact, the large effects of time-odd co
pling constants found in Ref.@3# are mainly due to the isos
calar channel; the isovector channel induces corrections
are smaller, though non-negligible. The SkO8 Skyrme pa-
rametrization, which we use for GT calculations, is unsta
when the original parameters from Eq.~B2! are used in the
isoscalar spin channel becauseg0,21 ~a fact that is related
to the unusually high value ofg1 in Table I!. This leads to
unphysical ferromagnetic solutions where all spins al
when the nucleus is cranked. Of course, the value ofg0 does
not influence the GT calculations for even-even nuclei p
sented in our study which focuses on the isovector time-
coupling constants. Consequently, in the following we e
ploy a simple spin energy functional using the Skyrme fo
value forC0

T , settingC0
Ds50 and neglecting density depen

dence. We adopt the valueg050.4 given in Ref.@52# ~note
2-11



r

-

,

-

M. BENDER, J. DOBACZEWSKI, J. ENGEL, AND W. NAZAREWICZ PHYSICAL REVIEW C65 054322
FIG. 13. Dynamical moment
of inertia J (2) in the superde-
formed band of152Dy calculated
with the SkO8 energy density
functional and modified time-odd
coupling constants. In the uppe
left panel ~corresponding to Fig.
6! all coupling constants are cho
sen to be density independent,C1

t

is kept at the Skyrme-force value
and C1

Ds50. In the upper right
panel~corresponding to Fig. 8! the
density dependence ofC1

s is var-
ied keepingg0851.2. In the lower
left panel ~corresponding to Fig.
9! C1

Ds is varied, while in the
lower right panel~corresponding
to Fig. 10! Ct

T is varied. See text
for the choice of isoscalar time
odd couplings.
ed

s i

-
le

s
nt
e

ts
e
he
oe
ib
t d
nc
ch

c-
el
G
th
i i

ious

ical
n-

lei
that
de-
ter

T
on

er-
cle
be

ns.
are
s in
me-
rv-
can
the

in
that
u-

ent

,

ls-
for
s-
that a different definition of the normalization factor is us
there! to fix C0

s .
We perform the calculations in exactly the same way a

Ref. @3# by using the codeHFODD ~v1.75r! described in Ref.
@68#. We examine152Dy, which is a doubly magic superde
formed system. Pairing has a minor influence and we neg
it. We focus on the dynamic moment of inertiaJ2:

J (2)~ I !5Fd2E

dI2 G21

.
4\2

DEg
~21!

~from experimental data! or

J (2)~v1!5
dI

dv
.

I ~v1!2I ~v2!

v12v2
~22!

~in calculations!. Figure 13 shows results of calculation
when one of the four time-odd isovector coupling consta
is varied, while the other ones are kept at the values m
tioned above. Variations of the coupling constantsC1

s@0#,
C1

s@rnm#, andC1
T have little effect on the dynamic momen

of inertia in 152Dy. WhenC1
Ds is varied, the moments chang

noticeably, but the general trend with frequency is still t
same. Thus, altering the isovector time-odd couplings d
not appear to change the quality with which we descr
superdeformed rotational bands. Of course, a consisten
scription of both the high-spin data and the GT resona
properties over a wide range of nuclei will require a mu
more detailed analysis.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

By exploiting the freedom in the Skyrme energy fun
tional, we have taken significant steps towards a fully s
consistent description of nuclear ground states and the
response. Along the way, we debunked the notion that
strength and location of the GT resonance in finite nucle
determined entirely by the Landau parameterg08 . Our analy-
05432
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sis also shows this parameter to be smaller than prev
work indicates.

There are not enough experimental data for spher
even-even nuclei to fix the time-odd isovector coupling co
stants; the ability to do calculations in deformed nuc
should help there. We could, however, choose values
reproduce the data we do analyze, without spoiling our
scription of high-spin superdeformation. Doing a lot bet
may require improving our time-even energy functionals. G
resonance energies and strengths depend significantly
spin-orbit splitting as well as the residual spin-isospin int
action. Until we are better able to reproduce single-parti
energies, therefore, a fit of the time-odd interaction will
tentative.

We have not considered isoscalar time-odd interactio
The couplings there will be harder to fix because there
fewer data on the response, which is not as collective a
the charge-exchange channel. In addition, the isovector ti
odd terms will play a role in calculations of isoscalar obse
ables. Though a lot clearly remains to be done, our work
already be put to good use. We will, for example, employ
new values for the isovector time-odd coupling constants
future calculations of beta decay and in the observables
tell us about the extent of real time-reversal violation in n
clei.
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APPENDIX A: LOCAL DENSITIES AND CURRENTS

The complete density matrixr(rst,r 8s8t8) in spin-
isospin space as defined in Eq.~1! can be decomposed int
the sum of scalarr tt3

(r ,r 8) and vector densitiesstt3
(r ,r 8),

where the subscripts denote the isospin quantum numbe

r~rst,r 8s8t8!5 1
4 Fr00~r ,r 8!dss8dtt81s00~r ,r 8!•sss8dtt8

1dss8 (
t3521

11

r1t3
~r ,r 8!t

tt8

t3

1 (
t3521

11

s1t3
~r ,r 8!•sss8ttt8

t3 G . ~A1!

