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Spin symmetry and pseudospin symmetry in the relativistic mean field with a deformed potential
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The equations for the pseudospin pair levels become of the same form as those of the spin pair levels at the
limit where the derivatives of potentials are zero. However, the centrifugal terms of four amplitudes among

eight components in the pseudospin pair levels have pseudo-l̃ z , while those in the spin pair-levels have natural
l z . When both of the pseudospin and spin symmetries are well satisfied, there appears a triple degeneracy. The
relativistic mean-field calculation over154Sm gives@400#1/2, @402#3/2, and@402#5/2 levels as such a candidate.
The relation between the deformed wave function and the spherical wave function are discussed at the spheri-
cal limit by using the transformation from the cylindrical coordinate into the polar coordinate.
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I. INTRODUCTION

One of the advantages in the relativistic treatment is tha
clarifies the origin of the spin-orbit interaction, which is al
related with the pseudospin concept@1,2#. Recently, there
appeared various research papers with the purpose to fin
root of the pseudospin concept to the relativistic mean-fi
equation@3–9#. We found the general and realistic conditio
for the pseudospin approximation both for the spherical
tential @6–8#, and the deformed potential@7,9#. It has been
discovered that the condition found in the large compon
of Dirac wave function works much better than that in t
small component wave function for the deformed case
contrast to the spherical case@9#.

The pseudospin concept in the deformed nuclei is defi
in the nonrelativistic treatment@10# as following: The single-
particle levels with j z5V5 l z11/2 and j z85V115 l z12
21/2 lie very close in energy, and these two levels are

beled asj z5 l̃ z21/2 and j z85 l̃ z11/2 with l̃ z5 l 11. If we
use the asymptotic quantum number@N,nz ,l z#V with j z

5V to identify the deformed state, which is usually used
the nonrelativistic calculation, the pseudospin pair levels
come@N,nz ,l z#V and@N,nz ,l z12#(V11), or equivalently

@N,nz , l̃ z#( l̃ z21/2) and @N,nz , l̃ z#( l̃ z11/2). On the other
hand, the spin pair-levels are labeled by@N,nz ,l z#V and
@N,nz ,l z#(V11), or equivalently@N,nz ,l z#( l z21/2) and
@N,nz ,l z#( l z11/2), as they are split only by the spin-orb
interaction.

The conditions we have found for the pseudospin symm
try in our previous work@Eqs. ~2.8! and ~2.10! in Ref. @9##
seem also to work for the spin symmetry. Moreover,
found the revival ofL-S coupling scheme at superdeform
tion in the nonrelativistic calculation, showing that the e
pectation values of spin-orbit interaction decreases with
creasing deformation for smallV @11#. Thus, we compare the
pseudospin pair levels withl̃ z61/2, and the spin pair level
with l z61/2 by using the relativistic mean-field program@12#
for 154Sm in this paper. In Sec. II our theory is reviewed,
Sec. III the realtion between the spherical wave function a
the deformed wave function is discussed. In Sec. IV the
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merical analysis is carried out on154Sm, and the conclusion
is given in Sec. V.

II. THEORY

The eigenfunctionc(rW) for the Dirac equation with an
axially symmetrically deformed potential has two comp
nents, i.e., upper~large! componentg and lower~small! com-
ponent f. We use the cylindrical coordinates (r,w,z), and
then each ofg and f in c(rW) has two components,

g5
1

A2p
S ig1,k

V ei (V21/2)w

ig2.k
V ei (V11/2)wD ,

f 5
1

A2p
S f 1,k

V ei (V21/2)w

f 2,k
V ei (V11/2)wD . ~2.1!

Here g6,k
V and f 6,k

V are functions ofr and z, k denotes the
other quantum numbers except forV. The 6 sign in g6,k

V

and f 6,k
V corresponds to the spin wave function withsz

561/2. Inserting this equation into the Dirac equation, w
get the coupled equations. We then found the equations
g6,k

V and the equations forf 6,k
V have a form symmetric to

each other@7,9#

2V1V2g6,k
V 5F ]r

22
~V71/2!2

r2
1

]r

r
1]z

2Gg6,k
V

2
]rV2

V2
F S ]r7

V71/2

r Dg6,k
V 7]zg7,k

V G
2

]zV2

V2
F S 6]r1

V61/2

r Dg7,k
V 1]zg6,k

V G ,
~2.2!
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FIG. 1. The ratio of the poten-
tial derivatives to the potentials a
a function of r at z53 fm ~left
panel!, and as a function ofz at
r53 fm ~right panel!. V corre-
sponds toVV and S to VS in the
text.
.
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2V1V2f 6,k
V 5F ]r

22
~V71/2!2

r2
1

]r

r
1]z

2G f 6,k
V

2
]rV1

V1
F S ]r7

V71/2

r D f 6,k
V 7]zf 7,k

V G
2

]zV1

V1
F S 6]r1

V61/2

r D f 7,k
V 1]zf 6,k

V G .
~2.3!

