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Towards a self-consistent shell model
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In most cases shell-model calculations are not performed using Hartree-Fock self-consistency conditions. In
calculations limited to the valence space, this may not lead to any problems, but when higher shell admixtures
are allowed the calculated observables implicitly include Hartree-Fock terms that may be undesirable. In this
work, we compare non-self-consistent and nearly self-consistent calculations of the spin-orbit splitting of the
p1/2 andp3/2 hole states inA515. We find that when higher shell admixtures (2\v) are included in the model
space, and when a ‘‘standard’’ interaction is used, the spin-orbit splitting increases relative to a 0\v calcula-
tion. However, when the interaction and/or the kinetic energy are modified so as to achieve self-consistency the
reverse is true, with the spin-orbit splitting in the (012)\v space becoming smaller than that in the 0\v
space. Furthermore, we show that self-consistency cannot be achieved by modifying the two-body spin-orbit or
tensor terms, but is possible by adding a monopole-monopole term.
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I. INTRODUCTION

Two popular appoaches to nuclear structure calculati
are shell-model calculations and Hartree-Fock calculatio
The latter are usually not done with realistic interactions,
rather with simpler interactions like the Skyrme-type inte
actions@1# where the parameters are chosen so as to give
right binding energy at the right radius, and good sing
particle energies@1–3#. The self-consistency condition ca
be stated as follows: there can be no admixing of o
particle–one-hole (1p-1h) excitations into the self-
consistent intrinsic state. Indeed, it does not make m
sense to use these interactions to go beyond Hartree-F
i.e., one should not use them to calculate 2p-2h and higher
admixtures into the ground state. To quote from Vauthe
and Brink ‘‘Skyrme interactions can be considered as a k
of phenomenologicalG matrix, which already includes th
effects of short-range correlations . . . .’’ This is one reason
why it would be meaningless to calculate second-order c
rections with Skyrme’s force, and a perturbation theo
would actually diverge because of thezero range.’’ Thus, any
Hartree-Fock wave function calculated using a Skyrme-t
interaction would consist of a single Slater determinant.

In shell-model calculations involving several shells, w
will, of course, get ground state correlations, e.g., 2p-2h
admixtures, but one may also get 1p-1h admixtures, which
are undesirable in a Hartree-Fock sense.

The self-consistency problem in shell-model calculatio
have been discussed previously by several authors,
Sharp and Zamick@4#, Hoshino, Sagawa, and Arima@5# and
by Jaquaet al. @6#.

In the Sharp and Zamick work, a density-dependent in
action of the form2ad(rW12rW2)1grsd(rW12rW2) was con-
sidered. The first term is attractive and serves to bind
nucleus, while the second~density-dependent! term is repul-
sive and prevents the nucleus from collapsing to a poin
was noted that if that interaction is used for calculating bin
ing energies then, for single-particle energies, the interac
0556-2813/2002/65~5!/054321~8!/$20.00 65 0543
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to be used is2ad(rW12rW2)1g(11s/2)d(rW12rW2). Popular
choices ofs are 2/3 and 1, the latter used for Skyrme inte
actions. Since the factor (11s/2) is greater than 1, the re
pulsive term is larger when calculating single-particle en
gies, and the overall interaction is less attractive~i.e.,
weaker!.

In the work of Hoshinoet al., they use a non-density
dependent interactionVM3Y to calculate the energies of gian
resonances. In calculating the energy of the isoscalar g
monopole resonance, it is crucial that one is at a Hartr
Fock minimum. Rather than getting involved in complicat
rearrangement-effect calculations, the authors simply ad
repulsive interactiondV5V0( i r i

2 in the particle-hole chan-
nel and adjust the parameters so as to get a Hartree-F
minimum at the desired nuclear radius.

In the work of Jaquaet al., the importance of treating the
kinetic energy properly is emphasized, and the remova
the spurious states is crucial. They have shown that
Hartree-Fock single-particle energies and their relations
to experimental removal energies depend sensitively
whether or not the center-of-mass kinetic energy is retai
in the nuclear Hamiltonian. In a very large shell-model c
culation by Haxton and Johnson@7#, the main motivation of
which was to get theJ501 4p-4h state in16O at the correct
excitation energy, they concern themselves with the la
1p-1h admixtures that can arise. They do not give ma
details but say ‘‘in the spirit of Brown and Green, the stro
interaction was only allowed to operate in the 1p-2s-1d
shells.’’ It turns out that this choice also eliminates lar
2\v and 4\v 1p21h amplitudes that could mix into the
low-lying states, only because the shell-model interact
does not properly respect the Hartree-Fock condition.

