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The equations for the pseudospin pair levels become of the same form as those of the spin pair levels at the
limit where the derivatives of potentials are zero. However, the centrifugal terms of four amplitudes among
eight components in the pseudospin pair levels have pseudwhile those in the spin pair-levels have natural
I,. When both of the pseudospin and spin symmetries are well satisfied, there appears a triple degeneracy. The
relativistic mean-field calculation ovéP*Sm giveq400]1/2,[402]3/2, and 402]5/2 levels as such a candidate.

The relation between the deformed wave function and the spherical wave function are discussed at the spheri-
cal limit by using the transformation from the cylindrical coordinate into the polar coordinate.
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. INTRODUCTION merical analysis is carried out oi¥*Sm, and the conclusion
is given in Sec. V.
One of the advantages in the relativistic treatment is that it
clarifies the origin of the spin-orbit interaction, which is also
related with the pseudospin concdft2]. Recently, there Il. THEORY
appeared various research papers with the purpose to find the .
root of the pseudospin concept to the relativistic mean-field The eigenfunctiony(r) for the Dirac equation with an
equation{3—9]. We found the general and realistic conditions @xially symmetrically deformed potential has two compo-
for the pseudospin approximation both for the spherical pon€nts. i-e., uppeilarge) componeng and lower(smal) com-
tential [6—8], and the deformed potentifi?,d]. It has been Ponentf. We use the cylindrical coordinatep,f,z), and
discovered that the condition found in the large componenthen each ofjy andf in #(r) has two components,
of Dirac wave function works much better than that in the
small component wave function for the deformed case in 0 @12
contrast to the spherical cag®. 1 [194 8 ¢
The pseudospin concept in the deformed nuclei is defined 9= E ig? e (@+12)e
in the nonrelativistic treatmefL0] as following: The single- '
particle levels withj,=Q=I1,+1/2 andj,=Q+1=1,+2
—1/2 lie very close in energy, and these two levels are la- 1 (9 el@-12e
o2 T e + .k
beled asj,=1,—1/2 andj,=T1,+1/2 with T,=1+1. If we f= E( (0 ei(“*l’z)‘”)' 2.9
use the asymptotic quantum numbex,n,,l,JQ with |, ik
=) to identify the deformed state, which is usually used in
the nonrelativistic calculation, the pseudospin pair levels beHere gg . and fg . are functions ofp andz, k denotes the
come[N,n,,l,]Q and[N,n,,l,+2](Q2+1), or equivalently ' ' 0
~ L ~ T~ other quantum numbers except fr. The = sign in gy |
[N,nz,lz](lz—_1/2) _and[N,nZ,IZ](IZ+1/2). On the other and fﬁ x corresponds to the spin wave function with
hand, the spin pair-levels are labeled BY,n, 1,]Q and . 1/5" hserting this equation into the Dirac equation, we
[N.nz,1J(Q+1), or equivalently[N,n;,l.](I;—1/2) and  yet the coupled equations. We then found the equations for
_[N,nz,lz](IZJr 1/2), as they are split only by the spin-orbit 92 . and the equations fof‘i . have a form symmetric to
interaction. _ each othef7,9] ’
The conditions we have found for the pseudospin symme-
try in our previous worEgs. (2.8) and(2.10 in Ref.[9]]

seem also to work for the spin symmetry. Moreover, we (QF122 4

found the revival ofL-S coupling scheme at superdeforma-  —v/,v,g k:{ai_ — Py 5 g .

tion in the nonrelativistic calculation, showing that the ex- o p P o

pectation values of spin-orbit interaction decreases with in- _

creasing deformation for smdll [11]. Thus, we compare the — IpV2 [ ( 9 IQ+ 1/2) g? T 3,9% ‘
pseudospin pair levels with,=1/2, and the spin pair levels Va b o o

with | ,= 1/2 by using the relativistic mean-field prograi®] PAVA O+1/2

for 1%%Sm in this paper. In Sec. Il our theory is reviewed, in — \Z/ {( *d,+ g%k+ azggk ,
Sec. lll the realtion between the spherical wave function and 2

the deformed wave function is discussed. In Sec. IV the nu- (2.2
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(QF1/2)? dp  5l.0 the same equation wit~hZ=Q+1/2 in the centrifugal term.
L L b However, they havennatural ,, because the true value of
|, for the former level must bé,=Q—1/2 asj,=Q=I,
+1/2, and the true value df, for the latter level i, =0
+3/2 asj,=Q+1=1,+2-1/2. According to the definition
in Ref.[9], we called thenunphysicalamplitudes. From now
on we will call them the amplitudes withnnatural |, .

