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Effects of self-consistency in a Green’s function description of saturation in nuclear matter

Y. Dewulf, D. Van Neck, and M. Waroquier
Laboratory of Theoretical Physics, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

~Received 16 January 2002; published 9 May 2002!

The binding energy in nuclear matter is evaluated within the framework of self-consistent Green’s function
theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing
particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propa-
gators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation
of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in
both the nucleon removal and addition domains of the spectral function. Results for the binding energy are
practically independent of the details of the discretization scheme. The main effect of the increased self-
consistency is to introduce an additional density dependence, which causes a shift towards lower densities and
smaller binding energies, as compared to a~continuous choice! Brueckner calculation with the same interac-
tion. Particle number conservation and the Hugenholz–Van Hove theorem are satisfied with reasonable accu-
racy.
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I. INTRODUCTION

The determination of the quantum-mechanical proper
of many-body systems in a fully microscopic way is an im
portant challenge in physics. For many systems, such a
oms and molecules, an average treatment of the medium
fects by means of a Hartree-Fock~HF! field already leads to
reasonable results. This is not the case for nuclear sys
when using realistic nucleon-nucleon~NN! interactions. Due
to the strong repulsive core in these interactions one ha
go beyond the basic mean-field treatment, since the c
dominates the two-body matrix elements and leads to
bound nuclear systems in HF calculations@1,2#.

The short-range correlations, originating from the rep
sive core, can be accounted for in a number of ways@3#. In
both the hole line expansion, of which the Brueckn
Hartree-Fock~BHF! approach corresponds to the lowe
order truncation, and the Green’s function formalism,
realistic NN interaction is replaced by a medium-depend
effective interaction that can be calculated microscopica
Other techniques such as variational and correlated b
function ~CBF! calculations replace the Slater determina
representing the uncorrelated ground state, with a correl
many-body wave function.

The repulsive core of the interaction couples low-lyi
single-particle states to excitations at very high energies.
cause of the difference in relevant energy scale, the effec
short-range correlations are believed to be independent o
specific low-energy shell structure of the nuclei. Therefor
is advantageous to study these short-range effects in infi
nuclear matter rather than in finite nuclei, as the symmetr
such a system considerably simplifies the calculations. I
nite nuclear matter contains equal numbers of protons
neutrons, homogeneously distributed in space. Furtherm
the Coulomb interaction between the protons is neglec
Due to translational invariance, plane waves constitute a s
able single-particle basis for the calculations. The unco
lated ground state then corresponds to a Slater determ
with all momenta occupied up to the Fermi momentum.
0556-2813/2002/65~5!/054316~21!/$20.00 65 0543
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Although an idealized system, some experimental data
available for nuclear matter. Its binding energy in princip
corresponds to the volume term,aV516 MeV, in the
Bethe–von Weizsacker formula@4,5#, since the surface, Cou
lomb, and asymmetry contributions are absent. The sat
tion density of nuclear matter can be deduced from the c
tral density of heavy nuclei and corresponds to a density
about 0.17 fm23, or a Fermi momentum of kF
51.36 fm21.

Nonrelativistic many-body calculations using only tw
body interactions have been unable to reproduce this em
cal saturation point. BHF calculations performed for vario
NN interactions lead to different saturation points. This
flects the fact that all modern potentials have been fitted
the binding energy of the deuteron andNN scattering data up
to a certain energy, but give very different results when u
to describe many-body systems. However, the different s
ration points are all located on a line in the binding ener
versus density plot, the Coester line@6#, which does not mee
the empirical saturation point. Some potentials saturate a
correct density, but are underbound, while others predict
correct binding energy but at too high densities. Furthermo
for the same potential, BHF results differ from variation
calculations@7#. The reason for the latter discrepancy can
found in the fact that the BHF approximation corresponds
the lowest-order term in the hole-line expansion. In the B
approach the effective interaction is calculated by summ
all particle-particle ladder diagrams. Neglecting hole-ho
propagation might be valid for low densities, as the pha
space for hole-hole propagation is then much smaller t
for particle-particle propagation, but at larger densit
higher orders in the hole lines should be included. Calcu
tions including three-hole line contributions@8# agree reason-
ably well with advanced variational results@9,10# and shift
the saturation point off the Coester line. However, the shif
still not large enough for a reproduction of the empiric
point.

Both a relativistic extension of the theory~Dirac-
Brueckner approach@11#!, and the incorporation of three
©2002 The American Physical Society16-1
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Y. DEWULF, D. VAN NECK, AND M. WAROQUIER PHYSICAL REVIEW C65 054316
body interactions@10,12#, that can in part be linked toD
degrees of freedom, lead to a correct saturation point. H
ever, both extensions contain phenomenological ingredi
to some extent and do not correctly describe all aspect
the many-body system. More work needs to be done in o
to clarify the saturation properties of nuclear matter. At t
same time there is another mechanism that deserves a
profound study: aself-consistenttreatment of short-range
correlations.

The BHF approach is essentially an independent part
model~IPM!, in which each particle moves through the m
dium with a specific energy determined by its momentu
The Fermi sea is completely filled up to the Fermi mome
tum: hole states have an occupation probability of un
while particle states are completely unoccupied. The valid
of this approximation was investigated in (e,e8p) knockout
experiments @13#. These experiments show considerab
broadening of the hole strength distributions as one mo
away from the Fermi surface, corresponding to a finite li
time of the quasiparticle excitations. The same experime
indicate that the hole states are considerably depleted.
depletion is most pronounced for states close to the Fe
surface. Using the CERES method@14# an occupation num-
ber of 0.75 has been obtained for the 3s1/2 orbital in 208Pb
@15#. There is thus clear experimental evidence for a Fe
sea strongly deformed by nuclear correlations. Projection
erators that are used in the calculation of the effective in
action should be defined with respect to this deformed Fe
sea, rather than the uncorrelated one. This introduces an
ditional density dependence in the saturation mechanism
may shift the saturation point off the Coester line.

The above discussion is naturally related to the concep
self-consistent Green’s function~SCGF! approaches. The
binding energy, as well as all single-particle observables,
be calculated from the exact single-particle propaga
dressed by the medium. The dressed propagator is obta
from the Dyson equation, where the irreducible self-ene
accounts for the medium effects. This self-energy is obtai
from an expansion in terms of the effective interactio
which corresponds to the sum of all ladder diagrams. In c
trast to the Brueckner approach, particle-particle (pp) and
hole-hole (hh) ladders are treated in a completely symme
cal way, so that the Green’s function scheme is also su
for calculations at larger densities. Self-consistency now
mands that the dressed Green’s function, which is obtai
from the Dyson equation, is also used in the evaluation of
self-energy and the effective interaction.

Self-consistency is a crucial ingredient for the fulfillme
of a number of sum rules, such as the conservation of par
number@16#. Usually a self-consistent solution is obtaine
by means of an iterative approach, but it is not at all eas
calculate the effective interaction with completely dress
Green’s functions. The corresponding dressed spectral f
tions show a complicated energy dependence, contai
both sharp peaks~reflecting the quasiparticle behavior! and a
broad background distribution, absent in IPM calculation

In the past several SCGF calculations have been
formed using various approximations to the spectral fu
tion, both forT50 andTÞ0. At finite temperatures calcu
05431
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lations are somewhat easier, as the quasiparticle pe
acquire a considerable width, due to thermal broaden
even close to the Fermi momentum. An overview of the o
shell effects for a separable model interaction andTÞ0 is
presented in Ref.@17#.

Another important issue arising in self-consistent calcu
tions is the appearance of pairing instabilities. These ar
result of the inclusion ofhh propagation in the effective
interaction@18#, and manifest themselves as complex po
in the effective interaction. Pairing correlations are very s
sitive to the occupation probability of states around t
Fermi surface. As short-range correlations tend to mod
this Fermi surface, they weaken the pairing correlatio
When performing fully self-consistent calculations the def
mation of the Fermi surface is taken into account in the d
nition of the effective interaction, and it turns out that th
pairing instabilities are removed at densities close to the
pirical saturation density.

Only recently were results obtained for realistic potenti
including the correct off-shell behavior of nucleons forT
50. These calculations employed a parametrized spec
function @19,20#. In this paper an alternative approach is fo
lowed, using a discrete multiple-pole representation of
spectral function. From a numerical point of view, this a
proximation basically corresponds to an extension of
quasiparticle approach, which has some computational
vantages.

The outline of this paper is as follows. In Sec. II the ba
concepts of the self-consistent Green’s function framew
are introduced. Section III focuses on the construction
discretization schemes for the spectral function. In Sec.
some numerical details on the calculation of the effect
interaction are presented. Section V discusses the relatio
pairing correlations and modifications of the Fermi surfa
The self-energy within the discrete scheme is discusse
Sec. VI. Section VII presents results for quantities such
spectral functions, occupation probabilities, and binding
ergy. Special attention is paid to the effects of se
consistency on the saturation properties. Finally, Sec. V
contains a summary and conclusions. All calculations
performed using the Reid 93 interaction defined in Ref.@21#.

II. FORMALISM

Plane waves constitute a suitable single-particle basi
nuclear matter because of the translational invariance
symmetric and unpolarized nuclear matter, the one-part
Green’s function is independent of spin and isospin variab
and completely specified by the magnitude of the momen
pW and the energy of the particlev. In this basis the one-
particle Green’s function can be represented in Lehman
representation as follows:

g~p,v!5E
2`

eF
dv8

Sh~p,v8!

v2v82 ih
1E

eF

1`

dv8
Sp~p,v8!

v2v81 ih
,

~1!

whereeF is the Fermi energy of the system. All informatio
on the one-particle properties is contained in the spec
6-2
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functionsSp andSh , which also allow an intuitive interpre
tation of the Green’s function. The particle spectral functi
Sp(p,v) represents the probability of adding a particle w
momentump to the system, while leaving the resulting sy
tem with an excitation energyv. The hole spectral function
Sh(p,v) is related in a similar way to the removal of a pa
ticle with momentump.