Here ]r
25]2/]r2, ]r5]/]r, ]z

25]2/]z2, and ]z5]/]z.
The eigenvalue of Dirac equatione is included in two kinds
of potentialsV1 andV2,

V15M2ek,V2VS2VV , V25ek,V1M1VS2VV ,
~2.4!

with vector potentialVV , scalar potentialVS, and massM.
As seen in Eqs.~2.2! and~2.3!, g6,k

V and f 6,k
V have symmet-

ric forms by exchangingV2 by V1. It is also seen from Eqs
~2.2! and ~2.3! that there exists a symmetry relation amo
g6,k

V ( f 6,k
V ) and g6,k

2V ( f 6,k
2V) in the axially symmetrically

deformed case coming from the time reversal invarian
From now on, we will limit our discussion to the positiv
value ofV and use bothf 6,k

V andg6,k
V .

Let us assume the case where the following conditions
satisfied:

]V2 /]r50, ]V2 /]z50. ~2.5!

In this special region, the coupled equation~2.2! becomes

2V1V2g2,k
V 5F ]r

22
~V11/2!2

r2
1

]r

r
1]z

2Gg2,k
V ,

2V18V28g1,k8
V11

5F ]r
22

~V11/2!2

r2
1

]r

r
1]z

2Gg1,k8
V11 ,

~2.6!

whereV1 andV2 haveek,V , while V18 andV28 haveek8,V11

as is defined in Eq.~2.4!. This is nothing but the pseudosp
doublets, ifk corresponds to@N,nz ,l z#, k8 to @N,nz ,l z85 l z

12#, andek,V;ek8,V11 or V15V18 andV25V28 . They obey
05431
e.

re

the same equation withl̃ z5V11/2 in the centrifugal term.
However, they haveunnatural lz , because the true value o
l z for the former level must bel z5V21/2 as j z5V5 l z

11/2, and the true value ofl z8 for the latter level isl z85V
13/2 asj z85V115 l z1221/2. According to the definition
in Ref. @9#, we called themunphysicalamplitudes. From now
on we will call them the amplitudes withunnatural lz .

If both of k andk8 are the same with@N,nz ,l z#, andek,V
nearly equalsek,V11, Eq. ~2.6! also corresponds to the spi
doublets, asV5 l z21/2 and V115 l z11/2. In this case,
spin doublets havenatural lz5V11/2 in the centrifugal
term. We called themphysicalamplitudes in Ref.@9#. In this
paper we will call them the amplitudes withnatural lz . We
must pay attention to the fact that the condition~2.5! is ef-
fective in both pseudospin doublets and spin doublets.

It is found that the region where]rV150 overlaps the
region where]rV250, and the region where]zV150 over-
laps the region where]zV250 ~see Figs. 2 and 3 in Ref.@9#!.
In Fig. 1, we confirmed that the region where]rV250
equals the region where]zV250, ]rV150, and ]zV150.
We can apply the same discussion to the lower compon
as that to the upper components. If the following condition
satisfied:

]rV150, ]zV150, ~2.7!

then

2V1V2f 2,k
V 5F ]r

22
~V11/2!2

r2
1

]r

r
1]z

2G f 2,k
V ,

2V18V28 f 1,k8
V11

5F ]r
22

~V11/2!2

r2
1

]r

r
1]z

2G f 1,k8
V11 .

~2.8!

If k corresponds to@N,nz ,l z#, andk8 to @N,nz ,l z12#, f 2,k
V

and f 1,k8
V11 for the pseudospin doublets (ek,V;ek8,V11), obey

the same equation withl̃ z . In other words, the pseudospi
doublet is found in the amplitudes withunnatural lz of lower
components. If bothk and k8 are defined as@N,nz ,l z#,
3-2
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f 2,k
V and f 1,k

V11 for the spin doublets (ek,V;ek,V11) have
natural lz5V11/2 in the centrifugal term. In other words
the spin doublets are found in the amplitudes with natural z
of lower components. Again, the condition~2.7! that is sat-
isfied in the same region as Eq.~2.5!, works both for the
pseudospin doublets and spin doublets.