If both of k andk’ are the same withN,n,,1,], andey o

2.3 nearly equals o1, EQ. (2.6) also corresponds to the spin
Here d5=3?ldp? d,=dldp, d2=d%37%, and d,=dldz.  doublets, asd=1,~1/2 andQ+1=1,+1/2. In this case,
The eigenvalue of Dirac equatianis included in two kinds  spin doublets havenatural 1,=Q+1/2 in the centrifugal
of potentialsV; andV,, term. We called therphysicalamplitudes in Ref[9]. In this
_ _ paper we will call them the amplitudes wittatural 1,. We
Vi=M= €= Vs~ Vv, Vo=éatM+Vs— Vviz 4  Mmust pay attention to the fact that the conditi@®) is ef-

' fective in both pseudospin doublets and spin doublets.
with vector potentiaVy,, scalar potentiaVs, and massvi. It is found that the region where,V,;=0 overlaps the
As seen in Eqsi2.2) and(2.3), g¥ , andf% , have symmet-  region where? ,V»=0, and the region wheré,V;=0 over-
ric forms by exchanginy/, by V;. Itis also seen from Eqgs. |aps the region wheré,V,=0 (see Figs. 2 and 3 in RgD)]).
(2.2) and (2.3 that there exists a symmetry relation amongin Fig. 1, we confirmed that the region whetgV,=0
g2« (f%,) and gz} (f2%) in the axially symmetrically equals the region where,V,=0, 3,V;=0, andd,V;=0.
deformed case coming from the time reversal invariancewe can apply the same dlscussmn to the lower components
From now on, we will limit our discussion to the positive as that to the upper components. If the following condition is

dp+

A% Ox1/2
-2l ot

N Q+1/2
— 1[(39 + 2+t

Vi P

value of Q and use bothf2 , andg? . satisfied:
Let us assume the case where the following conditions are _ _
satisfied: 9pV1=0, 9:V1=0, 27
N, 19p=0, N,/dz=0. (2.5  then
. . . - 0+1/22 9
In this special region, the coupled equati@?2 becomes —V1V2f9,k={5,2,— ( - ) n _p+52 £0 o
o , (Q+12? 4, L], p P
—VaVogZ k=9, 5+ —+97|00 ,
p 01 ) (Q+1/2)? p  Hl.0+1
VIV =g+ — ;| f
(Q+1/22 9 01 P P ’
—VlVégﬁ/l— 9= —p2 LI s (2.9

(2.6)  If k corresponds tON,n,,1,], andk’ to [N,n,,I,+2], f,
whereV; andV, havee, o, while V1 andV, havee,: o4 andffj(,l for the pseudospin doubletg(,~ € 1), obey

as is defined in Eq2.4). This is nothing but the pseudospin the same equation with,. In other words, the pseudospin
doublets, ifk corresponds t§N,n,,I,], k" to [N,n,,I;=1,  doublet is found in the amplitudes witmnatural |, of lower
+2], andey o~ €xr o1 Or Vi=V3 andV,=V;. They obey components. If bothk and k’ are defined agN,n,,l,],
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FIG. 2. The upper componentkeft pane} and lower compo- FIG. 4. The upper componentteft pane} and lower compo-

nents(right pane) for pseudospin doublet $#00]1/2 and[402]3/2 ~ nents(right pane] for spin doublet 0f402]3/2 and[402]5/2 as a
as a function op atz=3 fm. The dashed and the dot-dashed linesfunction ofp atz=1 fm. The lines for thainphysicalandphysical
are for theunphysicalamplitudes, and the solid and the dotted lines amplitudes are the same as defined in Fig. 2. The dashed and the
are for thephysicalamplitudes. The dashed and solid lines are forsolid lines are fof402|3/2 and the dot-dashed and the dotted lines
[400]1/2 and the dot-dashed and the dotted lines arg40p]3/2.  are for[402]5/2.
The = sign in front of[N,n,,l,]) corresponds tct% of s,.
(Q+3/22 4