The quantitiessss8 andt
tt8

t3 are matrix elements of the Pau
matrices in spin and isospin space. In terms of these,
local densityr, spin densitys, kinetic densityt, kinetic spin
densityT, currentj , and spin-orbit tensorJJ are

r tt3
~r !5r tt3

~r ,r !,

stt3
~r !5stt3

~r ,r !,

t tt3
~r !5¹•¹8r tt3

~r ,r 8!ur5r8 ,

Ttt3
~r !5¹•¹8stt3

~r ,r 8!ur5r8 ,

j tt3
~r !52

i

2
~¹2¹8!r tt3

~r ,r 8!ur5r8 ,

Jtt3 ,i j ~r !52
i

2
~¹2¹8! istt3 , j~r ,r 8!ur5r8 . ~A2!

The densitiesr, t, andJJ are time even, whiles, T, andj are
time odd. See Ref.@20# for a more detailed discussion.

APPENDIX B: ENERGY DENSITY FUNCTIONAL FROM
THE TWO-BODY SKYRME FORCE

The standard two-body Skyrme force is given by@2,33#

vSkyrme~r1 ,r2!5t0~11x0P̂s!d~r12r2!1 1
2 t1~11x1P̂s!

3@ k̂82d~r182r28!1d~r12r2!k̂2#

1t2~11x2P̂s!k̂8•d~r12r2!k̂

1 1
6 t3~11x3P̂s!d~r12r2!raS r11r2

2 D
1 iW0~ŝ11ŝ2!• k̂83d~r12r2!k̂, ~B1!

where P̂s5 1
2 (11ŝ1•ŝ2) is the spin-exchange operator,k̂

52( i /2)(¹12¹2) acts to the right, andk̂85( i /2)(¹18
2¹28) acts to the left. Calculating the Hartree-Fock expec
05432
e

-

tion value from this force yields the energy functional giv
in Eq. ~12! with the coupling constants

C0
r5 3

8 t01 3
48 t3r0

a ,

C1
r52 1

4 t0~ 1
2 1x0!2 1

24 t3~ 1
2 1x3!r0

a ,

C0
s52 1

4 t0~ 1
2 2x0!2 1

24 t3~ 1
2 2x3!r0

a ,

C1
s52 1

8 t02 1
48 t3r0

a ,

C0
t5 3

16 t11 1
4 t2~ 5

4 1x2!,

C1
t52 1

8 t1~ 1
2 1x1!1 1

8 t2~ 1
2 1x2!,

C0
T5hJ@2 1

8 t1~ 1
2 2x1!1 1

8 t2~ 1
2 1x2!#,

C1
T5hJ@2 1

16 t11 1
16 t2#,

C0
Dr52 9

64 t11 1
16 t2~ 5

4 1x2!,

C1
Dr5 3

32 t1~ 1
2 1x1!1 1

32 t2~ 1
2 1x2!,

C0
Ds5 3

32 t1~ 1
2 2x1!1 1

32 t2~ 1
2 1x2!,

C1
Ds5 3

64 t11 1
64 t2,

C0
¹J52 3

4 W0,

C1
¹J52 1

4 W0,

C0
¹s50,

C1
¹s50, ~B2!

nine of which are independent. Although in this approa
hJ51, many parametrizations of the Skyrme interaction
hJ50. That violates the interpretation of the Skyrme fun
tional as an expectation value of a real two-body interact
and removes the rationale for calculating the time-odd c
pling constants from Eq.~B2!. For Skyrme interactions with
a generalized spin-orbit interaction@42#, e.g., for SkI3, SkI4,
SkO, or SkO8, the spin-orbit coupling constants are given

C0
¹J52b42 1

2 b48, C1
¹J52 1

2 b48. ~B3!

The resulting terms in the energy functional again cannot
represented as the HF expectation value of a two-body s
orbit potential~see, e.g., Ref.@41#!, again violating the as-
sumptions behind the calculation of the time-odd coupl
constants in Eq.~B2!.

As Eqs.~B2! represent the standard approach to the tim
odd coupling constants, it is worthwhile to take a look at t
actual values. Table IV compares them for several Skyr
forces. None of these parametrizations was obtained f
observables sensitive to the time-odd terms in the ene
functional. Differences among the forces merely reflect va
2-13
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TABLE IV. Time-odd coupling constants calculated from Eq.~B2! for the Skyrme interactions as indicated.