For free particles the spectral function reduces to a sin

FIG. 1. Diagrammatic representation of the effective interact
in the ladder approximation. The dashed line represents the barNN
interaction V, while the DG box corresponds to the energy
dependent part of the effective interaction in Fig. 2. The propaga
are fully dressed.
05431
le

d peak located at the corresponding kinetic energy,

Sh~p,v!5u~kF2p!d~v2p2/2m!,

Sp~p,v!5u~p2kF!d~v2p2/2m!. ~2!

In a correlated system the energy dependence of the spe
functions is much more complicated and can be determi
by solving the Dyson equation,

g~p,v!5g0~p,v!1g0~p,v!S~p,v!g~p,v!. ~3!

Hereg0 represents the free propagator, corresponding to
spectral functions of Eq.~2!. The irreducible self-energyS is
a complex quantity representing the interaction with t
other particles of the medium. Inserting the free propaga
as well as the Lehmann representation for the fully dres
propagator~1! in the Dyson equation~3! leads to the follow-
ing expressions for the dressed spectral functions:

n

rs
of the

umming
der.
Sh~p,v!5H 1

p

Im S~p,v!

@v2p2/2m2ReS~p,v!#21@ Im S~p,v!#2
if v,eF

0 if v.eF ,

Sp~p,v!5H 0 if v,eF

2
1

p

Im S~p,v!

@v2p2/2m2ReS~p,v!#21@ Im S~p,v!#2
if v.eF .

~4!

These correlated spectral functions typically consist of a sharp peak, corresponding to the quasiparticle extensiond
peak in the uncorrelated case, combined with a broad background in both the addition and removal domains.

The central concept in the determination of the correlated spectral function is the self-energy, obtained by s
diagrams of different orders in the interaction@16,22#. This perturbation series is usually truncated at some finite or
Retaining for instance only the first order term in the interaction corresponds to the Hartree-Fock approach.

Within the SCGF framework, short-range correlations are treated by replacing the freeNN interaction with an effective
in-medium interactionG, calculated from the free interaction by summing all diagrams of the ladder type~Fig. 1!. In contrast
to the in-medium interaction introduced by Brueckner and co-workers@23–25#, G contains both intermediatehh and pp

propagation. Its matrix elements betweenNN states with center-of-mass momentumPW and relative momentaqW andqW 8 obeys
the integral equation

^qW uG~P,V!uqW 8&5^qW uVuqW 8&1E dqW 9

~2p!3
^qW uVuqW 9&

3F E dvE dv8
Sp~p1 ,v!Sp~p2 ,v8!

V2v2v81 ih
2E dvE dv8

Sh~p1 ,v!Sh~p2 ,v8!

V2v2v82 ih
G ^qW 9uG~P,v!uqW 8&, ~5!

where pW 1,25PW /26qW 9. To facilitate the evaluation of the self-energy, the effective interactionG can be split into a part
corresponding to the freeNN interaction and an energy-dependent correction term,

^qW uG~P,V!uqW 8&5^qW uVuqW 8&1^qW uDG~P,V!uqW 8&, ~6!

whereDG satisfies following dispersion relation:

^qW uDG~P,V!uqW 8&5
1

pE2`

2eF
dV8

Im^qW uG~P,V8!uqW 8&

V2V82 ih
2

1

pE2eF

`

dV8
Im^qW uG~P,V8!uqW 8&

V2V81 ih
. ~7!

Retaining in the expansion for the self-energy only the first-order term in the effective interaction, one finds
6-3
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S~p,v!52
i

~2p!4E dpW 8dv8^qW uG~PW ,v1v8!uqW &g~p8W ,v8! ~8!

wherePW 5pW 1pW 8 andqW 5(pW 2pW 8)/2. A more tractable form for the self-energy is obtained, using the Lehmann represen
~1! together with the dispersion relation~7! for G,

S~p,v!5E dpW 8

~2p!3
^qW uVuqW &E

2`

eF
dv8Sh~p8,v8!2E dpW 8

~2p!3E2`

eF
dv8E

2eF

`

dV9
Im^qW uG~P,V9!uqW &

v1v82V91 ih
Sh~p8,v8!

2E dpW 8

~2p!3EeF

`

dv8E
2`

2eF
dV9

Im^qW uG~P,V9!uqW &

v1v82V92 ih
Sp~p8,v8!. ~9!
e
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A diagrammatic representation is presented in Fig. 2, wh
the second diagram corresponds to both the second and
term in Eq.~9!.

When one wants to satisfy important conservation la
self-consistency becomes a crucial requirement. This me
that the spectral functions used in the evaluation of the
fective interaction~5! and the self-energy~9! are themselves
solutions of the Dyson equation~4!. As a result one needs t
solve a set of coupled nonlinear equations, which is usu
done by iteration. Starting from an initial guess for t
Green’s function~e.g., the free Green’s function in the ca
of nuclear matter calculations!, the effective interaction and
the self-energy are calculated. In the next step the new s
tral functions are determined from the Dyson equation a
reinserted in the equations for the effective interaction a
the self-energy. This procedure is repeated until the spe
function is converged.

During such an iterative process, the spectral funct
changes from the singled peak to a more complicated stru
ture. Especially atT50 ~zero temperature!, the evaluation of
the effective interaction through successive iterations tu
out to be a cumbersome task when using dressed spe
functions. The very sharp peaks, combined with the br
background distribution in the spectral function make ac
rate numerical evaluations difficult. Therefore it is importa
to find a suitable approximation for the spectral function t
can be used to evaluate the effective interaction and the
energy during successive iterations. Such an approxima

FIG. 2. Diagrammatic representation of the irreducible se
energy in nuclear matter within the present self-consistent fra
work.
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must allow a fast evaluation ofS andG, but at the same time
it must retain the most prominent features of the full spec
function. In the next section we will demonstrate how t
discrete-pole approximation satisfies both needs.

III. DISCRETIZATION SCHEMES

In the past, several approximations to the spectral fu
tions have been proposed, the most basic of them being
‘‘quasiparticle’’ approximation. Within this approximation
the imaginary part of the self-energy is neglected, so that
full spectral function of Eq.~4! is replaced by a singled peak
located at the ‘‘on-shell energy,’’

eqp~p!5p2/2m1ReS„p,eqp~p!…. ~10!

This quasiparticle approach is similar to the continuo
Brueckner-Hartree-Fock~c-BHF! prescription@26#, but also
includes hh propagation in the effective interaction. Ex
tended calculations within this scheme have been perform
for a model interaction@28#. When the quasiparticle schem
is implemented for realisticNN interactions~containing at-
tractive components! one runs into trouble with pairing in
stabilities. The nucleons tend to form pairs, which is signa
by the appearance of complex conjugate poles in the ef
tive interaction@27#. A way to avoid these instabilities while
staying within a pure single-pole scheme was formulated
Vonderfechtet al. @29#, who replaced the on-shell energy fo
hole states (p,kF) by the mean removal energy. The resu
ing gap in the single-particle spectrum is large enough
remove the pairing instabilities even when using realistic
teractions.

When going beyond the quasiparticle approximation a
incorporating effects of intermediate off-shell propagation
nucleons, the complex poles inG may disappear. The respon
sible mechanism is the use of a correlated Pauli opera
instead of the uncorrelated projection operator used in a q
siparticle calculation. The width of the quasiparticle peak,
well as the broad background distribution in the spec
function, containing about 15–25 % of the total strength,
neglected within the quasiparticle approximation. This ba
ground distribution is responsible for a depletion of the h

-
e-
6-4
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states and a corresponding partial occupation of the par
states, resulting in an effective reduction of the interact
strength near the Fermi surface. A more complete treatm
of the many-body problem, using the full energy depende
of the spectral function, can thus remove the pairing ins
bilities around the empirical saturation density, as will
demonstrated in Sec. V. When constructing an approxima
to the spectral function, it is therefore crucial that a realis
description of the strength distribution around the Fermi
ergy is incorporated.

In recent years several attempts have been made to
prove on the quasiparticle scheme using an approxim
spectral function that is in closer agreement with the ex
spectral function. de Jong and Lenske@30# follow a mixed
approach: for hole states (p,kF) the complete particle spec
tral function (v.eF) is retained. This particle spectral func
tion does not contain sharp peaks and consequently doe
lead to large numerical difficulties. The hole spectral fun
tion does contain a quasiparticle peak and is replaced b
single renormalizedd function. For particle states (p.kF) a
similar approach is followed. Although part of the bac
ground distribution is incorporated in this calculation, t
deformation of the Fermi surface is insufficient to remo
pairing instabilities and the calculation could only be do
for a model interaction. The group of Dickhoff retains th
full energy dependence of the spectral function, using a
rametrization of the spectral function@19# so that most inte-
grals can be carried out analytically. Recent research of
group seems to favor a parametrization of the self-ene
instead of a parametrization of the spectral function@20#.

In this paper we investigate an extension of the quasip
ticle approximation that aims at incorporating the off-sh
propagation of the particles in a self-consistent way. This
achieved by replacing the single pole of the quasipart
Green’s function by a set of discrete poles, each carryin
fraction of the strength,

g~p,v!5(
i

f i~p!

v2Fi~p!1 ih
1(

j

bj~p!

v2Bj~p!2 ih
.