¢ and f¢3* for the spin doublets € o~ € +1) have —Viv =] g2 FPJFO"? L
natural | —Q+1/2 in the centrifugal term. In other words, P 2.9
the spin doublets are found in the amplitudes with natiyral '
of lower components. Again, the conditi¢®.7) that is sat- These amplitudes hawveatural I, and |,+2 for the pseu-
isfied in the same region as E(R.5), works both for the dospin doublets ofk=[N,n,,I,] and k’=[N,n,,l,+2].
pseudospin doublets and spin doublets. They obey different equations except for largevhere the

Now we consider of the other amplitudes for the statescontribution from the centrifugal term becomes negligible.
with (k,Q) and &',Q+1), ie, g?, (%) andg®,’  The pseudospin doublets witt’  (f¢,) of k=[N,n,,I,]
(fml) Under the same conditions of E@.5) or Eq.(2.7), and gQJrl (f‘_”k,l) of k"=[N,n,,l,+2] obey the different

they become equation but with natural 1,. If we choose k=k’
=[N,n,,l,] in Eq. (2.9, these amplitudes hawmnatural
o , (Q—1/2)2 9, 2' R I,. For the spin doublets witk=[N,n,,l,], g+ k(f+ ) and
VaVogy (= dp— ——F5—+ —+3; (9", Q“ (f*11) obey the different equation withnnatural |,
L P P From Figs. 2 to 5, we have compared these eight ampli-
) ) tudes for both pseudospin doublets and spin doublets. In all
, Q+1 ) (Q+3/2)7? o | a+1 the figures, the amplitudes wittnnatural |, are shown by
—ViVog~ o= g ———+ ;J”?z 9 k> dashed or dot-dashed lines, while the amplitudes wittu-
- P - ral | , are shown by solid or dotted lines. Both the dashed and
] the solid lines correspond to the level wi€h, and both the
(Q-1/22% 9 dot-dashed and dotted lines correspond to the level with
—V Vofl = 2= ————+ L+ 52| ; ;
1V2li+ k p p? p | Tk (2+1). The numerical analysis that supports E@s6) and
p — 400112 ! 4 17 :
=== —[400]1/2 075 — +[40011/2 - +[402]5/2 075 402 3/2
i /2177 1114 = e 14021502 = —+402 A
g , —[40213/ 2 o0s 7127 g 2 g 0.5 —[402 5/2
£ g - 2 2 025
E. 8 025 g £
g R — - 7 s 0
| L [ ;I_
L I g 5 -0.25
E g—o.zs ...... o E o5
= S -0s 5 =
—4 -0.75 4 o
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FIG. 3. The upper componentieft pane) and lower compo- FIG. 5. The upper componentkeft pane) and lower compo-

nents(right panel for pseudospin doublet ¢#00]1/2 and[402|3/2 nents (right panel for spin doublet o0f{402|3/2 and[402]5/2 as
as a function oz atp=5 fm. The lines are the same as defined in a function ofz at p=5 fm. The lines are the same as defined in
Fig. 2. Fig. 4.
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; |+ 1/27Q
g(},|,]=|t1/2(r16): V2me (@ F12)¢ \/%

Gl,j:Itl/Z(r)

XY a0l 0i)————. (3.2

(2.8) works well for the case where the pseudospin symmetry
and the spin symmetry become better. If there were a good
degeneracy in the pair levels labeled witk,Q) and
(k",Q2+1), and also with k’',Q0+1) and k',Q2+2), there
would appear triple degeneracy. In the realistic case, it is
hard to appear, but Figs. 2-5 seem to show such candidate
possibilities.

