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Partial dynamical symmetry in the symplectic shell model
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We present an example of a partial dynamical symméa®S in an interacting fermion system and
demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole in-
teraction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic
shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partiéB)SU
symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic
expressions for the energies of these statesEthdransition strengths between them. Characteristics of both
pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are
compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate,
as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously
established partial SI3) symmetry in the interacting boson model are considered.
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[. INTRODUCTION specific transformation properties. Provided the appropriate
Symmetries play an important role in physics. Constantgroup coupling coefficients and the matrix elements of some
of motion associated with a symmetry govern the integrabil-elementary tensor operators are available, matrix elements of
ity of a given classical system, and at the quantum levebperators that connect inequivalent irreducible representa-
symmetries provide labels for the classification of states, detions can be determined and the exact eigenvalues and eigen-
termine selection rules, and simplify the relevant Hamil-states can then be obtainédt least in principle While
tonian matrices. Algebraic, symmetry-based, theories havgroup theoretical considerations still play an important role
been firmly established as an elegant and practical approadh evaluating the coupling coefficients and matrix elements
to a variety of physical system&see, for example, Refs. for such a calculation and in truncating model spaces that
[1-12]). These theories offer the greatest simplificationshave become too large for a complete numeric treatment, the
when the interaction under consideration is symmetry prebasic simplicity of the symmetry-based approach is lost.
serving in the selected state labeling scheme, that is, when Alternatively, one might consider some intermediate
the Hamiltonian either commutes with all the generators of atructure, which allows for symmetry breaking, but preserves
particular group(exact symmetry or when it is written in  the advantages of a dynamical symmetry for a part of the
terms of and commutes with the Casimir operators of a chaisystem. Partial dynamical symmet({?DS [13] provides
of nested groupgdynamical symmetry In both cases basis such a structure. It corresponds to a particular symmetry
states belonging to inequivalent irreducible representationbreaking for which the Hamiltonian is not invariant under the
of the relevant groups do not mix, the Hamiltonian matrix symmetry group and hence various irreducible representions
has block structure, and all properties of the system can bg@rreps are mixed in its eigenstates, yet it possesses a subset
expressed in closed form. An exact or dynamical symmetrof “special” solvable states that respect the symmetry. The
not only facilitates the numerical treatment of the Hamil- notion of partial dynamical symmetry generalizes the con-
tonian, but also its interpretation and thus provides considerepts of exact and dynamical symmmetries. In making the
able insight into the physics of a given system. transition from an exact to a dynamical symmetry, states that
Naturally, the application of exact or dynamical symme-are degenerate in the former scheme are split but not mixed
tries to realistic situations has its limitations: Usually thein the latter, and the block structure of the Hamiltonian is
assumed symmetry is only approximately fulfilled, and im-retained. Proceeding further to partial symmetry, some
posing certain symmetry requirements on the Hamiltoniarblocks or selected states in a block remain pure, while other
might result in constraints that are too severe and incompastates mix and lose the symmetry character. Quasiexactly
ible with experimentally observed features of the systemsolvable models, as discussed in Ré#], exhibit a special
The standard approach in such situations is to break the synfierm of partial symmetry for which the solvable states span
metry. In cases where a symmetry-breaking Hamiltonian i€omplete representations.
involved, it is possible to decompose the offending terms Other generalizations of the idea of dynamical symmetry
into basic parts(irreducible tensor operatgrghat exhibit are possible. Van Isackdd5], for example, suggested to
break the dynamical symmetry associated with an intermedi-
ate groupG, in a subchainG; DG, G; for all states of the
*Electronic address: escher@triumf.ca system, while preserving the remainitdynamica) symme-
"Electronic address: ami@vms.huiji.ac.il tries. The resulting Hamiltonian is, in general, not analyti-
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cally solvable, but its eigenstates can still (partly) classi- lowed them to derive analytic expressions for the energies of
fied by quantum labels associated with the gro@sand a set of unique levels and to discuss the structure of the
G3. An approximate symmetry scheme called quasidynamiassociated eigenstates. Furthermore, the numerical calcula-
cal symmetry was discussed by Bahri and R§W@]. They  tions required to obtain the energies of the remair(imon-
considered strong but coherent mixing of the irreducible repunique levels were greatly simplified since the Hamiltonian
resentations associated with a given dynamical symmetrgould be diagonalized in a much smaller space.
Both methods of extending the concept of dynamical sym- Partial symmetries have relevance not only for discrete
metry differ from the notion of partial dynamical symmetry spectroscopy but also for the study of stochastic properties of
introduced above since, unlike in the partial-symmetry casedynamical systems. A generic classical or quantum-
the eigenvalues of the Hamiltonians cannot be obtained ananechanical Hamiltonian exhibits mixed dynamics: areas of
lytically, not even for a part of the system. regular motion and chaotic regions coexist in phase space,
The partial-symmetry scheme was introduced in bosonignd even when a system seems to be fully chaotic, regular
systems, where it was applied to the spectroscopy of destates may exist. Whelzet al. [26] used Hamiltonians with
formed nuclei. In Ref{17], a Hamiltonian with partial SB)  atia| dynamical symmetries to investigate quantum-
symmetry was constructed in the framework of the interactiy o hanical systems that are partly regular and partly chaotic.
ing boson model|BM) Oﬁggéc'e' [6], and the calculated | the context of the interacting boson model, it was demon-
spectrum ande2 rates of r were compared to experi- strated that partial symmetries impose a particular phase-

mental results. The PDS Hamiltonian was found to rePrO%é)ace structure that leads to a suppression of chaos in mixed

duce the experimentally ob : .
P y observed feature of nondegenerasystems. Canetta and Maif@7] carried out a quantum-

rotational y and 8 bands K-band splitting and to possess L . : . .
several bands of solvable states, whereas previous at'[empsttsatIStlcal analysis of regular and chaotic dynamic behavior

to describe the!®Er data had involved Hamiltonians with " the IBM-2. Varying the Hamiltonian parameters, they ob-
SU(3) dynamical symmetry, which can only yield and 3 served a negrly regular region in parameter sp.ace—far away
bands with degenerate angular momentum states, or hdtPm dynamical symmetry limits—which they linked to the
achieved agreement with the data by completely breaking thgXistence of a partial dynamical symmetry. Since Hamilto-
SU(3) symmetry. Employing the same Hamiltonian, SinaiNians with partial symmetries are not completely integrable
and Leviatar{18,19 investigated the structure of the lowest and may exhibit stochastic behavior, they are an ideal tool
collective K=0" excitation in deformed rare-earth nuclei. for studying mixed systems with coexisting regularity and
Implications of the partial dynamical symmetry for the mix- chaos.
ing behavior of this collective band were discussed and com- Partial symmetries are not confined to bosonic systems. In
pared to broken-S(3) predictions. In another study, Ref. Ref.[28], an example of a partial symmetry in an interacting
[20], in the context of the IBM-2, the proton-neutron version fermion system was presented. A family of Hamiltonians
of the interacting boson mod¢b,21], Talmi was able to with partial SU3) symmetry was introduced in the frame-
explain simple regularities in spectra of the Majorana operawork of the symplectic shell model of nucl¢R9]. The
tor as an example of partial dynamical symmetry. More re-Hamiltonians were shown to be closely related to the
cently, the relevance of parti&kspin symmetry was studied deformation-inducing quadrupole-quadrupole interaction and
in the framework of the IBM-2. It has long been known thatto possess both mixed-symmetry and solvable purésU
F spin, the SW2) quantum number associated with the two- rotational bands. For the example of tfprolate deformed
valued proton-neutron degree of freedom of the IBM-2,light nucleus®™Ne, it was demonstrated that various features
cannot be conserved in nuclear spectroscopy. However, Lef the quadrupole-quadrupole interaction can be reproduced
viatan and Ginocchig22] demonstrated that empirical en- with a particular parametrization of the PDS Hamiltonians.
ergy systematics in the deformed Dy-Os region can be reprdn that work, the partial dynamical symmetry was identified
duced under the assumption of partidglspin symmetry. directly at the fermion level. It is also possible to start with a
Moreover, the associated partial-symmetry Hamiltoniandosonic PDS Hamiltonian and map the bosonic generators
point to the existence df-spin multiplets of scissors states, into fermionic generators of the same algebra. This approach
with a moment of inertia equal to that of the ground band.was taken by Mamistvalof30], who studied partial symme-
These predictions were tested against recent analydéslof try in a schematic SU(2Y SU(2)-type Lipkin model. Very
transition strengths. recently, partially solvable shell-model Hamiltonians with
The subject of partial symmetries and supersymmetry irseniority-conserving interactions were investigated by Rowe
nuclear physics was considered by Jolos and von Brentano @&nd Rosenste¢B1].
the context of the interacting boson-fermion mogz3] and It is the purpose of this work to investigate the fermionic
the particle-rotor moddi24]. PDS Hamiltonians presented in REZ8] in more detail. Spe-
Partial symmetries can be associated with continuous agfically, the construction process for the pure eigenstates is
well as discrete groups. The dynamical groups employed ioutlined and analytic expressions for the energies of pure
the IBM, e.g., are continuous. In RgR5], an example of a states and the strengths &2 transitions between these
partial symmetry that involves point groups was presented istates are given. Properties of the special solvable states are
the context of molecular physics. Ping and Chen used discussed and an application to the oblate deformed light
model of N coupled anharmonic oscillators to describe thenucleus *C and the prolate nucleu$Ne are presented.
molecule XY;. The partial symmetry of the Hamiltonian al- Moreover, an application t*Mg demonstrates the rel-
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evance of the PDS concept for well-deformed, triaxialsubalgebra 48), associated with the Elliott model and the
nuclei. rotation group, respectively. The (§R) algebra furthermore

