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Effects of self-consistency in a Green’s function description of saturation in nuclear matter
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The binding energy in nuclear matter is evaluated within the framework of self-consistent Green’s function
theory, using a realistic nucleon-nucleon interaction. The two-body dynamics is solved at the level of summing
particle-particle and hole-hole ladders. We go beyond the on-shell approximation and use intermediary propa-
gators with a discrete-pole structure. A three-pole approximation is used, which provides a good representation
of the quasiparticle excitations, as well as reproducing the zeroth- and first-order energy-weighted moments in
both the nucleon removal and addition domains of the spectral function. Results for the binding energy are
practically independent of the details of the discretization scheme. The main effect of the increased self-
consistency is to introduce an additional density dependence, which causes a shift towards lower densities and
smaller binding energies, as compared t@antinuous choiceBrueckner calculation with the same interac-
tion. Particle number conservation and the Hugenholz—Van Hove theorem are satisfied with reasonable accu-
racy.
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[. INTRODUCTION Although an idealized system, some experimental data are
available for nuclear matter. Its binding energy in principle
The determination of the quantum-mechanical propertiegorresponds to the volume terna,=16 MeV, in the
of many-body systems in a fully microscopic way is an im- Bethe—von Weizsacker formu[4,5], since the surface, Cou-
portant challenge in physics. For many systems, such as adbmb, and asymmetry contributions are absent. The satura-
oms and molecules, an average treatment of the medium efion density of nuclear matter can be deduced from the cen-
fects by means of a Hartree-Fo@KF) field already leads to tral density of heavy nuclei and corresponds to a density of
reasonable results. This is not the case for nuclear systenabout 0.17 fm3, or a Fermi momentum of kg
when using realistic nucleon-nucle¢NN) interactions. Due =1.36 fri L.
to the strong repulsive core in these interactions one has to Nonrelativistic many-body calculations using only two-
go beyond the basic mean-field treatment, since the coreody interactions have been unable to reproduce this empiri-
dominates the two-body matrix elements and leads to uneal saturation point. BHF calculations performed for various
bound nuclear systems in HF calculatidis2]. NN interactions lead to different saturation points. This re-
The short-range correlations, originating from the repul-flects the fact that all modern potentials have been fitted to
sive core, can be accounted for in a number of w@jsIn  the binding energy of the deuteron aNdl scattering data up
both the hole line expansion, of which the Brueckner-to a certain energy, but give very different results when used
Hartree-Fock(BHF) approach corresponds to the lowest-to describe many-body systems. However, the different satu-
order truncation, and the Green’s function formalism, theration points are all located on a line in the binding energy
realistic NN interaction is replaced by a medium-dependentversus density plot, the Coester lif@, which does not meet
effective interaction that can be calculated microscopicallythe empirical saturation point. Some potentials saturate at the
Other techniques such as variational and correlated basorrect density, but are underbound, while others predict the
function (CBF) calculations replace the Slater determinant,correct binding energy but at too high densities. Furthermore,
representing the uncorrelated ground state, with a correlatddr the same potential, BHF results differ from variational
many-body wave function. calculationg 7]. The reason for the latter discrepancy can be
The repulsive core of the interaction couples low-lying found in the fact that the BHF approximation corresponds to
single-particle states to excitations at very high energies. Bethe lowest-order term in the hole-line expansion. In the BHF
cause of the difference in relevant energy scale, the effects @pproach the effective interaction is calculated by summing
short-range correlations are believed to be independent of thel particle-particle ladder diagrams. Neglecting hole-hole
specific low-energy shell structure of the nuclei. Therefore itpropagation might be valid for low densities, as the phase
is advantageous to study these short-range effects in infinitgpace for hole-hole propagation is then much smaller than
nuclear matter rather than in finite nuclei, as the symmetry ofor particle-particle propagation, but at larger densities
such a system considerably simplifies the calculations. Infihigher orders in the hole lines should be included. Calcula-
nite nuclear matter contains equal numbers of protons antions including three-hole line contributiof®] agree reason-
neutrons, homogeneously distributed in space. Furthermoraply well with advanced variational resulf8,10] and shift
the Coulomb interaction between the protons is neglectedhe saturation point off the Coester line. However, the shift is
Due to translational invariance, plane waves constitute a suistill not large enough for a reproduction of the empirical
able single-particle basis for the calculations. The uncorrepoint.
lated ground state then corresponds to a Slater determinant Both a relativistic extension of the theoryDirac-
with all momenta occupied up to the Fermi momentum.  Brueckner approachll]), and the incorporation of three-
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body interactiond 10,12}, that can in part be linked ta lations are somewhat easier, as the quasiparticle peaks
degrees of freedom, lead to a correct saturation point. Howacquire a considerable width, due to thermal broadening,
ever, both extensions contain phenomenological ingredientgven close to the Fermi momentum. An overview of the off-
to some extent and do not correctly describe all aspects dihell effects for a separable model interaction dné0 is
the many-body system. More work needs to be done in ordg?resented in Re{.17]. S _
to clarify the saturation properties of nuclear matter. At the Another important issue arising in self-consistent calcula-
same time there is another mechanism that deserves a mdi@ns is the appearance of pairing instabilities. These are a
profound study: aself-consistentrreatment of short-range result of the inclusion ofhh propagation in the effective
correlations. interaction[18], and manifest themselves as complex poles
The BHF approach is essentially an independent particlén_ Fhe effective interacFion. Pairing _correlations are very sen-
model (IPM), in which each particle moves through the me_smve' to the occupation probability of. states around the
dium with a specific energy determined by its momentum.Férmi surface. As short-range correlations tend to modify
The Fermi sea is completely filled up to the Fermi momen-this Fermi surface, they weaken the pairing correlations.
tum: hole states have an occupation probability of unity,Wh‘?” performing fl_JIIy self-cqnastent‘ calculatlons_the defor.-
while particle states are completely unoccupied. The validitynation of the Fermi surface is taken into account in the defi-
of this approximation was investigated ig,€’p) knockout ~ Nition qf the gff_ectwe interaction, and it turns out that the
experiments[13]. These experiments show considerablePairing mstabl_lltles are removed at densities close to the em-
broadening of the hole strength distributions as one moveRirical saturation density. _ o _
away from the Fermi surface, corresponding to a finite life- Onl.y recently were results obtalneq for realistic potentials
time of the quasiparticle excitations. The same experiment§icluding the correct off-shell behavior of nucleons fér
indicate that the hole states are considerably depleted. This0. These calculations employed a parametrized spectral
depletion is most pronounced for states close to the Fernfinction[19,20. In this paper an alternative approach is fol-
surface. Using the CERES methft#] an occupation num- lowed, using a discrete multiple-pole representation of the
ber of 0.75 has been obtained for the; 3 orbital in 2P  Spectral function. From a numerical point of view, this ap-
[15]. There is thus clear experimental evidence for a FermProximation basically corresponds to an extension of the
sea strongly deformed by nuclear correlations. Projection opduasiparticle approach, which has some computational ad-
erators that are used in the calculation of the effective intervantages. - _ _ .
action should be defined with respect to this deformed Fermi  The outline of this paper is as follows. In Sec. Il the basic
sea, rather than the uncorrelated one. This introduces an agencepts of the self-consistent Green's function framework
ditional density dependence in the saturation mechanism th&f€ introduced. Section il focuses on the construction of
may shift the saturation point off the Coester line. dlscret|zat|0n_ scheme_s for the spectral functlon. In Sec. IV
The above discussion is naturally related to the concept ofome numerical details on the calculation of the effective
self-consistent Green's functiofSCGH approaches. The intéraction are _presented. Section V discusses the_relatlon of
binding energy, as well as all single-particle observables, caRairing correlations and modifications of the Fermi surface.
be calculated from the exact single-particle propagatorf Ne self-energy within the discrete scheme is discussed in
dressed by the medium. The dressed propagator is obtain&$C- VI. Section VII presents results for quantities such as
from the Dyson equation, where the irreducible self-energysPectral functions, occupation probabilities, and binding en-
accounts for the medium effects. This self-energy is obtaine§'dy. Special attention is paid to the effects of self-
from an expansion in terms of the effective interaction,consistency on the saturation properties. Finally, Sec. VIlI
which corresponds to the sum of all ladder diagrams. In concontains a summary and conclusions. All calculations are
trast to the Brueckner approach, particle-partigh) and performed using the Reid 93 interaction defined in IR21].
hole-hole fh) ladders are treated in a completely symmetri-
cal way, so that the Green'’s function scheme is also suited Il. FORMALISM
for calculations at larger densities. Self-consistency now de- . . . . L
mands that the dressed Green’s function, which is obtained Plane waves consitute a suitable single-particle basis in
! nuclear matter because of the translational invariance. In

from the Dyson equation, is also used in the evaluation of the . ) i
o . Symmetric and unpolarized nuclear matter, the one-particle
self-energy and the effective interaction.