Here % 1j=1+1Ar,0) andg+ 1j=1+12(r,6) are functions of

[ll. THE RELATION TO THE SPHERICAL CASE (r #) and not p,z), andYQ(a ¢) is the spherical harmon-

Now we will discuss the relation between the deformed'®
case and the spherical case. At the spherical limit, we hav%
used the polar coordinate,@, ¢) instead of the cylindrical
coordinate[6—8]. The upper and lower components in the
spherical limit are denoted by

In the spherical limit, it is said that the pseudospin sym-
etry is hidden in the lower compondi®,4,6—§, while the
spin symmetry is in the upper component. From E3j2),
we see the following relations:

I
g= ](r)yjm(ﬁ ?), f a1, 0) _ Fl2i=+2=Uz )y (1+5/2+Q
@ i2ie A1, 0) FLi=I+120) 432+ Q
Ei
(%&h%maw (3.1

G YY) 14312+ Q

921}:|+1/2(r,9) _

wherey}m(é’,(b) is a vector epherical harmonics._ We_ revyrite g2, 1_1A1,0) G2y i+ 1210
Eqg. (2.1) by replacingk=[1,j] and then comparing it with "
Eq.(3.1). Then, we get the relation betwe&f | ;_ . 1/(r, 6)
andgg,l,':lillz(rve)v andG"i=112(r) and Fli="=12(r). There is no simple relatlon among the ratio for
: g?ﬁz; 1+2-1(r,0) and g2 1Lj=1+1Ar,6), and also for
Frl 1j=1+2Ar,0) andf® 1j=1-1r,0). Itindicates that if we

_itax [+3/2%+Q
fg,l,izlﬂ/z(r,e): +2me '(Q+1/2)¢\/%

choose polar coordinate at the spherical Ilrfﬁl,| j(r,0) has
i pseudospin symmetry Whllg+ 1,i(r,0) has spin symmetry
,jfl+1/2(r) i

wyl+1 (6,0) in itself.
QF12. % r ' To make our discussion much clearer, we return to the

original definition of g%, and f¢ , at the spherical limit
- | —1/2+Q) without using the representation byand 6. The relation
Q - x
Qoo alr,0)=—2me (@712 N1
Fl,jil*l/Z(r)

XYI({:ll/z(H'@)—r )

o 1+1/2+Q
g$'|'j:|a_,1,2(r,0)=i\/ﬂe H(@-1/2)e 21 +1

Gl,j=|il/2(r)

X Yoy 6, P

V, d (Q+1/2)?
—VA(E Do a2 12 D= | o T | (f
p p?
O+1/2
- (fgjiz,j+11f(—2,|,j)+

+ 5(3]& |+2]+1+f | J)‘|

0+1 +
Hlr2j+1=T-

between the cylindrical coordinate and polar coordinate
givesd,V,=cosed,V1+sin 69,V,, which shows that if condi-
tion (2.7) is satisfied, automatlcallyrvl—o i.e., the condi-
tion for the pseudospin symmetf6—8| at the spherical
limit. As the potentials have n@ dependence at the spherical
limit, pd,V,=2d,V, and pd,V,=23,V,, and the quantum
numberk is replaced by andj. If € j0~€+2j+10+1, WE
can derive the equation for the linear combination of the

amplitudes withT, of the lower components in the pseu-
dospin doublets from Eq2.3)

(A TPTIPE=S )

1
g

(fQ|+21+l+f

Z
a0, p+;nﬁﬂwaﬂ—h.p

(3.9
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Either of the linear combination HZJH_ j (= sign in Fig. 2 caskis larger tharf ¢ ,+2]+l+f$’|’j (+ sign in Fig.

2 case for the pseudospin doublets. Moreov\a’g |s large and never goes to zero in its definition. Thus, we can neglect the
third and the fourth lines in Eq$3.4). This implies that the pseudospin symmetry persists in the lower amplitudes at the

spherical limit. Similarly, we rewrite Eq2.2) for the linear combination of the amplitudes within the upper components
for the pseudospin doublets,

d, (Q+1/2)?
_Vl(ggjiz,j+1igflj) v, f72+ ;‘W?_T ?Tizul— —|,)
a,Vs z O+1/2
- p_2 ((9p+—3z (ggﬁzul— )T (99H2,+1+97 1j)
V5 p
z
—&Z-I—;& (g |+21+1+g+|1)+ Q(QQTi21+1—g+IJ)+ (3gQJ|ri21+1+g+|J)

(3.9

As V, is much larger thaiv, and never becomes zero, we can neglect the terms proportioﬁgN/&dV%. As we see in Fig.
2, the amplitudes witlunnatural I, in the upper components are small for the pseudospin doublets. They may be small as to
be of negligible order at the spherical limit. Moreover, the relation between the cylindrical coordinate and the polar coordinate
gives d,V,=c0s6d,V,+sin 69,V,. Subsequently, if conditioni2.5) is satisfied,d,V,=0, which is not the condition for the
pseudospin symmetry at the spherical limit as is proved in our previous Wark