In the following section, the symplectic shell model includes the canonical subalgebras(2sB) and sj§4,R),
(SSM) is reviewed. In Sec. lll, a family of symplectic Hamil- which have been studied by Arickat al. [32,33, and by
tonians with partial S(B) symmetry is introduced and their Peterson and HecliB4], respectively, as possible approxi-
relation to the quadrupole-quadrupole interaction is estabmations to the full three-dimensional symplectic model.
lished. Properties of the special eigenstates of the PDS For many purposes, it is advantageous to express the sym-
Hamiltonians are discussed in Sec. IV, and applications tlectic generators in terms of harmonic oscillator boson cre-
realistic nuclear systems are presented in Sec. V. In Sec. Vhtion and annihilation operatotéi:(xsi—ipsi)/\/i andbg;
the fermionic PDS Hamiltonians are compared to the earlie= (x ,+ip;)/2. The symplectic generators may then be ex-

introduced bosonic PDS Hamiltoniafs7—19, and Sec. VIl pressed as one-body operators that are quadratic in the oscil-
summarizes our work. Appendix A contains further relevantiator bosong35]

material regarding S(3) coupling coefficients and reduced
matrix elements and Appendix B presents expressions for 1

: i : A== > blbl
matrix elements of operators employed in the calculations. ij7p & Fsitsj

IIl. THE SYMPLECTIC SHELL MODEL 1

_ , o Bij=52 bsibs;,
The SSM is an algebraic, fermionic, shell-model scheme s
that includes multiple 2o one particle—one hole excita-
tions. It includes all essential observables for a description of
nuclear monopole and quadrupole collective vibrations as
well as for rigid and irrotational flow rotations. Since the
model allows for intershell excitations and since its observ-Alternatively, one may use the spherical components of the
ables are expressible in microscopic shell-model termspscillator bosonsp!{{?, == (bl +ib1)/2, bl{I=bl;,
it provides a multishell realization of the nuclear shell a”dB(s?ll,)ﬂ:I(bs +ibo)/\2, B = b, to write the gen-

5,1,07
model[29]. erators as S(B) tensor operatorg36,37,

N -

Cij: z (blibsj+ bSJbll) (2)

A. Symplectic generators N ~ 3
| _ A= B {b]OxBEE+ > (A1),
The symmetry algebra of the symplectic scheme is s
spanned by one-body operators that are bilinear products in
the (relative position (xg;, 1=1,2,3,s=1,... A—1) and (1) _ $(10) T (010 (11) _
momentum p;) observables, Cim"= \Ez {bs™Xbshm” (1=1.2),

Qijzzs XsiXs] s Al(riO):iz (bl p10N20)  (|_g )
V2 5
K: = Deis
i ES: PsiPs; éfrﬂz):iE {(bOVx B0 (1=0,2). 3
V2 5
Lij=zs (XsiPsj— XsjPsi) The notationT(M*) indicates that the operatdt possesses
good SU3) [superscript X,«)] and S@3) (subscriptim)
tensorial properties. Sindelb! adds two quanta to particte
Sij= z (XsiPsj+ PsiXsj) (1) thereby moving it up across two major oscillator sheg&”

creates a Rw excitation in the system. Analogousi®?,

where A—1 is the number of Jacobi “particles” remaining which is related toA(2” by Hermitian conjugation(%?
after removal of the center-of-mass contribution. Together:(_1)|—m(A(20))T annihilates a B excitation. TheC(L)
the operators generate the 21-dimensional symplectic algebig, onlywithir|1_ar1nm’ajor harmonic oscillator shell. The;l/mgen-
sp(6,R), that is, the Lie algebra of linear transformations thaterate the group S@) of the well-known Elliott mode[38]
preserve a skew-symmetric bilinear form on a six- '
dimensional real vector space. It is the smallest Lie algebra . = . )

that contains both the quadrupole moments and the many- \/§C(21n})=Q2mE \/—2 [rgYZm(rS)ergYZm(ps)]
nucleon kinetic energy, and it has several physically relevant 55

subalgebras. These include g&n and its subalgebra

[R®]so(3), associated with the geometric collective model (m=0,£1,£2),
and its rotational limit, respectively, the algebrd3gR) of ALY ¢
the general linear motion group, as well ag3uand its Cig’=Lq (g=0,x1), (4)
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whereQ5,., denotes the symmetrized quadrupole operator oft4f®]

Elliott, which does not couple different major shells, a}w
is the orbital angular momentum operator. The harmonic os-

4 Gu-1) (2p-2) (Lp-3) (L (O.u+2) (0,u-4)

cillator HamiltonianH =33 _,C;; is a SU3) scalar and gen- ho] (0142.60.03) {01+1,65,63+1}{0,.65.03+2}
erates W1) in U(3)=SU(3)x U(1). _ e om dph o) (A x AJO
Alternatively, one can realize the symplectic generators in (A x A0
terms of fermionic creation and annihilation operat@8], AQO)
{61.02.03} |
] o) “om
1 ~ _ ,
=2 \/g n(7+1)(7+2)(n+3){a) X2, % g
FIG. 1. Basis construction in the symplectic model. (SU
+OMA coupled products of the raising operaf?® with itself act on an
C ( )1
Elliott starting state with X, ,x,)=(0ux) ({o1,00=01,03}) tO
1 generate symplecticf2w, 4hw, ... excitations. Also shown are
A0 \/_ 1+ 2) (43 (n+4 the SUJ) labels (,u) and quanta distributionsw,,w,,ws} for
Im 2,, 12(77 J(n+2)(n+3)(n+4) some excited states.

T = 1(20)S=0 Cm
X . .
{8y X aghin s =0t Oa(A), Any component of the symplectic lowering opera®{®?

I (and oféij with i <j) annihilates such a lowest weight state.

BOI-> \/1_2( n+ 1) (7+2)(7+3)(7+4) In contrast, application of the symplectic gener'a@é?o) .
7 to this lowest weight vector allows one to successively build

a basis for the 4,R) irrep under consideration: The product

of N/2,N=0,2,4 . .., raising operatord&(? is multiplicity-

_ free and generateNAw excitations for each starting con-

wherea’| 1o, [@pmi,=(—1)7" M2 7 s 1S figuration Ny(\,,u,). Each such product operator

a single-particle creatiofannihilation operator, which pro- pPN®Xn.4n) can be labeled according to its(3) content,

duces(destroy$ a fermion with angular momentumy pro- {ny,np,ng} or N(\p,un), Where Q,,u,) ranges over the

jectionm, and spin 1/2, projectionr in the »th major oscil-  set

lator shell. The sums run over all shells, and the coupling to

total spinS=0 with projectionX, =0 reflects the fact that the Q={(n;—ny,n,—n3)|n;=n,=n3=0;

generators act on spatial degrees of freedom only. The op-

erators@Cm(A) remove the spurios center-of-mass content

from the generators. Details regarding the fermionic realiza-

x{alxa, ., %2+ OF"(A), (5)

N=n;+n,+nz;n;,n,,N3 evenintegers  (6)

tion of Sp(6,R) can be found in Ref.36]. The raising polynomialPN*n#0) is then coupled with
INo(Ny,1t,)) to good SW3) symmetryp(\,,,u,,), with p
B. Symplectic basis states denoting the multiplicity in the coupling A, ,xun)

® (N4, m,). The quanta distribution in the associated lowest
g{/\/eight state is given by w,,w,,ws}, with N ,=N_ +N
A(20) et . =witwrtws, W Zw,=w; and \,=w1— wy, MU= w3

A" with itself to the gsual 6(9 many-part|cle shell—model — w5, The states of the Sp(6,R)SU(3) basis are thus la-
states_. E_ach Pw start|_ng conflguratlt_)n is characterized by pgleq by three types of (3) quantum numbersT,,

the dl_str|but|on of oscillator quanta into the three carte5|anE{Ul,02103}:NU()\U,MU), the symplectic bandhead or
directions{oy, 02,03}, Whereo,=o,=073. Hereo; der]rotes Sp6,R) lowest weight W3) symmetry, which specifies the
the eigenvalue of the (3) weight operatorC;; == 4(bg;bs; sp6,R irreducible  representation; I'y={n;,n,,ns}
+1/2), which essentially counts the number of oscillator:N()\nMn)’ the U3) symmetry of the raising polynomial;
bosons in theith direction of the system. Sinces  gpg I,={w1,05,03}=N,(\, . 1,), the U3) symmetry of
=12,... A—1, itfollows that thes; are half-integer num-  the coupled product. A given symplectic representation space
bers for everA and integers for oddx nuclei. Equivalently, N _(\_,u,) is infinite dimensional, sinchi/2, the number of
one may employ quantum numbex§.(X,,u,), whereX,  oscillator excitations, can take any non-negative integer
=01-0,, pe=0,—03 are the Elliott SWU3) labels, and value. In practical applications, one must, therefore, either
N,=o1+ 0,+ 03 is the eigenvalue of the harmonic oscilla- truncate the symplectic Hilbert space, or restrict oneself to
tor HamiltonianH o= C,;+ C,,+ C43, which takes the mini- interactions and observables for which the matrix elements
mum value consistent with the Pauli exclusion principle.depend solely on the symplectic irrep and can be calculated
Each such set of (3) quantum numbers uniquely determines analytically. The basis state construction is schematically il-
an irrep of the symplectic algebra, since it characterizes éustrated in Fig. 1 for a typical Elliott starting state with
sp6,R) lowest weight state. Note that a lowest weight vector(\ ,,u,)=(0,x). A similar figure for A, ,u,)=(\,0) is

of sp(6,R) is also a lowest weight state of it¢3) subalgebra. given in Ref.[28].