In the works of Hoshinoet al. @5# and Haxton and
Johnson@7#, the main emphasis is on getting the corre
nuclear structure—the right excitation energies for gia
resonances in the former case—and to demonstrate for
first time that the 4p-4h highly deformed states could com
down to a reasonable energy in a shell-model calcula
©2002 The American Physical Society21-1
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done in a large enough model space in the latter case. Bu
interactions used in these calculations are somewhat hy

In this particular work, we are less concerned with fitti
the experimental data, and instead, using a realistic inte
tion in shell-model calculations, we examine the con
quences of achieving near Hartree-Fock self-consistency
the interaction itself as well as on nuclear observables
interest.

In shell-model calculations one generally uses a m
more detailed interaction involving many two-body matr
elements. These can either be obtained completely phen
enologically as was done in the early days, or one can ob
G matrices from realistic two-body interactions. The mo
popular method at the present time is a compromise betw
these two extremes, e.g., one starts out with aG matrix from
a realistic interaction but then one makes some phenom
logical modifications to get a better fit to the data.

In either case, phenomenological or realistic, little thou
is given to Hartree-Fock self-consistency. Indeed, it is
even clear that one should impose such a condition sinc
the shell-model one has a correlated ground state.

If one limits the particles to one major shell, then one c
get away with ignoring the ‘‘self-consistency’’ problem
However, if one admixes say 2\v excitations in order to
improve the ground state, the problem comes back to ha
us. Part of the 2\v admixtures consists of two particles b
ing excited through one major shell. But one also gets
mixtures where one particle gets excited through two ma
shells. In Hartree-Fock theory, the latter configuration sho
not admix into the uncorrelated ground state@8#. The reason
for this is that the only effect of admixing 1p-1h excitations
is to change the radial shapes of the wave functions of
occupied states. But if one already has the best shape,
should be no further change. In the shell-model, it is
clear what to do with such configurations.

The Hartree-Fock condition can be shown diagramm
cally by the cancellation of the two diagrams shown in Fi
1~a! and 1~b!. This leads to the equation

1

A2~2 j P11!
(
I ,T

~2I 11!~2T11!^@PC# I ,TuVu@HC# I ,T&U

3d j P , j H
dnP ,nH115

1

A2~2 j P11!
^puUuh&d j p , j h

, ~1!

where the two-particle matrix element is antisymmetriz
but unnormalized, andC is an occupied~or core! state. Since
U5T1U2T, whereT is the kinetic energy, andT1U can-

FIG. 1. The two Hartree-Fock diagrams that enter in the s
consistency condition: the two-body potential-energy term~a!, and
the one-body harmonic-oscillator term~b!.
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not connect to thePH state, we can replaceU by 2T in the
last matrix element. Then the problem becomes that of fi
ing a kinetic energymatrix consistent with the two-particle
potential energy.

It has already been shown by one of the authors@9# that
‘‘Hartree-Fock diagrams’’ can affect the spin-orbit splittin
in perturbation theory. In calculating the contribution of 2\v
admixtures to single-particle energies, besides the 2p-1h and
3p-2h terms ~Eqs. ~2! and ~3! in @9#!, there are single
Hartree-Fock and double Hartree-Fock diagrams, and b
must be taken into account. The expression for the sin
Hartree-Fock~SHF! diagrams is

de j~SHF!52(
p,h

D~ j , j ,p,h!

eh2ep
F(

c
D~h,p,c,c!2^huUup&G ,

where

D~a,b,c,d!5d j a , j b(J,T

~2J11!~2T11!

2~2 j a11!
^acuVubd&J,T.

The point here is that this expression involves the differe
@(cD(h,p,c,c)2^huUup&#. This is a difference between
term involving the two-body interaction and the one-bo
interaction. If these are chosen independently, then this
ference can be either positive or negative, and so one can
a variety of answers.