~11!

The additional poles can be used to represent the backgr
in both the addition and removal domains. Poles located
low the Fermi energy will be labeled asBj , poles above the
Fermi energy asFi .

A discrete representation~11! of the Green’s function can
be employed in an iterative procedure, similarly as in
quasiparticle approximation. Starting from an initial gue
for the Green’s function~e.g., the free Green’s function!, the
self-energy and effective interaction are calculated. Inst
of retaining the complete energy dependence of the spe
function according to Eq.~4!, a fixed number of discrete
poles,Fi ,Bj , and their corresponding residues,f i ,bj , are
determined as functions of single-particle momentum. T
resulting discrete Green’s function is then reinserted in
equations for the effective interaction and the self-ene
until finally convergence for all poles and residues is o
tained. One should note that this approximation goes bey
05431
le
n
nt
e
-

n
c
-

m-
ed
ct

not
-
a

a-

is
y

r-
l
is
e
a

nd
e-

e
s

d
ral

e
e
y,
-
nd

the quasiparticle approach, where one demands only con
gence of the quasiparticle spectrum.

Several discretization schemes can be devised that ge
ate the specific locations and corresponding residues of
poles. Of course, such a scheme must lead to an app
mated spectral function that retains the most import
physical properties of the exact spectral function~e.g., the
location and strength of the quasiparticle peak!.

Motivated by its success in the description of the lon
range correlations in finite nuclei@31–34#, we used the
BAsis GEnerated by Lanczos-scheme~BAGEL! scheme as a
first attempt for a discrete representation of the spectral fu
tion @35,36#. However, when applied to the nuclear matt
problem the results of the BAGEL scheme turned out to
unsatisfactory. Within the BAGEL schemes the discre
poles and strengths are chosen in such a way that the low
order energy-weighted moments of the complete spec
function

mk~p!5(
i

f i~p!@Fi~p!#k1(
j

bj~p!@Bj~p!#k

5E
2`

1`

vkS~p,v!dv ; p ~12!

are reproduced. Due to the short-range correlations the b
ground contribution to the spectral function is very asymm
ric and the moments~12! are strongly dominated by the ta
at high positive energies. As a result the central pole of
BAGEL spectrum not only represents the quasiparticle p
of the spectral function, but also contains a considerably c
tribution from the background at high positive energies. F
a three-pole calculation and using a reduced version of
interaction, this results in a central pole, located about
MeV above the on-shell energy. This pole carries 99% of
total strength, even though the quasiparticle strength at
Fermi momentum only amounts to 80%@35#. As a conse-
quence, the induced depletion is much too small to rem
the pairing instabilities, and a calculation with the full inte
action near equilibrium density remains impossible. An
tempt to improve the three-pole BAGEL scheme by usin
larger number of poles revealed that one cannot get sat
ing results with a limited number~up to 15! of poles. A
feedback mechanism shifts the additional poles to very h
energies and reattributes their strength to the central pol

It is clear that this shortcoming of the BAGEL scheme c
be remedied by constructing discretization schemes tha
low for a closer correspondence between the quasipar
excitation and one of the discrete poles. In the following
discuss three-pole approximations to the Green’s func
where we put the central pole at the quasiparticle on-s
energy and assign a certain quasiparticle strength to it.
thermore, we demand reproduction of the zeroth- and fi
order energy-weighted moment of the spectral functi
separately in the particle and hole domain, i.e., fork50 and
k51,

mk
,~p!5(

j
bj~p!@Bj~p!#k5E

2`

eF
vkSh~p,v!dv ; p,
6-5
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mk
.~p!5(

i
f i~p!@Fi~p!#k5E

eF

1`

vkSp~p,v!dv ; p,

~13!

thereby fixing the location and strength of both other pol
The remaining difficulty is to determine how muc

strength is attributed to the central pole. This strength sho
be a good measure of the quasiparticle strength, but ex
for momenta close tokF , the separation of the quasipartic
peak from the background distribution is somewhat ambi
ous.

The conventional expression for the quasiparticle stren

zqp~p!5S 12
] ReS~v,p!

]v U
v5eqp(p)

D 21

, ~14!

derived by expanding the spectral function around the q
siparticle energy, may not give reasonable results for all m
menta. This fact was also observed by de Jong and Len
@30# and is one of the problems encountered in an exten
quasiparticle calculation@37#.

For this reason we looked at other ways of separating
quasiparticle peak from the background. There are sev
possibilities of doing this. In order to test the sensitivity
the specific discretization scheme, we will present results
two quite distinct three-pole discretization schemes, labe
A and B. Scheme A starts from a very basic assumption
the distribution of the strength, whereas scheme B is m
elaborate and yields a more realistic momentum depend
of the quasiparticle strength, similar to that found in oth
calculations@20,38,39#. As it turns out, schemes A and
produce surprisingly similar results for the binding energ

In both schemes A and B, the hole spectral function
hole states (p,kF) is represented by two poles labeledE2

andEc ~with corresponding residuesR2 andRc), which re-
produce the two lowest-order moments of the hole spec
function,

R2~p!1Rc~p!5m0
,~p!,

R2~p!E2~p!1Rc~p!Ec~p!5m1
,~p!. ~15!

The energy of the central pole is fixed at the on-shell ene

Ec~p!5eqp~p!. ~16!

The particle spectral function for hole states is approxima
by a single poleE1 with strengthR1 , simply determined by
demanding that the two lowest-order moments of the part
spectral function are reproduced,

R1~p!5m0
.~p!,

E1~p!5m1
.~p!/m0

.~p!. ~17!

For particle states (p.kF) a corresponding approximation
used, where the hole spectral function is approximated b
single pole, and the particle spectral function by two pole
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In scheme A, a constant fraction of the integrated h
strength is attributed to the central pole for all hole stat
This fraction is taken to be the same as the value ap
5kF ,

Rc~p!5
Rc~kf !

Rc~kf !1R2~kf !
m0

,~p!,

R2~p!5
R2~kf !

Rc~kf !1R2~kf !
m0

,~p!, ~18!

p,kF .

For particle states we have likewise

Rc~p!5
Rc~kf !

Rc~kf !1R1~kf !
m0

.~p!,

R1~p!5
R1~kf !

Rc~kf !1R1~kf !
m0

.~p!, ~19!

p.kF .

It should be noted thatR2(kF), Rc(kF), and R1(kF) are
unambiguously defined, since the quasiparticle pole for
Fermi momentum lies at the Fermi energy, has zero wid
and is completely isolated from the background distributio
R2(kF) and R1(kF) can be obtained by integrating th
smooth hole and particle spectral function, whileRc(kF) cor-
responds to the missing strength in the sum rule,

Rc~kF!512R2~kF!2R1~kF!. ~20!

The assumption that the ratio of quasiparticle strengthRc
over total occupation or depletion is independent of mom
tum is an oversimplification, especially in the limit of ver
large momenta where we expectRc to approach unity. On
the other hand, for such large momenta, the energy dif
ence between both forward poles becomes small, and
can be regarded as a single degenerate pole.

In scheme B we try explicitly to extract a measure of t
strength contained in the quasiparticle peak. This problem
not, as mentioned before, free from ambiguities, but the
lowing scheme works very well in practice. For hole stat
we assume that the hole spectral function can be written
the sum of a quasiparticle and a background model distr
tion,

Sh~p,v!5
Rc~p!

Wc~p!
f S v2Ec~p!

Wc~p! D1
R2~p!

W2
f S v2E2~p!

W2
D .

~21!

The normalized model distributionf is taken as

f ~x!5
1

21p S u~ uxu21!e12uxu1u~12uxu!
2

11x2D ,

~22!

i.e., a Lorentzian form in the central region and exponen
tails. The widthWc of the quasiparticle peak is taken equal
6-6
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FIG. 3. Energies and single-particle strengt
obtained in the discretization schemes A~dashed
line! and B ~full line!, after convergence. The
density corresponds to a Fermi momentumkF

51.45 fm21, and the Reid 93 interaction ha
been used.
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Wc~p!5
2p

~21p!
Rc~p!uIm S„p,Ec~p!…u, ~23!

where the factor 2p/(21p);1.22 corrects the peak valu
(Rc /Wc) f (0) to the peak value 1/up Im S„p,eqp(p)…u of the
standard Lorentzian local approximation to the quasipart
peak. The widthW2 of the background distribution is as
sumed to be independent of single particle momentump, and
is estimated on the basis of the background distribution
p5kF , which is unambiguously defined. The energyEc of
the central pole follows from Eq.~16!, so we need three
more conditions to determineRc , E2 , andR2 . Two condi-
tions are given by Eq.~15!. As the third condition we de-
mand that the true spectral function and the model distri
tion in Eq. ~21! yield the same value for the integrate
strengthb in an interval aroundEc ,

b5E
Ec2D

Ec1D

dv Sh~p,v!, ~24!
05431
le

r
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whereD(p)5As(p)uIm S„p,Ec(p)…u. This choice ofD ~in
which s is the standard deviation of the hole strength dis
bution! is heuristic, but it ensures thatD(p)→0 asp→kF ,
so that in this limit the sampled interval exclusively filte
out the quasiparticle peak. The treatment of the particle st
(p.kF) is completely analogous to that of the hole state

Figure 3 displays the momentum dependence of the
crete poles and residues in scheme A and B, for a calcula
with the Reid 93 interaction, after convergence has been
tained. Starting from a free spectrum, typically about 7 ite
tions are needed to obtain sufficiently converged spectra

In both schemes the same value is obtained for the en
of the central poleEc . This is not a trivial statement, as
indicates that after convergence both schemes yield the s
position for the quasiparticle peak. The strength of the c
tral poleRc is the most significant difference of both calc
lations. Scheme A shows a strength that is proportiona
n(p) for p,kF and tod(p)512n(p) for p.kF , whereas
scheme B has a more realistic momentum dependence.
includes a minimum located just below the Fermi mome
tum, balanced by a maximum inR2 .
6-7
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The energyE1 of the forward background pole is com
parable in both schemes and is determined by the repu
core of the interaction. Older interactions with stronger
pulsion, such as the original version of the Reid interact
@40#, will lead to a much higher value ofE1 .