A basis for the symplectic model is generated by applyin
symmetrically coupled products of thé @ raising operator
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To complete the basis state labeling, additional quantum : : :
numbersa are required. This can be accomplished by reduc-\ \ / sno \ \ /
ing Sp(6,R)DSU(3) states with respect to the subgroup \ \ /

U(1)xXSU(2) of SU(3) and assigning labele=eAM , [39]. ne
This SU?2) subgroup, however, is not the physical orbital o
angular momentum subgroup &) of SU(3). States with

0ho

good angular momentum values can be obtained from the
SU(3)DU(1)XSU(2) (canonical basis by projection
[38,40. The associated quantum numbers are xLM, FIG. 2. Symplectic shell-model space. The schematic plot illus-
where k is a multiplicity index, which enumerates multiple trates a model space with multiple symplectic representations. Each
occurrences of a particularvalue in the SUB) irrep (\, 1) “cone” corresponds to a §p,R) irrep and is uniquely characterized

(Mg y) Ay H2) (A3 13) (Mg g)

from 1 to «™(\, 1), by U(3) quantum number®N (\,,u,), where Q. ,u,) denotes
the Elliott SU3) quantum labels for the associated ® shell-
kMO ) =[(N+u+2-L)/12]-[(A+1-L1)/2] model configuration. For a given starting representation
(N g i) (0=1,2,3,4 herg one obtains multiple S@3) configura-
—[(u+1-L)/2], (7) tions, \, ,u,), at eachN% w level of excitation N>0), indicated

. . ) ~ here by small filled circles.
where [---] is the greatest non-negative integer function

[41]. The «["®{\,u) occurrences of can be distinguished & NN
in a variety of ways. The physically most significant scheme (Copep[No(No 1 0)]

is that of Elliott[38], in which case the projection &falong =2(N2+ p2 4+ N g+ 3\ g+ 3u,)/3+N2/3— 4N, .

the body-fixed three-axis, denotéd is used to sort thé

values into the familiark bands of the rotational model. (12
Unfortunately, states defined in this manner are not orthonor- ) ] ] ]

mal with respect to the multiplicity quantum numbef42]. The collection of all @ » configurations provides a com-

To avoid the resulting complications, such as working withPlete Hilbert space for the Elliott SB) submodel of the
non-Hermitian matrices, the Elliott basis is usually orthonor-SSM and is referred to as thei® horizontal shell-model
malized using a Gram-Schmidt process. Vergadis], for ~ space. The set of states built on a giver(3Uirrep
example, gives a prescription to construct orthogonal basids(Xs#,) is called the vertical extension of that irrep. Each
states in a systematic manner for al, ), such that the vertical extension can be partitioned into horizontal slices
physical interpretation oK as a band label can be approxi- with the states within theN/2)th slice representable as a
mately maintained44]. In the present work, we employ the homogeneous polynomial of degrbé2 in the A tensors
orthonormal basis of Vergados. For simplicity, however, weacting on the parent/0w configuration(see also Fig. 2
use the running index=1,2, ... x"®* to distinguish mul-  Interactions can thus be classified according to their effect on
tiple occurrences of in a given SUW3) irrep (\,«) and list  this structure; pairing, for example, causes horizontal mix-
the corresponding Vergados labels where appropriate. Theg, both within each “conesymplectic irrep and between
dynamical symmetry chain and the associated quantum ladifferent cones, while the quadrupole-quadrupole interaction
bels of the above scheme are given[Bg]: induces horizontal and vertical mixing, but does not connect

different cones.
Sp(6,R) D U(3) D SQ3) D SQ2)

No(Ng o) NNy sn)p NNy 1) kL M C. Symplectic Hamiltonians

(8 . . . .
A primary goal of the symplectic shell model is to achieve
When applying the formalism to realistic nuclei, we assign@ microscopic description of deformed nuclei. These nuclei
rotational band labels according to the calcula®E?) exhibit collective behavior, that is, modes of excitation in

rates. which an appreciable fraction of the nucleons in the system
The quadratic Casimir operators of @Yand Sy6,R), participate in a coherent manner, as, for example, is the case
for rotations. An appropriate Hamiltonian for describing ro-
N 1 tational phenomena within the symplectic model consists of
— 1y ~(11) (11), - (11) . . . .
Csus= 2 [C3Ca+Cr-Cil, © the harmonic oscillator, which provides the background shell

structure, the quadrupole-quadrupole interac@nQ,, and
@Sp(6):_ZA(()20).3802)_2,&(220).|§(202)+@SU(3) a residual interaction that should include, for example,
single-particle spin orbit and orbit-orbit terms, as well as
pairing and other interactions. However, most applications of
the theory are much less ambitious than this, restricting the
interaction to terms that can be expressed solely in terms of
have the following eigenvalues in the dynamical symmetrygenerators of the symplectic algelpg®,45—-47. Interactions
basis: of the latter form do not mix different symplectic irreps and,
A therefore, the Hamiltonian matrix for such interactions be-
<CSU(3)>[()\,,LL)]:2()\2+ w?+Au+3N+3u)/3, (11)  comes block diagonal. Indeed, in most practical applications

1. .
+§H02—4H0, (10)
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the Hilbert space of the system is truncated to one singleyherel denotes the angular momentum operator, .
symplectic representation. This is accomplished by selectinghjs allows us to reproduce the energy splittings between
the vertical slice(symplectic irrep constructed from the states of a rotational band. For triaxial nuclei, suci?4sg,
leading starting irrep of the/0w space. The leading irrep jt becomes necessary to include further terms, in order to
is defined to be the (3) representationN,(X,,x,), from  reproduce the experimentally observed-band splitting,”

the lowest layer with the most symmetric spatial per-the energy differences found between states with the same
mutation symmetry consistent with the Pauli principle, andangular momentum but differer¢-band assignments. This
the maximal possible S@) Casimir operator value, can be achieved by including “SU(3)SO(3) integrity ba-
(Csu@pl(\s,0)]. For *2C, for instance, the leading irrep gjs operatorsXs=(L X QF)3)-L and X,=(Lx Q) (L

is given byN,, (N, u,) = 24.5(0,4), which corresponds to - x QF) ,, in the residual interactiof49]:

the symplectic weighte; = 0,=9.5, 03=>5.5; for 2Ne, one

finds N, (\,,un,)=48.5 (8,0, since 0,=21.5, o,=03 \V;
=13.5[29]; and ?*Mg hasN_(\,,u,)=62.5(8,4), that is,

01=27.5 0,=19.5, 03=15.5[46]. The single symplectic The evaluation procedure for the matrix elements of the
irrep approximation is a sensible choice for nuclear systemsymplectic generatora?®, B2, andC9, and of the in-

that have a dominant quadrupole-quadrupole force, since thig yrity basis operatoré, andX, is discussed in Appendix B.
interaction does not mix symplectic representations and fa-

fes=CaXa T CaXg+dpL2+d,L%. (17

vors states with largéCsysp[ (N, u,)] values. Ill. PDS HAMILTONIANS
A typical Hamiltonian for a calculation in a space trun- AND THE QUADRUPOLE-QUADRUPOLE
cated in the manner described above, is given by a harmonic INTERACTION
oscillator termH, plus a collective potential, and a residual
interaction: In this section we introduce a family of fermionic Hamil-
tonians with partial dynamical symmetry. Motivated by the
H=Ho+Veoit Vies. (13 fact that a realistic quadrupole-quadrupole interaction breaks

SU(3) symmetry within a given major oscillator shell, we
We choose the collective potential to be a simple quadraticdefine a family of Hamiltoniansi(8,,8,), which allows us
rotationally invariant, function of the microscopic quadru- to study the features of the symmetry-breaking terms in some
pole momen{48], Qum= (16m)/52 4 2Y (T 5), Namely, detail. The Hamiltonians do not couple different oscillator
shells and, for a particular choice of the paramejgysand
Vo= — xQa- Qs (14) B>, reduce toa form. that is c!osely related to the quadrupole-
quadrupole interaction restricted to a shell. We prove that

_ o _ this family of Hamiltonians exhibits partial SB) symmetry
The.quadrupole—quadrupole mterac_tlon is a.standard ingredisng give rules for determining the “special” irreps and the
ent in models that aim at reproducing rotational spectra andgsggciated pure eigenstates.

nuclear deformations. It emergéspart from a constanas a In the symplectic shell model, the quadrupole-quadrupole

leading contribution in the multipole expansion of a generaliyieraction can be expressed in terms of symplectic genera-
two-body force. It mixes states from different oscillator g ¢ [50]

shells, since the quadrupole operator has nonvanishing ma-

trix elements between shells differing by zero or two oscil- .0,=3(C+ A +B.) - (C+ A +B 18
lator quanta. A major strength of the symplectic model is its Q2 Q2=3(Cot Azt Ba)- (CoH A+ By). (18
ability to fully accommodate the action of the quadrupole

operator, which can be written in terms of symplectic gen-ET(Pleymg [he  commutation relat|o'nsBz-'A2—A2- B>
erators, =10, andB,-C,—C,-B,=20B,//6, given in Ref.[50],
this can be rewritten as