Force C0
s@0# C1

s@0# C0
s@rnm# C1

s@rnm# C0
T C1

T C0
Ds C1

Ds a
(MeV fm3) (MeV fm3) (MeV fm3) (MeV fm3) (MeV fm5) (MeV fm5) (MeV fm5) (MeV fm5)

SkI1 695.860 239.200 120.190 99.573 0.0 0.0 192.660 62.766
SkI3 84.486 220.360 253.180 113.940 0.0 0.0 92.235 22.777
SkI4 44.038 231.980 209.030 104.120 0.0 0.0 124.590 37.943
SkO 373.770 262.960 41.421 84.253 0.0 0.0 70.365 26.590
SkO8 277.910 262.430 47.082 84.154 2104.090 29.172 42.791 16.553 1/4
SkX 57.812 180.660 235.639 81.246 27.861 223.669 24.434 9.514 1/2
SGII 271.110 330.620 61.048 91.676 0.0 0.0 15.291 15.283
SkP 152.340 366.460 231.328 78.562 7.713 241.127 24.211 9.757 1/6
SkM* 271.110 330.620 31.674 91.187 0.0 0.0 17.109 17.109
SLy4 2207.820 311.110 153.210 99.737 0.0 0.0 47.048 14.282
SLy5 2171.360 310.430 151.080 99.133 214.659 265.058 45.787 14.000 1/6
SLy6 2201.460 309.940 157.050 100.280 0.0 0.0 48.822 14.655
SLy7 2215.830 310.100 158.260 100.640 230.079 255.951 49.680 14.843 1/6
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ous strategies for adjusting the time-even coupling consta
Values of the density-dependent isoscalar coupling const
C0

s , either atr050 or at r05rnm, are scattered in a wide
range. This is probably one of the main sources of diff
ences in the predictions of the forces for time-odd corr
tions to rotational bands. For the SLyx forces,C0

s@0# is nega-
tive, which is unusual; most often this part of the isosca
spin-spin interaction is repulsive at all densities. The diff
ence will probably cause visible differences in rotation
properties whenever the spin density is large at the surf
All the forces agree on the isovector coupling constantC1

s ,
especially at the saturation density, i.e.,C1

s@rnm#
'100 MeV fm3. This simply follows from the fact that, as
suming Eq.~B2!, C1

s is proportional to the time-evenC0
r that

is fixed from binding energies and radii.

APPENDIX C: INFINITE NUCLEAR MATTER

1. Introduction

Homogeneous infinite nuclear matter~INM ! is widely
used to study and characterize nuclear interactions. S
INM properties, such as the saturation density, energy
particle, and asymmetry coefficient, are coherent, and oth
such as the incompressibilityK` and the sum-rule enhance
ment factor, are related to excitations and can be use
pseudo-observables to compare with predictions of nuc
forces. INM properties are also often used to adjust the
rameters of effective interactions for self-consistent calcu
tions. These properties at large asymmetry are key ingr
ents for the description of neutron stars.~See, e.g., Refs
@23,69# for a discussion on the mean-field level.!

Most papers deal with spin-saturated INM, in which t
time-odd channels of the interaction discussed here do
contribute. Nothing is known about spin-polarized INM
which actually may play some role in neutron stars. A sta
ity criterion for this exotic system, derived in Ref.@70#, was
even used to adjust the parameters of the SLyx forces in
Refs.@23,24#. We do not consider tensor forces in this wor
05432
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Their contribution to the properties of polarized INM we
explored, e.g., in Ref.@71#.

2. Degrees of freedom

The four basic degrees of freedom of homogeneous IN
are the isoscalar scalar densityr0, the isovector scalar den
sity r1, the isoscalar vector densitys0, and the isovector
vector densitys1. They can be expressed through the us
neutron and proton, spin-up, and spin-down densities in
following way:

r05rn↑1rn↓1rp↑1rp↓ ,

r15rn↑1rn↓2rp↑2rp↓ ,

s05rn↑2rn↓1rp↑2rp↓ ,

s15rn↑2rn↓2rp↑1rp↓ . ~C1!

Similarly, densities of protons and neutrons with spin up a
down can be expressed as

rn↑5 1
4 ~r01r11s01s1!5 1

4 ~11I t1I s1I ts!r0,

rn↓5 1
4 ~r01r12s02s1!5 1

4 ~11I t2I s2I ts!r0,

rp↑5 1
4 ~r02r11s02s1!5 1

4 ~12I t1I s2I ts!r0,

rp↓5 1
4 ~r02r12s01s1!5 1

4 ~12I t2I s1I ts!r0,
~C2!

whereI t5r1 /r0 is the relative isospin excess,I s5s0 /r0 is
the relative spin excess, andI st5s1 /r0 is the relative spin-
isospin excess, with21<I i<11.