The energyE2 of the backward background pole is di
ferent in both schemes for momentap,kF , but shows the
same behavior,E2;2p2/2m, for momentap.kF . This is
the pole responsible for the high-momentum component
the nuclear many-body wave function.

For large momentaR2 quickly drops to zero. The forward
background is much more persistent, because of the s
fall-off of Im S at largev. In the p→` limit, scheme B
eventually concentrates all strength in the central pole
cated at the free energy, i.e.,Rc→1 and R1→0, as one
would expect on intuitive grounds. This regime, however
only reached for very large momenta, not shown on the p
In scheme A bothRc andR1 have nonvanishing strengths
this limit, but as the corresponding energies have about
same value, they can also be interpreted as a single pol
th
n
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IV. EFFECTIVE INTERACTION

The discrete-pole approximation to the Green’s funct
can be regarded as an extension of the quasiparticle
proach, where the single pole is replaced by a set of mult
isolated poles. Consequently, the effective interaction can
evaluated using a procedure similar to the one develope
Ref. @27#. First of all it will be useful to perform a partia
wave decomposition of the potential. Inserting the spec
functions corresponding to the discrete Green’s function
Eq. ~11!,

Sp~p,v!5(
i

f i~p!d„v2Fi~p!…,

Sh~p,v!5(
i

bi~p!d„v2Bi~p!… ~25!

into Eq. ~5!, the ladder equation in partial wave decompo
tion reads
^quGLL8
JST

~P,V!uq8&5^quVLL8
JSTuq8&1 (

i 1i 2L9
E

0

`

dq9q92^quVLL9
JSTuq9&

f i 1
~p1! f i 2

~p2!

V2@Fi 1
~p1!1Fi 2

~p2!#1 ih
^q9uGL9L8

JST
~P,V!uq8&

2 (
j 1 j 2L9

E
0

`

dq9q92^quVLL9
JSTuq9&

bj 1
~p1!bj 2

~p2!

V2@Bj 1
~p1!1Bj 2

~p2!#2 ih
^q9uGL9L8

JST
~P,V!uq8&, ~26!
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wherepW 1,25PW /26qW 9. In this equation the bar over streng
functions and energies denotes that the dependence o

angle betweenqW 9 andPW has been averaged out~see the Ap-
pendix!.

Angle averaging of the two-particle propagator is nec
sary to decouple the different partial waves, thereby reduc
the dimension of the matrix that needs to be inverted in or
to obtainG. In our calculations the numerator and denom
nator are averaged independently of each other. The val
of this approach was first discussed in Refs.@41,42#. In Ref.
@43# the effects of several angle-averaging procedures
checked in the case of a Brueckner-Hartree-Fock calcula
with a Reid soft-core interaction. A full calculation withou
any angle averaging is compared with a calculation in wh
all angular dependency of the two-particle propagator
eliminated and a calculation in which only the denomina
is angle-averaged. It turns out that the discrepancies in b
ing energy and the complex optical potential are quite sm
for the different approximations at saturation density. This
confirmed by recent studies@44,45#, although a systematic
increase in binding is found for increasing density, which
larger in the continuous choice BHF calculation.

Equation~26! is solved using the two-step procedure
Ref. @46#. First a real reaction matrixR is calculated by in-
the
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cluding only the principal value part of the complex int
grals. A regularized version of this integral equation on a g
in relative momentum space is solved by matrix inversion
a second step the real and imaginary parts of theG matrix are
calculated from the reaction matrix. The standard proced
has to be extended to handle the presence of more than
singularity in case of a multiple-pole approximation. This
explained in more detail in the Appendix.

Since we first want to investigate how the incorporati
of off-shell effects modifies theG matrix as compared to a
quasiparticle~single-pole! calculation, we use in this sectio
a reduced version of the Reid 93 interaction, where the1S0
and the 3S1- 3D1 partial waves are multiplied by a facto
0.75 and 0.5, respectively. This is done solely to avoid
appearance of pairing instabilities in the quasiparticle cal
lation and to make the comparison possible. In the fi
multiple-pole calculations of the next sections, the full Re
93 potential is used.

Partial waves up toJ53 are included in the effective
interaction, as contributions of higher-order partial waves
negligible @36,47#. Higher partial waves are incorporated
the Hartree-Fock part of the self-energy, where it was fou
necessary to include partial waves up toJ59 @36#.

The energy dependence of the imaginary part ofG is
closely linked to the poles of the two-particle propagator.
6-8
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the quasiparticle calculation ImG will only be nonvanishing
for energies above a threshold energy,

Vmin
qp 52eqp~P/2!, ~27!

which is the minimum energy of two particles with a cente
of-mass momentumP. This picture gets more complicate
within the multiple-pole scheme of Eq.~26!, as singularities
can now appear within different two-particle channe
( i 1 ,i 2) and (j 1 , j 2).

This results in a much more complex pattern of zones
nonvanishing ImG in the (V,P) plane. This structure is il-
lustrated in Fig. 4 for scheme A; the same features
present for scheme B. The full lines correspond to the thre
old energies as a function ofP for each of the possible two
particle channels. The (c,c) channel exhibits a minimum en
ergy similar to the quasiparticle case. This means that fo
energies above this threshold value a singularity will
found in the (c,c) channel. The (2,c) exhibits both a mini-
mum and maximum energy, so that only in this finite ene
range this specific channel will contribute to ImG. The
(2,2) channel has a maximum energy, and its singulari
will be found for all energies below this threshold valu
Both the (c,1) and (1,1) channels extend from a mini
mum energy up to1`. Specific details on the origin of thes
threshold values can be found in Ref.@36#. It should also be
noted that, since the (2,c) and (c,1) two-particle energies
are not necessarily monotonic functions of the relative m
mentum, more than one singularity can be found for a fix
(V,P) value.

The matrix inversion used for solving the ladder equat
makes the evaluation of the effective interaction the m

FIG. 4. The choice of the (V,P)-interpolation points in the map
for the effective interactionG. The solid lines correspond to th
boundaries of different two-particle channels, as explained in
text.
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time-consuming step of the iterative scheme. Therefore
useful to construct at the start of each iteration, a map of
imaginary part of the effective interaction on a grid
(P,V,q) points. When specific values of ImG(P,V,q) are
needed in the evaluation of the self-energy, they can be
tained from a threefold interpolation of the values in th
map. TheV andP grids are illustrated by the dots in Fig. 4
For an accurate calculation 100 mesh points are needed
the V grid, while 31 mesh points proved to be sufficient f
the P grid. Due to the complicated structure of the differe
often overlapping zones of nonvanishing ImG in the (V,P)
plane, a careful construction of these grids is crucial for
convergence of the iterative procedure. Again we refer
Ref. @36# for additional details.

The effective interaction calculated with a three-po
Green’s function using discretization scheme A is presen
in Fig. 5 for two center-off-mass momenta: one below a
one above the critical value 2kF . For this critical value the
(c,c) channel will no longer contain a singularity for ene
gies below 2eF . Backward (V,2eF) and forward (V
.2eF) parts are shown in separate graphs because of
large difference in the relevant energy range. These res
are compared with the effective interaction calculated wit
a quasiparticle calculation~dashed line!. The energy scale is
relative to 2eF to allow an easy comparison of both result

The most pronounced differences are found forV
,2eF , where the presence of the additional (2) pole in the
Green’s function leads to the appearance of strength be
the hh threshold energy of the quasiparticle calculation.
the P5kF plot the (c,c) contribution still dominates the
three-pole calculation of ImG. However, it is reduced in
strength compared to the quasiparticle calculations, in c
formity with the reduced strength of the central pole. At t
same time, an extra contribution, absent in the quasipar
approach, can be observed at energies below274 MeV.
This contribution originates from the (2,c) channel. At en-
ergies below2144 MeV also the (2,2) channel starts con
tributing, but due to the relatively small strength of th
(2) pole, these contributions are less important, althou
they extend to very large negative energies. It should
noted that the contribution to ImG of a specific two-particle
channel is proportional to the value of the angle-avera
projection operator for this channel, evaluated in the cor
sponding singularity. This quantity scales as the produc
both strength functions, which explains the relative size
the contributions originating from different two-particl
channels.

For P52.2kF the imaginary part vanishes for all energi
V,2eF in the quasiparticle approach. This is no longer
for a three-pole calculation where both the (2,2) and
(2,c) channel will contribute. The contribution of the (2,
2) channel is again much smaller than the one of (2,c), but
is nevertheless visible as the peak around2125 MeV.