Now we consider of the other amplitudes for the sta
with (k,V) and (k8,V11), i.e., g1,k

V ( f 1,k
V ) and g2,k8

V11

( f 2,k8
V11). Under the same conditions of Eq.~2.5! or Eq. ~2.7!,

they become

2V1V2g1,k
V 5F ]r

22
~V21/2!2

r2
1

]r

r
1]z

2Gg2,k
V ,

2V18V28g2,k8
V11

5F ]r
22

~V13/2!2

r2
1

]r

r
1]z

2Gg2,k8
V11 ,

2V1V2f 1,k
V 5F ]r

22
~V21/2!2

r2
1

]r

r
1]z

2G f 2,k
V ,

FIG. 2. The upper components~left panel! and lower compo-
nents~right panel! for pseudospin doublet of@400#1/2 and@402#3/2
as a function ofr at z53 fm. The dashed and the dot-dashed lin
are for theunphysicalamplitudes, and the solid and the dotted lin
are for thephysicalamplitudes. The dashed and solid lines are
@400#1/2 and the dot-dashed and the dotted lines are for@402#3/2.
The 6 sign in front of @N,nz ,l z#V corresponds to6 1

2 of sz .

FIG. 3. The upper components~left panel! and lower compo-
nents~right panel! for pseudospin doublet of@400#1/2 and@402#3/2
as a function ofz at r55 fm. The lines are the same as defined
Fig. 2.
05431
s

2V18V28 f 2,k8
V11

5F ]r
22

~V13/2!2

r2
1

]r

r
1]z

2G f 2,k8
V11 .

~2.9!

These amplitudes havenatural lz and l z12 for the pseu-
dospin doublets ofk5@N,nz ,l z# and k85@N,nz ,l z12#.
They obey different equations except for larger where the
contribution from the centrifugal term becomes negligib
The pseudospin doublets withg1,k

V ( f 1,k
V ) of k5@N,nz ,l z#

and g2,k8
V11 ( f 2,k8

V11) of k85@N,nz ,l z12# obey the different
equation but with natural lz . If we choose k5k8
5@N,nz ,l z# in Eq. ~2.9!, these amplitudes haveunnatural
l z . For the spin doublets withk5@N,nz ,l z#, g1,k

V ( f 1,k
V ) and

g2,k
V11 ( f 2,k

V11) obey the different equation withunnatural lz .
From Figs. 2 to 5, we have compared these eight am

tudes for both pseudospin doublets and spin doublets. In
the figures, the amplitudes withunnatural lz are shown by
dashed or dot-dashed lines, while the amplitudes withnatu-
ral l z are shown by solid or dotted lines. Both the dashed a
the solid lines correspond to the level withV, and both the
dot-dashed and dotted lines correspond to the level w
(V11). The numerical analysis that supports Eqs.~2.6! and

r

FIG. 4. The upper components~left panel! and lower compo-
nents~right panel! for spin doublet of@402#3/2 and@402#5/2 as a
function ofr at z51 fm. The lines for theunphysicalandphysical
amplitudes are the same as defined in Fig. 2. The dashed an
solid lines are for@402#3/2 and the dot-dashed and the dotted lin
are for @402#5/2.

FIG. 5. The upper components~left panel! and lower compo-
nents ~right panel! for spin doublet of@402#3/2 and @402#5/2 as
a function ofz at r55 fm. The lines are the same as defined
Fig. 4.
3-3
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K. SUGAWARA-TANABE, S. YAMAJI, AND A. ARIMA PHYSICAL REVIEW C 65 054313
~2.8! works well for the case where the pseudospin symme
and the spin symmetry become better. If there were a g
degeneracy in the pair levels labeled with (k,V) and
(k8,V11), and also with (k8,V11) and (k8,V12), there
would appear triple degeneracy. In the realistic case, i
hard to appear, but Figs. 2–5 seem to show such cand
possibilities.

III. THE RELATION TO THE SPHERICAL CASE

Now we will discuss the relation between the deform
case and the spherical case. At the spherical limit, we h
used the polar coordinate (r ,u,w) instead of the cylindrical
coordinate@6–8#. The upper and lower components in th
spherical limit are denoted by

g5 i
Gl j ~r !

r
Y jm

l ~u,f!,

f 5
Fl j ~r !

r
~sW • r̂ !Y jm

l ~u,f!, ~3.1!

whereY jm
l (u,f) is a vector spherical harmonics. We rewri

Eq. ~2.1! by replacingk5@ l , j # and then comparing it with
Eq. ~3.1!. Then, we get the relation betweenf 6,l , j 5 l 61/2

V (r ,u)

andg6,l , j 5 l 61/2
V (r ,u), andGl , j 5 l 61/2(r ) andFl , j 5 l 61/2(r ).

f 6,l , j 5 l 11/2
V ~r ,u!56A2pe2 i (V71/2)wAl 13/27V

2l 13

3YV71/2
l 11 ~u,w!