Self-consistency is a crucial ingredient for the fulfillment aGrzgir:)‘:’nfulgfglonslse':iﬁ:gebndﬁrg ;faSF:Eu%r;déf?hsgﬁg;r;%e;
of a number of sum rules, such as the conservation of particlé P ysp y 9

number[16]. Usually a self-consistent solution is obtained P and the energy of the particle. In this basis the one-
by means of an iterative approach, but it is not at all easy tdarticle Grgens function .can be represented in Lehmann’s
calculate the effective interaction with completely dressed@pPresentation as follows:
Green'’s functions. The corresponding dressed spectral func- ) )
tions show a complicated energy dependence, containing I Sh(p, ') e, Spe’)
; L oh . g(p,w)= do'——+ do'———,
both sharp peak&reflgctlng t.he quasuparycle behav)mmq a - w—w'—in Je w—w'+iy
broad background distribution, absent in IPM calculations. (1)
In the past several SCGF calculations have been per-
formed using various approximations to the spectral funcwhereer is the Fermi energy of the system. All information
tion, both forT=0 andT#0. At finite temperatures calcu- on the one-particle properties is contained in the spectral
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e \\\\ &\ o peak located at the corresponding kinetic energy,
@ =t ©+ &&) Sh(p’w):e(kF_p)5(w—p2/2m),

FIG. 1. Diagrammatic representation of the effective interaction Sp(p,w)=60(p—kg) o(w— p2/2m). 2

in the ladder approximation. The dashed line represents theNbare
interaction V, while the AI" box corresponds to the energy-
dependent part of the effective interaction in Fig. 2. The propagator
are fully dressed.

In a correlated system the energy dependence of the spectral
functions is much more complicated and can be determined
by solving the Dyson equation,

, _ o 9(p,®)=go(P,®) +go(P, @) Z(p,0)g(p,w).  (3)
functionsS, andS;,, which also allow an intuitive interpre-
tation of the Green’s function. The particle spectral functionHereg, represents the free propagator, corresponding to the
Sy(p,w) represents the probability of adding a particle with spectral functions of Eq2). The irreducible self-energy is
momentump to the system, while leaving the resulting sys-a complex quantity representing the interaction with the
tem with an excitation energy. The hole spectral function other particles of the medium. Inserting the free propagator,
S,(p,w) is related in a similar way to the removal of a par- as well as the Lehmann representation for the fully dressed
ticle with momentunp. propagator(1) in the Dyson equatiof3) leads to the follow-

For free particles the spectral function reduces to a singléng expressions for the dressed spectral functions:

1 Im3(p,w) .
h if w<ep
Sh(p.w)=\ T [w—p?2m—Re3(p,w)]*+[IM2(p,w)]?
0 if (J)>€|:,
O |f (,!)<6;:
S(pow)=y 1 Im2(p,w) it o>ep. (4)

T [w—p?2m—ReX(p,0) *+[Im 3 (p,w)]?

These correlated spectral functions typically consist of a sharp peak, corresponding to the quasiparticle extensibn of the
peak in the uncorrelated case, combined with a broad background in both the addition and removal domains.

The central concept in the determination of the correlated spectral function is the self-energy, obtained by summing
diagrams of different orders in the interactiph6,22. This perturbation series is usually truncated at some finite order.
Retaining for instance only the first order term in the interaction corresponds to the Hartree-Fock approach.

Within the SCGF framework, short-range correlations are treated by replacing theNrégeraction with an effective
in-medium interactiod”, calculated from the free interaction by summing all diagrams of the ladderpel). In contrast
to the in-medium interaction introduced by Brueckner and co-workegBs-25, I' contains both intermediateh and pp

propagation. Its matrix elements betwelN states with center-of-mass moment#hand relative momentg andq’ obeys
the integral equation

<QIVI5">

ire.olin=(@vian+ [ 25

,Sp(P1,0)Sp(p2, @) (P1,®)Sh(p2,0")
X fdwf do f fd

9"|T(P,w)|q’), 5
00— tin 00— —in (q"IT(P,»)|q") (5)

where 51,2= P2+ ﬁ”. To facilitate the evaluation of the self-energy, the effective interackionan be split into a part
corresponding to the frelN interaction and an energy-dependent correction term,

(alT(P,)la")=(alVla")+(alATr(P,Q)[a"), (6)
whereAT" satisfies following dispersion relation:

2¢ Im(qIC(P,Q")|q’) 1 (= Im(q|T(P,Q")|q’
Fyq (qlT( )Itﬂ__f 40 (qT( )IQ>_

. : 7
—o O-Q'—ipy )26 O-Q'+iy

- - 1
(lare.o)li)=— [
a
Retaining in the expansion for the self-energy only the first-order term in the effective interaction, one finds
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(2m)*

whereP=p+p’ andq=(p—p’)/2. A more tractable form for the self-energy is obtained, using the Lehmann representation
(1) together with the dispersion relatid@r) for I,

5(p,0) =~ —— | dB'do/(GIT (B .0+ &) d)g( ') ®

dp’ .o . (< dp’ (e, (7 .., /m(@T(P,Q")|q)
E , :f V f d ! /’ /_f f d ! dQU /, !
(p,) (277)3<Q| ja) | de’Sy(p’,e") 2mi) 8¢ |, w+w,_Q,,+i7’Sh(p ')
dp’ (= 2¢ Im(q|T"(P,Q")|q
—f P fdw'f " Al ),|q>Sp(p’,w’)- ©
(2m)3) & — wt+to' —Q0"—in

A diagrammatic representation is presented in Fig. 2, wherenust allow a fast evaluation &f andI’, but at the same time

the second diagram corresponds to both the second and thiitdmust retain the most prominent features of the full spectral

term in Eq.(9). function. In the next section we will demonstrate how the
When one wants to satisfy important conservation lawsdiscrete-pole approximation satisfies both needs.

self-consistency becomes a crucial requirement. This means

that the spectral functions used in the evaluation of the ef-

fective interaction(5) and the self-energg9) are themselves IIl. DISCRETIZATION SCHEMES

solutions of the Dyson equatigd). As a result one needs to In the past, several approximations to the spectral func-

solve a set of coupled nonlinear equations, which is usuallyions have been proposed, the most basic of them being the

done by iteration. Starting from an initial guess for the«gyasiparticle” approximation. Within this approximation

Green's function(e.g., the free Green’s function in the case ho imaginary part of the self-energy is neglected, so that the

of nuclear matter calculationsthe effective interaction and ¢, spectral function of Eq(4) is replaced by a singlé peak
the self-energy are calculated. In the next step the new spegscated at the “on-shell energy,”

tral functions are determined from the Dyson equation and

reinserted in the equations for the effective interaction and

the self-energy. This procedure is repeated until the spectral €qp(P) = Pp?/2m+ReZ (p, eq(P)). (10
function is converged.

During such an iterative process, the spectral functionrpis quasiparticle approach is similar to the continuous
changes from the singlé peak to a more complicated struc- Brueckner-Hartree-Fockc-BHF) prescription[26], but also
ture. Especially aT =0 (zero temperatujethe evaluation of  jhcjydes hh propagation in the effective interaction. Ex-
the effective interaction through successive iterations turngsnded calculations within this scheme have been performed
out to be a cumbersome task when using dressed spectigl 3 model interactiofi28]. When the quasiparticle scheme
functions. The very sharp peaks, combined with the broags jmplemented for realistitN interactions(containing at-
background distribution in the spectral function make accuyractive componenisone runs into trouble with pairing in-
rate numerical evaluations difficult. Therefore it is importantgiapilities. The nucleons tend to form pairs, which is signaled
to find a suitable approximation for the spectral function that,y the appearance of complex conjugate poles in the effec-
can be used to evaluate the effective interaction and the selfiye interaction[27]. A way to avoid these instabilities while

energy during successive iterations. Such an approximatiogltaying within a pure single-pole scheme was formulated by

Vonderfechtet al. [29], who replaced the on-shell energy for

Vv ing gap in the single-particle spectrum is large enough to
"""""""""" remove the pairing instabilities even when using realistic in-
teractions.
S | A - + When going beyond the quasiparticle approximation and
incorporating effects of intermediate off-shell propagation of
nucleons, the complex poleslihmay disappear. The respon-
sible mechanism is the use of a correlated Pauli operator,
instead of the uncorrelated projection operator used in a qua-
siparticle calculation. The width of the quasiparticle peak, as
well as the broad background distribution in the spectral
FIG. 2. Diagrammatic representation of the irreducible self-function, containing about 15-25% of the total strength, is
energy in nuclear matter within the present self-consistent frameneglected within the quasiparticle approximation. This back-
work. ground distribution is responsible for a depletion of the hole