Next, we consider the linear combination of the amplitudes wétural |, for the spin doublets at the spherical limit. If
there were a good degeneracy of the spin doublets, 6.6~ € j+10+1, the linear combination of the amplitudes with
natural I, in the upper components satisfies the equation

P (Q+1/2)
gt )= | e O gy g
FAVA z Q+1/2
—-t dp+—0, (ggﬂﬂ— ) —— (g 9+|T+1+97 L)
2 p p
_o4 2 Z (g1 z
dt p& (g— 1 J+l+g+,|,j)+ pzﬂ(g_ I j+l_g+ [ ])+ (39— 1 j+l+g+,|,j) . (3.6

As we see in Fig. 4, either of the linear combinationis found not only in the small component but also in the large

of g?ﬂﬂ_ ~1j (+ sign in Fig. 4 are larger than component, the pseudospin symmetry becomes better in the

ggﬂ+1+g+ ., (= sign in Fig. 5 for the spin doublets. deformed nuclei than in the spherical nuclei.

Thus, we can neglect the terms proportmnab);(s/zlv2 in
Eq. (3.6). This indicates that the spin symmetry exists in the IV. NUMERICAL ANALYSIS

upper components at the spherical limit, only when o We have performed the numerical analysis fASm with
~ € j+10+1- One gets a similar result for the lower compo- the same code and parameter set as in our previous[@prk
nents by replacing the index+(,1+2,j+1) by (=,l,j+1) We have rewritten the relativistic Hartree plus BCS approxi-
in Eq. (3.4). As the amplitudes wittunnatural I, in lower  mation code for the deformed nuclei developed by Ring’s
components for the spin doublets are small, the spin symmegroup[12].
try is not seen in the lower components at the spherical limit.

In the spherical limit, the pseudospin symmetry is in the 1. Derivatives of the potentials with respect gpand z

small component and the spin symmetry is in the large com- |n Fig. 1 we show the relative ratio of the potential de-
ponent, when they are expressed in the polar coordinate. fivatives with respect tgp andz to the potentialsvy, *+ Vs,

the deformed case, when they are expressed in the cylindricalhich is shown byV+S in the figure. From Eq(2.4) the
coordinate, the pseudospin symmetry and the spin symmetiyerivatives ofV, andV, are the same as the derivatives of
are found both in the uppdtarge and lower(smal) com-  V,,+Vg. The figure shows that the region where four kinds
ponents. Both symmetries are closely related, which indiof derivatives become zero are nearly the same. For much
cates that the deformed field mixes both symmetries just a&rgerz and p, the derivatives ol/\,= Vs go to zero, as the
the deformation mixe$ andj. As the pseudospin symmetry potentials are conversing to zero, which is shown in Figs. 2

054313-5



K. SUGAWARA-TANABE, S. YAMAJI, AND A. ARIMA PHYSICAL REVIEW C 65054313

ZzZZ2Z22Z
-
DU W

(Q@"n,) 1%4gm

o (1/2,1)
; FIG. 6. The energy difference
Ae vs average energy for the
pseudospin pair levels. The longi-
tudinal axis is forAe and the
horizontal axis is fore defined in
Eqg. (4.1). The numerals inside pa-
rentheses are ("*%Y.n,). The
doublets belonging tdN=3 are
shown by diamonds, those td
=4 by pluses, those tdl=5 by
squares, and those thli=6 by
Crosses.

" (3127, 0)

Ae (MeV)

o (1/2,3)

. (327, 2)

g (6201)

i .

(712", 0)
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(1/2*, 0)

(e, 1) § B
_x (32%,3)

(1/2")'(,—4)

_1 1 1 1 1 1 1 1
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and 3 in Ref[9]. Thus, the numerical analysis with a realis- that are more clearly seen in the left panel. It is marked that
tic parameter supports the observation that the conditionthe longitudinal scale in the left panel is larger than that in
(2.5 and (2.7) are not independent, but are satisfied at thethe right panel, which makes us call the upper component as

same region.