In symmetric unpolarized INMI i50, while in asymmet-
ric INM r1Þ0. Polarized INM hass0Þ0, and spin-isospin
polarized nuclear matter hass1Þ0.
2-14
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3. Fermi surfaces and kinetic densities

For INM arbitrary asymmetry, the Fermi energy of ea
particle species is different. Finite spin densitiessi break the
isotropy of INM, creating the possibility that the Fermi su
face will deform@72#. We are mainly interested in INM with
small polarization, so we use the approximation that
Fermi surfaces are spherical.

In the mean-field approximationr̃qs(k), the density of
particles in momentum space with the isospin projectionq
and spin projections is

r̃qs~k!5H 1 for k<kF,qs ,

0 for k.kF,qs .
~C3!

In asymmetric polarized INM, the relation between t
Fermi momenta and the isoscalar scalar density reads

r05
2

3p2
kF

35
1

6p2 (
q5p,n

(
s5↑,↓

kF,qs
3 , ~C4!

with kF,qs5(6p2)1/3rqs
1/3. Here, kF is the ‘‘average’’ Fermi

momentum of the whole system. The kinetic density in m
mentum space for each particle species is given by

t̃qs~k!5k2r̃qs~k!, ~C5!
e

05432
ll

-

and the kinetic density in coordinate space is

tqs5
V

10p
kF,qs

5 5
3

20
brqs

5/3, ~C6!

whereb5(3p2/2)2/3. Various kinetic densities in the spin
isospin space are given by

t05tn↑1tn↓1tp↑1tp↓5 3
5 br0

5/3F5/3
(0),

t15tn↑1tn↓2tp↑2tp↓5 3
5 br0

5/3F5/3
(t),

T05tn↑2tn↓1tp↑2tp↓5 3
5 br0

5/3F5/3
(s),

T15tn↑2tn↓2tp↑1tp↓5 3
5 br0

5/3F5/3
(st) , ~C7!

whereFm
(0) , Fm

(t) , Fm
(s) , andFm

(st) are functions of the rela-
tive excesses

Fm
(0)5 1

4 @~11I t1I s1I st!
m1~11I t2I s2I st!

m

1~12I t1I s2I st!
m1~12I t2I s1I st!

m#.

~C8!

This is a straightforward generalization of the correspond
definition for asymmetric unpolarized nuclear matter giv
in Ref. @23#. Similarly one defines
Fm
(t)5 1

4 @~11I t1I s1I st!
m1~11I t2I s2I st!

m2~12I t1I s2I st!
m2~12I t2I s1I st!

m#,

Fm
(s)5 1

4 @~11I t1I s1I st!
m2~11I t2I s2I st!

m1~12I t1I s2I st!
m2~12I t2I s1I st!

m#,

Fm
(st)5 1

4 @~11I t1I s1I st!
m2~11I t2I s2I st!

m2~12I t1I s2I st!
m1~12I t2I s1I st!

m#. ~C9!
For calculations of INM properties, we also need derivativ
of these functions. The first derivatives are given by

]Fm
(t)

]I t
5

]Fm
(s)

]I s
5

]Fm
(st)

]I st
5mFm21

(0) ,

]Fm
(0)

]I t
5

]Fm
(s)

]I st
5

]Fm
(st)

]I s
5mFm21

(t) ,

]Fm
(0)

]I s
5

]Fm
(t)

]I st
5

]Fm
(st)

]I t
5mFm21

(s) ,

]Fm
(0)

]I st
5

]Fm
(t)

]I s
5

]Fm
(s)

]I t
5mFm21

(st) , ~C10!

while the second derivatives are
s ]2Fm
(0)

]I i
2

5m~m21!Fm22
(0) ,

]2Fm
( j )

]I i
2

5m~m21!Fm22
( j ) , ~C11!

for any i , j 5t,s,st. Functions of the orderm50 and m
51 are rather simple:

F0
(0)51, F0

( i )50,

F1
(0)51, F1

( i )5I i , ~C12!

for any i 5t,s,st. Some special valuesFm
( i )(I t ,I s ,I st) ap-

pearing in limiting cases of INM are
2-15
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Fm
(0)~0,0,0!51, Fm

( i )~0,0,0!50,

Fm
(0)~1,0,0!5Fm

(0)~0,1,0!5Fm
(0)~0,0,1!52m21,

Fm
(t)~1,0,0!5Fm

(s)~0,1,0!5Fm
(st)~0,0,1!52m21,

Fm
(0)~1,1,1!5Fm

(1)~1,1,1!54m21, ~C13!

while Fm
( i )50 if I i50 and one of the otherI j ’s is equal to 1,

with the last equal to zero. These functions are useful w
writing down the equation of state and its derivatives.