hole statesf§<kg) by the mean removal energy. The result-
A

-
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states and a corresponding partial occupation of the particlne quasiparticle approach, where one demands only conver-
states, resulting in an effective reduction of the interactiorgence of the quasiparticle spectrum.
strength near the Fermi surface. A more complete treatment Several discretization schemes can be devised that gener-
of the many-body problem, using the full energy dependencate the specific locations and corresponding residues of the
of the spectral function, can thus remove the pairing instapoles. Of course, such a scheme must lead to an approxi-
bilities around the empirical saturation density, as will bemated spectral function that retains the most important
demonstrated in Sec. V. When constructing an approximatiophysical properties of the exact spectral functieng., the
to the spectral function, it is therefore crucial that a realisticlocation and strength of the quasiparticle peak
description of the strength distribution around the Fermi en- Motivated by its success in the description of the long-
ergy is incorporated. range correlations in finite nucldi31-34, we used the
In recent years several attempts have been made to inBAsis GEnerated by Lanczos-sche(BAGEL) scheme as a
prove on the quasiparticle scheme using an approximatefirst attempt for a discrete representation of the spectral func-
spectral function that is in closer agreement with the exaction [35,36. However, when applied to the nuclear matter
spectral function. de Jong and Lendlé®] follow a mixed problem the results of the BAGEL scheme turned out to be
approach: for hole statep{ kg) the complete particle spec- unsatisfactory. Within the BAGEL schemes the discrete
tral function (w> €g) is retained. This particle spectral func- poles and strengths are chosen in such a way that the lowest-
tion does not contain sharp peaks and consequently does natder energy-weighted moments of the complete spectral
lead to large numerical difficulties. The hole spectral func-function
tion does contain a quasiparticle peak and is replaced by a
single renormalized function. For particle statepkg) a
similar approach is followed. Although part of the back-
ground distribution is incorporated in this calculation, the
deformation of the Fermi surface is insufficient to remove _J
pairing instabilities and the calculation could only be done
for a model interaction. The group of Dickhoff retains the
full energy dependence of the spectral function, using a paare reproduced. Due to the short-range correlations the back-
rametrization of the spectral functig9] so that most inte- ground contribution to the spectral function is very asymmet-
grals can be carried out analytically. Recent research of thisc and the momentgl2) are strongly dominated by the tail
group seems to favor a parametrization of the self-energgt high positive energies. As a result the central pole of the
instead of a parametrization of the spectral funcfi2@l. BAGEL spectrum not only represents the quasiparticle part
In this paper we investigate an extension of the quasiparef the spectral function, but also contains a considerably con-
ticle approximation that aims at incorporating the off-shelltribution from the background at high positive energies. For
propagation of the particles in a self-consistent way. This isa three-pole calculation and using a reduced version of the
achieved by replacing the single pole of the quasiparticlénteraction, this results in a central pole, located about 20
Green'’s function by a set of discrete poles, each carrying &eV above the on-shell energy. This pole carries 99% of the
fraction of the strength, total strength, even though the quasiparticle strength at the
Fermi momentum only amounts to 80P85]. As a conse-
f.(p) bi(p) quence, the induced depletion is much too small to remove
g(p,w)=>, ! i ] . the pairing instabilities, and a calculation with the full inter-
r o—Fi(p)tin T o-Bjp)-iy action near equilibrium density remains impossible. An at-
(1)  tempt to improve the three-pole BAGEL scheme by using a
larger number of poles revealed that one cannot get satisfy-

The additional poles can be used to represent the backgrouffad results with a limited numbefup to 13 of poles. A
in both the addition and removal domains. Poles located beé€edback mechanism shifts the additional poles to very high
low the Fermi energy will be labeled &, poles above the €nergies and reatt_rlbutes the|r_ strength to the central pole.
Fermi energy a¥; . Itis clear that this shortcoming of the BAGEL scheme can
A discrete representatioiil) of the Green’s function can D€ remedied by constructing discretization schemes that al-
be employed in an iterative procedure, similarly as in thdOW for a closer correspondence between the quasiparticle
quasiparticle approximation. Starting from an initial guess€Xcitation and one of the discrete poles. In the following we
for the Green’s functiorie.g., the free Green’s functidrthe discuss three-pole approximations to the Green's function
self-energy and effective interaction are calculated. Insteahere we put the central pole at the quasiparticle on-shell
of retaining the complete energy dependence of the spectr§N€rgy and assign a certain quasiparticle strength to it. Fur-
function according to Eq(4), a fixed number of discrete thermore, we demand reproduction of the zeroth- and first-

poles,F;,B;, and their corresponding residuefs,b;, are order energy-weighted moment of the spectral function,
determined as functions of single-particle momentum. Thé€parately in the particle and hole domain, i.e.,Ker0 and
resulting discrete Green’s function is then reinserted in th&=1,

equations for the effective interaction and the self-energy,

until finally convergence for all poles and residues is ob- <= p. B. k:FF k d v
tained. One should note that this approximation goes beyond < (P) EJ: i(PILBy(P)] = Si(prw)de P

mk(|o>=2i fi<|o>[Fi<|o>]k+2j b;(p)[B;(p)1*

+ oo
o*S(p,w)do V p (12
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N ) *o In scheme A, a constant fraction of the integrated hole
my (p)=2i fi(P)[Fi(p)] =f 0 Sy(p,w)dw V p, strength is attributed to the central pole for all hole states.

F (13) Thkis fraction is taken to be the same as the value at
=k,
thereby fixing the location and strength of both other poles. R.(K,)
The remaining difficulty is to determine how much R(p)= —————— f mg (p)
. . . C p R.(k:)+R_(k 0 p '
strength is attributed to the central pole. This strength should o(ke) +R_(Kky)
be a good measure of the quasiparticle strength, but except
for momenta close t&, the separation of the quasiparticle R (p)= R (k) ~(p) (18)
peak from the background distribution is somewhat ambigu- B Re(k)) +R_(k;) 077
ous.
The conventional expression for the quasiparticle strength P<K.
IReS (w,p) -1 For particle states we have likewise
Zggp)=| 11— ——— : (14
" ( 7o weqpm) Ro(k()

_ >
| | RlP) = Relk +R. (k) 0 (P
derived by expanding the spectral function around the qua-

siparticle energy, may not give reasonable results for all mo- R, (ks) -

menta. This fact was also observed by de Jong and Lenske R.(p)= Ru(k) TR, (k) Mo (P), (19
[30] and is one of the problems encountered in an extended ¢

quasiparticle calculatiof37]. p>Ke .

For this reason we looked at other ways of separating the
quasiparticle peak from the background. There are severdil should be noted thaR_(kg), R.(kg), and R, (kg) are
possibilities of doing this. In order to test the sensitivity to unambiguously defined, since the quasiparticle pole for the
the specific discretization scheme, we will present results foFermi momentum lies at the Fermi energy, has zero width,
two quite distinct three-pole discretization schemes, labelednd is completely isolated from the background distribution.
A and B. Scheme A starts from a very basic assumption oiR_(kg) and R,(kg) can be obtained by integrating the
the distribution of the strength, whereas scheme B is moremooth hole and particle spectral function, whigkg) cor-
elaborate and yields a more realistic momentum dependencesponds to the missing strength in the sum rule,
of the quasiparticle strength, similar to that found in other
calculations[20,38,39. As it turns out, schemes A and B Re(kp) =1—R_(kg) =R (Kg). (20

produce surprisingly similar results for the binding energy. . . N
In both schemes A and B, the hole spectral function forThe assumption that the ratio of quasiparticle strerigh

hole states f<kq) is represented by two poles labelEd over total occupation or depletion is independent of momen-

andE, (with corresponding residud®_ andR,), which re- tum is an oversimplification, especially in the I|m|t. of very
Iﬁrge momenta where we expeRt to approach unity. On

prodgce the two lowest-order moments of the hole spectrat e other hand, for such large momenta, the energy differ-
function, ' '
ence between both forward poles becomes small, and they
< can be regarded as a single degenerate pole.
R-(p)*+R.(p)=mo (p), In scheme B we try explicitly to extract a measure of the
- strength contained in the quasiparticle peak. This problem is
R-(P)E-(P)+R:(P)Ec(P) =My (P). (19 nhot, as mentioned before, free from ambiguities, but the fol-
o lowing scheme works very well in practice. For hole states,
The energy of the central pole is fixed at the on-shell energy,e assume that the hole spectral function can be written as

the sum of a quasiparticle and a background model distribu-

Ec(p)zeqp(p)- (16) tion,
The particle spectral function for hole states is approximated Re(p) [w—Ep)| R_(p) [w—E_(p)
by a single poléE , with strengthR ., , simply determined by Sy(P, @)=y ( )f( Wo(p) ) W ( W :
demanding that the two lowest-order moments of the particle (P (P - - (21)
spectral function are reproduced,

The normalized model distributiohis taken as
R+ (p)=mg (p),
f )—L 0(|x|—1)et M+ o(1—|x| 2
E.(p)=m; (p)/mg (p). (17) ()= 55| oxi—De =xD 2

. . o (22)
For particle statesp>kg) a corresponding approximation is

used, where the hole spectral function is approximated by &ae., a Lorentzian form in the central region and exponential
single pole, and the particle spectral function by two poles.tails. The widthW, of the quasiparticle peak is taken equal to
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2m whereA(p)=Va(p)|Im=(p,E(p))|. This choice ofA (in
We(p)= (2+—w)RC(p)|Im 2 (p,Ec(p))l, (23)  which ¢ is the standard deviation of the hole strength distri-
bution) is heuristic, but it ensures that(p) -0 asp— kg,
so that in this limit the sampled interval exclusively filters
where the factor 2/(2+ )~ 1.22 corrects the peak value o the quasiparticle peak. The treatment of the particle states
(Re/W,)f(0) to the peak value i Im 2.(p,eqs(p))| of the  (h~ ) is completely analogous to that of the hole states.
standard Lorentzian local approximation to the quasiparticle” Figyre 3 displays the momentum dependence of the dis-
peak. The widthW_ of the background distribution is as- crete poles and residues in scheme A and B, for a calculation
sumed to be independent of single particle momerpuand  with the Reid 93 interaction, after convergence has been ob-
is estimated on the basis of the background distribution fotained. Starting from a free spectrum, typically about 7 itera-
p=kg, which is unambiguously defined. The enefgy of  tions are needed to obtain sufficiently converged spectra.
the central pole follows from Eq(16), so we need three In both schemes the same value is obtained for the energy
more conditions to determire., E_, andR_. Two condi-  of the central poleE.. This is not a trivial statement, as it
tions are given by Eq(15). As the third condition we de- indicates that after convergence both schemes yield the same
mand that the true spectral function and the model distribuposition for the quasiparticle peak. The strength of the cen-

tion in Eq. (21) yield the same value for the integrated tral poleR; is the most significant difference of both calcu-
strengthg in an interval around,, lations. Scheme A shows a strength that is proportional to

n(p) for p<kg and tod(p)=1—n(p) for p>kg, whereas
E A scheme B has a more realistic momentum dependence. This
ﬁ=f * dw Sh(p,w), (24)  includes a minimum located just below the Fermi momen-
Ec-4 tum, balanced by a maximum iR_ .
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The energyE, of the forward background pole is com- IV. EFFECTIVE INTERACTION

parable in both schemes and is determined by the repulsive . N , .
. . . . . The discrete-pole approximation to the Green’s function
core of the interaction. Older interactions with stronger re-

pulsion, such as the original version of the Reid interaction o be regarded as an extension of the quasiparticle ap-

. . proach, where the single pole is replaced by a set of multiple
[40.?_’hve\”|6|”|1i?d£ aOT;JhC;] Igl;?:rll\?\/ra\r/glléch+r6un d ole is dif- isolated poles. Consequently, the effective interaction can be
ferent in botgh séhemes for momerma:kg but sﬁows the evaluated using a procedure similar to the one developed in

F

: D Ref. [27]. First of all it will be useful to perform a partial
——n2
same behaviof=_ p°/2m, for momentap>k . This is .wave decomposition of the potential. Inserting the spectral

the pole responsible for the hlgh—m_omentum components "®unctions corresponding to the discrete Green'’s function of
the nuclear many-body wave function.