The redistribution of the quasiparticle strength also lea
to differences in ImG for V.2eF . For bothP5kF and P
52.2kF , there is a shift towards higher energies, caused
the strength of the (1) pole. ForP5kF the opening of the
(c,1) channel leads to a sharp peak around 430 MeV. I

e
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FIG. 5. TheV dependence of
Im G(P,V,q), the imaginary part
of the effective interaction
summed over all partial wavesJ
<3. Results are obtained for th
reduced Reid 93 potential andkF

51.45 fm21. Upper panel:q50
and P5kF . Lower panel:q50
and P52.2kF . The dashed line
corresponds to the quasipartic
approach, the full line to the three
pole discretization scheme A.
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narrow range above this energy the (c,1) channel contains a
double singularity, causing an enhanced contribution
Im G. For slightly higher energies, the second singularity d
appears, explaining the peaked structure. There is no do
singularity in this channel forP52.2kF , leading to a
smoother energy dependence of ImG. To conclude this sec
tion, it should be stressed that these shell-like structure
Im G result from the discrete-pole approach. If one reta
the full energy dependence of the spectral function in
evaluation of effective interaction, these structures
smoothed out@19,20,48#.

V. PAIRING CORRELATIONS

As was mentioned before, the incorporation of interme
atehh propagation may lead to complex poles in the effe
tive interaction@18#. Therefore a reduction of the Reid 9
interaction was needed in order to obtain the quasipart
results shown in the preceding section. The imaginary pa
the effective interaction calculated within a quasiparti
scheme and using the complete Reid 93 interaction is sh
in Fig. 6. Around 2eF the imaginary partG is completely
dominated by a singularity, originating from two comple
conjugate poles in the effective interaction. This singular
leads to an unphysical self-energy and spectral functio
reflecting the phase transition to a superfluid ground stat
calculation within the framework outlined above will b
highly unstable@49,50#. One can overcome these difficultie
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FIG. 6. TheV dependence of the imaginary part of the effecti
interaction within the quasiparticle approximation, forP50 andq
50 (kF51.45 fm21). The full line corresponds to the complet
Reid 93 interaction, and the dashed line to the reduced version~see
text!, where no pairing instabilities are present.
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EFFECTS OF SELF-CONSISTENCY IN A GREEN’S . . . PHYSICAL REVIEW C 65 054316
either by using a reduced interaction@27# or by introducing a
gap in the single-particle spectrum@29#. A complete treat-
ment of the paired phase should include anomalous prop
tors and self-energy@51,52#.

This discussion does not imply that nuclear matter n
equilibrium density isa priori superfluid. Pairing correla
tions are very sensitive to the occupation of single-part
states close to the Fermi surface. Both thermal effects
correlations tend to smear out the Fermi surface and decr
the effects of pairing@17,53#.

The ladder approximation for the effective interacti
regulates the effects of short-range correlations, origina
from the repulsive core of theNN potential, but at the sam
time it also introduces collective effects from the attract
components of the interaction. In order to see how summ
ladder diagrams leads to paired nucleon solutions, we tr
form the Bethe-Goldstone equation into a two-body Sch¨-
dinger equation. Since the largest pairing instability is fou
for zero center-of-mass momentum@16,27,36#, we restrict
ourselves to solving the ladder equation forP50,

G~V!5V1VgII
(0)~V!G~V!. ~28!

Here V, G, and gII
(0) are regarded as matrices indexed

relative momentum. In this equationgII
(0) stands for the free

two-body propagator,

gII
(0)~V,q,q8!5d~q2q8!F u~q2kF!

V2q2/m1 ih
2

u~kF2q!

V2q2/m2 ih
G .

~29!

The effective interactionG also defines a correlated two
particle propagatorgII ,

G~V!5V1VgII~V!V, ~30!

which is related to the uncorrelated propagator as

gII
(0)~V!V5gII~V!G~V!. ~31!

This expression indicates that the singularities of the eff
tive interaction are also singularities of the correlated tw
particle propagator. The ladder equation implies the follo
ing relation between correlated and uncorrelated two-part
propagators:

gII~V!5
gII

(0)~V!

12gII
(0)~V!V

5
1

gII
(0)~V!212V

. ~32!

Finding the singularities of theG matrix is equivalent to
finding the zero eigenvalues of the following matrix:

gII
(0)~V!212V. ~33!

Using the free two-particle propagator of Eq.~29!, and dis-
tinguishing between the hole and the particle component
the eigenvector, this eigenvalue equation for a specific pa
wave can be written as
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FT1S 2I 0

0 I DVJSTG S c (h)

c (p)D 5VS c (h)

c (p)D , ~34!

where I is the identity matrix. In this equation the kineti
energy T is a diagonal matrix in the relative momentu
space, havingq2/m on the diagonal. In coupled channels th
dimensions of the matrices are doubled.

The matrix on the left-hand side of Eq.~34! is not sym-
metrical, allowing both real eigenvalues and pairs of co
plex conjugate eigenvalues, depending on the density and
specific partial wave. The following characteristic ener
spectrum is obtained:

~1! A continuum of real poles in the interval@0,2eF#, cor-
responding to unboundhh excitations.

~2! A continuum of real poles in the interval@2eF ,`#,
corresponding to unboundpp excitations.

~3! In a certain density range, an isolated real pole loca
below thehh continuum. This pole corresponds to a bou
state withVbound,0.

~4! In a certain density range, two complex conjuga
poles can appear at energiesVbound5VR6 iV I , correspond-
ing to bound states with energies located within or very clo
to the continuum.

The location of these poles as function of the density
presented schematically in Fig. 7. The appearance of c
plex poles is a result of the inclusion ofhh propagation as
noted by Dickhoff@18#. Within a BHF scheme, thus neglec
ing hh propagation in the two-particle propagator, the cor
sponding eigenvalue equation looks as

FT1S 0 0

0 I DVJSTG S c (h)

c (p)D 5VS c (h)

c (p)D . ~35!

FIG. 7. An illustration of the location of the poles of the effe
tive interaction in the3S1-3D1 channel. A free spectrum has bee
used. The continuum~above zero! has been divided intopp andhh
regions. The position of the isolated poles is given by the das
lines. Below the critical densitykF

C one or two isolated real pole
are found. At zero density the isolated real pole is located at
deuteron energyEdeut. At densities above the critical density th
real part of the complex conjugate poles inG is plotted.
6-11
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Since the matrix on the right-hand side of Eq.~35! is now
symmetrical, all eigenvalues will be real. Still, a sing
bound state can be found at energies below thepp con-
tinuum ~Fig. 8!. These bounds states appear both in the1S0
and the 3S1- 3D1 partial waves. In the absence of the m
dium (kF→0) only the 3S1- 3D1 bound state remains. Thi
state can be identified as the deuteron solution of the t
particle Schro¨dinger equation. In most Brueckner-type calc
lations these bound state are omitted, since their effec
properties such as binding energy and occupation probab
is very small, as was argued in Ref.@29#. At higher densities
these isolated poles in theG matrix will eventually disappear

Whenhh propagation is incorporated in the effective i
teraction, bound states may manifest themselves as a pa
complex poles in a certain density range. In this particu
case the bound states will cause sharp spikes in the effe
interaction~Fig. 6!, and can no longer be neglected as th
hinder a numerically stable calculation. The many-bo
scheme as outlined in this paper must then be adjuste
account for these bound states explicitly@51#.

Figure 9 shows the imaginary part of the resulting co
plex poles as a function of the density for a number of par
waves. Two partial waves,3S1- 3D1 and 1S0, lead to an in-
stability at the empirical saturation density. The deute
channel causes the largest instability, which is in conform
with the observations made in Refs.@27,47#. A third instabil-
ity shows up at higher densities. This instability originat
from the 3P2- 3F2 channel and is missing in a Brueckn
calculation. Hence this pairing at higher densities is a p
result of the incorporation of intermediatehh propagation.
Comparing Fig. 8 with Fig. 9, one should note that also
the 3S1- 3D1 and 1S0 multipoles,hh propagation will seri-
ously enhance the density range in which bound states
formed.

Up to now we usedpp andhh projection operators, de
fined with respect to the uncorrelated Fermi sea. Short-ra
correlations will deform this Fermi sea. The correlated pa
ing propagators may remove the pairing instability in a d

FIG. 8. The energy of the bound state in a Brueckner calcula
at P50, with a free single-particle spectrum and using the Reid
interaction. Energies are relative to the threshold energy for thepp
continuum (Vmin

cont52eF). The full line corresponds to the3S1-3D1

deuteron channel, the dashed line to the1S0 channel.
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sity range around the empirical saturation density, since p
ing correlations are very sensitive to the number of sta
available near the Fermi surface. Short-range correlati
yield a depletion of the hole states, and a partial occupa
of the particle states just above the Fermi surface. This
duces the effective interaction near the Fermi surfa
thereby diminishing the effects of the pairing correlations
the reduction is large enough, the ground state of the sys
will not be superfluid.

The influence of short-range correlations on the pair
properties are thus similar to the well-known thermal effec
At finite temperatures (TÞ0) thermal excitations also caus
a deformation of the Fermi sea. Even in the absence ofNN
correlations, thermal effects lead to an occupation proba
ity,

n~p!5
1

e~e(p)2m!/kT11
, ~36!

wherek is Boltzmann’s constant@16#. This distribution cor-
responds to the Fermi function of statistical physics. Abov

n
3

FIG. 9. The imaginary part of the complex pole in the effecti
interaction in a quasiparticle calculation forP50, with a free
single-particle spectrum and using the Reid 93 interaction. Res
are plotted for three different partial waves as a function of
density.

FIG. 10. Same as Fig. 9, but using the reduced Reid 93 inte
tion ~see text!.
6-12
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critical temperatureTC this deformation will be large enoug
to lead to a normal ground state, while belowTC a superfluid
ground state will be favored.