Note that if the Hartree-Fock condition of Fig. 1 is sati
fied, then de j ~SHF! will also vanish, i.e., the factor
@(cD(h,p,c,c)2^huUup&# will vanish. However, in the
work of Zamick, Zheng, and Mu¨ther @9#, there are also wha
they call double Hartree-Fock~DHF! diagrams that willnot
vanish even when the Hartree-Fock condition is satisfi
The expression for these is given by

de j~DHF!5(
p

F(
c

D~ j ,p,c,c!2^puUu j &G2

e j2ep

2(
h

F(
c

D~ j ,h,c,c!2^huUu j &G2

eh2e j
.

In the harmonic oscillator approximation,U5 1
2 mv2r 2,

and the matrix elements are as follows:

^puUu j &52
\v

2
d j , j p

d l ,l p
dnp ,n11A~n11!~n1 l 13/2!

and

^huUu j &52
\v

2
d j , j h

d l ,l h
dnh ,n21An~n1 l 11/2!.

In actual shell-model calculations, however,U is a much
more complicated function ofr, and one usually adopts th
following phenomenological expression for\v:

f-
1-2
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\v5
45

A1/3
2

25

A2/3
. ~2!

However, one may wish to vary\v in order to achieve ap
proximate Hartree-Fock self-consistency. In such sh
model calculations, both the single Hartree-Fock and dou
Hartree-Fock terms given above are implicitly present,
though it is not so easy to isolate these effects as it is
perturbation theory. If such effects are present one must
tainly include them, and indeed in shell-model calculatio
this is unavoidable. However, we may perhaps choose
interaction so that such effects are minimized. As we w
show below, we try out different approaches to achieve t
One is to weaken the two-body central interaction in
spirit of the work by Sharp and Zamick@4#, and one is to add
a two-body monopole-monopole interaction to the exist
one. This latter approach is similar in spirit to the work
Hoshinoet al. @5#, except that we have a two-body intera
tion instead of a one-body one.

II. RESULTS OF THE CALCULATIONS

We perform our calculations in the framework of the ‘‘n
core shell model’’~NCSM! using harmonic-oscillator basi
states. The matrix diagonalization is performed for the f
lowing shell-model Hamiltonian:

HSM5(
i 51

A

t i2Tc.m.1(
i , j

A

v i j
e f f1lS Hc.m.2

3

2
\v D ,

whereTc.m. is the center-of-mass~c.m.! kinetic energy, and
the last term~with l@1) is added to remove the spuriou
effects of the c.m. motion from the low-lying states in t
spirit of the Gloeckner-Lawson technique@10#. We have not
included the Coulomb interaction, and we should also po
out that our NCSM calculations involve no phenomenolo
cal single-particle energies. These are implicitly genera
from the two-bodyG-matrix elements as well as the on
body kinetic energy terms in the matrix diagonalizatio
which is performed for us by them-scheme shell-model cod
OXBASH @11#.

In Table I we present the results of calculations of t
p1/2

21-p3/2
21 ‘‘spin-orbit’’ splitting for A515 both in a valence

space (0\v) and in a (012)\v space that allows 2\v
excitations. We use the (x,y) interaction that was previousl
outlined in Ref. @12#, but multiply the central interaction
term by a factorp,

V~r !5pVc~r !1xVs.o.1yVt . ~3!

HereVc(r ) is the ~spin-dependent! central interaction,Vs.o.
stands for the two-body spin-orbit interaction, andVt stands
for the tensor interaction. These interaction terms have b
adjusted so as to obtain a good fit to the nonrelativistic m
trix elements of the Bonn A potential withp51, x51 and
y51 @13#.

In Table I we takex51, y50 so that there is no tenso
interaction, and we have the ‘‘normal’’ spin-orbit interactio
i.e., the one obtained with a nonrelativisticG matrix. In our
05432
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previous papers@9,12–15#, we have always setp to unity,
whereas here we varyp for the first time in order to make
some points about self-consistency. First, we note that in
valence space, the spin-orbit splitting is due only to t
xVs.o. term and does not depend on the strength of the c
tral interaction~i.e., onp), whereas in the (012)\v space it
is a decreasing function ofp.