Fl , j 5 l 11/2~r !

r
,

f 6,l , j 5 l 21/2
V ~r ,u!52A2pe2 i (V71/2)wAl 21/26V

2l 21

3YV71/2
l 21 ~u,w!

Fl , j 5 l 21/2~r !

r
,

g1,l , j 5 l 61/2
V ~r ,u!56A2pe2 i (V21/2)wAl 11/26V

2l 11

3YV21/2
l ~u,w!

Gl , j 5 l 61/2~r !

r
,

05431
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g2,l , j 5 l 61/2
V ~r ,u!5A2pe2 i (V11/2)wAl 11/27V

2l 11

3YV11/2
l ~u,w!

Gl , j 5 l 61/2~r !

r
. ~3.2!

Here f 6,l , j 5 l 61/2
V (r ,u) andg6,l , j 5 l 61/2

V (r ,u) are functions of
(r ,u) and not (r,z), andYV

l (u,w) is the spherical harmon
ics.

In the spherical limit, it is said that the pseudospin sy
metry is hidden in the lower component@3,4,6–8#, while the
spin symmetry is in the upper component. From Eq.~3.2!,
we see the following relations:

f 1,l 12,j 5 l 1221/2
V11 ~r ,u!

f 2,l , j 5 l 11/2
V ~r ,u!

5
Fl 12,j 5 l 1221/2~r !

Fl , j 5 l 11/2~r !

Al 15/21V

Al 13/21V

g1,l , j 5 l 11/2
V11 ~r ,u!

g2,l , j 5 l 21/2
V ~r ,u!

5
Gl , j 5 l 11/2~r !

Gl , j 5 l 21/2~r !

Al 13/21V

Al 11/21V
. ~3.3!

There is no simple relation among the ratio f
g1,l 12,j 5 l 1221/2

V11 (r ,u) and g2,l , j 5 l 11/2
V (r ,u), and also for

f 1,l , j 5 l 11/2
V11 (r ,u) and f 2,l , j 5 l 21/2

V (r ,u). It indicates that if we
choose polar coordinate at the spherical limit,f 6,l , j

V (r ,u) has
pseudospin symmetry whileg6,l , j

V (r ,u) has spin symmetry
in itself.

To make our discussion much clearer, we return to
original definition of g6,k

V and f 6,k
V at the spherical limit

without using the representation byr and u. The relation
between the cylindrical coordinate and polar coordin
gives] rV15cosu]zV11sinu]rV1, which shows that if condi-
tion ~2.7! is satisfied, automatically] rV150, i.e., the condi-
tion for the pseudospin symmetry@6–8# at the spherical
limit. As the potentials have nou dependence at the spheric
limit, r]zV15z]rV1 and r]zV25z]rV2, and the quantum
numberk is replaced byl and j. If e l , j ,V;e l 12,j 11,V11, we
can derive the equation for the linear combination of t
amplitudes with l̃ z of the lower components in the pseu
dospin doublets from Eq.~2.3!
2V1
2~ f 1,l 12,j 11

V11 6 f 2,l , j
V !5

V1

V2
S ]r

21
]r

r
2]z

2~V11/2!2

r2 D ~ f 1,l 12,j 11
V11 6 f 2,l , j

V !2
]rV1

V2
F S ]r1

z

r
]zD ~ f 1,l 12,j 11

V11 6 f 2,l , j
V !

2
V11/2

r
~ f 1,l 12,j 11

V11 7 f 2,l , j
V !1S 2]z1

z

r
]rD ~ f 2,l 12,j 11

V11 7 f 1,l , j
V !1

z

r2
V~ f 2,l 12,j 11

V11 6 f 1,l , j
V !