4. ‘‘Equation of state’’ of asymmetric polarized nuclear matter

In INM Dr tt3
(r )5Dstt3

(r )5 j tt3
(r )5JJtt3

(r )50. We

choose pure neutron and proton states, which leads tor1,61
50, r1ªr1,0, and similarly for all other densities. We tak
the z axis as the quantization axis for the spin, i.e.,st,x
5st,y50, stªst,z , and for the kinetic spin densityT. As
discussed in Ref.@72#, this breaks the isotropy of INM, lead
ing to an axially deformed Fermi surface, an effect which
neglect. Adding the kinetic term, the total energy per nucle
~i.e., the ‘‘equation of state’’! for the energy functional~7!
and ~8! is given by

H
r0

5
3

5

\2

2m
br0

2/3F5/3
(0)1~C0

r1C1
rI t

21C0
sI s

21C1
sI st

2 !r0

1
3

5
~C0

tF5/3
(0)1C1

t I tF5/3
(t)1C0

TI sF5/3
(s)1C1

TI stF5/3
(st)!br0

5/3.

~C14!

For unpolarized INM one hasI s5I st50 which recovers the
expression given in Ref.@23#.

An interesting special case is polarized neutron mat
which is discussed in Ref.@70# for the Skyrme interactions
A stability criterion derived there from the two-body forc
point of view as outlined in Appendix B was used to co
strain the parameters of the SLyx forces@23,24#. In this lim-
iting case, one hasrn↑5r0 , rn↓5rp↑5rp↓50, which is
equivalent toI t5I s5I st51 and leads to

H
r0

524/3b
3

5 F \2

2m
1~C0

t1C1
t1C0

T1C1
T!r0Gr0

2/3

1~C0
r1C1

r1C0
s1C1

s!r0 . ~C15!

Expressions~B2! for an antisymmetrized Skyrme force im
ply that C0

r1C1
r1C0

s1C1
s50, and

H
r0

524/3b
3

5 F \2

2m
1

1

2
t2~11x2!r0Gr0

2/3. ~C16!

The stability of polarized neutron matter for all densiti
requires x2'21 @70#, so the SLyx interactions takex2
[21 @23,24#. However, from the energy-density-function
point of view, the coupling constants are independent,
the second term in Eq.~C15! also contributes to the stabilit
condition.
05432
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5. Pressure, incompressibility, and asymmetry coefficients

At the saturation point, all first derivatives of the ener
per nucleon have to vanish and all second derivatives hav
be positive. The first derivative with respect tor0 is related
to the pressure, the second derivative with respect tor0 is
related to the incompressibility, and the second derivati
with respect to theI i is related to the asymmetry coefficient
For symmetric matter, the first derivatives with respect to
I i vanish because the energy per nucleon is an even func
of all I is. The pressure is given by

P52
]E

]V U
A

5r0
2 ]H/r0

]r0
, ~C17!

which gives

P5
2

5

\2

2m
br0

5/3F5/3
(0)1~C0

r1C1
rI t

21C0
sI s

21C1
sI st

2 !r0
2

13r0
2 ]

]r0
~C0

r1C1
rI t

21C0
sI s

21C1
sI st

2 !1b~C0
tF5/3

(0)

1C1
tF5/3

(t)I t1C0
TF5/3

(s)I s1C1
TF5/3

(st)I st!r
8/3. ~C18!

The incompressibility is defined as

K5
18P

r0
19r0

2 ]2H/r0

]r0
2

, ~C19!

which, for the Skyrme energy functional~C14! at the satura-
tion point (r05rnm, I t5I s5I st50) gives

K`52
6

3 S \2

2m
25C0

tr0Dbr0
2/3F5/3

(0)12r0
2
]C0

r

]r0
1r0

3
]2C0

r

]2r0

.

~C20!

The asymmetry coefficients are

at5
1

2

]2H/r0

]I t
2 U

I t5I s5I st50

5
1

3F \2

2m
1~C0

t13C1
t !r0Gbr0

2/31C1
rr0 , ~C21!

as5
1

2

]2H/r0

]I s
2

u I t5I s5I st50

5
1

3F \2

2m
1~C0

t13C0
T!r0Gbr0

2/31C0
sr0 , ~C22!

ast5
1

2

]2H/r0

]I st
2 U

I t5I s5I st50

5
1

3F \2

2m
1~C0

t13C1
T!r0Gbr0

2/31C1
sr0 . ~C23!

Here,at is the well-known volume asymmetry coefficient o
the liquid-drop model, andas andast are its generalizations
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to the spin and spin-isospin channels of the interaction.
the saturation point, all asymmetry coefficients have to
positive.