The value of thep1/2
21-p3/2

21 splitting for A515 in the va-
lence space is 5.062 MeV, whereas in the large (012)\v
space this splitting increases to 6.008 MeV forp51, with
the percentage of 2\v admixtures in the ground state bein
36.60% forp1/2

21 and 36.29% forp3/2
21 . However, we see tha

by reducing the strengthp of the central interaction, the
amount of 2\v admixture in the ground state first decreas
until it is 15.13% forp50.6, and if one reduces the value
p further, it starts to increase again, reaching 41.15% fop
50. We also note from Table I that, for a given value ofp,
the amount of 2\v admixtures in both the 1/22 ground state
and the 3/22 first excited state are very nearly equal. Indee
more detailed calculations which involved varyingp by steps
of 0.01, show a minimum 2\v admixture of 15.084% in the
ground state atp50.59 and a minimum of 17.32% for th
3/22 first excited state atp50.61.

These results clearly indicate that we are closest
Hartree-Fock self-consistency atp'0.6 since, as we will
show below, the 2\v admixture in the ground state is sma
est when the 1p-1h admixture is smallest. Moreover, we ca
achieve near self-consistency for the same value ofp simul-
taneously for both the ground state and the first excited st
We also note that the calculated values of the spin-orbit sp
ting for p50.6 are 5.062 MeV in the 0\v space and
4.525 MeV in the (012)\v space. Clearly, for thep50.6
case, there is aqualitative difference from thep51 case,

TABLE I. Calculated values of the spin-orbit splitting ES
[E(3/22)2E(1/22) for A515, usingx51, y50 and multiplying
the central interactionVc by the factorp, but keeping the kinetic
energy term unchanged.

ESO(0\v) ESO@(012)\v# %2\v admixture

p ~MeV! ~MeV! in 1/22

~ground state!
in 3/22

1.2 5.062 6.134 40.53 40.39

1.0 5.062 6.008 36.60 36.29

0.8 5.062 5.659 28.07 27.56

0.6 5.062 4.525 15.13 17.39

0.4 5.062 3.714 27.75 29.70

0.2 5.062 3.607 37.09 37.80

0 5.062 3.584 41.15 41.50
1-3
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with the spin-orbit splitting nowdecreasingwhen 2\v ad-
mixtures are allowed into the ground state.

It may be surprising at first that, whenp50 ~i.e., when
the central interaction is set equal to zero!, the amount of
2\v admixture is large ('41%). But we must remembe
that the kinetic energy part of the Hamiltonian can coupl
2\v 1p-1h ‘‘monopole’’ state to the 0p-0h state. Another
way of saying this is that the zero-order wave functions
of the harmonic oscillator type, whereas the eigenstate
the kinetic energy operator are of the plane wave typ
(}eikW•rW). The large admixtures of 2\v excitations in both
the ground state and the first excited state correspond t
attempt to change the wave functions from a harmonic os
lator type to a plane wave type.

In Table II, we show how much of the ground state 2\v
admixture is of type 1p-1h and how much of it is of type
2p-2h. The ground state 1p-1h admixture drops from
33.7% for p51.2% to 3.3% forp50.6, and then rises to
39.3% forp50. More detailed calculations involving step
in p of 0.01 show a minimum ground state 1p-1h admixture
of 2.8% atp50.61, and a corresponding minimum of 2.7
for the 3/22 first excited state atp50.63. We also note in
Table II that the percent 1p-1h admixture varies greatly as
function ofp, whereas the percent 2p-2h admixture changes
more moderately withp as it never exceeds 13.5%. Also, fo
the most part, 1p-1h admixtures tend to dominate ove
2p-2h admixtures, except nearp50.6 where the percen
ground state 2p-2h admixture is the largest and the 1p-1h
contributions the smallest. This is why a minimum 1p-1h

TABLE II. Composition of the ground state (1/22)2\v admix-
ture in A515 as a function of the factorp multiplying the central
interaction, usingx51 and y50 and keeping the kinetic energ
term unchanged~as in Table I!.

p % (1p-1h) % (2p-2h) Total %2\v admixture

1.2 33.7 6.8 40.5

1.0 28.7 7.9 36.6

0.8 17.8 10.3 28.1

0.7 9.7 11.1 20.8

0.65 4.9 12.2 17.1

0.6 3.3 11.8 15.1

0.55 6.0 10.2 16.2

0.5 10.6 9.1 19.7

0.4 22.5 5.3 27.8

0.2 34.8 2.3 37.1

0.0 39.3 1.8 41.1
05432
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admixture corresponds to a minimum total 2\v admixture.
It is well known that the 1p-1h admixtures should vanish
when exact Hartree-Fock self-consistency is realized in
ground state. Thus, near self-consistency, the total 2\v ad-
mixture is largely 2p-2h in origin. However, we found tha
for a standard central interaction (p51) close to 80% of the
ground state 2\v admixture is of type 1p-1h. Clearly then,
we are closest to Hartree-Fock self-consistency atp'0.6,
i.e., when the central interaction is only about 60% as stro
as our ‘‘standard’’ interaction.