1
z

2r2
~3 f 2,l 12,j 11

V11 7 f 1,l , j
V !G . ~3.4!
3-4
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Either of the linear combination off 1,l 12,j 11
V11 6 f 2,l , j

V ~2 sign in Fig. 2 case! is larger thanf 2,l 12,j 11
V11 7 f 1,l , j

V (1 sign in Fig.
2 case! for the pseudospin doublets. Moreover,V2 is large and never goes to zero in its definition. Thus, we can neglec
third and the fourth lines in Eqs.~3.4!. This implies that the pseudospin symmetry persists in the lower amplitudes a
spherical limit. Similarly, we rewrite Eq.~2.2! for the linear combination of the amplitudes withl̃ z in the upper component
for the pseudospin doublets,

2V1~g1,l 12,j 11
V11 6g2,l , j

V !5
1

V2
S ]r

21
]r

r
1]z

22
~V11/2!2

r2 D ~g1,l 12,j 11
V11 6g2,l , j

V !

2
]rV2

V2
2 F S ]r1

z

r
]zD ~g1,l 12,j 11

V11 6g2,l , j
V !2

V11/2

r
~g1,l 12,j 11

V11 7g2,l , j
V !

1S 2]z1
z

r
]rD ~g2,l 12,j 11

V11 7g1,l , j
V !1

z

r2
V~g2,l 12,j 11

V11 6g1,l , j
V !1

z

2r2
~3g2,l 12,j 11

V11 7g1,l , j
V !G .

~3.5!

As V2 is much larger thanV1 and never becomes zero, we can neglect the terms proportional to]rV2 /V2
2. As we see in Fig.

2, the amplitudes withunnatural lz in the upper components are small for the pseudospin doublets. They may be sma
be of negligible order at the spherical limit. Moreover, the relation between the cylindrical coordinate and the polar coo
gives ] rV25cosu]zV21sinu]rV2. Subsequently, if condition~2.5! is satisfied,] rV250, which is not the condition for the
pseudospin symmetry at the spherical limit as is proved in our previous work@7#.

Next, we consider the linear combination of the amplitudes withnatural lz for the spin doublets at the spherical limit.
there were a good degeneracy of the spin doublets, i.e.,e l , j ,V;e l , j 11,V11, the linear combination of the amplitudes wit
natural lz in the upper components satisfies the equation

2V1~g1,l , j 11
V11 6g2,l , j

V !5
1

V2
S ]r

21
]r

r
1]z

22
~V11/2!2

r2 D ~g1,l , j 11
V11 6g2,l , j

V !

2
]rV2

V2
2 F S ]r1

z

r
]zD ~g1,l , j 11

V11 6g2,l , j
V !2

V11/2

r
~g1,l , j 11

V11 7g2,l , j
V !

1S 2]z1
z

r
]rD ~g2,l , j 11

V11 7g1,l , j
V !1

z

r2
V~g2,l , j 11

V11 6g1,l , j
V !1

z

2r2
~3g2,l , j 11

V11 7g1,l , j
V !G . ~3.6!
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As we see in Fig. 4, either of the linear combinati
of g1,l , j 11

V11 6g2,l , j
V (1 sign in Fig. 4! are larger than

g2,l , j 11
V11 7g1,l , j

V (2 sign in Fig. 5! for the spin doublets.
Thus, we can neglect the terms proportional to]rV2 /V2

2 in
Eq. ~3.6!. This indicates that the spin symmetry exists in t
upper components at the spherical limit, only whene l , j ,V

;e l , j 11,V11. One gets a similar result for the lower comp
nents by replacing the index (6,l 12,j 11) by (6,l , j 11)
in Eq. ~3.4!. As the amplitudes withunnatural lz in lower
components for the spin doublets are small, the spin sym
try is not seen in the lower components at the spherical lim

In the spherical limit, the pseudospin symmetry is in t
small component and the spin symmetry is in the large co
ponent, when they are expressed in the polar coordinate
the deformed case, when they are expressed in the cylind
coordinate, the pseudospin symmetry and the spin symm
are found both in the upper~large! and lower~small! com-
ponents. Both symmetries are closely related, which in
cates that the deformed field mixes both symmetries jus
the deformation mixesl and j. As the pseudospin symmetr
05431
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t.

-
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is found not only in the small component but also in the lar
component, the pseudospin symmetry becomes better in
deformed nuclei than in the spherical nuclei.

IV. NUMERICAL ANALYSIS

We have performed the numerical analysis for154Sm with
the same code and parameter set as in our previous work@9#.
We have rewritten the relativistic Hartree plus BCS appro
mation code for the deformed nuclei developed by Rin
group @12#.