2. The wave functions for the pseudospin doublet

From Figs. 2 to 5 we show the wave functions for the
pseudospin doublet§igs. 2 and 3 and spin doublet&-igs.

the large component and the lower component as the small

component. In order to see the behavior at largeralue,

we show eight amplitudes for pseudospin doubgéj‘( and
St andfl)) atp=5 fm as a function ot in Fig.

3. It is seen as good agreement in the absolute values of the

amplitudes withnatural |, (dashed lines and dot-dashed

4 and 5. We compare eight amplitudes as we consider paifines, and also in the amplitudgsolid and dotted lingsin
levels. In all four figures, we use dashed lines for the ampliPoth panels. This is because the centrifugal term in(E@)

tudes withunnatural |, corresponding to the level witk,
and the dot-dashed lines for the level wih+ 1, respec-
tively. As for the other amplitudes withatural |,, we use
solid lines for the level wit) and dotted lines for the level

becomes negligible at larggr As is seen from Figs. 2 and 3,

the amplitudes withl, in upper components of the pseu-
dospin doublets are smaller than those wittural I,, and

the amplitudes withl, in lower components of the pseu-

with 1+ 1. Inside the figures, the lines are explained by tthospin doublet are larger than the other witktural |, .

asymptotic quantum numbégiN,n,,l,]Q) together with =
sign in front of[N,n,,1,]€, which corresponds te 3 of s, .

The upper components are shown in the left panel, and the 3. The wave functions for the spin doublet and the triple

lower components are in the right panel in all figures from

Figs. 2 to 5.

We adopted the pseudospin doublets with the asymptoti

quantum numbergt00]1/2 at—9.109 MeV and402]3/2 at
—9.289 MeV with the energy splitting of 0.180 MeV. In
Fig. 2 we show the behavior of the upper components fo
both levels, i.e.,ggk and ggj(,l in the left panel, and the
lower components, i.efﬂ’k andfgfk,l in the right panel as a
function of p atz=3 fm. We see the values gﬁk shown

by dashed line angffk,l shown by dot-dashed line in the left
panel are almost the same. In the right paﬁ%!k shown by
dashed line is the reversal b?[fk,l shown by dot-dashed line.
They belong to the amplitudes wittnnatural I, of pseu-

dospin doublets. In contrast to them, the other amplitudes of

degeneracy

We choose the spin pair levels §402]3/2 at —9.289
(N‘/Iev and [402]5/2 at —10.686 MeV levels. The energy
splitting of 1.397 MeV is somewhat large compared with the
gnergy splitting of pseudospin doublet of 0.180 MeV in Fig.
2 and 3, but is still small compared with the other spin pair
levels shown in Fig. 6. We show the behaivor of the upper
componentg? , andg® | in the left panel, and the lower
componentsfgk andfﬁfkl in the right panel as a function of
p atz=1 fm in Fig. 4. There is a strong agreement on the
absolute values of the amplitudes wittatural 1, of spin
doublets, i.e.g(f’k shown by solid lines ang‘ffkl shown by
dotted line in the left panel, an‘(ﬁk shown by solid line and

241 shown by dotted line in the right panel. This figure

pseudospin doublets shown by solid lines and dotted lines comparable to the pseudospin doublet in Fig. 4 in Ref.

give a quite different behavior except for the largeregion

[9]. In Fig. 5, we show the behaviors of eight amplitudes at

054313-6



SPIN SYMMETRY AND PSEUDOSPIN SYMMETRY IN . .. PHYSICAL REVIEW ®5 054313

%(1/2‘, 4) N:i o0
; N=5 g
1545m N=6 -——3--
4 -
(112, 3)
3F X (327, 4) . ;
(@) b (3/2,9) \ FIG. 7. The energy difference
Ae vs average energy for the
S 12, 2) @, 2) 52.2) \45/2* 5 spin pair levels. The longitudinal
s ot & e : '3( : e 4 axis is forAe and the horizontal
g o B2 w721 axis is fore defined in Eq.(4.2).
o (5/2°, 0) W (9/2,0) The numerals inside parentheses
1 o 1) are QP2 n,). The symbols are
B (112, 0) L(1/2,2) N E ! S
'1»..__:(3/2', )\ (2n3) the same as defined in Fig. 6.
(3/2*, 0) B
(1127, 0)
0 i
_1 1 1 1 1 1 1 1 1 1
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