The deformation of the Fermi sea can be incorporated
the schematic model by modifying the projection operat
in the eigenvalue equation~34!,

FT1S 2n2 0

0 ~12n!2DVJSTG S c (h)

c (p)D 5VS c (h)

c (p)D , ~37!

for a specific partial wave. Using the Fermi function~36!, a
critical temperature of 0.7 MeV is obtained for the1S0 mul-
e

b

lf

05431
in
s

tipole, while a much higher temperature of 23 MeV is o
tained for the more strongly attractive deuteron channel.

The effects of short-range correlations can be simulate
the same way. Using, e.g., in Eq.~37! the occupation prob-
abilities obtained in a three-pole calculation rather than
statistical Fermi function leads to a nonsuperfluid grou
state at the empirical saturation density.

For completeness, Fig. 10 shows the imaginary part of
complex pole obtained with the reduced Reid 93 interact
as used in the preceding section. One sees that this redu
is sufficient to remove the complex poles around the emp
cal saturation density.
than the

the
VI. SELF-ENERGY

For the evaluation of the self-energy we retain the first-order diagram in the effective interaction~Fig. 1!. Similar to the
effective interaction, the imaginary part of the self-energy exhibits an energy dependence that is far more complicated
one obtained in quasiparticle calculations.

Inserting the multiple-pole approximation to the Green’s function in Eq.~38! for the self-energy, we find

S~p,v!5
1

8p2E dp8p82E
21

1

d~cosu!V~q!(
j

bj~p8!2
1

4p (
i
E

2`

2eF
dV8E dp8p82E

21

1

d~cosu!
Im G~P,V8,q!

v2V81Fi~p8!2 ih
f i~p8!

2
1

4p (
j
E

2eF

`

dV8E dp8p82E
21

1

d~cosu!
Im G~P,V8,q!

v2V81Bj~p8!1 ih
bj~p8!, ~38!

with P5Ap21p8212pp8cosu and q5Ap21p8222pp8cosu /2. A shorthand notation was used for the sum over
different partial waves of the diagonal matrix elements,
ed
ale
ary
ort-

-

Im G~P,V,q!5 (
LJST

~2J11!~2T11!Im^quGLL
JST~P,V!uq&,

V~q!5 (
LJST

~2J11!~2T11!^quVLL
JSTuq&. ~39!

As the matrix elements are antisymmetrized, only chann
with odd values ofL1S1T contribute to this sum.

Further discussions on the self-energy are simplified
noting that ImG(P,V52eF ,q)50 and defining@27# Im G↑

and ImG↓ through

Im G~P,V,q!5u~2eF2V!Im G↑~P,V,q!

1u~V22eF!Im G↓~P,V,q!. ~40!

Using these functions the imaginary part of the se
energy can be written as
ls

y

-

Im S~p,v!5

2
1

4 (
i
E dPP2E

21

1

d~cosu!Im G↑
„P,v1Fi~p8!,q…f i~p!

1
1

4 (
j
E dPP2E

21

1

d~cosu!Im G↓
„P,v1Bj~p8!,q…bj~p!.

~41!

The resulting imaginary part of the self-energy is plott
for three momenta in Fig. 11. Note the different energy sc
used for the addition and removal domains. The imagin
part extends to very high positive energies, due to the sh
range correlations.

The observed structures in ImS can be explained on the
same grounds as the structure of ImG. Inspecting Fig. 4 one
sees that for a fixed value ofP, a specific two-particle chan
nel (i 1 ,i 2) generates an allowedV interval @Vmin

i1,i2 ,Vmax
i1,i2# for

Im G. In order to find a nonvanishing ImS at a certain en-
ergy v there must be a triplet (i 1 ,i 2 , j ) and an allowedp8
value such that
6-13
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FIG. 11. The energy depen
dence of the imaginary part of th
self-energy, in the three-pole
scheme A, using the Reid 93 inter
action atkF51.45 fm21. The full
line corresponds top50, the
dashed line top50.8kF , and the
dotted line top51.7kF .
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Vmin
i 1 ,i 2~P!,v1Ej~p8!,Vmax

i 1 ,i 2~P!, ~42!

whereEj (p8) stands forF j (p8) ~if v,eF) or Bj (p8) ~if v
.eF). These requirements lead to a set ofv intervals that
can be associated to different three-particle combinati
( i 1 ,i 2 ; j ). The self-energy forp50 is again shown in Fig.
12, where the contributions to the sum~41! originating from
different polesf i ,bj are displayed separately.

For v,eF the largest contributions originate from the~c!
pole in the spectral function. For the large peak located n
2100 MeV, this pole is coupled to the (c,c) part of the
effective interactionG. This is the only contribution to the
backward self-energy that remains in a quasiparticle calc
tion. The small shoulder at2250 MeV is the result of cou-
pling the~c! part of the spectral function with the (2,c) part
of G. Between2800 MeV and21000 MeV we find a con-
siderable contribution originating from the (1) pole of the
single-particle propagator. The two peaks are again du
the coupling with the same (c,c) and (c,2) parts of the
effective interaction. The energy shift and relative magnitu
of both contributions reflect roughly the difference in ener
and strength of the~c! and (1) poles.

At v.eF both the~c! and (2) poles contribute over al
most the complete energy range. The~c! contribution starts
at the Fermi energy, the (2) contribution at 60 MeV, in
conformity with the energy difference of both poles. T
shape of both contributions is similar, and the relative m
05431
s

ar

a-

to

e

-

nitude corresponds to the difference in strength of both po
The peaked structure visible at 800 MeV reflects the p
visible in the imaginary part of the effective interaction
450 MeV ~Fig. 5!. For the higher momenta in Fig. 11 th
structures described above are more spread out.

The real part of the self-energy can be calculated from
dispersion relation and contains contributions from energ
both above and below the Fermi energy,

ReS~p,v!5
1

p
PE

2`

eF
dv8

Im S~p,v8!

v2v8

2
1

p
PE

eF

`

dv8
Im S~p,v8!

v2v8
. ~43!

The energy dependence of ReS and of both terms in Eq.
~43! is displayed in Fig. 13, together with the correspondi
ReS in a BHF calculation. Since thev.eF part of ImS is
dominant, the overall energy dependence of ReS is similar
to the BHF result. The detailed energy dependence can
traced back to the structure of ImS, which was discussed
previously.

The real part of the self-energy is used in the determi
tion of the on-shell energy. In the energy range correspo
ing to the on-shell energies for the hole states there i
repulsive effect of thev,eF region in the dispersion inte
-
-

e

FIG. 12. The energy depen
dence of the different contribu
tions to the imaginary part of the
self-energy of Fig. 11 forp50.
Left panel: energy beloweF .
Right panel: energy aboveeF .
The full line corresponds to the
contribution of the~c! pole of the
spectral function. The dashed lin
refers to the contribution of the
(1) pole in the left panel, and of
the (2) pole in the right panel.
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EFFECTS OF SELF-CONSISTENCY IN A GREEN’S . . . PHYSICAL REVIEW C 65 054316
FIG. 13. The energy dependence of the real part of the s
energy, in the three-pole scheme A, using the Reid 93 interactio
kF51.45 fm21. Contributions to the dispersion integral from ene
gies beloweF ~dotted line! and energies aboveeF ~dashed line! are
plotted separately, as well as the total sum~full line!. For compari-
son also the BHF result is shown~dash-dotted line!.
05431
gral. This is a result of the inclusion ofhh propagation in the
effective interaction, which is absent in BHF results.

VII. SPECTRAL FUNCTIONS AND BINDING ENERGY

Once the imaginary and real parts of the self-energy
determined, the spectral function is calculated using Eq.~4!.
Figure 14 compares the spectral functions obtained us
three-pole scheme A with the ones obtained in a quasipar
scheme, after convergence and for the reduced Reid 93
teraction. The most pronounced difference is found in
removal domain, where the hole spectral function in a q
siparticle calculation vanishes below a momentu
dependent miminum energy. Because of the redistribution
the single-particle strength, the spectral function extends
2` within the self-consistent calculation. In both calcul
tions the strength extends to large positive energies. Du
the quasiparticle reduction, a larger fraction of the stren
appears at higher energies in the self-consistent calculat

Note that the spectral function forp50 displays a double
peak in the quasiparticle calculation, signaling the bre
down of the quasiparticle description for small momenta.
the self-consistent calculation the spectral function exhibi
single peak, and the on-shell energy is unambiguously de
mined.

Figure 15 shows the hole and the particle spectral fu
tion for three different momenta, calculated using the f

lf-
at
ec-
on

ht

i-
s-
FIG. 14. The energy dependence of the sp
tral functions obtained using the reduced versi
of the Reid 93 interaction forkF51.45 fm21.
Left panels show the hole spectral functions, rig
panels the particle spectral functions, forp50
~upper panels! and p52kF ~lower panels!. The
full line is the result of the quasiparticle approx
mation, the dashed line is the result obtained u
ing the three-pole discretization scheme A.
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FIG. 15. The energy dependence of the spectral functions obtained using the full Reid 93 interaction, atkF51.45 fm21, obtained using
discretization scheme A. The full line corresponds top50, the dashed line top50.8kF , and the dotted line top51.7kF .
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Reid 93 interaction. The right-hand side of this picture sho
the momentum-independent tail at high positive energ
caused by the short-range correlations. The slope of this
is closely related to the hardness of the repulsive core of
interaction, and is therefore highly dependent on the spe
interaction used. The tail in the removal domain shown
the left side of the plot is a new feature that is only presen
a self-consistent calculation. This tail was also observed
the calculations using a parametrized spectral function@20#.
The slope of the tail is independent of the discretizat
scheme used, only the structures at low energies depen
the specific scheme.