— ~(11) , A(20), /(02) - ~ ~ - N
Qom=V3(CEY+AZD+BYD). (15) Q,-Q,=3C, - C,+6A,-B,+ 104,
As a result, the model is able to reproduce intraband and +[(6C,- By +10V6Bo+3B,-By) +H.cl,
interbandE2 transition strengths between low lying, as well (19)

as giant resonance, states without introducing proton and

neutron effective charges. where L,-C,=Q5-Q5 and H.c. denotes the Hermitian

| The eﬁecﬂve _reS|duaI |nteract|o¥f;l,es IS mclud?d o l_r|e- i conjugate of the expression in parentheses. The first three
place noncollective components of a more realistic Hamilyo 0 <“in the expansion, E¢L9), act solely within a major

tonian and t_he negle_cted ef_fects of couplings to othés,5p harmonic oscillator shell, while the second line connects
representations. As in previous works, we chougg to be  giqteq differing in energy by 2w and+=4f . It is prima-
a rotationally invariant function of the §8) generators. For rily the presence of the mulfiw correlations that differen-

prolate and oblate nuclei we use, tiates the SSM from the Elliott SB3) model. The symplectic
R . model allows for coherent multishell admixtures in its wave
Vies=d,L2+d L% (16)  functions and thus achieves the experimentally observed
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nuclear deformation and absoluB{E2) rates. In contrast,

the Elliott model requires effective charges, since it employshe special choice8g=12, B8,=

the algebraidor Elliott) quadrupole-quadrupole interaction,

Q5 Q5= 6CSU(3)— 3.2

which does not connect different oscillator shells.
Although matrix elements of), and QE are identical
within a harmonic oscillator shell,

(20

as well: TheC2 C2 andHO terms in the expansion, E(L9),
are diagonal in the dynamical symmetry basis, E8),
whereasA,-B, contains contributions that mix different
SU(3) irreps. This follows from the relations

e 1
Ao-Bo=AR. Bg°2>— A>< B0 \[ —{Ax B},

e ) 5 . . 5. .
A, B,=A{). B2 = %{AX B0+ \[E{Ax B},
(21)

1.
—=| Csu* 3Ho 4Hq— CSp(e)> (22

The term{Ax B}{*? is a SU3) scalar, bu{ Ax B}{?? breaks
SU(3) symmetry. Within a major oscillator shell, it is mainly

this symmetry-breaking term that distinguishes the action o

Q,-Q, from the effect of the Elliott interactior5- Q5,
which respects the symmetry.

To explore this latter aspect in more detail, we rewrite the

collective quadrupole-quadrupole interaction as follows:
Qz' QZZ QCSU(C%)_ 3€:Sp(6)+ ﬂg_ ZQO_ 3':2_ 6A0B0

+{terms coupling different h.o. shells (23

The quadratic Casimir invariants of &), ésu(g), and of
Sp6,R), CSP(G), and their eigenvalues, are given in E(®-
(12). In order to focus on the action dD,-Q, within a

the corresponding
guadrupole-quadrupole interactions exhibit differences here

PHYSICAL REVIEW C 65 054309

the degeneracies, but do not change the wave functions. For
18, one finds thatH (B,
=128,=18) is closely related to the quadrupole-

quadrupole interaction,

Q,-Q,=H(By=12,8,=18) +const-3L 2
+{terms coupling different h.o. shells (25)

Where the value of constGCSp(G) 2H0+ 34H, is fixed for

a given symplectic irrefN, (N, ,1,) and NAw excitation.
AlthoughH(B4,82) does not couple different harmonic os-
cillator shells, it contains the SB)-symmetry-breaking term

{AxB}{? and is, therefore, expected to exhibit in-shell be-
havior similar to that 0fQ,- Q.

From Eq.(21) it follows thatH(Bg,8,) is generally not
SU(3) invariant. We will now show thaH(B,,82) exhibits
partial SU3) symmetry. Specifically, we claim that among
the eigenstates & (8,,,), there exists a subset of solvable
pure-SU3) states, the SU(3)SO(3) classification of
which depends on both the Elliott label& (,x,) of the
starting state and the symplectic excitatinin general, we
find that allL states in the starting configuratioN€0) are
solvable with good S(B) symmetry ¢, ,ux,). For excited
configurations, withN>0 (N even, we distinguish two
possible cases:

@ No>pg!
=\,
+N,u,+N+1,.
EN=(No—pot 1)

(b) \,=<u,: the special states belong to,uw)=(\,
+N,u,) at the Niw level and haveL=\_,+N,\,+N

+1,... A\, +N+u, withN=24,....

To prove the claim, it is sufficient to show thBt anni-
hilates the states in questipsinceH (B,= 8,) is diagonal in
the dynamical symmetry bagisFor N=0 this follows im-
mediately from the fact that thefi@ starting configuration is
a Sp6,R) lowest weight which, by definition, is annihilated
by the lowering operators of the @)R) algebra. The latter
include the components of the genera@??.

For N>0, we have to study the action of the symplectic

generatorB, in more detail. The operatds, has the form

the pure states belong to A\ ()
—N,u,+N) at the Niw level and havelL=pu,
A,—N+1 with N=2,4, ... subject to

harmonic oscillator shell, we introduce the following family Bo=S(baibe; + bobe+ babew)/ B, ie., it is a rotational
S S S. S S. S S LA ]

of rotationally invariant Hamiltonians: invariant and can remove two oscillator quanta from any one
of the three cartesian directions. A state of angular momen-
tumL in a SU3) irrep can be obtained by angular momen-

tum projection from the lowest weight vector associated with

the irrep. Sincéo is rotationally invariant, it commutes with
this projection operator and, therefore, it suffices to consider

H(Bo,B2) = BoAo- Bo+ B2A; B,

Bo

= T5(9Csuie)~ 9Cspeyt 35— 36H0)

+(Bo~ B2)Ao- By. (24
For Bo=pB,, one recovers a Sp(6,R)SU(3) dynamical
symmetry HamiltonianH (Bq,8,= Bo) contains only SI(B)
scalars, that is, it does not mix different &Y irreps. Fur-
thermore, all eigenstates at a givlRih w excitation that be-

the effect of acting withB, on lowest weight vectors. Let
{o1,0,,03} be the quanta distribution for az@ lowest
weight state with\ ;> u .. An excited state at th7 o level
belongs to a S(B) irrep that is completely characterized by
its lowest weight vector. This lowest weight vector contains
N,=w;twr,+wz3=01+0,+03+N oscillator quanta,

long to the same symplectic and irreps are degenerate. which are distributed into the three cartesian directions (

Additional SQ3) rotational terms, such as? and L* split

=1,2,3) such that;=0¢;. In particular, the lowest weight
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vector of the SB) irrep (\,u)=(Ns—N,u,+N) at NZw KN w)
has the quanta distributiofr; o+ N, o3}. Acting with B, [pm(N)Y= > cL)|NAw(\,u)kLM), (26)
on aNAw state with quantum labelsh(u)=(N,—N,u, =

+N) andL results in a N—2)% w state with SW3) character . o
()\’)M'):()\ —N+2,uN+N)—2) and angulg?)momentum yvhere K"\, 1) denot(_es the maximum .muIt|pI|C|ty.oIf.
"=L. The lowest weight vector of the irrep.(, ') has the g]igt(az,sl: azt,e E?)'f gi :BOZV;OU;W’ <|:Z(LIQIA(I\12))>| és| ;n (u,\r|1)r;12<gd
quanta distribution 0,0+ N—2,03}. Note that the sym- 0:/92 . 0l FLM -
plectic generatorg lcanznot connz}ct Nop2)= (A= Nz holds for all state$y(N—2)) at the (N—2)% w level. From
0 ’ - o Mo

©'N) at Nfiw with any other imep X",x") at the N the proof it follows thatB, acting on states in the “special

—2)h w level, since the lowest weight vector associated With'rrep O\"“)“ at Nﬁw can only Proguce states belonging
A A ) e to the “special” irrep \',u') at (N—-2)lo,
(", u")# (N, u') has fewer oscillator quanta in either the h N=2% TIVAT =0 f ,
one- or the three-direction than the startingi () configu- _e{u;e ( Tna) ‘f’()‘, ) K |h ol 1 l\)|>_' or _I’_‘h
ration, i.e., suchX”,x”) would belong to a different sym- ~ 1< -+ AL (N7, ") ensures thaté u(N)) is pure. The

ok s . .
plectic representation. Comparing the number of occurrencest  (\»#) coefficientsc, (L), which characterize the pure

of a given angular momentum valliein (A, ) atNA o and Statg;i are thus unlqu'ely determined by th@*(\", ")
(\',u') at (N—2)%w, one finds the following: As long as ~ XL (\.n)—1 equations
ANy—N+1=p,+N holds, the difference A, (N)
=k w) kPN w) is 1 for L=pe+ N+ N D e (L)((N=2) o\, u' )k’ LM|Bo|NZw(\, i) kLM)
+1,...A\,—N+1, and zero otherwisgwith «"®* as de- “
fined in Eq.(7)]. Therefore, whem\ (N)=1, a linear com- =0, (27)
bination| ¢, (N))== ¢, |NZiw(A,—N,u,+N)xLM) exists
such thatB| ¢, (N))=0, and thus our claim for familya) ~ and the normalization requiremeni |c,(L)|*=1. The
holds. proof given in the preceding section guarantees the existence
of a solution.