p=5 fm as a function ofz It is seen that there is almost [13]. In Fig. 6 we show the value afe as a function of.
total agreement in the absolute values of amplitudes withheir definitions in Fig. 6 are as follows:
natural I, (solid and dotted linesin both panels. As for the

amplitudes withunnatural |, (dashed lines and dot-dashed _ENngl, 07 ENnyl 20 +1
lines), the agreement in the absolute values is unacceptable, Ae= T '
but becomes better in the region of laggeln contrast to the z

pseudospin doublets, the amplitudes wittural |, in upper 1

components of the spin doublets are larger than those with e=——lennt o(T,+ 1) +enn s20+1(T,— 1)1
natural |,, and the amplitudes withatural |, in lower com- z e

ponents of the spin doublets are smaller than those with (4.9

natural |,. . . . .
. . . y using the same notation as in E§-10) in Ref.[13], the
Usually, the spin-orbit force disturbs the degeneracy Otl:symptotic value ofAe at the nonrelativistic limit is

spin doublet. However, the result of the relativistic calcula-. — , .
tion in the spherical case shows that the spin-orbit force i&®@! 2(vis—4vy) [10]. Herev,, is the strength of the spin-
proportional to the potential derivatives, andltand also ~ OrPit intéraction, and, is the strength of orbit-orbit inter-
inversely toM +Vs—Vy+ € in the denominator. In the de- action at the nonrelativistic limit. In the nonrelativistic treat-
formed case] is transformed td,. As the eigenvalue is ment, the pseudpspm Symmetry appears when-4v,,
negative andV is positive and much larger than the spin-  @nd the asymptotic value efin Eq. (4.1) is independent of
orbit force becomes weaker for the levels not deeply bounéI’ISpgfit;‘he classical limit. The numerals inside the figure are
with smallQ. Thus, levels such 4402]3/2 and[402]5/2 are  ({2°°"7.nz), which denote the pair levels witfN,n;, ;]
less influenced by the spin-orbit interaction and become &NAIN.N;,I,+2](€2+1) are used foAe ande in Eq. (4.1).
spin doublet. On the other hanf00]1/2 and[402]3/2 are  1he doublets ifN=4 are shown by plus signs, and the pseu-
good pseudospin doublets. If both doublets are satisfiedlospin doublets fof400]1/2 and[402]3/2 are in the bottom
there appears triple degeneracy. The pseudospin doublets apiithe chainN=4 with suffix (1/2°,0). The doublets shown
spin doublets, i.e.[400]1/2, [402]3/2, and[402]5/2 levels DY square with (7/2,0) are for the levels with503]7/2 and
are good candidates for the triple degeneracy. Although505]9/2. The figure shows thake for this doublet is the
1.397 MeV and 0.180 MeV are not negligible order, there issSmallest, but the real energy difference betwg98]7/2 and

no such good candidate with a good triple degeneracy in ali20519/2 is 0.279 MeV, which is much larger than the energy

blets[400]1/2 and[402]3/2 have the smallest energy splitting
in this nucleus.

4. The energy splitting of the pseudospin doublet 5. The energy splitting of the spin doublet

If we adopt the Nilsson Hamiltonian as a model at the Similarly, we show the energy differencde: versuse for
nonrelativistic limit, we can relatey , with the classical the spin doublets in Fig. 7. In this case, the definitiomef
energy given by Eq(5-10 in Bohr-Mottelson’s text book ande are as follows:
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=3, (3/27,1) inN=4,(3/2",2) inN=5, and (3/Z,3) inN
(€nn,l,,0 ™ €Nnyl,,0+1), =6 are decreasing. This trend agrees with the spherical case.
For the spin doubletd ¢ in the fixedN chain decreases with
increasinge. However, if we connect the doublets with the
same() and its highest, over differentN, their Ag in-
e=5(enny, 0% ennj, 0+1)- (42 (reases with increasing. For example, (1/2,2) in N=3,
(1/27,3) in N=4 and (1/2,4) in N=5, their Ae are in-

i — creasing. Similarly, (3/2,1) inN=3, (3/2",2) inN=4, and
The asymptotic value ohe becomesiwv s at the nonrela- (3/27,3) in N=5, and (3/2,4) in N=6 are increasing.