The momentum distribution is presented in Fig. 16. N
that in each iteration both discretization schemes reprod
the correct zeroth-order moment of the continuous hole sp
tral function. As a consequence, the continuous spec

FIG. 16. The occupation probability calculated within the d
cretization schemes A~full line! and B ~dashed line!. The left part
showsn(p) for hole states on a linear scale; the right part is plot
on a logarithmic scale. For comparison also theqp strength in a
continuous BHF calculation is shown forp,kF ~dotted line!.
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function and its discrete representation yield the same
mentum distribution, which can thus be evaluated as the s
of the strength of the~c! and (2) poles forp,kF , and as
the strength of the (2) pole for p.kF . Surprisingly, even
though the discretization schemes are quite different~Fig. 3!,
they lead to very similar occupation probabilities after co
vergence. Both schemes yield an occupation at zero mom
tum of 88%, which is larger than the 83% obtained within
BHF calculation. This observation is consistent with the ge
eral observation that a single-pole treatment overestim
the depletion@20#. The strength of the quasiparticle pole
the Fermi momentum equals 0.75, again about 3% larger
its BHF counterpart. At large momenta the occupation pr
ability decreases roughly as an exponential, in conform
with the results obtained from parametrized spectral fu
tions @20#.

The binding energy can be expressed in terms of
zeroth- and first-order moments of the hole spectral funct
@54#,

Ebind/A52E
2`

eF
dvE dpW

~2p!3 S p2

2m
1v DSh~p,v!.

~44!

The continuous spectral function and its discrete represe
tion are again equivalent for evaluating the binding ene
after convergence. Within the three-pole scheme the exp
sion for the binding energy reads

Ebind/A52E
p,kF

dpW

~2p!3 S p2

2m
1Bc~p! Dbc~p!

12E dpW

~2p!3 S p2

2m
1B2~p! Db2~p!. ~45!

d
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In this expression the first term corresponds to the contr
tion of the quasiparticles to the binding energy. Only nuc
ons with momenta lower than the Fermi momentum cont
ute. The second term represents the contribution of
background, to which also high-momentum nucleons
contribute. For very large momenta, the energy of the ba
ward pole approaches2p2/2m ~Fig. 3! and both terms in the
integrand tend to cancel. To get some feeling on how imp
tant the high-momentum nucleons are, Table I shows res
for the binding energy where the integral~45! is evaluated up
to a threshold momentumpT . The corresponding values o
kinetic and potential energy are also shown, as well as
fraction of the nucleons with momenta below this thresho
One sees that about 86% of the nucleons are located in s
below the Fermi momentum, contributing only 52% of t
kinetic energy and 65% of the total binding energy. In ord
to get convergence for the binding energy, one must at l
include nucleons up to 4kF . In a fully self-consistent calcu
lation one expects exact particle-number conservation.
last column of Table I shows that the free density is rep
duced within 1% accuracy, which is a measure for the
merical accuracy of our calculation.

TABLE I. Contributions to the binding energy forkF

51.45 fm21 ~corresponding to a densityr050.204 fm23), using
the Reid 93 interaction and discretization scheme A. Nucleons u
a variable threshold momentumpT are included in the evaluation o
the momentum integral. The kinetic and potential energy are
shown, as well as the fraction of the nucleons belowpT .

pT Ebind/A ~MeV! Ekin /A ~MeV! Epot /A ~MeV! r/r0

kF 28.81 22.41 231.21 0.86
2kF 211.72 30.00 241.72 0.95
3kF 213.06 38.32 251.38 0.98
4kF 213.34 42.31 255.65 0.99
5kF 213.35 43.16 256.52 0.99
` 213.36 43.34 256.69 0.99

FIG. 17. The binding energy per particle and the Fermi ene
obtained using the full Reid 93 interaction, within discretizati
schemes A~full line! and B~dashed line!. The binding energy in the
continuous BHF approach is also shown~dotted line!.
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The binding energy as a function of Fermi momentum
given in Fig. 17 for the different approaches. Note that
saturation curves are almost identical for discretizat
schemes A and B. This we take as an indication that on
level of the binding energy the most important requireme
for a discrete representation are given by Eqs.~13!. When
comparing the self-consistent results with the BHF curve,
see that there is an important shift of the saturation po
towards smaller densities and smaller binding. The values
the saturation points in Table II were obtained by fitting
fourth-order polynomial inkF through the calculated point
in the region 1.3 fm21,kF,1.7 fm21.

The binding energies calculated within the present sche
have uncertainties of the order of 0.8 MeV caused by vari
approximations. Firstly, the angle-averaging of the Pauli p
jection operator can lead to an error of about 0.5 MeV at
larger densities@44,45#. Second, the total error originatin
from the interpolation procedure and the limited number
points in the various grids is of the order of 0.3 MeV, a
estimate based on extensive numerical checks. Finally, er
due to the exclusion of higher partial waves are negligible
we include partial waves up toJ53 in the calculation of the
effective interaction. Note that when comparing the Brue
ner and self-consistent results, the observed shift in the s
ration point is much larger than these uncertainties.

to

o

TABLE II. Saturation points obtained within a continuou
Brueckner scheme and the three-pole schemes A and B, usin
Reid 93 interaction. The corresponding value of the nuclear ma
compression modulusKnm is also shown.

kF,0 (fm21) Ebind,0/A ~MeV! Knm ~MeV!

c-BHF 1.59 218.48 154
scheme A 1.49 213.42 177
scheme B 1.48 213.73 219

y,
FIG. 18. The binding energy per particle using the reduced R

93 interaction. The full line corresponds to the self-consistent c
culation using discretization scheme A, the dashed line to the q
siparticle approximation, and the dotted line to a continuous B
calculation.
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A large part of this shift can be attributed to the densi
dependent repulsive effect from the inclusion ofhh lines in
the effective interaction. This was already demonstrated f
quasiparticle calculation with a model interaction@27#. In the
self-consistent calculation one gets an additional density
pendence by including off-shell propagation in the eval
tion of the effective interaction. In order to assess the rela
importance of both effects, Fig. 18 shows the saturat
curve for a BHF, a quasiparticle, and a self-consistent th
pole calculation~scheme A!, using the reduced Reid 93 in
teraction. Owing to the reduction of the potential no bindi
is obtained, and one should be careful to generalize the
clusions for the complete interaction. A repulsive effect
seen from the inclusion ofhh propagation. This effect in-
creases with the density, as the phase space forhh propaga-
tion increases. Full self-consistency leads to an extra den
dependency, decreasing the energy at low densities, w
increasing it at higher densities.

The nuclear matter compression modulus,

Knm5kF
2d2E/A

dkF
2 U

kF5kF,0

, ~46!

is an important quantity in astrophysics and heavy-ion ph
ics. The values ofKnm obtained in the different approache
are also shown in Table II. Although the value ofKnm is
more sensitive to the specific discretization scheme than
saturation point, a self-consistent treatment seems to lea
an enhancement of the compression modulus. A recent an
sis of the giant monopole resonance in heavy nuclei@56#
yields an experimental estimate for the compression mo
lus, Kmn5210630 MeV. For the Reid 93 interaction th
compression modulus obtained in both self-consistent ca
lations agrees reasonably well with this value.

Finally, as a check for the thermodynamic consistency
our approach, the Fermi energy for both schemes is show
Fig. 17. The Hugenholtz–Van Hove theorem states that at
saturation point the binding energy per nucleon equals
Fermi energy@55#. This property is satisfied within less tha
1 MeV, which should be compared to the BHF scheme wh
the Fermi energy is more than 15 MeV below the bindi
energy at saturation. This observation agrees with recen
sults by Bozek and Czerski for a separable interaction@57#.

VIII. CONCLUSIONS AND OUTLOOK

In this paper a novel method is presented for going
yond the on-shell approximation in the framework of SCG
theory. The method is applied to the nuclear matter probl
using a realisticNN interaction. The self-energy and the e
fective interaction are determined self-consistently, us
dressed intermediary propagators that have a spectral w
In order to include the main features of off-shell propagati
the spectral function is approximated by a small set of ca
fully chosen poles. Two different three-pole discretizati
schemes are presented. In both schemes, most of the str
is concentrated in a pole located at the on-shell ene
which can be associated with the quasiparticle pole. T
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other poles then take care of the background distribut
above and below the Fermi energy. The poles and their r
dues reproduce the correct lowest-order energy-weigh
moments of the spectral function, separately for the part
addition and removal domains. Both schemes differ in
way the quasiparticle peak is separated from the backgro
distribution. The final results are to a large extent indep
dent of the chosen discretization scheme.

Results are presented for the Reid 93 interaction. The
fective interaction, the self-energy, and the spectral functi
are discussed. The discrete approximation leads to shell
structures in the energy dependence of these quantitie
agreement with the results obtained using a parametr
self-energy, the spectral function has a momentu
independent tail at high positive energies, reflecting the
pulsive core of the interaction. Also in the removal domain
momentum-independent tail is found.

In Sec. V the relation between pairing correlations a
short-range correlations was investigated. The symmetr
treatment ofpp and hh contributions in the effective inter
action may lead to pairing instabilities, when one uses p
jection operators defined with respect to the uncorrela
Fermi sea. The discrete-pole approach does account fo
deformation of the Fermi sea, which turns out to be la
enough to remove pairing instabilities around the empiri
saturation density.