Making use of the Wigner-Eckart theorem for QY (see
Appendix A), the relations in Eq(27) can be rewritten as

The proof for family(b) can be carried out analogously.
Here the special irrep\,u)=(\,+N,u,) is obtained by
addingN quanta to the one-direction of the starting configu-
ration. In this case there is no restriction Npnhence family (N, 1)]]1BOD]||(h, )
(b) is infinite. Note that adding quanta to the three-direction
doesnotyield another family of pure states, since the multi-

plicity for a givenL value in the associated “special” irreps, XE,:‘ C(L)((\ ) L (02)0[[ (A, ") L) =0,
(N, u)=(Ny,ue—N), decreases aN increases, i.eA; (N)
<0 for all L andN. where (-;-||-) denotes a reduced Wigner coupling coeffi-

The SUQJ) irreps of family (b), (\,u)=(\,+N,u,) at cient for SU3). Since the triple-reduced matrix element
the N% w level, span a one-dimensional subspace of the fullpf B(°? is generally nonzero, we obtain the following
three-dimensional, $6,R) model space. This set of irreps conditions:
can be generated by a(8R) subalgebra of gB,R) with

generatorsA,;, By;, Cyq, as was demonstrated by Arickx w00 k)

[32]. Similarly, the SW3) irreps of family (a), (\,u)=(\, > LN, )KL (20)0]| (N, ) kL)=0
—N,u,+N) at theNZ w level can be generated by a(8R) =1

algebra with generatos,,, B,,, C,,. However, it needs to , ma

be emphasized that the solvable states of the present PDS (k'=1, (N )= D). (28)
example span, in general, onlyart of the above S(B)

Note that the matrix elements of the symplectic generators
are not relevant for the determination of tbg(L), and the
SU(3) Wigner coefficients(-;-||-), can be evaluated nu-
merically [51] or analytically[53].

To illustrate the procedure outlined above, we consider

All 0% states are eigenstates Hi(8,,3,). They are the case of *“C. The leading irrep for the nucleus is
unmixed and span the entira {,u,) irrep. In contrast, for (Mg, x,)=(0,4), thus the pure states belong ta,f)
the excited levelsN>0), the pure states span only part of =(0,4) at Giw, (\,u)=(2,4) at Ziw, (\,u)=(4,4) at
the corresponding SB) irrep. There are other states at each4%iw, etc. At (i, all states (=0,2,4) are unmixed. At
excited level that do not preserve the @Usymmetry and 2%iw, the possible values are 0,2 3, 4%, 5, 6, and we have
therefore contain a mixture of $8) irreps. AL-o(2fiw)=0 and A (2hw)=1 for L=2,3,4,5,6. Since

To construct the pure states fr>0, we proceed as fol- the valuesL=3,5,6 occur only oncex"*{(2,4)]=1), the
lows: Let (\,u) at NAw be the irrep that contains a pure associated states are pure;(L)=1.0]. For L=2,4, for
state with angular momentunli and projection M,  which «["®{(2,4)]=2, the appropriate coefficients,(L)
|#.m(N)). This state can be written as may be determined from the requirements

irreps.

IV. SOLVABLE STATES AND THEIR PROPERTIES
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c1(L){(0,49L;(2,00||(2,41L) expressions for their energies. We ha@N=0)=0 for the

0% w level, and
+¢,(L){(0,4)L;(2,00l|(2,42L)=0,

N 3
lca(L)]P+]ep(L)[>=1. (29 E(N)=ﬁ2§(No—>\g+ug—6+§N (A= pg),
For L=2, one finds((0,4)2;(2,0)0|(2,4)x2)=—0.85280 N 3
(0.05373 for k=1 (x=2) [51], and thus|ey(2hw)) E(N)— _(N ot 302N (<
=0.063 |2fiw(2,4)12M)+ 0.998|27iw(2,4)22M). Simi- (N)=B25 | Not 2Nyt =345 No=ro),
larly, for L=4, one obtains{((0,4)4;@2,0)0](2,4)x4) (30

=—0.75107(0.23440 for k=1 (k=2) [51], and there- , ,

fore c,(4)= 0.298 anct,(4)= 0.955. Analogously, one can or N>0. For Instance, foN(\ g, 14) = 24.5(0,4), which

proceed for the #w level. There are, for instance, three ~ Corresponds t0°<C, this yields E(N=0)=0, E(2%)

—4 states, one of which is pure. One fints,y(4hw))  — 192, E(4hw)=42,, etc. _

— —0.637|4%hw(4,4)14M) + 0.761|4hw(4,4)24M ) _ The p_artlal SL(JS) symmetry ofH(Bq,85) is (_:onverted

—0.124|2%w(4,4)34M), and similarly for the other states. Nt partial dynamical SIB) symmetry by adding to the
For a nucleus with X,,,x2,)=(\,0), A\>2, pure states Ha_m_lltonlan S@3) rotation terms that Iead_ tb(L+1)-type

with (A, )=(A—2,2), L=2,3,... A—1, exist at Zw splitting but do not affect the wave fun<_:t|ons. T_he solvable

states then form rotational bands and since their wave func-
tions are known, one can evaluate the quadrupole transition
rates between them,

according to the proof given in Sec. Illl. The odd angular
momentum valuesl. =3,5,... A\—1, occur only once £
=1) and the associated states are pure. The bvealues,
on the other hand, occur twice, with=1 or 2, correspond- 7\2 5 (L{||Q ||L-)|2
ing to Vergados labels O and 2, respectively. Since B(E2,LiHLf)=e2b4(—) > DEAlRel=vl (31)
((\,0)L;(2,0)0| (A — 2,2)xLy =[2(A+1)?—L(L + 1)]¥% Al 16w 2Li+1
[3N(A+1)]¥? for k=1 and 0 fork=2 [43], it follows that _ _ _
c(L)=0 (1.0 for k=1 (x=2). Consequently, the pure Hereb=v%/mw is the harmonic oscillator length pargmeter,
K=2 band at Zw consists of states with \(,x’) Z andA are_the nuclear charge and mass, respegtlvely, and
=(\-2,2), k=1 (k=2) for odd (even L values, i.e., the co_nventlon f_or the reducet_:l mat_rlx_element_s is summa-
= kM(\— 2,2). An example for such a nucleus is given in rized in Appendix A. For unmixed initial and final states,
Sec. V B, where théNe system is discussed. [ (N))= 2 (L)INi (N i) iLi) and |61, (ND))
Having constructed the solvable eigenstates of the PDS 2 «,Cx,(L1) [Nt w(Nt,11) kiL¢), the matrix element oQ,
HamiltonianH (8q,82), Eq. (24), we can now give analytic is given by

(b1, (ND[|Qzl[ ¢, (N))

= 0N, NN ) (g ,,u,f)(_1)¢”i\/6<CSU(3)>[()\i i) ] ’gf C (LD)Co (LN ) il 5 (AD2[ [N i) kel g) p=1

+ 0, o+ 20V ) TACI [, 24)) 2 € (LG (LOCN i) KiLi5(2002] [ (\ g ) el

KKt

+0n, =2V ) 1B [N ) 2 € (L C,e (LN i) kil 5(02)2]| (N ) erLg), (32)

KiKf

where¢, =0 for ©=0 and 1 otherwise. and thus B(E2,0hwl;=2—0kwl=0)=0.1925 e*m*
For intraband transitions, the above expression reduces tQ 112((0,4)2;(1,1)2/|(0,4)0)|2/5=4.31 e*fm*=2.64 W.u.

the first term on the right-hand side. For interband tranSition?Weisskopf units (which corresponds to 4.65 W.u., when an
there are three possibilities: For transitions frého 10 ogeciive charge® = 1.327 is usel ' o

(N+2)hw, the second term has to be evaluated; Ndrw
—(N—2)%w transitions, the third term is required; far,
#0, w,#0, ie., for triaxially deformed nuclei, &=0
—N=0 transition is possible as well; in that case the
relevant contribution originates from the first term. For  To illustrate that the PDS Hamiltonians of E@4) are
example, for a transition fromL;=2 to L{=0 in the physically relevant, we present applications to prolate, ob-
ground band ofC, b=1.668 fm, &Csy3)[(0,4)]=112, late, and triaxially deformed nuclei. We compare energy

V. APPLICATIONS TO LIGHT NUCLEI
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TABLE I. B(E2) values(in Weisskopf units for ground band - o0 p— DS pute
transitions in2C. Compared are several symplectic calculations, 100 F " 2 _ pure——
PDS results, and experimental dafadenotes the static quadrupole ¢4 | — K= Y]
moment of theL™=2] state and is given in units @b. The ex- % — pure —_ "
perimental values are taken from Ref§2,55. PDS results are é 60 | _ _ 1
rescaled by an effective chargé=1.33 and the symplectic calcu- & e :_:_K#“ - — K= ]
lations employ bare charges. & — k-0, pure — — — 1

20F _K=21K_=0;(_11 i K=2; gkl 2 .
Transition ModelB(E2) (W.u.) B(E2) (W.u) o f== — ]
Ji—J¢ 2ho 4hw 6hew 8hew PDS Expt. K=0,/K=0; K0,
20 465 4.65 465 465 4.65 469.26 FIG. 3. Energy spectra fol’C. Comparison between experi-
42 435 427 424 423 4.28 n/a mental valuegleft) [55], results from a symplectic/B» calculation