For large moment& _ quickly drops to zero. The forward
background is much more persistent, because of the slow
fall-off of Im > at large w. In the p— limit, scheme B Sp(p,w)ZE fi(p)8(w—Fi(p)),
eventually concentrates all strength in the central pole lo- !
cated at the free energy, i.eR;—1 and R, —0, as one
would expect on intuitive grounds. This regime, however, is _ _
only reached for very large momenta, not shown on the plot. Sh(p,w)—Z bi(p) ol —Bi(p)) (25
In scheme A bothR. andR, have nonvanishing strengths in
this limit, but as the corresponding energies have about thmto Eq.(5), the ladder equation in partial wave decomposi-
same value, they can also be interpreted as a single pole. tion reads

fi (P2 fi,(P2)

@riP.ola)=(@virla)+ X | doa*(alViile)————(@II':(P.0)a")
igipl” 70 Q_[Fil(pl)+Fi2(p2)]+|77
* . bj,(P1)bj,(p2) JsT
- 2 | da'q"XalVla") —(q"[T L (P.Q)a"), (26)
jgial” 70 Q=[Bj,(p1)+Bj,(P2)]~in

wherep, ,=P/2+q". In this equation the bar over strength cluding only the principal value part of the complex inte-
functions and energies denotes that the dependence on tBEAIS. A regularized version of this integral equation on a grid
angle betweeuﬁ” andP has been averaged ofsee the Ap- in relative momentum space is s_olved by matrix inversion. In
pendiy. a second step the real anq imaginary parts oftimeatrix are
Angle averaging of the two-particle propagator is neces calculated from the reaction matrix. The standard procedure

. . - has to be extended to handle the presence of more than one
sary to decouple the different partial waves, thereby reducmgingularity in case of a multiple-po?e approximation. This is

the dimension of the matrix that needs to be inverted in Ord_eéxplained in more detail in the Appendix.

to obtainT". In our c_alculanons the numerator and denor_nl_- Since we first want to investigate how the incorporation
nato_r are averaged erper_ndentIy of_each other. The vaI|d|t¥f off-shell effects modifies th& matrix as compared to a
of this approach was first discussed in R¢#L,42. In Ref. ¢ aqiparticle(single-polé calculation, we use in this section
[43] the effects of several angle-averaging procedures arg requced version of the Reid 93 interaction, where g
checked in the case of a Brueckner-Hartree-Fock calculatiognq the 33,-3D, partial waves are multiplied by a factor
with a Reid soft-core interaction. A full calculation without g 75 and 0.5, respectively. This is done solely to avoid the
any angle averaging is compared with a calculation in whichyppearance of pairing instabilities in the quasiparticle calcu-
all angular dependency of the two-particle propagator igation and to make the comparison possible. In the final
eliminated and a calculation in which only the denominatormultiple-pole calculations of the next sections, the full Reid
is angle-averaged. It turns out that the discrepancies in bin®3 potential is used.
ing energy and the complex optical potential are quite small Partial waves up taJ=3 are included in the effective
for the different approximations at saturation density. This isinteraction, as contributions of higher-order partial waves are
confirmed by recent studig€l4,45|, although a systematic negligible[36,47]. Higher partial waves are incorporated in
increase in binding is found for increasing density, which isthe Hartree-Fock part of the self-energy, where it was found
larger in the continuous choice BHF calculation. necessary to include partial waves upJte 9 [36].
Equation(26) is solved using the two-step procedure of The energy dependence of the imaginary partl'ofs
Ref. [46]. First a real reaction matriR is calculated by in- closely linked to the poles of the two-particle propagator. In
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time-consuming step of the iterative scheme. Therefore it is
useful to construct at the start of each iteration, a map of the
imaginary part of the effective interaction on a grid of
(P,Q,q) points. When specific values of IR(P,Q,q) are
needed in the evaluation of the self-energy, they can be ob-
tained from a threefold interpolation of the values in this
map. TheQ) andP grids are illustrated by the dots in Fig. 4.
For an accurate calculation 100 mesh points are needed for
the Q) grid, while 31 mesh points proved to be sufficient for
the P grid. Due to the complicated structure of the different,
often overlapping zones of nonvanishing Ihin the (Q2,P)
plane, a careful construction of these grids is crucial for the
convergence of the iterative procedure. Again we refer to
Ref.[36] for additional details.

The effective interaction calculated with a three-pole
Green’s function using discretization scheme A is presented
in Fig. 5 for two center-off-mass momenta: one below and
one above the critical valuek2 . For this critical value the

—H S SR (c,c) channel will no longer contain a singularity for ener-
e et e e et Dokl Lt gies below 2. Backward Q<2e:) and forward
Q-2edMeV] >2ep) parts are shown in separate graphs because of the

FIG. 4. The choice of the(},P)-interpolation points in the map large dlfferendce .";1 tEe ref:‘rlevc'_;lnt _energy_rangel. Tlhesg rgshl_JIts
for the effective interactiod’. The solid lines correspond to the are compared with the etiective interaction calculated within

boundaries of different two-particle channels, as explained in thé duasiparticle calculatiofdashed ling The energy scale is
text. relative to 2% to allow an easy comparison of both results.
The most pronounced differences are found far
<2eg, Where the presence of the additional) pole in the
Green’s function leads to the appearance of strength below
the hh threshold energy of the quasiparticle calculation. In
Qgﬁnzzeqp(p/z), (27) the P=kg plot the (c,c) contribution still dominates the
three-pole calculation of Ifi. However, it is reduced in
which is the minimum energy of two particles with a center-strength compared to the quasiparticle calculations, in con-
of-mass momentun®. This picture gets more complicated formity with the reduced strength of the central pole. At the
within the multiple-pole scheme of E(6), as singularities same time, an extra contribution, absent in the quasiparticle
can now appear within different two-particle channelsapproach, can be observed at energies beto#d MeV.
(i1,in) and (1,j2). This contribution originates from the-(,c) channel. At en-
This results in a much more complex pattern of zones ofrgies below-144 MeV also the {,—) channel starts con-
nonvanishing InT” in the (},P) plane. This structure is il- tributing, but due to the relatively small strength of the
lustrated in Fig. 4 for scheme A; the same features ar€¢—) pole, these contributions are less important, although
present for scheme B. The full lines correspond to the threstthey extend to very large negative energies. It should be
old energies as a function & for each of the possible two- noted that the contribution to Iin of a specific two-particle
particle channels. Thec(c) channel exhibits a minimum en- channel is proportional to the value of the angle-averaged
ergy similar to the quasiparticle case. This means that for alprojection operator for this channel, evaluated in the corre-
energies above this threshold value a singularity will besponding singularity. This quantity scales as the product of
found in the €,c) channel. The €,c) exhibits both a mini- both strength functions, which explains the relative size of
mum and maximum energy, so that only in this finite energythe contributions originating from different two-particle
range this specific channel will contribute to Imm The channels.
(—,—) channel has a maximum energy, and its singularities For P=2.X&¢ the imaginary part vanishes for all energies
will be found for all energies below this threshold value. {<2eg in the quasiparticle approach. This is no longer so
Both the €,+) and (+,+) channels extend from a mini- for a three-pole calculation where both the-,(—) and
mum energy up te- . Specific details on the origin of these (—,c) channel will contribute. The contribution of the-(
threshold values can be found in RE36]. It should also be —) channel is again much smaller than the one-of¢), but
noted that, since the<{,c) and (,+) two-particle energies is nevertheless visible as the peak arounti25 MeV.
are not necessarily monotonic functions of the relative mo- The redistribution of the quasiparticle strength also leads
mentum, more than one singularity can be found for a fixedo differences in Inl" for Q>2¢er. For bothP=kg and P
(Q,P) value. =2.2&g, there is a shift towards higher energies, caused by
The matrix inversion used for solving the ladder equationthe strength of the{) pole. ForP=kg the opening of the
makes the evaluation of the effective interaction the mosfc,+) channel leads to a sharp peak around 430 MeV. In a

P/ (2ke)

0.8

0.6

0.2

the quasiparticle calculation Ith will only be nonvanishing
for energies above a threshold energy,
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narrow range above this energy tle ) channel contains a
double singularity, causing an enhanced contribution to
ImI". For slightly higher energies, the second singularity dis-
appears, explaining the peaked structure. There is no doubl
singularity in this channel forP=2.2g, leading to a
smoother energy dependence ofllmTo conclude this sec-
tion, it should be stressed that these shell-like structures o
ImTI" result from the discrete-pole approach. If one retains
the full energy dependence of the spectral function in the
evaluation of effective interaction, these structures are
smoothed ouf19,20,48.