The inclusion ofhh propagation to all orders and the us
of correct projection operators in the equation for the eff
tive interaction lead to a new density dependence and m
the saturation point off the Coester line, towards lower d
sity and less binding. As this density dependence can
different for other potentials it will be important to repe
these calculations for various modernNN potentials. This
can shed new light upon the role of three-body forces a
relativity in the saturation of nuclear matter. Finally it wou
be of great interest to compare the results of the pres
discrete-pole approach with those obtained using a par
etrized ~continuous! spectral function. Qualitatively both
methods seem to lead to a number of similar features. F
quantitative comparison both calculations should be p
formed using the same interaction. This work is in progre
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APPENDIX: TECHNICAL DETAILS

We consider a Green’s function having 2M11 discrete
poles. For i 51, . . . ,M the poles are located at energi
Bi(p) beloweF , for all momentap, and have residuesbi(p).
For i 5M12, . . . ,2M11 the poles are located at energi
Fi(p) aboveeF , for all momentap, and have residuesf i(p).

The central pole, labeledi c5M11, is located beloweF
for p,kF , crosses the Fermi energy atkF , and is located
aboveeF for p.kF , i.e.,
6-18
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f i c
~p!50 if p,kF ,

bi c
~p!50 if p.kF . ~A1!

The standard angle-averaged Pauli projection opera
can be generalized to the multiple-pole case by introduc
operators

Q̄i 1 ,i 2
(pp) ~P,q!5 f i 1

~p1! f i 2
~p2!5

1

2E dx fi 1~pW 1! f i 2
~pW 2!,

~A2!

for i 1> i c andi 2> i c ; and by definingQ̄i 1 ,i 2
(pp) (P,q)50 other-

wise. HerepW 1,25PW /26qW , and the integration variablex is the
cosine of the angle betweenPW andqW . Likewise,

Q̄i 1 ,i 2
(hh) ~P,q!5bi 1

~p1!bi 2
~p2!5

1

2E dxbi 1
~pW 1!bi 2

~pW 2!,

~A3!

for i 1< i c and i 2< i c ; andQ̄i 1 ,i 2
(hh) (P,q)50 otherwise.

The corresponding angle-averaged two-particle ener
read

Ēi 1 ,i 2
(pp) ~P,q!5Fi 1

~p1!1Fi 2
~p2!

5S 1

2E dx fi 1~pW 1! f i 2
~pW 2!„Fi 1

~pW 1!1Fi 2
~pW 2!…D

3„f i 1
~p1! f i 2

~p2!…21, ~A4!

for i 1> i c and i 2> i c , and

Ēi 1 ,i 2
(hh) ~P,q!5Bi 1

~p1!1Bi 2
~p2!

5S 1

2E dxbi 1
~pW 1!bi 2

~pW 2!„Bi 1
~pW 1!1Bi 2

~pW 2!…D
3„bi 1

~p1!bi 2
~p2!…21, ~A5!

for i 1< i c and i 2< i c .
In the quasiparticle approximation the projection ope

tors ~A2! and ~A3! can be calculated analytically@27#. A
multiple-pole calculation requires a numerical evaluation
these quantities, where care must be taken in the angle a
aging for the (i c ,i c) channel, as the corresponding streng
functions f i c

andbi c
change rapidly near the Fermi mome

tum.
For convenience we also introduce operators

Q̄i 1 ,i 2
(6) ~P,q!5Q̄i 1 ,i 2

(pp) ~P,q!6Q̄i 1 ,i 2
(hh) ~P,q! ~A6!

and energies

Ēi 1 ,i 2
~P,q!5Ēi 1 ,i 2

(pp) ~P,q!1Ēi 1 ,i 2
(hh) ~P,q!. ~A7!
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Using this notation and retaining only the principal value
Eq. ~26!, the integral equation for the reaction matrixR reads

^quRLL8~P,V!uq8&

5^quVLL8uq8&1(
aL9

PE
0

`

dq9q92^quVLL9uq9&

3
Q̄a

(2)~P,q9!

V2Ēa~P,q9!
^q9uRL9L8~P,V!uq8&, ~A8!

where the channel labela is a shorthand notation for (i 1 ,i 2).
In a quasiparticle calculation there can only be one sin

larity for given values ofV andP. In a multiple-pole calcu-
lation each two-particle channel can contain one or m
singularities. Multiple singularities within the same two
particle channel arise from the fact that the correspond
two-particle energy is not necessarily a monotonic functio
of the relative momentumq.

Consider a channela with Ma singularities qa i , for
which

V5Ēa~P,qa i !, i 51, . . . ,Ma . ~A9!

The energy denominator can then be rewritten as

1

V2Ēa~P,q!
5

)
j

~qa j
2 2q2!

V2Ēa~P,q!

1

)
i

~qa i
2 2q2!

5

)
j

~qa j
2 2q2!

V2Ēa~P,q!

3(
i S 1

)
j Þ i

~qa j
2 2qa i

2 !D 1

qa i
2 2q2

,

~A10!

where an expansion in partial fractions was performed in
last line. In order to further simplify the notation, an add
tional functionA is defined,

ALL8
a i

~V,P,q,q8!

5q82^quVLL8uq8&
Q̄a

(2)~P,q8!

V2Ēa~P,q8!

)
j

~qa j
2 2q82!

)
j Þ i

~qa j
2 2qa i

2 !

. ~A11!

This function is not singular atqa i , but has a value deter
mined by the rule of de l’Hoˆpital,
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ALL8
a i

~V,P,q,qa i !52qa i
3 ^quVLL8uqa i&

Q̄a
(2)~P,qa i !

]Ēa~P,q8!

]q8
U

q85qa i

.

~A12!

With the help of these additional definition, Eq.~A8! can
then finally be rewritten as

^quRLL8~P,V!uq8&

5^quVLL8uq8&1 (
a(ns)

(
L9

E
0

`

dq9q92^quVLL9uq9&

3
Q̄a

(2)~P,q9!

V2Ēa~P,q9!
^q9uRL9L8~P,V!uq8&

1(
a i

(
L9

PE
0

`

dq9

3
ALL9

a i
~V,P,q,q9!^q9uRL9L8~P,V!uq8&

qa i
2 2q92

. ~A13!

In the first integral term we sum over all two-particle cha
nels that have no singularities for given values ofV andP,
and it will be denoted asa(ns). All two-particle channels
containing singularities are included in the second term
the sum. The denominator of each of these principal va
terms I a i is replaced by a regularized integralĨ a i with the
same value,

Ĩ a i5P(
L9

E
0

`

dq9FALL9
a i

~V,P,q,q9!^q9uRL9L8~P,V!uq8&

qa i
2 2q92

2
ALL9

a i
~V,P,q,qa i !^qa i uRL9L8~P,V!uq8&

qa i
2 2q92 G , ~A14!

which has a smooth integrand.
The resulting integral equation is turned into a mat

equation by discretizing the momentum variableq. The re-
action matrix is then calculated by inversion of a real matr
Apart from the matrix elements at theN quadrature points
also the matrix elements for the momentaqa i are needed.
For a total ofM5(aMa singularities, this leads to a matri
dimension of (N1M ). For coupled channels the dimensio
are doubled.

In this grid of relative momenta the matrix equation f
the reaction matrix becomes

(
L9

(
j 51

N1M

^qj uFLL9~P,V!uqj&^qj uRL9L8~P,V!uqk&

5^qi uVL9L8uqk&, ~A15!
05431
-

f
e

.

in which the matrix elements of theF matrix are given by
(qm51, . . . ,N1M )

^qmuFLL8~P,V!uqn&

5dLL8dmn2 (
a(ns)

Wnqn
2^qmuVLL8uqn&

Q̄a
(2)~P,qn!

V2Ēa~P,qn!

2(
a i

Wn

ALL8
a i

~V,P,qm ,qn!

qa i
2 2qn

2
, qn51, . . . ,N

^qmuFLL8~P,V!uqn&

5dLL8dmn1(
a i

(
k51

N

Wk

ALL8
a i

~V,P,qm ,qk!

qa i
2 2qk

2
,

qn5N11, . . . ,N1M . ~A16!

Once the reaction matrixR is constructed, the effective
interactionG can be calculated. By subtracting Eqs.~26! and
~A8! one obtains,

^quRLL8~P,V!uq8&2^quGLL8~P,V!uq8&

5 ip(
a i

qa i
2

Q̄a
(1)~P,qa i !

]Ēa~P,q!

]q
U

q5qa i

(
L9

^quRLL9~P,V!uqa i&

3^qa i uGL9L8~P,V!uq8&. ~A17!

For convenience yet another vectorH is introduced,

Ha i~P!5pqa i
2

Q̄a
(1)~P,qa i !

]Ēa~P,q!

]q
uq5qa i

~A18!

as well as an additional complexM3M matrix M,

^qa i uMLL8~P,V!uqb j&

5dabd i j 1 iH b j~P!^qa i uRLL8~P,V!uqb j&. ~A19!

After inversion of this matrix~of small dimension!, the com-
plex matrix elements ofG can be calculated in terms of th
reaction-matrix elements

^quGLL8~P,V!uq8&

5^quRLL8~P,V!uq8&2 (
a i ,b j

(
L9,L-

^quRLL9~P,V!uqa i&

3Ha i~P!^qa i uM L9L-
21

~P,V!uqb j&

3^qb j uRL-L8~P,V!uq8&. ~A20!
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@31# K. Amir-Azimi-Nili, H. Mü ther, L.D. Skouras, and A. Polls

Nucl. Phys.A604, 245 ~1996!.
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@37# H.S. Köhler, Phys. Rev. C46, 1687~1992!.
@38# C. Mahaux and R. Sartor, Adv. Nucl. Phys.20, 1 ~1991!.
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