Q (eb) 0.059 0.060 0.060 0.060 0.058 056.03 (centej and a PDS calculatiofright). K=0, indicates the ground
band in all three parts of the figure. In addition, resonance bands

dominated by 2w excitations K=24,0,,1;,05), 4% w excitations
spectra, reduced quadrupole transition rates, and eigenstafés=41), and Giw excitations K=6,) are shown for the 36,R)
of and PDS calculations. Additional mixed resonance ba(rust
shown), dominated by #w and 6iw excitations, exist for this
—h(N)+ &H —128,=18)+ v.[2+ v,[4 nucleus. The angular momenta of the positive parity states in the
Hpos=N(N)+£H(5o B2 )+ 72 Ya '(33) rotational bands aré=0,2,4... for K=0 and L=K,K+1K
+2, ... otherwise. Bands that consist of pure{Sleigenstates of
the PDS Hamiltonian are indicated.

to those of the symplectic Hamiltonian

Hspe)= Ho— xQ,- Q,+d,L2+d,L%. (34)  energy difference between the=2, andK =0, bandheads
of the symplectic calculation, an(N) was adjusted to re-
Here the functiorh(N), which contains the harmonic oscil- produce approximately the relative positions of the
lator termH,, is simply a constant for a giveN#w excita-  — 01214, and  bandheads. The resulting spectrum is that
tion. We select lightp shell andds shell, nuclei for which a  Shown on the right side of Fig. 3, labeled PDS. _
full, three-dimensional symplectic calculation can be carried SNc€Hpps does not mix states with differeftsw exci-
out, that is, a limitation to a submodel of the(8fR) model tations, theB(EZ)_ values ob*talned in the PDS calculatlo_ns
is not required. Since we employ Hamiltonians composed€duire an effective charge” =1.33 to maich the experi-
solely of s6,R) generators, we restrict the model space toMental value$55] (compare Table)l Overall, we find litle
one sii6,R) irrep (represented by one “cone” in Fig)2We dpwaﬂon between the energies and electromagnetic transi-
include excitations up to78w. tion strengths of the two approaches. A better measure for the
level of agreement between the PDS and symplectic results
is given by a comparison of the eigenstates. According to the
proof given in Sec. lll, the Hamiltoniakl pp5 should have
The first nucleus to be considered iC, with four pro-  sets of solvable, pure-3B) eigenstates, which can be orga-
tons and four neutrons in the valenpeshell. This nucleus nized into rotational bands: All w states should be pure
has previously been studied in the(3®) submodel of the (\,,u,)=(0,4) states, and at/id» a rotational band with
SSM [33,54]. Here we employ the full, three-dimensional, good SU3) symmetry {,u)=(2,4) and L=2,3,4,5,6
symplectic shell model. The leading (8gR) irrep for this  should exist. Similarly, we expect pure-8) bands at 4 »
case isN,(\,,u,) =24.5(0,4). At the Zw level SU3)  with (\,u)=(4,4) andL=4,5,6,7,8, at Bw with (\,u)
irreps (\,u)=(2,4),(1,3), (0,2 occur, at the 4w level we  =(6,4) andL=6,7,8,9,10, etc. An analysis of the PDS
have ¢,ux)=(0,6), (1,4, (2,22, (4,4, (3,3, (1,1, (0,0, eigenstates shows that this is indeed the case. The associated
and so on for higher excitations. The parameterdigfs)  rotational bands are indicated in Fig. 3.
were fitted(simultaneouslyto the ground band energies and  Figure 4 shows the decomposition of representatlve (
the 2 —0; reduced quadrupole transition strength, for sym-=2") states of the five lowest rotational bands for Hh&, )
plectic model spaces including excitations up fou2 4% w, andHpps Hamiltonians. The left side of the figure illustrates
6hw, and & w. The resultingB(E2) strengths are listed in the amount of mixing in the wave functions of the
Table | and several low-lying rotational bands are shown irBZw (Q,-Q,) calculation: Members of the ground band
Fig. 3. The left part of the figure shows the experimental(K=0,) are nearly pure£90%) 0f w states and the reso-
energies of the ground bari85], while the center portion nance bands have strong @ contributions &60%). The
(labeled Q,-Q,) shows the calculated ground ban& ( K=2,, 1;, and G, bands contain admixtures froN w ex-
=0,), as well as several resonance bands that are dominateited states wititN>2, while theK =0, contains admixtures
by 2w excitations K=24,0,,1;,05), 4% w excitations K from both the @ w space and from higher oscillator shells.
=4,), and G excitations K=6,). The parameters of The relative strengths of the $8) irreps within the Z w
Hpps Were determined as follows:, and y, were fixed by  space are given as well. We find that each rotational band
the level splittings of the ground banglwas chosen to fit the tends to be dominated by one representation, nani2/s

A. The 2C case
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FIG. 4. Decompositions for calculatdd™=2" states of*°C.
Individual contributions from the relevant $8) irreps at the @ w
and Ziw levels are shown for both a symplectié & calculation
(denotedQ,-Q,) and a PDS calculation. In addition, the total
strengths contributed by thdA o excitations forN>2 are given
for the symplectic case.

for the K=2, andK=0, bands,(1,3) for K=1,, and (0,2

for K=03, with the other irreps contributing less than 3%.
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FIG. 5. Decompositions for calculatdd™=6" states of'C.
The structures shown are representative for the members d¢f the
=24, 4,4, and 6 rotational bands, respectively. States of these
bands are dominated )% w excited configurations with\ «)
=(N,4), N=2,4,6,8, in the symplectic scheme and are pure in the
PDS approach.

to the i w space, while the four resonance bands are pure
2h w configurations. Comparing this with the symplectic re-
sults, we observe that tHé7 w level to which a particular
PDS band belongs also dominates the corresponding sym-
plectic band. Furthermore, within this dominant excitation,
eigenstates oHgp6) and Hppg have very similar S(B)
structure, that is, the relative strengths of the various3pU
irreps in the symplectic states are approximately reproduced
in the PDS case. This holds for thke= 0, andK =2, bands,
which are pure in the PDS scheme, as well as for the mixed
K=0,, 1,, and G bands. The above statements are also true
for higherN7 o excitations, as is illustrated in Fig. 5 for the
L=6 states of theN=2, K=2;; N=4, K=4,; and N

=6, K=6, bands. Note also that, in the symplectic case,
admixtures from higher shells in tHe=6 wave functions
originate predominantly from the “special” irreps\(u) =

The right side of Fig. 4 shows the structure of the PDS eigen¢N,4).

states. Since the Hamiltonigippg does not mix different

The 1°C example given above nicely illustrates the con-

major oscillator shells, each eigenstate belongs entirely teept of a partial dynamical symmetry for a fermionic many-
oneN#% w level of excitation. Here the ground band belongsbody system. The pure PDS eigenstates form rotational
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50 TABLE Il. B(E2) values(in Weisskopf units for ground band
EEXP QQQ PDS transitions in2°Ne. Compared are experimental data, predictions
40 L 3 from several symplectic calculations, and PDS results. The static

[ ] quadrupole moment of the™=2; state is given in the last row.
The experimental values are taken from Rg#6,57,6Q. PDS tran-
sition rates are rescaled by an effective chafje- 1.95, while the
symplectic calculations use bare charges.

=
=
@

(98]
<
L
T
<
u
PR |

=~
It
o

Energy [MeV]
[\
S
)

] Transition ModelB(E2) (W.u.) B(E2) (W.u.)
] Ji—J¢ 2hw  4ho 6how 8hew PDS Expt.

—_
<
T

Py — 20 140 187 191 193 20.3 23:3.0
[ K=0, K=0, K=0, ] 42 184 245 246 245 257 2220

20 . 6—4 17.1 22.3 215 209 21.8 20:B.0
FIG. 6. Energy spectra for'Ne. Experimental ground band 8.6 124 152 133 124 129 9.3

(K=0,) energied60] are shown on the left, while theoretical re- _ B B _ _ _
sults for both the ground band and#z&@ resonances K Q (en) 014 -0.16 ~0.16 ~0.16 ~0.17 ~0.23-0.03

=0,,1;,2,,05) are given in the center and on the right, for a sym-
plectic & w and a PDS calculation, respectively. Rotational bands
that consist of pure eigenstates of the PDS Hamiltonian ardiowever, contain significant contributions from all but the

indicated. highestN7% w excitations. The relative strengths of the SV
irreps within the Z w space are shown as well. As in th&C
case, states are found to be dominated by one representation
[(10,0 for the K=0, band,(8,1) for K=1,, (6,2)x=2 for
K=2;, and (6,2x=1 for K=05 herd, while the other
irreps contribute only a few percent. Such trends are
present also in the more realistic symplectic calculations of
We now turn to a system with pure PDS eigenstates thaguzuki[59].
follow pattern(a): The *Ne nucleus, with two valence pro-  As expectedH pps has families of pure-S(3) eigenstates
tons and neutrons each, has previously been described withifat can be organized into rotational bands, Fig. 6. The
the symplectic model framewoflR9,47,58,59 The leading ground band belongs entirely =0, (\,x)=(8,0), and all
sp6,R) irrep for this prolate nucleus isN,(A\y.k0)  gtates of theK=2, band have quantum labelsl=2,
=48.5(8,0). We expect to find solvable, pure{SUeigen- (N, ) =(6,2), k=2. TheK =4, band at 4 is not shown.

fﬁiiiﬁ?ﬁ?b? ‘Sh: “6 Zia:),oazn i glg’ .ro'\t/le?tirsnsarl)igzga\lf{%fh A comparison with the symplectic case shows thatNtgo

(A1) =(8,0) at Gia 1a,1 Keo L=2 3456.7 band with level to which a particular PDS band belongs is also domi-

(7\,,5)—(6,2) at %w’ and aKl,—4 L—45 “,band” With nant in the corresponding symplectic band, Fig. 7. As before,
1 - ’ ’ ] — P . . . . .