In Table III, we keep the central and spin-orbit interacti
terms fixed~with the standard strengthsp51 andx51), but
vary the kinetic energy by varying\v. We find that we get a
minimum in the percentage of 2\v admixtures when the
kinetic energy is increased by a factor of about 1.6. Inde
whereas for the usual phenomenological value
\v514.136 MeV @from Eq. ~2!# the amount of 2\v ad-
mixtures is 36.6%, for\v851.6\v522.618 MeV it is re-
duced to 14.4%.

These results are completely consistent with those
Table I ~note that 0.631.6'1). Indeed, by multiplying the
kinetic energy by the factor of 1.6, the spin-orbit splitting
calculated to be 5.062 MeV and 4.760 MeV in the 0\v
and (012)\v model spaces, respectively. Indeed, withp
50.6 multiplying the central component of our interactio
and the kinetic energy matrix unchanged, we obtain E
54.525 MeV and 15.1%2\v admixture.

Looking into the details of the 1p-1h and 2p-2h contri-
butions to the 2\v admixture in the ground state ofA515,
we find that the minimum 2\v admixture of 13.8% occurs
for k51.65–1.70, whereas the minimum for 1p-1h contri-
butions of 1.5% occurs fork51.59–1.65. The valuek
'1.65 thus minimizesboth the 1p-1h admixture and the
total 2\v admixture in the ground state.

TABLE III. Same as Table I, but this time multiplying the ki
netic energy term by the factork, and keeping the central interactio
Vc unchanged.

ESO(0\v) ESO@(012)\v# %2\v admixture

k ~MeV! ~MeV! in 1/22

~ground state!
in 3/22

5.0 5.062 3.664 37.2 37.4

2.0 5.062 3.972 19.2 20.8

1.6 5.062 4.760 14.4 15.5

1.2 5.062 5.773 29.9 29.4

1.0 5.062 6.008 36.6 36.3

0.8 5.062 6.137 41.2 41.1

0.4 5.062 6.266 46.6 46.7

0 5.062 6.323 49.6 49.7
1-4
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Thus we can get close to Hartree-Fock self-consiste
either by weakening the central interaction or by increas
\v and hence the kinetic energy. The approach is equiva
to making the radius of the nucleus smaller. It is also int
esting to note once more by comparing Tables I and III h
close the results for a givenp in Table I correspond to thos
for k51/p in Table III ~consider, for example,p50.2 in
Table I andk55.0 in Table III!.

A. The effect of varying the strength of the spin-orbit
interaction

In Table IV we examine the effect of varying the streng
of the spin-orbit interaction on the ground state correlatio
Here again we donot include a tensor interaction (y50)
and keep the kinetic energy term as well as the cen
interaction term with their standard strengths~i.e., k51 and
p51).

We see from Table IV that, asx is reduced from 1.5 to 0
the percentage of 2\v admixture into the ground state doe
not change much, decreasing from 36.8% to 36.3%. M
detailed calculations show that asx decreases from 1.5 to 0
the contribution of 1p-1h admixtures into the ground stat
decreases slightly from 29.2% to 27.8%, while that
2p-2h admixtures increases slightly from 7.6% to 8.5%. F
the first excited 3/22 state, the percentage of 2\v admixture
changes even less, ranging from 36.4% to 36.3%, the c
tribution of 1p-1h admixtures from 27.0% to 27.9%, an
that of 2p-2h admixtures from 9.3% to 8.4%. We also s
from Table IV that the strengthx of the two-body spin-orbit
component of the effective interaction has a decisive ef
on the magnitude of the ESO~the effective spin-orbit split-
ting of the 3/22, 1/22 spin doublet! in agreement with the

TABLE IV. Same as Table I, but this time keeping the cent
interactionVc as well as the kinetic energy term unchanged, a
multiplying the spin-orbit component of the interactionVs.o. by the
factor x.