tivistic limit, and the asymptotic value of is independent
from vs. Inside the figure, the numerals are also
(QP2Y ), which denote the pair levels withN,n,,1,]Q
and[N,n,,l,](Q+1) for Ae ande in Eq. (4.2. The spin
pair levels 0f{402]3/2 and[402]5/2 are in the bottom of the V. CONCLUSION

N=4 chain denoted by plus sign with the suffix of (3/@). We discussed the extreme case where exact pseudospin
In the figure, the smalleAs than the doublets (3/20) IS symmetry and spin symmetry are realized. In that case, the
seen for the doublets in =5 chain denoted by squares apsolute values of amplitudes witmnatural |, in the cen-
with the sign of (1/2,0) and (3/2,1). The doublets trifygal term compared with that estimated from the
(1/27,0) correspond to the pair level501]1/2 and[501]3/2,  asymptotic quantum numbég and s, agree to each other
and (3/2,1) t0[512]3/2 and[512]5/2. They seem to have a poth in upper(large) and lower(smal) components for the
good spin symmetry degeneracy, as energy splitting opseudospin doublets. On the other hand, for the spin doublets
(1/27,0) is 0.407 MeV and (3/2,1) is 1.034 MeV less than the absolute values of amplitudes withtural 1, in the cen-
1.397 MeV for (3/2,0) inN=4 chain. However, their pseu- trifugal term compared with that estimated from the
dospin partner levels have worse energy degeneracy. For exsymptotic quantum numbgéy ands, agree with each other
ample, the pseudospin doublets [&01]3/2 and[503]5/2,  poth in upperlarge and lower(smal) components. If there
which are pseudospin partners of (1/Q) in Fig. 7, has ere the extreme case, the triple degeneracy appears among
0.413 MeV energy splittir_1g. The pseudospin doublets Ofthe levels with k,Q), (k’,Q+1), and k’',Q+2). In the
[510]1/2 and[512]3/2, which are pseudospin partners of reajistic case, we found this situation is almost satisfied for
(3/27,1) in Fig. 7 has 0.252 MeV energy splitting. Both the pseudospin doublets p400]1/2 and[402]3/2, and for
values are much larger than 0.180 MeV fet00]1/2 and  the spin doublets df402]3/2 and[402]5/2 in 54Sm.
[402]3/2. Thus, the candidate for the triple degeneracy in this e discussed the relation between the deformed case and
nucleus is only{400]1/2, [402|3/2, and[402]5/2. The spin  the spherical case. In the spherical case, if we transform the
symmetry is closely related with the pseudospin symmetry. lgyjindrical coordinate to the polar coordinate, the lower
is because both the pseudospin symmetry and the spin synkmall) component has the pseudospin symmetry, while the
me.try are caused as a result of the common Spin-orbit interupperaarge Component has Spin Symmetry in itself. In con-
action. o _ _trast to the spherical case the pseudospin and spin symme-
Now we compare the results in Figs. 6 and 7 with those inries are found both in the upper and lower components in
the Spherical nuclei. In the Spherical nUC|Ei, as is seen in Flghe deformed case. Just as the deformation rr"mﬂjj’ the
1 in our previous worK6], Ae is decreasing for the pseu- deformation mixes the pseudospin and the spin symmetries.
dospin splitting, whileAe is increasing for the spin-orbit As the pseudospin symmetry is found both in the upper and
splitting with increasinge. For the pseudospin doublets in Jower components, it may be the main reason why the pseu-
Fig. 6, we see thahe is decreasing with increasingin the  dospin approximation improves more in the deformed case
fixed N chain. For exampleAe in N=4 chain decreases than in the spherical case.
with increasinge starting from (1/2,2) to (1/2",0). More-
over, if the doublets with the sanf® and its highesh, chain
are connected over differeN, their Ae decrease with in-
creasinge. For example, (1/2,1) in N=3, (1/2",2) in N We are grateful to Professor J. N. Ginocchio for giving us
=4, (1/2",3) inN=5, and (1/2 ,4) in N=6, they are de- this interesting thema. We thank Professor T. J. Wright for
creasing with increasing energy. Similarly, (3/2) in N his careful reading of this manuscript.

|

Ae=

N

Their energy dependence is smaller than the pseudospin dou-
blets. This trend is also found in the spherical cg&e
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