N)=(4.4) at #io. P PDS stat t hiaher level 1:wnhln this dqm!nant excngthn, §|gen§tates !dfPDS and

(oju) =(4,4) at %io. Pure siales at higher 1evers o Hsps) have similar SB) distributions; in particular, both

excitation do not exist. ) 1 o .
As in the 12C case, we compare the eigenstatesiehs Hamiltonians favor the same\ (1) « values. Significant dif-

to those of the symplectic Hamiltonidts,s). Least squares ferences in the structure of the wave functions appear, how-
fits to measured energies aB{E2) values of the ground €Ver, for theK=0, resonance band. In thé:& symplectic
band of2°Ne [60] were carried out for 2w, 4% w, 64w, and calculation, this band contains almost equal contributions
8% w symplectic model spaces. The resulting energies anffom the Qiw, 2fiw, and 41 w levels, with additional admix-
transition rates converge to values that agree with the data, &res of 6iw and 8iw configurations, while in the PDS
is illustrated in Fig. 6 and Table Il. The parametggsandy,  calculation, it belongs entirely to thei2» level. These struc-
in Hpps Were determined by the energy splitting betweentural differences are also evident in the interband transition
states of the ground band,was adjusted to reproduce the rates, as is illustrated in Table Ill. Whereas the intraband
relative positions of the 2w resonance bandheads amn@dN) B(E2) strengths are approximately equal in both ap-
was fixed by the energy differen¢&(0,)—E(0;)]. Figure  proaches, we observe that the interband rates differ by a
6 and Table Il demonstrate the level of agreement betweefactor of 2—3 in most cases. These differences reflect the
the PDS and symplectic results. action of the intershell coupling terms that are present in the
An analysis of the structure of the ground and resonancguadrupole-quadrupole interaction of E@3), but do not
bands reveals the amount of mixing in the& symplectic  occur in the PDS Hamiltonian. Increasing the strengtbf
(Q2-Qy) wave functions. Figure 7 shows the decompositionQ,- Q, in Hgy will also spread the other resonance bands
for representative ("=2") states of the five lowest rota- over manyNz w excitations. Theék =2, band(which is pure
tional bands. Ground ban&&0,) states are found to have in the PDS schemes found to resist this spreading more
a strong @Gw component £64%), and three of the four strongly than the other resonances. For physically relevant
resonance bands are clearly dominated60%) by 2w values ofy, the low-lying bands have the structure shown in
configurations. States of the first resonance bafe(,), Fig. 7.

bands that follow the pattern for solvable states of farthly
their energies ané&?2 transition strengths between them can
be evaluated analytically according to E¢30)—(32).

B. The ®Ne case
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PARTIAL DYNAMICAL SYMMETRY INTH E . ..

100 Q2 Q2 PDS
[ %
— I %
R 80 Sk ]
e - -~ nu)
| X £ ]
m [ K=01 '_:_..
< 40} = £ .
S .| g 3
& 20L = 2] ]
A 20: F:} a ]
B B B . &
100
X 80}
>" ~—
E 60 g
2wl S s =02 =
o &
2ol B &
.z '.'T. B\Q m o [
0 = = ~ e Iy =
100
=
—_ o
£ 60 < &
=R =
M 33 K=l i
< 40} 2 9
- g =t
B2 5 ol E S
© SRS B < =L
0 A N q":v 1 E::g | — "".E_
100 . ::::
—_ 4l
® 80} * i3
— o o et
S = LY
A = par
= 60f a _'-::-
= ) K=2 3
< 40F = g
m .:-
8 20 :E
0 Iy 5] 2a)
100
—_ SE
= 8op <t
> i
= 60f A
5 K=03
< 40p i)
S s i
& 20[ S~ S ol
A o o =
=) i S
0 el £l ooy Bt 1)
0 2 4 6 8 0 2 N

FIG. 7. Decompositions for calculatdd™=2" states of?Ne.
Individual contributions from the S@) irreps at the @ w and Ziw
levels are shown for both a symplectié & calculation(left side
and a PDS calculatiofright side. For the symplectic approach the
summed contributions from SB) irreps at higher l>>2) excita-
tions are given as well.
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TABLE Ill. Comparison of intraband and interbaBdE2) rates
for 2®Ne. Shown are various transitions between states of the lowest
rotational bandsK =0, denotes the ground band, which is domi-
nated by @ w configurations; members of the other bands corre-
spond to Zw resonances. Results are from the PDS calculation
(rescaled bye*=1.95) and from the Bw symplectic approach
(e*=1.0). In the last column, ratios of the calculated transition
strengths are given.

Transition ModelB(E2) (W.u.) B(E2)[PDS
J K I K Sp6,R) PDS  B(E2)[Sp6]
2 0, 0 (0} 19.3 20.3 1.05
2 0o, 0 0 5.8 12.6 2.16
2 0 0 O 0.10 0.32 3.16
2 0pb 0 0, 2.9 5.7 1.94
2 0, 0 0, 20.3 27.8 1.37
2 03 0 0, 0.15 0.13 0.84
2 0, 0 03 0.17 0.48 2.80
2 0, 0 03 0.25 0.26 1.01
2 03 0 03 12.9 16.8 1.30
4 0, 2 (0} 24.5 25.7 1.05
4 0, 2 0, 10.9 22.8 2.09
4 1, 2 0 2.3 5.8 2.55
4 2, 2 0 0.63 2.3 3.66
4 0; 2 0 0.09 0.30 3.34

C. The ?*Mg case

The final example to be considered here involves the tri-
axially deformed nucleug*Mg, which has been the subject
of several symplectic model studip%5,47,61,62 With four
valence protons and neutrons in tds shell each, and a
leading sf6,R) irrep N (N, , 1) =62.5(8,4), this system is
the most complicated one to be investigated here. Since both
N.#0 andu,#0, the symplectic Hilbert space has a very
rich structure. Thé8,4) representation at/fw contains three
rotational bands: & =0 band withL=0,2,4,6,8; aK=2
band with L=2,3,...,10; and aK=4 band with L
=45, ...,12. At the Ziw level, there are six possible $8)
irreps, (10,4, (8,9, (6,6), (9,3, (7,4), and(8,2), which con-
tain a total of fourK =0, two K=1, fourK=2, two K=3,
threeK=4, oneK=5, oneK=6, ... bands. At the 4w
level, there are 15 different SB) irreps, at 6 w, there are
25, etc. Accordingly, the number of states for a given angular
momentum valud. increases dramatically with the inclusion
of higher excitations. This is illustrated in Table IV far

TABLE V. Dimensions of symplectic Hilbert spaces féfMg.
Shown are the number @f states [=0,1, .. .,8) forspaces that
includeN% w excitations up tdN=0, 2, 4, and 6, respectively.

Symplectic Angular momenturi

space 0o 1 2 3 4 5 6 7 8
0w i1 0 2 1 3 2 3 2 3
(0+2)hw 4 3 11 10 17 15 19 16 18

(0+2+4)hw 13 15 40 41 62 59 71 63 67
(0+2+4+6)ho 32 49 110 122 171 171 198 182 187
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TABLE V. B(E2) strengths of*Mg. Compared are results from
60 | Exp QQ; — ] 2hw, 4hw, and Gw symplectic calculations, a PDS calculation,
so b K=6,] and experimen{57,63. Both intraband and interband transitions
_ = between states of the groun&k€0;) and y (K=2,) band are
% 40 — = é 15 given. The static quadrupole moment of thg &ate is listed in the
s T —=—k=4 3 last line (in units of eb). (Measurements have given results fQ
Eﬂ 30 K=, == K-2, ranging from less than 0.1¢b to nearly double that value. We list
3 — K=03 K_=22 the value adopted in the review by Spdai7].) The symplectic
g 20¢ é az ] model reproduces the observed transition rates without employing
Ty — —=x= 1 effective charges, while the PDS approach requi‘es 1.75.
0 —=k=2|— k=, ] Transition ModelB(E2) B(E2)
K=0, K=0, J K I Ky 2k dhw 6hw PDS Expt.
2 0, 0 00 172 20.2 204 20.5 2050.6
60 b Exp PDS R 4 0, 2 0, 245 269 269 262 284
i 6 0, 4 0, 252 255 252 225 34°%
50 — 9 80, 60 244 194 192 136 16>
S 40 | = = gg 3 2 22 316 356 353 366 346
é’ e =§ K_:42 3 4 2, 2 24 9.7 11.2 11.0 11.6 163
= 30 ¢ pure ::K=04§ K=2; 5 2, 3 2, 153 17.0 16.6 16.8 285
%” 2 ooy, =% 5 5 2, 4 2, 173 180 177 180 146
g 20} JV =x=o 6 2 4 2, 153 194 183 201 233
0= —=xk= 8 2, 6 2, 124 180 159  19.6 =3
== 2 200 11 1.3 1.3 3.1 140.3
0 | =K2=K=2 2 2,20 22 1.7 1.9 3.4 2704
K=0, K=0,
3 2, 2 0; 1.9 2.4 2.3 5.6 2103
FIG. 8. Energy spectra fo¥*Mg. Energies from a PDS calcula- 4220 02 L0 0.9 2.7 1.60.2
tion (bottom are compared to symplectic resul{top). Both 4.2, 40 29 2.1 2.3 4.1 181.0
0% w-dominated bandsK=0,,2;,4;) and some Zw resonance ° 21 4 01 1.0 2.4 2.0 6.0 32038
bands K=0,050,2,2542,45,6,) are shown. The K 6 2, 4 0, 0.2 1.2 1.0 32 0873