1. Derivatives of the potentials with respect tor and z

In Fig. 1 we show the relative ratio of the potential d
rivatives with respect tor and z to the potentialsVV6VS ,
which is shown byV6S in the figure. From Eq.~2.4! the
derivatives ofV1 andV2 are the same as the derivatives
VV6VS . The figure shows that the region where four kin
of derivatives become zero are nearly the same. For m
largerz andr, the derivatives ofVV6VS go to zero, as the
potentials are conversing to zero, which is shown in Figs
3-5
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FIG. 6. The energy difference
D« vs average energy« for the
pseudospin pair levels. The long
tudinal axis is for D« and the
horizontal axis is for« defined in
Eq. ~4.1!. The numerals inside pa
rentheses are (Vparity,nz). The
doublets belonging toN53 are
shown by diamonds, those toN
54 by pluses, those toN55 by
squares, and those toN56 by
crosses.
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and 3 in Ref.@9#. Thus, the numerical analysis with a reali
tic parameter supports the observation that the condit
~2.5! and ~2.7! are not independent, but are satisfied at
same region.

2. The wave functions for the pseudospin doublet

From Figs. 2 to 5 we show the wave functions for t
pseudospin doublets~Figs. 2 and 3!, and spin doublets~Figs.
4 and 5!. We compare eight amplitudes as we consider p
levels. In all four figures, we use dashed lines for the am
tudes withunnatural lz corresponding to the level withV,
and the dot-dashed lines for the level withV11, respec-
tively. As for the other amplitudes withnatural lz , we use
solid lines for the level withV and dotted lines for the leve
with V11. Inside the figures, the lines are explained by
asymptotic quantum number@N,nz ,l z#V together with6
sign in front of@N,nz ,l z#V, which corresponds to6 1

2 of sz .
The upper components are shown in the left panel, and
lower components are in the right panel in all figures fro
Figs. 2 to 5.

We adopted the pseudospin doublets with the asympt
quantum numbers@400#1/2 at29.109 MeV and@402#3/2 at
29.289 MeV with the energy splitting of 0.180 MeV. I
Fig. 2 we show the behavior of the upper components
both levels, i.e.,g6,k

V and g6,k8
V11 in the left panel, and the

lower components, i.e.,f 6,k
V and f 6,k8

V11 in the right panel as a
function of r at z53 fm. We see the values ofg2,k

V shown
by dashed line andg1,k8

V11 shown by dot-dashed line in the le
panel are almost the same. In the right panel,f 2,k

V shown by
dashed line is the reversal off 1,k8

V11 shown by dot-dashed line
They belong to the amplitudes withunnatural lz of pseu-
dospin doublets. In contrast to them, the other amplitude
pseudospin doublets shown by solid lines and dotted li
give a quite different behavior except for the largerr region
05431
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that are more clearly seen in the left panel. It is marked t
the longitudinal scale in the left panel is larger than that
the right panel, which makes us call the upper componen
the large component and the lower component as the s
component. In order to see the behavior at largerr value,
we show eight amplitudes for pseudospin doublet (g6,k

V and
g6,k8

V11 , f 6,k
V and f 6,k8

V11) at r55 fm as a function ofz in Fig.
3. It is seen as good agreement in the absolute values o
amplitudes withnatural lz ~dashed lines and dot-dashe
lines!, and also in the amplitudes~solid and dotted lines! in
both panels. This is because the centrifugal term in Eq.~2.8!
becomes negligible at largerr. As is seen from Figs. 2 and 3
the amplitudes withl̃ z in upper components of the pseu
dospin doublets are smaller than those withnatural lz , and
the amplitudes withl̃ z in lower components of the pseu
dospin doublet are larger than the other withnatural lz .

3. The wave functions for the spin doublet and the triple
degeneracy

We choose the spin pair levels of@402#3/2 at 29.289
MeV and @402#5/2 at 210.686 MeV levels. The energ
splitting of 1.397 MeV is somewhat large compared with t
energy splitting of pseudospin doublet of 0.180 MeV in F
2 and 3, but is still small compared with the other spin p
levels shown in Fig. 6. We show the behaivor of the upp
componentsg6,k

V andg6,k
V11 in the left panel, and the lowe

componentsf 6,k
V and f 6,k

V11 in the right panel as a function o
r at z51 fm in Fig. 4. There is a strong agreement on t
absolute values of the amplitudes withnatural lz of spin
doublets, i.e.,g2,k