V. PAIRING CORRELATIONS

As was mentioned before, the incorporation of intermedi-
ate hh propagation may lead to complex poles in the effec-
tive interaction[18]. Therefore a reduction of the Reid 93
interaction was needed in order to obtain the quasiparticle
results shown in the preceding section. The imaginary part of
the effective interaction calculated within a quasiparticle
scheme and using the complete Reid 93 interaction is showt
in Fig. 6. Around Z¢ the imaginary parl’ is completely
dominated by a singularity, originating from two complex

Iml (MeV™

e
o
&

=01

-0.15

-0.2

-0.25

-0.3

PHYSICAL REVIEW C65 054316

FIG. 5. TheQ) dependence of
ImI'(P,Q,q), the imaginary part
of the effective interaction
summed over all partial waved
<3. Results are obtained for the
reduced Reid 93 potential arig
=1.45 fm 1. Upper panelg=0
and P=kg. Lower panel:q=0
and P=2.%c. The dashed line
corresponds to the quasiparticle
approach, the full line to the three-
pole discretization scheme A.

-100

0

100 200 300 400 500

QO — 2& (MeV]

conjugate poles in the effective interaction. This singularity FiG. 6. TheQ dependence of the imaginary part of the effective
leads to an unphysical self-energy and spectral functionspteraction within the quasiparticle approximation, @0 andq
reflecting the phase transition to a superfluid ground state. A0 (k-=1.45 fm ). The full line corresponds to the complete
calculation within the framework outlined above will be Reid 93 interaction, and the dashed line to the reduced vefsémn
highly unstablg49,50. One can overcome these difficulties text), where no pairing instabilities are present.
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either by using a reduced interactif@¥] or by introducing a
gap in the single-particle spectruf@9]. A complete treat-
ment of the paired phase should include anomalous propage
tors and self-energ}s1,52. G

This discussion does not imply that nuclear matter near®
equilibrium density isa priori superfluid. Pairing correla-
tions are very sensitive to the occupation of single-particle
states close to the Fermi surface. Both thermal effects anc
correlations tend to smear out the Fermi surface and decreas
the effects of pairind17,53.

The ladder approximation for the effective interaction .
regulates the effects of short-range correlations, originating )
from the repulsive core of thEN potential, but at the same ~ deut !
time it also introduces collective effects from the attractive |
components of the interaction. In order to see how summing ples :

bound

e

two complex conjugate

ladder diagrams leads to paired nucleon solutions, we trans in e o i
form the Bethe-Goldstone equation into a two-body Schro r
dinger equation. Since the largest pairing instability is found
for zero center-of-mass momentuh6,27,34, we restrict FIG. 7. An illustration of the location of the poles of the effec-
ourselves to solving the ladder equation R+ 0, tive interaction in the®S;-3D; channel. A free spectrum has been
used. The continuurtabove zerphas been divided intpp andhh
[‘(Q):V+Vg|(|°)(Q)I‘(Q)_ (28) regions. The position of the isolated poles is given by the dashed

lines. Below the critical densit}(E one or two isolated real poles
(0) i i are found. At zero density the isolated real pole is located at the
HereV, I', andg,’ are regarded as matrices indexed by Yy p

relative momentum. In this equatiagf,o) stands for the free deuteron energ¥qe,.. At densities above the critical density the
two-body propagator real part of the complex conjugate poleslins plotted.

_ (h) (h)
oa—k)  6(ke—q) ! O)VBq(%m)zﬂ(me, (34
O—mtin Q-qim—ig o | v v

29 wherel is the identity matrix. In this equation the kinetic
energy T is a diagonal matrix in the relative momentum
space, having?/m on the diagonal. In coupled channels the
dimensions of the matrices are doubled.

The matrix on the left-hand side of E(B4) is not sym-
metrical, allowing both real eigenvalues and pairs of com-
plex conjugate eigenvalues, depending on the density and the
specific partial wave. The following characteristic energy
spectrum is obtained:

(1) A continuum of real poles in the intervd,2e¢], cor-

. S . . responding to unboundh excitations.
This expression indicates that the singularities of the effec (2) A continuum of real poles in the intervéRer ],

tive interaction are also singularities of the correlated two—Correspon ding to unboungp excitations.

particle propagator. The ladder equation implies the fOIIO.W' (3) In a certain density range, an isolated real pole located
ing relation between correlated and uncorrelated two—partlcl%eIOW thehh continuum. This p,ole corresponds to a bound

T+

9i(Q,q,9")=6(q—q")

The effective interactiol” also defines a correlated two-
particle propagatog, ,

r'(Q)=v+Vvg,(Q)V, (30
which is related to the uncorrelated propagator as

glP(Q)V=g,(Q)T(Q). (31)

propagators: state withQ ,n<0.
) () 1 (4) In a certain density range, two complex conjugate
9y (Q)= 9ir () _ . (32) poles can appear at energ@sg,,,— Qr*i{),, correspond-
1-gP@)v o) t-v ing to bound states with energies located within or very close
to the continuum.
Finding the singularities of th& matrix is equivalent to The location of these poles as function of the density is
finding the zero eigenvalues of the following matrix: presented schematically in Fig. 7. The appearance of com-
plex poles is a result of the inclusion bh propagation as
o) 1-v. (33)  noted by Dickhoff{ 18]. Within a BHF scheme, thus neglect-

ing hh propagation in the two-particle propagator, the corre-
Using the free two-particle propagator of E§9), and dis-  sponding eigenvalue equation looks as
tinguishing between the hole and the particle components of ) ()
the eigenvector, this eigenvalue equation for a specific partial ¥ _ i
o = o |- (35

. T+
wave can be written as

0)
\/JST
|

0
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FIG. 8. The energy of the bound state in a Brueckner calculation FIG. 9. The imaginary part of the complex pole in the effective
atP=0, with a free single-particle spectrum and using the Reid 93nteraction in a quasiparticle calculation fét=0, with a free
interaction. Energies are relative to the threshold energy fopthe Single-particle spectrum and using the Reid 93 interaction. Results
continuum Qﬁﬁﬂt: 2e). The full line corresponds to thés;-3D; are plotted for three different partial waves as a function of the
deuteron channel, the dashed line to 83 channel. density.

) ) . ) . sity range around the empirical saturation density, since pair-
Since the matrix on the right-hand side of E§5) is now  ing correlations are very sensitive to the number of states
symmetrical, all eigenvalues will be real. Still, a single gvailable near the Fermi surface. Short-range correlations
bound state can be found at energies below fipecon-  vyield a depletion of the hole states, and a partial occupation
tinuum (Fig. 8). These bounds states appear both int8¢  of the particle states just above the Fermi surface. This re-
and the3S,-3D; partial waves. In the absence of the me-duces the effective interaction near the Fermi surface,
dium (ke—0) only the 3S;-3D; bound state remains. This thereby diminishing the effects of the pairing correlations. If
state can be identified as the deuteron solution of the twothe reduction is large enough, the ground state of the system
particle Schrdinger equation. In most Brueckner-type calcu-will not be superfluid.
lations these bound state are omitted, since their effect on The influence of short-range correlations on the pairing
properties such as binding energy and occupation probabilitgroperties are thus similar to the well-known thermal effects.
is very small, as was argued in RE29]. At higher densities At finite temperaturesT#0) thermal excitations also cause
these isolated poles in thematrix will eventually disappear. a deformation of the Fermi sea. Even in the absencsNf

Whenhh propagation is incorporated in the effective in- correlations, thermal effects lead to an occupation probabil-
teraction, bound states may manifest themselves as a pair i,
complex poles in a certain density range. In this particular
case the bound states will cause sharp spikes in the effective 1
interaction(Fig. 6), and can no longer be neglected as they n(p)=
hinder a numerically stable calculation. The many-body

scheme as outlined in this paper must then be adjusted {Qnerek is Boltzmann’s constaritL6]. This distribution cor-

account for these bound states explic{tha]. _ responds to the Fermi function of statistical physics. Above a
Figure 9 shows the imaginary part of the resulting com-

eleP — kT 1" (36

plex poles as a function of the density for a number of partialZ 1.2

waves. Two partial waves'S;-°D; and !S,, lead to an in- - i

stability at the empirical saturation density. The deuteron— 1 - N

channel causes the largest instability, which is in conformity ; r

with the observations made in Ref27,47. Athird instabil- < 08 |-

ity shows up at higher densities. This instability originates £ - Pa—’F

from the 3P,-3F, channel and is missing in a Brueckner 0.6 |- co

calculation. Hence this pairing at higher densities is a pure -

result of the incorporation of intermediateh propagation. 04 -

Comparing Fig. 8 with Fig. 9, one should note that also for -

the 3S;-3D; and 1S, multipoles,hh propagation will seri- 02

ously enhance the density range in which bound states ar B a | | "| | ;

formed. o bbb b L b Lo b
Up to now we usegp andhh projection operators, de- 0 05 1 1> 2 Zkf [fm"]3

fined with respect to the uncorrelated Fermi sea. Short-range
correlations will deform this Fermi sea. The correlated pair- FIG. 10. Same as Fig. 9, but using the reduced Reid 93 interac-
ing propagators may remove the pairing instability in a den+ion (see text
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critical temperaturd ¢ this deformation will be large enough tipole, while a much higher temperature of 23 MeV is ob-
to lead to a normal ground state, while beldw a superfluid tained for the more strongly attractive deuteron channel.
ground state will be favored. The effects of short-range correlations can be simulated in
The deformation of the Fermi sea can be incorporated ithe same way. Using, e.g., in E7) the occupation prob-
the schematic model by modifying the projection operatorsabilities obtained in a three-pole calculation rather than the

in the eigenvalue equatiol34), statistical Fermi function leads to a nonsuperfluid ground
2 (h) " state at the empirical sgaturation density.. .