APPENDIX D: LANDAU PARAMETERS
FROM THE SKYRME ENERGY FUNCTIONAL

A simple and instructive description of the residual inte
action in homogeneous INM is given by the Landau inter
tion developed in the context of Fermi-liquid theory@50#.
Landau parameters corresponding to the Skyrme forces
discussed in Refs.@21,27,36–38,73#. Starting from the full
density matrix in~relative! momentum spacer̃(ksts8t8),
the various densities are defined as

r̃00~k!5(
s

(
t

r̃~kstst!, ~D1a!

r̃1t3
~k!5(

s
(
t,t8

r̃~kstst8!t
tt8

t3 , ~D1b!

s̃00~k!5 (
s,s8

(
t

r̃~ksts8t!sss8 , ~D1c!

s̃1t3
~k!5 (

s,s8
(
t,t8

r̃~ksts8t8!sss8ttt8

t3 . ~D1d!

The kinetic densities are given byt̃ tt3
5 r̃ tt3

k2, T̃tt3

5 s̃tt3
k2. The Landau-Migdal interaction is defined as

F̃~k1s1t1s18t18 ;k2s2t2s28t28!

5
d2E

dr̃~k1s1t1s18t18!dr̃~k2s2t2s28t28!

5 f̃ ~k1 ,k2!1 f̃ 8~k1 ,k2!t̂1• t̂21g̃~k1 ,k2!ŝ1•ŝ2

1g̃8~k1 ,k2!~ŝ1•ŝ2!~ t̂1• t̂2!. ~D2!

The isoscalar-scalar, isovector-scalar, isoscalar-vector,
isovector-vector channels of the residual interaction
given by

f̃ ~k1 ,k2!5
d2E

dr̃00~k1!dr̃00~k2!
, ~D3a!

f̃ 8~k1 ,k2!5
d2E

dr̃1t3
~k1!dr̃1t3

~k2!
, ~D3b!

g̃~k1 ,k2!5
d2E

d s̃00~k1!d s̃00~k2!
, ~D3c!

g̃8~k1 ,k2!5
d2E

d s̃1t3
~k1!d s̃1t3

~k2!
. ~D3d!
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Assuming that only states at the Fermi surface contribu
i.e., uk1u5uk2u5kF , f̃ , f̃ 8, g̃, andg̃8 depend on the angleu
betweenk1 andk2 only, and can be expanded into Legend
polynomials, e.g.,

f̃ ~k1 ,k2!5
1

N0
(
l 50

`

f l Pl~u!. ~D4!

The normalization factorN0 is the level density at the Ferm
surface

1

N0
5

p2\2

2m* kF

'150
m

m*
MeV fm3. ~D5!

A variety of definitions of the normalization factorN0 are
used in the literature and great care has to be taken w
comparing values from different groups; see, e.g., Ref.@50#
for a detailed discussion. We use the convention define
@38#. The Landau parameters corresponding to the gen
energy functional~6! are

f 05N0S 2C0
r14

]C0
r

]r00
r01

]2C0
r

]r00
2

r0
212C0

tbr00
2/3D ,

f 085N0~2C1
r12C1

tbr00
2/3!,

g05N0~2C0
s12C0

Tbr00
2/3!,

g05N0~2C1
s12C1

Tbr00
2/3!,

f 1522N0C0
tbr00

2/3,

f 18522N0C1
tbr0

2/3,

g1522N0C0
Tbr00

2/3,

g18522N0C1
Tbr00

2/3. ~D6!

Higher-order Landau parameters vanish for the second-o
energy functional~12!, but not for finite-range interactions a
the Gogny force discussed in Appendix E. The Landau
rameters provide a stability criterion for symmetric unpola
ized INM: It becomes unstable for a given interaction wh
either f l , f l8 , gl , or gl8 is less than2(2l 11).

APPENDIX E: LANDAU PARAMETERS FROM THE
GOGNY FORCE

The residual interaction in INM from the Gogny forc
@59#

VGogny~r1 ,r2!5 (
i 51,2

~Wi1Bi P̂s1Hi P̂t2Mi P̂sP̂t!

3e2(r12r2)2/m i
2
1t0~11x0P̂s!

3r0
aS r11r2

2 D d~r12r2!

1 iW0~ŝ11ŝ2!• k̂83d~r12r2!k̂ ~E1!
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~see Appendix B for the definition ofk̂, k̂8, P̂s , andP̂t) has
been discussed in Refs.@74,75#. Evaluating the expression
given in Ref.@75# for (k,k8,q)5(kF ,kF ,0), oneobtains the
usual Landau parameters

f l5 (
i 51,2

@~4Wi12Bi22Hi2Mi !C l
( i )

1~2Wi22Bi12Hi14Mi !F l
( i )#

1d l0
3
8 t0~a11!~a12!r0

a,

f l85 (
i 51,2

@2~2Hi1Mi !F l
( i )2~Wi22Bi !C l

( i )#

1d l0
1
4 t0~112x0!r0

a ,

gl5 (
i 51,2

@~2Bi2Mi !C l
( i )1~2Wi12Hi !F l

( i )#

1d l0
1
4 t0~122x0!r0

a ,

gl852 (
i 51,2

~MiC l
( i )1WiF l

( i )!1d l0
1
4 t0r0

a , ~E2!

where

C l
( i )5 1

4 p3/2m i
3N0d l0 ,

F0
( i )5 1

4 p3/2m i
3N0e2z

sinh~z!

z
,

F1
( i )5 3

4 p3/2m i
3N0e2zS cosh~z!

z
2

sinh~z!

z2 D ,

F2
( i )5 5

4 p3/2m i
3N0e2zFsinh~z!S 1

z
1

3

z3D 2
3cosh~z!

z2 G
~E3!
.