V shown by solid lines andg1,k
V11 shown by

dotted line in the left panel, andf 2,k
V shown by solid line and

f 1,k
V11 shown by dotted line in the right panel. This figu

is comparable to the pseudospin doublet in Fig. 4 in R
@9#. In Fig. 5, we show the behaviors of eight amplitudes
3-6



l

es

SPIN SYMMETRY AND PSEUDOSPIN SYMMETRY IN . . . PHYSICAL REVIEW C65 054313
FIG. 7. The energy difference
D« vs average energy« for the
spin pair levels. The longitudina
axis is for D« and the horizontal
axis is for « defined in Eq.~4.2!.
The numerals inside parenthes
are (Vparity,nz). The symbols are
the same as defined in Fig. 6.
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r55 fm as a function ofz. It is seen that there is almos
total agreement in the absolute values of amplitudes w
natural lz ~solid and dotted lines! in both panels. As for the
amplitudes withunnatural lz ~dashed lines and dot-dashe
lines!, the agreement in the absolute values is unaccepta
but becomes better in the region of larger. In contrast to the
pseudospin doublets, the amplitudes withnatural lz in upper
components of the spin doublets are larger than those
natural lz , and the amplitudes withnatural lz in lower com-
ponents of the spin doublets are smaller than those withun-
natural lz .

Usually, the spin-orbit force disturbs the degeneracy
spin doublet. However, the result of the relativistic calcu
tion in the spherical case shows that the spin-orbit force
proportional to the potential derivatives, and tol and also
inversely toM1VS2VV1e in the denominator. In the de
formed case,l is transformed tol z . As the eigenvaluee is
negative andM is positive and much larger thane, the spin-
orbit force becomes weaker for the levels not deeply bo
with smallV. Thus, levels such as@402#3/2 and@402#5/2 are
less influenced by the spin-orbit interaction and becom
spin doublet. On the other hand,@400#1/2 and@402#3/2 are
good pseudospin doublets. If both doublets are satisfi
there appears triple degeneracy. The pseudospin doublet
spin doublets, i.e.,@400#1/2, @402#3/2, and@402#5/2 levels
are good candidates for the triple degeneracy. Althou
1.397 MeV and 0.180 MeV are not negligible order, there
no such good candidate with a good triple degeneracy in
the other levels shown in Figs. 6 and 7.

4. The energy splitting of the pseudospin doublet

If we adopt the Nilsson Hamiltonian as a model at t
nonrelativistic limit, we can relateek,V with the classical
energy given by Eq.~5-10! in Bohr-Mottelson’s text book
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@13#. In Fig. 6 we show the value ofD« as a function of«.
Their definitions in Fig. 6 are as follows:

D«5
eNnzl z ,V2eNnzl z12,V11

l̃ z

,

«5
1

2 l̃ z

@eNnzl z ,V~ l̃ z11!1eNnzl z12,V11~ l̃ z21!#.

~4.1!

By using the same notation as in Eq.~5-10! in Ref. @13#, the
asymptotic value ofD« at the nonrelativistic limit is
\v̄ l̃ z(v ls24v l l ) @10#. Here v ls is the strength of the spin
orbit interaction, andv l l is the strength of orbit-orbit inter-
action at the nonrelativistic limit. In the nonrelativistic trea
ment, the pseudospin symmetry appears whenv ls;4v l l ,
and the asymptotic value of« in Eq. ~4.1! is independent of
v ls at the classical limit. The numerals inside the figure a
(Vparity,nz), which denote the pair levels with@N,nz ,l z#V
and@N,nz ,l z12#(V11) are used forD« and« in Eq. ~4.1!.
The doublets inN54 are shown by plus signs, and the pse
dospin doublets for@400#1/2 and@402#3/2 are in the bottom
of the chainN54 with suffix (1/21,0). The doublets shown
by square with (7/22,0) are for the levels with@503#7/2 and
@505#9/2. The figure shows thatD« for this doublet is the
smallest, but the real energy difference between@503#7/2 and
@505#9/2 is 0.279 MeV, which is much larger than the ener
difference for@400#1/2 and@402#3/2 of 0.180 MeV. The dou-
blets@400#1/2 and@402#3/2 have the smallest energy splittin
in this nucleus.

5. The energy splitting of the spin doublet

Similarly, we show the energy differenceD« versus« for
the spin doublets in Fig. 7. In this case, the definition ofD«
and« are as follows:
3-7
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D«5
1

l z
~eNnzl z ,V2eNnzl z ,V11!,

«5
1

2
~eNnzl z ,V1eNnzl z ,V11!. ~4.2!