T+ " 0 ast[ ¥ 0 4 37) For completeness, Fig. 10 shows the imaginary part of the

0 ({1-nm (P OIS complex pole obtained with the reduced Reid 93 interaction

as used in the preceding section. One sees that this reduction
for a specific partial wave. Using the Fermi functi86), a s sufficient to remove the complex poles around the empiri-
critical temperature of 0.7 MeV is obtained for th§, mul-  cal saturation density.

VI. SELF-ENERGY

For the evaluation of the self-energy we retain the first-order diagram in the effective inter&agord). Similar to the
effective interaction, the imaginary part of the self-energy exhibits an energy dependence that is far more complicated than the
one obtained in quasiparticle calculations.

Inserting the multiple-pole approximation to the Green'’s function in (B6) for the self-energy, we find

1 (1 1 2er ! ImI'(P,Q,q)
- ’ 2 . o ! ! 2 \ i ’
(p.w) 8szdpp f_ld(cosaW(q); bj(p") =~ 7 2 f_wdn fdpp f-ld(°°s‘9’w_gf+pi(pr)_inf'(p)
re,Q’,
2 , a0 fdppj d(cos6) mI i) bi(p’), (38)

o—Q'+Bj(p')+in

with P= \/p2+ p'2+2pp’cosh and q= \/p2+ p'2—2pp’cosH/2. A shorthand notation was used for the sum over the
different partial waves of the diagonal matrix elements,

Im F(P,Q,Q)ZL%T(ZH— 1)(2T+1)Im(q|T}3T(P,Q)|q), ImZ(p,w)=

—%2 fdppzfl d(cos®)ImT(P,w+F,(p"),q)f(p)
i -1

JST]
Via)= 3, (23+1)(2T+1)(qVi{Ta). (39) +%E fdppzfl 005 MTIP 0t B () Db (P
] -1

(41)
As the matrix elements are antisymmetrized, only channels
with odd values ol + S+ T contribute to this sum. h ting i i fth i is plotted
Further discussions on the self-energy are simplified by | "€ resulting imaginary part of the self-energy is plotte

for three momenta in Fig. 11. Note the different energy scale
:
gﬁgn&?ﬁmgfgﬂﬂ 2€,0)=0 and definind27] Im I used for the addition and removal domains. The imaginary

part extends to very high positive energies, due to the short-
range correlations.
The observed structures in Encan be explained on the
- — 1
ImI'(P,0,q) = 6(2er— Q)ImI''(P, 0, q) same grounds as the structure oflTminspecting Fig. 4 one
+0(Q—2e)IMIH(P,Q,q). (40)  sees that for a fixed value & a specific two-particle chan-

iq,i i I
nel (i,,i,) generates an allowed interval[Q 1/ 2,Q 1 7] for

ImT'. In order to find a nonvanishing I& at a certain en-
Using these functions the imaginary part of the self-ergy o there must be a tripleti{,i,,j) and an allowedp’
energy can be written as value such that
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» FIG. 11. The energy depen-

dence of the imaginary part of the
self-energy, in the three-pole
scheme A, using the Reid 93 inter-
action atke=1.45 fm 1. The full
line corresponds top=0, the
dashed line t=0.8g, and the
dotted line top=1.7k¢ .
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'n%”:z(p)<w+ Ei(p’ )<Q'n%a'>(2(p) (42)  nitude corresponds to the difference in strength of both poles.
The peaked structure visible at 800 MeV reflects the peak
, N n (i visible in the imaginary part of the effective interaction at
whereE, (p’) stands forF(p) (if w<e) or B;(p') (if 450 MeV (Fig. 5 gFor ¥hg higher momenta in Fig. 11 the
> ). These requirements lead to a setefintervals that g. 9. 9 9.

can be associated to different three-particle combination§tructures described above are more spread out.
(i1,i,:j). The self-energy fop=0 is again shown in Fig. The real part of the self-energy can be calculated from the

12, where the contributions to the su#t) originating from dispersion relation and contains contributions from energies

different polesf; ,b; are displayed separately. both above and below the Fermi energy,
For w< e the largest contributions originate from tt®

pole in the spectral function. For the large peak located near * ,ImZ(p,0)

—100 MeV, this pole is coupled to thec,c) part of the ReX(p,w)= ;Pf_mdw EPREY

effective interactionl”. This is the only contribution to the

k?ackward self-energy that remains in a quasiparticle calcula- m3( p )

tion. The small shoulder at 250 MeV is the result of cou- - — f o (43

pling the(c) part of the spectral function with the-(,c) part

of I'. Between—800 MeV and—1000 MeV we find a con-

siderable contribution originating from the( pole of the The energy dependence of Reand of both terms in Eqg.
single-particle propagator. The two peaks are again due t@43) is displayed in Fig. 13, together with the corresponding
the coupling with the samec(c) and (c,—) parts of the Re in a BHF calculation. Since the> e part of Im2, is
effective interaction. The energy shift and relative magnitudedominant, the overall energy dependence of2Ris similar

of both contributions reflect roughly the difference in energyto the BHF result. The detailed energy dependence can be

and strength of théc) and (+) poles. traced back to the structure of By which was discussed
At w>er both the(c) and (—) poles contribute over al- previously.
most the complete energy range. T contribution starts The real part of the self-energy is used in the determina-

at the Fermi energy, the—) contribution at 60 MeV, in tion of the on-shell energy. In the energy range correspond-
conformity with the energy difference of both poles. Theing to the on-shell energies for the hole states there is a
shape of both contributions is similar, and the relative magrepulsive effect of thev<eg region in the dispersion inte-

ke=1.45 fm™

b

-20 FIG. 12. The energy depen-

dence of the different contribu-
tions to the imaginary part of the
self-energy of Fig. 11 fop=0.
Left panel: energy belowe.
Right panel: energy abover.
The full line corresponds to the
contribution of the(c) pole of the
spectral function. The dashed line
refers to the contribution of the
(+) pole in the left panel, and of
the (—) pole in the right panel.
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gies belower (dotted ling and energies abowg: (dashed lingare
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FIG. 13. The energy dependence of the real part of the seifdown of the quasiparticle description for small momenta. In

energy, in the three-pole scheme A, using the Reid 93 interaction g{be self-consistent calculation the spe_ctral func_t|on exhibits a
ke=1.45 fm .. Contributions to the dispersion integral from ener- Single peak, and the on-shell energy is unambiguously deter-
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gral. This is a result of the inclusion ot propagation in the
effective interaction, which is absent in BHF results.

VIl. SPECTRAL FUNCTIONS AND BINDING ENERGY

Once the imaginary and real parts of the self-energy are
determined, the spectral function is calculated using(&g.
Figure 14 compares the spectral functions obtained using
three-pole scheme A with the ones obtained in a quasiparticle
scheme, after convergence and for the reduced Reid 93 in-
teraction. The most pronounced difference is found in the
removal domain, where the hole spectral function in a qua-
siparticle calculation vanishes below a momentum-
dependent miminum energy. Because of the redistribution of
the single-particle strength, the spectral function extends to
—o within the self-consistent calculation. In both calcula-
tions the strength extends to large positive energies. Due to
the quasiparticle reduction, a larger fraction of the strength
appears at higher energies in the self-consistent calculation.

Note that the spectral function fer=0 displays a double
peak in the quasiparticle calculation, signaling the break-

mined.
Figure 15 shows the hole and the particle spectral func-
tion for three different momenta, calculated using the full

~ I
.

T T

FIG. 14. The energy dependence of the spec-
tral functions obtained using the reduced version

10

0 of the Reid 93 interaction fokz=1.45 fm *.

s

l-lJIIIIIl T I\IIHll T ||H|||| T |||||H| T 1T
~

w MeV] Left panels show the hole spectral functions, right
panels the particle spectral functions, fo=0
(upper panelsand p=2kg (lower panels The

p=2ke full line is the result of the quasiparticle approxi-

mation, the dashed line is the result obtained us-
ing the three-pole discretization scheme A.

10%

10°

w [MeVl

054316-15



Y. DEWULF, D. VAN NECK, AND M. WAROQUIER

ke=1.45 fm™

S, [MeVv™]

-2000 -1500 -1000

-500

0
wlMeV]

PHYSICAL REVIEW C65 054316

S, IMev™]

10000
wlMeV]

FIG. 15. The energy dependence of the spectral functions obtained using the full Reid 93 interaktien] .46 fm 1, obtained using
discretization scheme A. The full line correspond9te0, the dashed line tp=0.8;, and the dotted line tp=1.7k .