N

ys

W

05432
with z5m i
2kF

2/2. The normalization factorN0 is again given
by Eq. ~D5!.

APPENDIX F:
RESIDUAL INTERACTION IN FINITE NUCLEI

Equation~14! gives the most general form of the residu
interaction in finite nuclei. Only a few terms contribute to th
11 isovector excitations of the even-even nuclei we are
terested in. First of all, only the isovector densities contri
ute. Next, the conditionsDJ51 andDp50 between ground
state and excited states imply that the only terms in the
ergy functional that can contribute are quadratic in local te
sor or vector parity-even densities/currents. As can be s
from Table 2 in@20#, all possible contributions are time odd
One finally obtains

v res~r1 ,r2!5
d2E

ds1t~r1!ds1t~r2!
~ŝ1•ŝ2!~ t̂1• t̂2!

5@2C1
s@r00#d~r12r2!

1 1
2 ~C1

T24C1
Ds!~ k̂82d~r12r2!1d~r12r2!k̂2!

1~3C1
T14C1

Ds!k̂8•d~r12r2!k̂#ŝ1•ŝ2t̂1• t̂2

22iC1
¹Jt̂1• t̂2~ŝ11ŝ2!• k̂83d~r12r2!k̂,

where k̂ and k̂8 are defined in Appendix B. Since the cou
pling constants depend only on the scalar isoscalar den
r00, there are no rearrangement terms in the spin-isos
channel of the residual interaction. Unsymmetrized proto
neutron matrix elements of this interaction are to be inser
into the QRPA equations as outlined in Ref.@11#.
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~Springer, Berlin, 1990!; Á. Nagy, Phys. Rep.311, 47 ~1999!;
Ranbir Singh and B. M. Deb,ibid. 298, 1 ~1998!.

@17# I. Z. Petkov and M. V. Stoitsov,Nuclear Density Functional
Theory~Clarendon, Oxford, 1991!.

@18# J. W. Negele and D. Vautherin, Phys. Rev. C5, 1472 ~1972!;
11, 1031~1975!.

@19# J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys.A422,
103 ~1984!.

@20# J. Dobaczewski and J. Dudek, Acta Phys. Pol. B27, 45 ~1996!.
2-18



a

a

l.
,

cl

cl

ys

ar
s
-H

.

.
J.

in
ar

s.
d

-

ta

ar-

. C

i, J.

ida,
K.

W.

cl.

ci.

cl.

ro-

l.

GAMOW-TELLER STRENGTH AND THE SPIN-ISOSPIN . . . PHYSICAL REVIEW C65 054322
@21# J. Friedrich and P.-G. Reinhard, Phys. Rev. C33, 335 ~1986!.
@22# J. P. Blaizot, J. F. Berger, J. Decharge´, and M. Girod, Nucl.

Phys.A591, 435 ~1995!.
@23# E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Sch

fer, Nucl. Phys.A627, 710 ~1997!.
@24# E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Sch

fer, Nucl. Phys.A635, 231 ~1998!; A643, 441~E! ~1998!.
@25# T. H. R. Skyrme, Philos. Mag.1, 1043~1956!; Nucl. Phys.9,

615 ~1959!.
@26# Fl. Stancu, D. M. Brink, and H. Flocard, Phys. Lett.68B, 108

~1977!.
@27# K. Liu, H. Luo, Z. Ma, Q. Shen, and S. A. Moszkowski, Nuc

Phys.A534, 1 ~1991!; K. Liu, H. Luo, Z. Ma, and Q. Shen
ibid. A534, 25 ~1991!; K. Liu, H. Luo, Z. Ma, M. Feng, and Q.
Shen,ibid. A534, 48 ~1991!; K. Liu, Z. Ma, and H. Luo,ibid.
A534, 58 ~1991!.

@28# F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nu
Phys.A420, 297 ~1984!.