The asymptotic value ofD« becomes\v̄v ls at the nonrela-
tivistic limit, and the asymptotic value of« is independent
from v ls . Inside the figure, the numerals are al
(Vparity,nz), which denote the pair levels with@N,nz ,l z#V
and @N,nz ,l z#(V11) for D« and « in Eq. ~4.2!. The spin
pair levels of@402#3/2 and@402#5/2 are in the bottom of the
N54 chain denoted by plus sign with the suffix of (3/21,0).
In the figure, the smallerD« than the doublets (3/21,0) is
seen for the doublets in theN55 chain denoted by square
with the sign of (1/22,0) and (3/22,1). The doublets
(1/22,0) correspond to the pair levels@501#1/2 and@501#3/2,
and (3/22,1) to @512#3/2 and@512#5/2. They seem to have
good spin symmetry degeneracy, as energy splitting
(1/22,0) is 0.407 MeV and (3/22,1) is 1.034 MeV less than
1.397 MeV for (3/21,0) in N54 chain. However, their pseu
dospin partner levels have worse energy degeneracy. Fo
ample, the pseudospin doublets of@501#3/2 and @503#5/2,
which are pseudospin partners of (1/22,0) in Fig. 7, has
0.413 MeV energy splitting. The pseudospin doublets
@510#1/2 and @512#3/2, which are pseudospin partners
(3/22,1) in Fig. 7 has 0.252 MeV energy splitting. Bo
values are much larger than 0.180 MeV for@400#1/2 and
@402#3/2. Thus, the candidate for the triple degeneracy in
nucleus is only@400#1/2, @402#3/2, and@402#5/2. The spin
symmetry is closely related with the pseudospin symmetr
is because both the pseudospin symmetry and the spin
metry are caused as a result of the common spin-orbit in
action.

Now we compare the results in Figs. 6 and 7 with those
the spherical nuclei. In the spherical nuclei, as is seen in
1 in our previous work@6#, D« is decreasing for the pseu
dospin splitting, whileD« is increasing for the spin-orbi
splitting with increasing«. For the pseudospin doublets
Fig. 6, we see thatD« is decreasing with increasing« in the
fixed N chain. For example,D« in N54 chain decrease
with increasing« starting from (1/21,2) to (1/21,0). More-
over, if the doublets with the sameV and its highestnz chain
are connected over differentN, their D« decrease with in-
creasing«. For example, (1/22,1) in N53, (1/21,2) in N
54, (1/22,3) in N55, and (1/21,4) in N56, they are de-
creasing with increasing energy. Similarly, (3/22,0) in N
05431
f

x-

f

is

It
m-
r-

n
g.

53, (3/21,1) in N54,(3/22,2) in N55, and (3/21,3) in N
56 are decreasing. This trend agrees with the spherical c
For the spin doubletsD« in the fixedN chain decreases with
increasing«. However, if we connect the doublets with th
sameV and its highestnz over differentN, their D« in-
creases with increasing«. For example, (1/22,2) in N53,
(1/21,3) in N54 and (1/22,4) in N55, their D« are in-
creasing. Similarly, (3/22,1) in N53, (3/21,2) in N54, and
(3/22,3) in N55, and (3/21,4) in N56 are increasing.
Their energy dependence is smaller than the pseudospin
blets. This trend is also found in the spherical case@6#.

V. CONCLUSION

We discussed the extreme case where exact pseudo
symmetry and spin symmetry are realized. In that case,
absolute values of amplitudes withunnatural lz in the cen-
trifugal term compared with that estimated from th
asymptotic quantum numberj z and sz agree to each othe
both in upper~large! and lower~small! components for the
pseudospin doublets. On the other hand, for the spin doub
the absolute values of amplitudes withnatural lz in the cen-
trifugal term compared with that estimated from th
asymptotic quantum numberj z andsz agree with each othe
both in upper~large! and lower~small! components. If there
were the extreme case, the triple degeneracy appears am
the levels with (k,V), (k8,V11), and (k8,V12). In the
realistic case, we found this situation is almost satisfied
the pseudospin doublets of@400#1/2 and@402#3/2, and for
the spin doublets of@402#3/2 and@402#5/2 in 154Sm.

We discussed the relation between the deformed case
the spherical case. In the spherical case, if we transform
cylindrical coordinate to the polar coordinate, the low
~small! component has the pseudospin symmetry, while
upper~large! component has spin symmetry in itself. In co
trast to the spherical case the pseudospin and spin sym
tries are found both in the upper and lower components
the deformed case. Just as the deformation mixesl and j, the
deformation mixes the pseudospin and the spin symmet
As the pseudospin symmetry is found both in the upper
lower components, it may be the main reason why the ps
dospin approximation improves more in the deformed c
than in the spherical case.
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