Reid 93 interaction. The right-hand side of this picture showgunction and its discrete representation yield the same mo-
the momentum-independent tail at high positive energiesmentum distribution, which can thus be evaluated as the sum
caused by the short-range correlations. The slope of this tadf the strength of théc) and (—) poles forp<kg, and as

is closely related to the hardness of the repulsive core of ththe strength of the{) pole for p>kg. Surprisingly, even
interaction, and is therefore highly dependent on the specifithough the discretization schemes are quite diffe(eigt. 3),
interaction used. The tail in the removal domain shown orthey lead to very similar occupation probabilities after con-
the left side of the plot is a new feature that is only present invergence. Both schemes yield an occupation at zero momen-
a self-consistent calculation. This tail was also observed itum of 88%, which is larger than the 83% obtained within a
the calculations using a parametrized spectral fundta.
The slope of the tail is independent of the discretizationeral observation that a single-pole treatment overestimates
scheme used, only the structures at low energies depend dime depletior[20]. The strength of the quasiparticle pole at

the specific scheme.

BHF calculation. This observation is consistent with the gen-

the Fermi momentum equals 0.75, again about 3% larger that

The momentum distribution is presented in Fig. 16. Noteits BHF counterpart. At large momenta the occupation prob-

that in each iteration both discretization schemes reproducability decreases roughly as an exponential, in conformity
the correct zeroth-order moment of the continuous hole spewith the results obtained from parametrized spectral func-
tral function. As a consequence, the continuous spectralons[20].

The binding energy can be expressed in terms of the

= g - = zeroth- and first-order moments of the hole spectral function
4 09 E ke=1.45 fm E [54]’
I e —— scheme
E O T scheme B g 2
07 E I I F dp p
3 ¢ Eping/ A=2 d —+ ).
0.6 E_ bind f_oc wf (277)3 (Zm w Sh(p (,l))
05 (44)
0.4
03 E The continuous spectral function and its discrete representa-
o5 E tion are again equivalent for evaluating the binding energy
o 3 after convergence. Within the three-pole scheme the expres-
>0 éI 11 | | I 111 I 111 | 11 11 | 111 | 11 | | I L I- Slon for the blndlng energy reads
o}

02 04 06 038 1 1.2 1.4 1.6

8 ond

FIG. 16. The occupation probability calculated within the dis-
cretization schemes Aull line) and B (dashed ling The left part
showsn(p) for hole states on a linear scale; the right part is plotted
on a logarithmic scale. For comparison also tie strength in a
continuous BHF calculation is shown fpr< kg (dotted ling.
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TABLE |I. Contributions to the binding energy fokg TABLE Il. Saturation points obtained within a continuous
=1.45 fm ! (corresponding to a densipy,=0.204 fi %), using  Brueckner scheme and the three-pole schemes A and B, using the
the Reid 93 interaction and discretization scheme A. Nucleons up t®eid 93 interaction. The corresponding value of the nuclear matter
a variable threshold momentupg are included in the evaluation of compression moduluk,,, is also shown.
the momentum integral. The kinetic and potential energy are alse

shown, as well as the fraction of the nucleons befpw Keo (fm™1) Epina,o/ A (MeV) Knm (MeV)
Pr Euna/A (MeV) Egp/A (MeV) EpolA (MeV) plp,  CBHF 159 1848 154
scheme A 1.49 —13.42 177
ke —8.81 2241 —31.21 0.86  schemeB 1.48 —-13.73 219
2ke —11.72 30.00 —41.72 0.95
3ke —13.06 38.32 —51.38 0.98
4K —13.34 4231 —55.65 0.99 The binding energy as a function of Fermi momentum is
5ke -13.35 43.16 —56.52 0.99  given in Fig. 17 for the different approaches. Note that the
© —13.36 43.34 —56.69 0.99  saturation curves are almost identical for discretization

schemes A and B. This we take as an indication that on the

In this expression the first term corresponds to the contribul—evel Of. the binding energy the mos.t Important requirements
tion of the quasiparticles to the binding energy. Only nucle—]cor a dlgcrete representation are given by EQs). When
ons with momenta lower than the Fermi momeﬁtum contrib-Comp'fjmng the s_elf-con3|stent resul'ts with the BHF curve, we

I see that there is an important shift of the saturation point
ute. The second term represents the contribution of th

backaround. to which also high-momentum nucleons Carfowards smaller densities and smaller binding. The values for
9 ’ 9 the saturation points in Table 1l were obtained by fitting a
contribute. For very large momenta, the energy of the back:

ward pole approaches p?/2m (Fig. 3) and both terms in the {g%ﬁg'gggnpf gn]?n?llil k"k<F 1th7rofung]]_h 1the calculated points

. . . ! . F . .

Lgﬁgtrhaen?“tehrlﬂq?rﬁ:&ii' :Sc?:(t)r?g;rif?gg;g thr:)?,\,vélggg{ The binding energies calculated within the present scheme
g . A tﬁave uncertainties of the order of 0.8 MeV caused by various

for the binding energy where the integfdb) is evaluated up

. approximations. Firstly, the angle-averaging of the Pauli pro-
to a _threshold momenturpy . The corresponding values of jection operator can lead to an error of about 0.5 MeV at the
kinetic and potential energy are also shown, as well as th

. : ; arger densitie§44,45. Second, the total error originating
fraction of the nucleons with momenta below this thre_shold.]crom the interpolation procedure and the limited number of
One sees that about 86% of the nucleons are located in stat

Sgints in the various grids is of the order of 0.3 MeV, an

) " 0 . g

tk)ii Ig;/i\:: tgr?ererrg:]éngg?n;??]éig?;rg::]tg;g Ogrl]yerSZA)mogrtggrestimate based on extensive numerical checks. Finally, errors
9y 0 o 9 gy. d[ue to the exclusion of higher partial waves are negligible, as

to get convergence for the binding energy, one must at leas

include nucleons up tok . In a fully self-consistent calcu- we include partial waves up tb= 3 in the calculation of the

: . . effective interaction. Note that when comparing the Brueck-
lation one expects exact particle-number conservation. Th

last column of Table | shows that the free density is re ro_ﬁer and self-consistent results, the observed shift in the satu-
L A y PI9%ation point is much larger than these uncertainties.
duced within 1% accuracy, which is a measure for the nu-

merical accuracy of our calculation.

- 20
= O . % E
% -2 E .......... ¢—BHF Fermi_energy," g '8 E_
g E ----- scheme A ,' L i 16 :_
i -4 E_ scheme B ! . :g 14 ;—
£ 6 F W2 B
L] E E
-8 F 10
-10 8 F
-12 6
-14 B + B
-16 F 2 ;—
- e, ._‘.-" 0 '|||||||||||||||||||||||||||
-18 s el |..|“|"|"|"I'l"i"i"lur| paliag 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
12 13 14 15 16 1.7 18 1.9 ke [fm™']

ke [fM™']
FIG. 18. The binding energy per particle using the reduced Reid
FIG. 17. The binding energy per particle and the Fermi energy93 interaction. The full line corresponds to the self-consistent cal-
obtained using the full Reid 93 interaction, within discretization culation using discretization scheme A, the dashed line to the qua-
schemes Afull line) and B(dashed ling The binding energy in the  siparticle approximation, and the dotted line to a continuous BHF
continuous BHF approach is also shoydotted ling. calculation.
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A large part of this shift can be attributed to the density-other poles then take care of the background distribution
dependent repulsive effect from the inclusionhdf lines in  above and below the Fermi energy. The poles and their resi-
the effective interaction. This was already demonstrated for dues reproduce the correct lowest-order energy-weighted
quasiparticle calculation with a model interacti@7]. Inthe  moments of the spectral function, separately for the particle
self-consistent calculation one gets an additional density deaddition and removal domains. Both schemes differ in the
pendence by including off-shell propagation in the evaluaway the quasiparticle peak is separated from the background
tion of the effective interaction. In order to assess the relativalistribution. The final results are to a large extent indepen-
importance of both effects, Fig. 18 shows the saturatiordent of the chosen discretization scheme.
curve for a BHF, a quasiparticle, and a self-consistent three- Results are presented for the Reid 93 interaction. The ef-
pole calculation(scheme A, using the reduced Reid 93 in- fective interaction, the self-energy, and the spectral functions
teraction. Owing to the reduction of the potential no bindingare discussed. The discrete approximation leads to shell-like
is obtained, and one should be careful to generalize the corstructures in the energy dependence of these quantities. In
clusions for the complete interaction. A repulsive effect isagreement with the results obtained using a parametrized
seen from the inclusion dfih propagation. This effect in- self-energy, the spectral function has a momentum-
creases with the density, as the phase spackHgiropaga- independent tail at high positive energies, reflecting the re-
tion increases. Full self-consistency leads to an extra densitgulsive core of the interaction. Also in the removal domain a
dependency, decreasing the energy at low densities, whilwomentum-independent tail is found.