ESO(0\v) ESO@(012)\v# %2\v admixture

x ~MeV! ~MeV! in 1/22

~ground state!
in 3/22

1.5 7.593 8.934 36.80 36.38

1.2 6.075 7.186 36.67 36.32

1.0 5.062 6.008 36.60 36.29

0.8 4.050 4.820 36.53 36.28

0.6 3.037 3.625 36.46 36.28

0.4 2.025 2.324 36.40 36.29

0.2 1.012 1.215 36.35 36.30

0.0 0 0 36.32 36.32
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results in Ref.@12#. In the 0\v space the ESO is exactl
linear in x, and in the (012)\v space such is also ver
nearly the case.

For A515, the observed value of ESO is 6.324 MeV f
15N and 6.176 MeV for15O @16#. The results of Table IV
suggest that including 2\v excitations and takingx51 lead
to results in closer agreement with experiment@12#.

B. The effect of adding a tensor interaction

In Table V we examine the effect of varying the streng
of the tensor interaction on ground state correlations, keep
the kinetic energy term unchanged, the spin-orbit interact
fixed atx51 and the central interaction fixed atp51. From
y51.2 toy50 there is very little change in the ground sta
2\v admixture, only a slight decrease from 36.72%
36.59%. A more detailed calculation shows that for t
ground state, as we varyy from 1.2 to 0, the 1p-1h admix-
ture increases slightly from 26.5% to 28.7%, while the 2p
22h admixture decreases from 10.2% to 7.9%. The t
changes tend to cancel each other when the two contribut
are added, resulting in a total 2\v ground state admixture
that varies by less than 0.15% asy decreases from 1.2 to 0

We also see from Table V that changingy from 0 to 1.2
has no effect on the ESO in the 0\v space, and that it ha
only a very small effect~less than 7%) on the ESO in th
(012)\v space. This is fully consistent with the results
Ref. @12#, and is in line with the more modern two-nucleo
interaction having a weaker tensor component@14#.

C. The effect of adding a monopole-monopole interaction

We shall here adopt a poorman’s self-consistency criter
by using harmonic oscillator wave functions to determine
kinetic energy. These self-consistency conditions are for e
p2h pair. However, in the harmonic oscillator model, the

l
d

TABLE V. Same as Table I, but this time keeping the cent
interactionVc , the spin-orbit interaction as well as the kinetic e
ergy term unchanged, and multiplying the tensor componentVt by a
factor y.

ESO(0\v) ESO@(012)\v# %2\v admixture

y ~MeV! ~MeV! in 1/22

~ground state!
in 3/22

1.2 5.062 5.623 36.72 36.56

1.0 5.062 5.698 36.66 36.47

0.8 5.062 5.769 36.63 36.40

0.6 5.062 5.836 36.61 36.35

0.4 5.062 5.898 36.59 36.31

0.2 5.062 5.956 36.59 36.30

0 5.062 6.008 36.60 36.29
1-5
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is only one parameter\v. So, rather than demanding th
each individual particle-hole pair does not get admixed i
the ground state, we will only demand that a linear com
nation of particle-hole states~namely the isoscalar monopo
states! does not get mixed into the uncorrelated ground s
by the Hamiltonian.

The monopole state is defined by

uM &5N(
P,H

K @a†PaH#0,0U(
i

r i
2u0&@a†PaH#0,0L

and, in general,

uM &5(
P,H

DPH@a†PaH#0,0,

where we use the notation@C#J,T for a given wave function,
and wheream

j [(21) j 2ma2m
j . Using the formula

^n11,l ur 2un,l &52b2A~n11!~n1 l 13/2!,

whereb25\/(mv), we find the following monopole wave
function for 16O:

uM &5A 3

18
@a1s

† a0s#
0,01A10

18
@a1p3/2

† a0p3/2
#0,0

1A 5

18
@a1p1/2

† a0p1/2
#0,0.

The Hartree-Fock self-consistency condition that the sum
all 1p-1h admixtures into the ground state vanish can
expressed in terms of diagrams 1~a! and 1~b! of Fig. 1 as 1~a!
1 1~b! 50, as discussed in the introduction.

The kinetic energy term@Fig. 1~b!# can be evaluated in th
harmonic oscillator approximation by noting that

K5K1(
i

1

2
mv2r i

22(
i

1

2
mv2r i

2.