@29# B. A. Brown, Phys. Rev. C58, 220 ~1998!.
@30# M. Beiner, H. Flocard, Nguyen Van Giai, and P. Quentin, Nu

Phys.A238, 29 ~1975!.
@31# P.-G. Reinhard~private communication!.
@32# F. Tondeur, Phys. Lett.123B, 139 ~1983!.
@33# D. Vautherin and D. M. Brink, Phys. Rev. C5, 626 ~1972!.
@34# B. D. Chang, Phys. Lett.56B, 205 ~1975!.
@35# S. Stringari, R. Leonardi, and D. M. Brink, Nucl. Phys.A269,

87 ~1976!.
@36# S. Krewald, V. Klemt, J. Speth, and A. Faessler, Nucl. Ph

A281, 166 ~1977!.
@37# M. Waroquier, K. Heyde, and G. Wenes, Nucl. Phys.A404,

269 ~1983!; M. Waroquier, G. Wenes, and K. Heyde,ibid.
A404, 298 ~1983!.

@38# Nguyen Van Giai and H. Sagawa, Phys. Lett.106B, 379
~1981!.

@39# P.-G. Reinhard and J. Friedrich, Z. Phys. A321, 619 ~1985!;
P.-G. Reinhard, M. Brack, and O. Genzgen, Phys. Rev. A41,
5568 ~1990!; P.-G. Reinhard, Ann. Phys.~Leipzig! 1, 632
~1992!.

@40# G. A. Lalazissis, M. M. Sharma, J. Ko¨nig, and P. Ring, in
Proceedings of the International Conference on ‘‘Nucle
Shapes and Nuclear Structure at Low Excitation Energie,’’
Antibes, France, 1994, edited by M. Vergnes, D. Goutte, P.
Heenen, and J. Sauvage~Editions Frontieres, Gif-sur-Yvette
Cedex, France, 1994!, p. 161.

@41# M. M. Sharma, G. A. Lalazissis, J. Ko¨nig, and P. Ring, Phys
Rev. Lett.74, 3744~1995!.

@42# P.-G. Reinhard and H. Flocard, Nucl. Phys.A584, 467 ~1995!.
@43# J. S. Bell and T. H. R. Skyrme, Philos. Mag.1, 1055~1956!.
@44# K. Nakayama, A. Pio Galea˜o, and F. Krmpotic´, Phys. Lett.

114B, 217 ~1982!.
@45# G. Bertsch, D. Cha, and H. Toki, Phys. Rev. C24, 533~1981!.
@46# C. Gaarde, J. Rapaport, T. N. Taddeucci, C. D. Goodman, C

Foster, D. E. Bainum, C. A. Goulding, M. B. Greenfield, D.
Horen, and E. Sugarbaker, Nucl. Phys.A369, 258 ~1981!.

@47# T. Suzuki, Nucl. Phys.A379, 110 ~1982!.
@48# G. F. Bertsch, Nucl. Phys.A354, 157c~1981!.
@49# J. Engel, P. Vogel, and M. R. Zirnbauer, Phys. Rev. C37, 731

~1988!.
05432
ef-

ef-

.

.

.

.

C.

@50# I. S. Towner, Phys. Rep.155, 263 ~1987!.
@51# F. Osterfeld, inElectric and Magnetic Giant Resonances

Nuclei, edited by J. Speth, International Review of Nucle
Physics, Vol. 7~World Scientific, Singapore, 1991!, p. 536.

@52# F. Osterfeld, Rev. Mod. Phys.64, 491 ~1992!.
@53# I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phy

A584, 335 ~1995!; I. N. Borzov, S. A. Fayans, E. Kromer, an
D. Zawisha, Z. Phys.335, 127~1996!; I. N. Borzov, S. Goriely,
and J. M. Pearson, Nucl. Phys.A621, 307c~1997!; I. N. Bor-
zov and S. Goriely, Phys. Rev. C62, 035501~2001!.
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@65# S. Åberg, H. Flocard, and W. Nazarewicz, Annu. Rev. Nu

Part. Sci.40, 439 ~1990!.
@66# R. V. F. Janssens and T. L. Khoo, Annu. Rev. Nucl. Part. S

41, 321 ~1991!.
@67# C. Baktash, B. Haas, and W. Nazarewicz, Annu. Rev. Nu

Part. Sci.45, 485 ~1995!.
@68# J. Dobaczewski and J. Dudek, Comput. Phys. Commun.102,

166 ~1997!; 102, 183 ~1997!; 131, 164 ~2000!.
@69# P. Haensel, J. L. Zdunik, and J. Dobaczewski, Astron. Ast

phys.222, 353 ~1989!.
@70# M. Kutschera and W. Wo´jcik, Phys. Lett. B325, 172 ~1994!.
@71# P. Haensel and A. J. Jerzak, Phys. Lett.112B, 285 ~1982!.
@72# J. Da̧browski and P. Haensel, Phys. Lett.42B, 163 ~1972!;

Ann. Phys. ~N.Y.! 97, 452 ~1976!; P. Haensel and J. Da¸b-
rowski, Z. Phys. A274, 377 ~1975!; Nucl. Phys.A254, 211
~1975!.
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