increasing it at higher densities. In Sec. V the relation between pairing correlations and
The nuclear matter compression modulus, short-range correlations was investigated. The symmetrical
treatment ofpp andhh contributions in the effective inter-
d2E/A action may lead to pairing instabilities, when one uses pro-
Kom= kﬁ > , (46)  jection operators defined with respect to the uncorrelated
dkg Fermi sea. The discrete-pole approach does account for the

ke=k
P deformation of the Fermi sea, which turns out to be large

is an important quantity in astrophysics and heavy-ion physenough to remove pairing instabilities around the empirical
ics. The values oK, obtained in the different approaches Saturation density. _

are also shown in Table Il. Although the value kf,, is The inclusion ofhh propagation to all orders and the use
more sensitive to the specific discretization scheme than thigf COrTect projection operators in the equation for the effec-
saturation point, a self-consistent treatment seems to lead H#y€ intéraction lead to a new density dependence and move
an enhancement of the compression modulus. A recent anal§f}€ saturation point off the Coester line, towards lower den-
sis of the giant monopole resonance in heavy nuggé] SV and less binding. As th|_s d(.ensny.dependence can be
yields an experimental estimate for the compression modudifferent for other potentials it will be important to repeat
lus, K,,;=210+30 MeV. For the Reid 93 interaction the these calculations for various modeNN potentials. This

compression modulus obtained in both self-consistent calcc@n shed new light upon the role of three-body forces and
lations agrees reasonably well with this value. relativity in the saturation of nuclear matter. Finally it would
Finally, as a check for the thermodynamic consistency o€ Of great interest to compare the results of the present
our approach, the Fermi energy for both schemes is shown ifliScrete-pole approach with those obtained using a param-
Fig. 17. The Hugenholtz—Van Hove theorem states that at thgtrized (continuoug spectral function. Qualitatively both
saturation point the binding energy per nucleon equals th@ethqu_seem to Ief_;ld to a number of §|mllar features. For a
Fermi energy[55]. This property is satisfied within less than guantitative comparison both calculations should be per-
1 MeV, which should be compared to the BHF scheme wherdormed using the same interaction. This work is in progress.
the Fermi energy is more than 15 MeV below the binding
energy at saturation. This observation agrees with recent re- ACKNOWLEDGMENTS

sults by Bozek and Czerski for a separable interadtif.
The authors would like to thank W. Dickhoff for useful

discussions. This work was supported by the Fund for Sci-
ViIl. CONCLUSIONS AND OUTLOOK entific Research-Flander§WO-Vlaanderen and the Re-

In this paper a novel method is presented for going besearch Council of Ghent University.
yond the on-shell approximation in the framework of SCGF
theory. The method is applied to the nuclear matter problem, APPENDIX: TECHNICAL DETAILS
using a realistidNN interaction. The self-energy and the ef- _ _ _ _
fective interaction are determined self-consistently, using We consider a Green’s function havingvi2+1 discrete

dressed intermediary propagators that have a spectral widtpoles. Fori=1,... M the poles are located at energies
In order to include the main features of off-shell propagationB;(p) belower, for all momentgp, and have residues(p).
the spectral function is approximated by a small set of careFori=M+2,...,2M+1 the poles are located at energies

fully chosen poles. Two different three-pole discretizationF;(p) aboveeg, for all momentgp, and have residuds(p).
schemes are presented. In both schemes, most of the strengthThe central pole, labeled=M + 1, is located belowe
is concentrated in a pole located at the on-shell energyior p<kg, crosses the Fermi energy lat, and is located
which can be associated with the quasiparticle pole. Twaboveeg for p>kg, i.e.,
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fi (p)=0 if p<kg, Using this notation and retaining only the principal value in
¢ Eq. (26), the integral equation for the reaction matixeads
bi (p)=0 if p>kg. (A1)
(alR.L(P,Q)[q")
The standard angle-averaged Pauli projection operators w
can be generalized to the multiple-pole case by introducing =(q|V_/|a" )+ >, PJ dq'q"%q|V..g")
operators al” 0
QP
1 - -> D — " R A P Q ! A
QP =T (PP 5 | dxti (Bf, (B ‘B P VIR (PO, (A8

(A2)
where the channel label is a shorthand notation foi {,i,).
fori;=i; andi,=i.; and by deflnmgg(p") (P,q)=0 other- In a quasiparticle calculation there can only be one singu-
larity for given values of) andP. In a multiple-pole calcu-
lation each two-particle channel can contain one or more
singularities. Multiple singularities within the same two-
particle channel arise from the fact that the corresponding

wise. Hereplyz— P/2+q, and the integration variableis the
cosine of the angle betwedh andﬁ. Likewise,

Ql(hh)(p q) = m f dxb; (Dl)b. (pz) two-particle energy is not necessarily a monotonic functions
172 ! o 2 of the relative momentum.
(A3) Consider a channek with M, singularitiesq,;, for
which
for i;<i; andi,=<i.; andQ{"" (P,q)=0 otherwise.
The corresponding angle averaged two-particle energies Q=E,(P i), i=1,...M,. (A9)

read

- = The energy denominator can then be rewritten as
EPP(P,a)=Fi (1) +Fi(P2) 9y

= %J dxf, (P i (P2)(Fi (p1)+Fi(P2)) 1 TJ[ (a%—9%) )
x (fi (PO i (P2)) 7% (Ad) 0-E,(P.q) OQ-E,Pq) I (o —c
for i,=i. andi,=i., and 0 e |
E" (P,a)=B; (p1) +Bi,(p2) :(J)—E—(Pq)
=(%J dxb (p1)bi (p2)(B; (P1) +Bi (D)) S 1 21 §
x(mﬁ (a5) RIRCHREATEC

for i;<i. andi,=< (A10)

In the qua3|part|cle approximation the projection opera-
tors (A2) and (A3) can be calculated analyticalf27]. A where an expansion in partial fractions was performed in the
multiple-pole calculation requires a numerical evaluation oflast line. In order to further simplify the notation, an addi-
these quantities, where care must be taken in the angle avdional functionA is defined,
aging for the {;,i;) channel, as the corresponding strength
functionsfiC and bic change rapidly near the Fermi momen- Af:_/(Q,p’q,q')

tum.
For convenience we also introduce operators 2 2
6(—)(P q/) H (qaj_ )
—~'2 ’ @ !
QL (P.=QP?(P,q)=Q"M (P.a)  (A6) =" XaVila ) —=—— . (A1)

OTEPAV T (ot
and energies

This function is not singular a,;, but has a value deter-

) g
(P.a)=EfPR(P.a)+E[7(P.a). A7) mined by the rule of de I'Hpital,

'12 '12 i1io
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ai 3 aﬁy_)(P!qai)
ALL/(QvPaq!qai):zqai<q|VLL’|Qai> —_
JEL(P,q")

’
aq q,:qai

(A12)

With the help of these additional definition, EGA8) can
then finally be rewritten as

(alR.L (P, )[q")
=(alVyla’)+ 2 E f dq,'qllz<Q|VL|_"|qH>
a(ns) 7 0

QY (P,g")
X_— " R "t P,Q !
Q_Ea(qu,,)m [RLnLA( )a’)

> P 0dq”

ai L”

XAfiL/,(Q,P,q,q”)(q”|RL”L,(P,Q)|q’)

9%—q"?

(A13)

In the first integral term we sum over all two-particle chan-
nels that have no singularities for given valuesbfandP,
and it will be denoted as(ns). All two-particle channels

containing singularities are included in the second term of

PHYSICAL REVIEW C65 054316

in which the matrix elements of the matrix are given by
Om=1,... N+M)

(Am|FLL (P, )[an)

QL )(P,qp)

=06 Omn— W,q2 VL —_—
LL"“mn a(zns) nqn<qm| LL|qn>Q—Ea(P,qn)

A (Q,P, 0, dp)

Qii_Qﬁ

_Ei W,

<qm|FLL’(PaQ)|Qn>
Af:_/(ﬂypvqm!qk)

2 _ 2
oD

ai

N
:5|_L/5mn+2i kzl Wk
Un=N+1,... N+M. (Al6)

Once the reaction matriR is constructed, the effective
interactionl” can be calculated. By subtracting E¢@6) and
(A8) one obtains,

(g|RLL/(P,Q)]a")—(alT' L (P,Q)[q")
6&+)(P!Qai)

:iﬂ'z qtzzi —

a  JE,(P,q)

E (a|RLL/ (P, Q)[04

L"

&q 4= 0y

the sum. The denominator of each of these principal value

termsl,; is replaced by a regularized integ"nécji with the
same value,

_ AY (Q,P,q,9"){q"|R. (P,Q)|q’
Iai:PE LL 2< |”2L L | >

L” Jxi— 9

A‘LY:_”(Q'P*q’qai)<qai|RL”L’(Piﬂ)|q,>
qzi—q"?

d q//
0

(A14)

’

which has a smooth integrand.

The resulting integral equation is turned into a matrix
equation by discretizing the momentum variableThe re-
action matrix is then calculated by inversion of a real matrix.
Apart from the matrix elements at the¢ quadrature points,
also the matrix elements for the momenjg are needed.
For a total ofM =X M, singularities, this leads to a matrix
dimension of N+ M). For coupled channels the dimensions
are doubled.

In this grid of relative momenta the matrix equation for
the reaction matrix becomes

N+M
>

J_El (aj|FLLr(P,Q)]a;)(aj| Run (P, Q)| ay)
LH =

=(ai|Vir|aw, (A15)

X(Qui|T L (P,Q)[G"). (A17)
For convenience yet another vectdris introduced,
Q\(P,4.)
o (P) = e e ) (A18)
JE,(P,q)
aq |q:qai
as well as an additional compléw X M matrix M,
(il ML (P, Q) [ag)
= 8,50 TiH g (P)(0ui|RLL (P, Q)]qpg)- (AL19)

After inversion of this matrixof small dimensiol the com-
plex matrix elements of can be calculated in terms of the
reaction-matrix elements

(alT L (P,)[a")

=(q|R.L(P,Q)|q")— EBJ > (qIRLA(P,Q)]qu)
al, L//,LW
X H i (P){0ui| M Lot (P, Q)| qg;)

X{(qgj|RLmL (P, Q)[Q"). (A20)
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