The first two terms give the harmonic oscillator Hamiltonia
which obviously cannot connect between two major she
and the contribution of the third term is obtained from^n
11,l ur 2un,l & given above.

The condition we imposed then, including averaging o
the monopole states, is

(
P,H

DPH

1

A2~2 j P11!
(

I ,T,C
~2I 11!~2T11!

3^@PC# I ,TuVu@HC# I ,T&U

52(
P,H

DPHA2~2 j P11!
\v

2
A~n11!~n1 l 13/2!.

~4!

We can use this condition to determine the value of\v,
which leads to self-consistency. Alternatively, we can cho
05432
o
i-

te

f
e

,
,

r

e

the two-body interactionV so that self-consistency is satis
fied for a desired value of\v.

The values of\v we obtain for 16O are as follows~in
MeV!:

Using the Hartree-
Fock criterion

Using
\v545/A1/3225/A2/3

Ratiok

22.143 13.920 1.591

The ratiok obtained above is remarkably consistent w
that obtained in theA515 calculation for which the kinetic
energy parameter\v gives the least amount of 2\v admix-
ture into the ground state of the15O nucleus~see Table III!.

In Table VI we examine the effect of adding a monopo
monopole term to the interaction on the 2\v admixture in
the ground state of15O. This is similar in spirit to what
Hoshinoet al. @5# do, except that we add a two-body inte
action and they add a one-body term( i r i

2 . In both cases, the
motivation is to reduce the overall 1p-1h coupling term.
Hence, the Hamiltonian used is

V~r !5pVc~r !1xVs.o.1qVmonopole ~5!

and whereVmonopole is defined by its two-body matrix ele
ment

TABLE VI. Same as Table I, but this time keeping the cent
interactionVc , the spin-orbit interaction as well as the kinetic e
ergy term unchanged, and adding a monopole-monopole term
tiplied by the factorq.

ESO(0\v) ESO@(012)\v# %2\v admixture

q ~MeV! ~MeV! in 1/22

~gound state!
in 3/22

1.0 5.062 3.651 62.430 62.40

0.50 5.062 3.644 62.411 62.349

0.10 5.062 3.539 58.393 58.168

0.045 5.062 4.558 26.975 28.653

0.01 5.062 5.900 36.02 35.654

0 5.062 6.008 36.60 36.29

20.1 5.062 6.312 37.392 37.241

20.5 5.062 6.399 37.292 37.241

21.0 5.062 6.409 37.235 37.208
1-6
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TABLE VII. Excitation energies of dominantly 2p-2h states calculated with various interactions in
(012)\v model space. The intreactions are denoted by the following coupling coefficients:k for the kinetic
energy term,p for the central interaction,x for the spin-orbit interaction,y for the tensor interaction, andq for
the monopole-monopole interaction. The percentages of the 2p-2h admixture in the wave functions of th
excited states are shown in parentheses.

Interaction J51/22 2p-2h state J53/22 2p-2h state

k51, p51, x51, y51, q50 Ex543.260 MeV (89%) Ex543.594 MeV (95%)
k51, p51, x51, y50, q50 Ex541.829 MeV (90%) Ex542.250 MeV (100%)

k51, p50.6, x51, y50, q50 Ex519.914 MeV (95%) Ex520.055 MeV (97%)
k51.6, p51, x51, y50, q50 Ex534.823 MeV (93%) Ex534.569 MeV (95%)

k51, p51, x51, y50, q50.045 Ex521.671 MeV (92%) Ex521.203 MeV (95%)
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^ j 1 j 2uVmonopoleu j 3 j 4&

5
1

A11d1,2

1

A11d3,4

d j 3 , j 1
d l 3 ,l 1

^R3ur 2uR1&

3d j 4 , j 2
d l 4 ,l 2

^R4ur 2uR2&

with Ri being the radial wave function of a Harmonic osc
lator shellu i &[uni ,l i , j i&.

Note that we do not include a tensor component, and
we keep the strengths of the central, spin-orbit, and kin
terms fixed atp5x5k51. We find that, by varying the
strengthq of the monopole-monopole term, it is possib
once again to minimize the total percentage of 2\v admix-
ture in the ground state. The minimum percentages of 1p-1h
admixtures occur atq50.045 and are equal to 3.76% for th
1/22 state and 1.09% for the 3/22 state. Interestingly, the
minima occur for a very small but nonzero value ofq. Fur-
thermore, the minimum percentage of 2\v admixture
('27%, corresponding toq50.045) is about twice that ob
tained by varying the strength of the central interactionVc or
by increasing the kinetic energy term.

III. ADDITIONAL REMARKS AND SUMMARY

In this paper we studied the effects of changing
strengths of various parts of a typical nuclear Hamiltonian
the correlations in the wave functions of the two lowe
states in theA515 system. We found that the amount
2\v admixtures in the nuclear wave functions is quite
sensitive to varying the strengths of the two-body spin-o
and tensor components of the effective interaction. It
however, very sensitive to changing the strength of the c
tral two-body interaction, to the magnitude of\v ~i.e., the
magnitude of the kinetic energy term!, and to the strength o
a monopole-monopole interaction term that we add to
Hamiltonian.

The 2\v admixtures in the nuclear wave functions ha
both 1p-1h and 2p-2h contributions. We find that usually
the minima of the 2\v admixtures occur when 1p-1h con-
tributions are the smallest. We show that, by carefully
creasing the strength of the central component of the t
body nuclear interaction by a factor of about 0.6~or,
alternatively, by increasing the value of\v by a factor of
about 1.6!, we can minimize the 1p-1h admixtures, making
05432
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them very small~less than4%). Wehave found that, typi-
cally, the 1p-1h admixtures are minimized under the sam
conditions for the ground state and for the first excited sta

We have shown that the results we have just stated
closely related to the Hartree-Fock self-consistency con
tion, which states that the Hartree-Fock Hamiltonian do
not allow one-particle-one-hole admixtures into the grou
state. Indeed, by making some judicious and reasonable
justments to a realistic effectiveN-N interaction, we have
shown that it is possible to do no-core shell-model calcu
tions in a harmonic-oscillator basis and still come fairly clo
to Hartree-Fock self-consistency.

The main result of this work, however, is to show that o
gets qualitative differences in the relative values of th
‘‘spin-orbit splitting’’ when one includes higher shells, de
pending upon whether our interaction is close to Hartr
Fock self-consistency or not. As shown for example, in Ta
III, when we use the value of \v545/A1/3

225/A2/3 (MeV) in the kinetic energy term~a choice that
gives a good radius for most nuclei!, we find that the split-
ting E(3/22)2E(1/22) in A515 as calculated in a (0
12)\v model space differs from that calculated in a 0\v
model space by10.946 MeV. However, when we vary th
value of \v in order to achieve Hartree-Fock sel
consistency, the difference in the splitting is no
20.302 MeV. This shows that one has to take care in h
one interprets the results of higher-shell admixtures.

A. Hartree-Fock self-consistency and the 2p-2h states

In Table VII, and for the various interactions consider
so far, we list the calculated energies of the lowest exci
J51/22 and J53/22 states that are dominantly 2p-2h ~or
2p-3h relative to the16O core!. Recalling that our mode
space consists of (012)\v excitations, we expect the state
to be too high in energy. However, one gratifying result
that the excitation energies come down by a large amo
when the self-consistency criteria are applied.

With the original realistic interaction (k51, p51, x
51, y51, q50), the excitation energies are very hig
43.260 MeV and 43.594 MeV, respectively. Turning off th
tensor interaction does not make much of a chan
(41.829 MeV and 42.250 MeV). However, if we weake
the central interaction (p50.6) to achieve self-consistenc
the excitation energies of these states come down by m
1-7



c-
n
-
n
eV
io

el
ri

ome

e
the

L. ZAMICK, Y. Y. SHARON, S. AROUA, AND M. S. FAYACHE PHYSICAL REVIEW C65 054321
than a factor of 2~to 19.914 MeV and 20.055 MeV, respe
tively!. Similar results are obtained by keeping the full ce
tral interaction (p51), but introducing the monopole
monopole term (q50.045). In this case, the excitatio
energies also come down to 21.671 MeV and 21.203 M

Obviously, the beneficial effects come from the reduct
of the 1p22h coupling to the 1h state relative to the
16O core, where in the latter it would be the 1p-1h
coupling to the 0p-0h state. There is much less lev
repulsion when the Hartree-Fock self-consistency crite
cl.

e

te

05432
-

.
n

a

are applied, and we expect that these excited states will c
down even lower in energy when 4\v excitations are
allowed.
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