=04,21,4, (6,) states are puréapproximately purein the PDS Q (eb) —0.171 —0.186 —0.185 —0.191 —0.18+0.02
scheme. Experimental values for the ground anbland energies,
taken from Refs[63,64], are given on the left.

of an effective charge, within experimental uncertainties. The
=0,1,2...,8. 4f o results are better than thei@ results, with the 6w
Since the interactions iRig,g) do not distinguish differ-  calculation yielding only moderate improvements.
ent « multiplicities, it becomes necessary to make use of |n analogy with the symplectic case, we include teias
the integrity basis operatorX; and X, discussed in andX, in the PDS Hamiltonian,
Sec. I, which allow us to reproduce the experimentally ob-

servedK band splitting in the spectrum dfMg. Using the , - -
Hamiltonian Hpps=Hppst C3X3+CsXy. (36)

Hsp(e)= Hsp(eyt CaXa+CaXa, (35  As we will see below, the introduction of these extra terms
breaks the partial symmetry. We fixed andc, at the values
we carried out least squares fits to measured energies atitht were used in the 7w symplectic calculation, deter-
B(E2) values for Zw, 4hw, and 6w symplectic spaces. mined y, and vy, from the level splittings in theK=0,
Figure 8 (top) displays the energies obtained with the ground band, and adjusté€dso as to reproduce the relative
6% w calculation(right part of the figurgin comparison with  positions of selected 72w bandhead statesve focused on
the experimental valug$3,64] (left side. In addition to the the lowest three&K =0 bands and the firs(=6 band. Then
ground K=0,) and y (K=2;) bands, the calculate& h(N) was chosen to reproduce approximately the positions
=4, band, which is dominated by configurations, and of the 24w resonances relative to the ground anpdbands.
several low-lying symplecti& =0, 2, 4, and 6 bands, which We obtain an energy spectrum that agrees well with the
are dominantly 2 resonances, are shown. Table V listsresults of the symplectic calculation, as is shown in Fig. 8.
variousB(E2) transition rates between the low-lying statesThe B(E2) strengths for the ground ang bands, rescaled
of ?*Mg. We find that the results of the symplectic calcula-by an effective charge* =1.75, are given in Table V. We
tions are in good agreement with the dgé&|. Specifically, find good agreement between the PDS and symplectic calcu-
the v band is correctly located and nearly all the calculatedations for the intraband transitions, whereas there are larger
intraband and interband transition rates fall, without the useleviations in the interband rates.
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100 Q2 Q2 PDS QrQ2 PDS
Eg0f 3 K=o+ 3 ] K=2,*
% 0 ]
g
& 20 § ]
0 —c|-
100
¥ g0 K=21" g 1 FIG. 9. Decompositions for
> & calculated."=6" states of*“Mg.
5 60 1 Eigenstates resulting from the
2 a0 ] symplectic Giw calculation are
§ 0 R ] decomposed into their 7Q,
A~ s 2hw, 4hw, and & w components
o — . (denoted byQ,- Q, in the figurs.
< 5 K=41+ = At the 0iw and 2L w levels, con-
280- < & ] tributions from the individual
E 60 ] SU(3) irreps are shown, for higher
= excitations {N>2) only the
Eé 40 ] summed strengths are given.
& 20 = ] Eigenstates of the PDS Hamil-
0 S tonian belong entirely to ond% w
100 i > level of excitation, here ®w or
E sof K=0,* g 1 2% w. Contributions from the indi-
' = vidual SU3) irreps at these levels
5 60 are shown. Members of th&
240 =0,,2,,4, bands are pure in the
§ 20 PDS scheme, and= 6, states are
= nearly (>99%) pure.
0
100
E 4
E 60
g 20} % g@ % gg 5"% ] -
° 0o T2 4 6 0 T2 N 0o T2 4 6 0 N

According to the proof given in Sec. Ill, the three rota- cally, we have plotted the contributions from the SUrreps

tional bands at Aw should be pure in the PDS scheme, andat 0w and 2w, as well as the(summed contributions

at 2fw there should be éshord rotationalK=6 band with  from 4w and Ghw excitations.

L=6,7, which belongs entirely to the\(u)=(6,6) repre- As in the previous examples, we observe that the eigen-
sentation. We find that the#Qv states are indeed pure, but states of both Hamiltonians have very similar structures: For
the K=6, L=6,7 band has small admixtures:( %) from @ given state, the sani¢/ o level of excitation is dominant
2hw irreps other than X,u)=(6,6), thus indicating that in both calculations and, moreover, within this dominant ex-
Hpps, unlike Hppg, is not an exact partial dynamical sym- citation, we find similar S(B) distributions. The structural

metry Hamiltonian, due to the presence of #adand split-  differences that do exist are, again, reflected in the very sen-
ting termsf(3 and 5(4 This can be understood as follows: sitive interband transition rates, as can be seen in Table VI.

While X5 and X, cannot mix different S(B) irreps, their
eigenstates involve particular linear combinations of differ- VI. COMPARISON OF PARTIAL SYMMETRIES
ent« values. Since the operatoXs andX, do not commute  IN BOSONIC AND FERMIONIC MANY-BODY SYSTEMS

with By, these linear combinations Eiiffer from configurations  pgytial dynamical symmetries were first studied in the in-
resulting from the PDS requiremeBt)| ¢)=0. Fortunately, teracting boson modélBM) of nuclei[6]. In [17], the fol-

a very small amount of symmetry breaking suffices to fit thelowing IBM Hamiltonian was used to reproduce measured
relative positions of the ground ang bands, as can be in- energies and?2 rates of1%%r:

ferred from the eigenstate decompositions plotted in Fig. 9.

Shown are the decompostions of the-6 states associated . ;=

with the calculatecdH g, and Hpps spectra. More specifi- Higm(ho.h2) =hoPoPo+hoP3- Py, (37
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TABLE VI. Comparison of intraband and interbaBdE2) rates  with good angular momenturh are obtained by projection
for 2*Mg. Shown are selected transitions between states oKthe from |c; N). Moreover, one finds that states of the form
=04, 05, 05, and 2 bands. The PDS values are rescaledeby
=1.75. Ratios of the results from the two theoretical approaches are

given in the last column. [k)oc (P1)X|c;NY, (40)
Transition ModelB(E2) (W.u.) B(E2)[PDS

Ji Ki J; K Sp6,R) PDS B(E2)[Sp6] are eigenstates ofH,gu(hg,h,) with eigenvalues E,
=6h,(2N+1-2k)k and good SIB) symmetry (N

2 0, 0 0 20.4 20.5 1.00 —4k,2k), where X<N. They are lowest weight states in

2 0, 0 0O 5.6 10.2 1.84 these representations and serve as intrinsic states represent-

2 06 0 0O 0.047 0.19 4.09 ing ¥ bands with angular momentum projectidt= 2k

2 2, 0 0 0.22 2.1 9.46 along the symmetry axis.

2 0,0 0 0 2.5 5.2 2.05 Since Higm(hg,hy) is rotationally invariant, it follows

2 0, 0 O 14.8 26.6 1.80 that states of good projected fromk=0)=|c;N) and|k),

2 0 0 0, 0.037 0.047 1.26 k>0, are also eigenstates with enefgyand SU3) symme-

2 2, 0 0, 0.48 3.4 7.00 try (2N —4k,2k). The projected states span the entir&l(@)

2 0,0 0O 0O 0.025 0.042 1.69 representation fok=0, but only part of the corresponding

2 0, 0 O 0.12 0.12 1.06 irrep for k>0. There are other excited states that do not

2 0; 0 0 12.9 16.2 1.26 preserve the S(3) symmetry and, therefore, contain a mix-

2 2, 0 0, 0.023 0.12 5.21 ture of SU3) irreps, including the “special” irreps (®

4 0, 2 0 26.9 26.2 0.97 —4Kk,2k). SinceH,gm(hg,hy) is not a SU3) scalar, but pos-

4 0, 2 0 9.7 18.4 1.90 sesses a subset of solvable eigenstates with go¢8) Sym-

4 0z 2 0 0.052 0.48 9.20 metry, it is a partial-symmetry Hamiltonian. Adding, the

4 2, 2 0 0.66 0.21 0.32 Casimir operator of S@), to H;gu(hg,h,) converts the par-

tial symmetry to a partial dynamical symmetry and contrib-
utes aL(L+1) splitting, but does not affect the wave func-
wherehg,h, are arbitrary parameters arﬁt{, L=0 and 2, tions.

are boson pair operators: The boson and fermion Hamiltoniankl, gy (hg,h,) of
Eq. (37) andH(By,8,) of Eq. (24), have several features in
Pi=d.df-2(s")?, common: Both display partial S8) symmetry, they are con-

structed to be rotationally invariant functions of,f)

:25TdL+ ﬁ(d*d*)ﬁf). (39 =(2,0) and {,u)=(0,2) SU3) tensor operators, and $8)

tensor decompositions show that both containg) = (0,0)

The creation operators’ andd!, (x#=0,£1,+2) denote a 2and(2,2) terms only.Hgw(No,hz), as well asH(Bo,B>),

monopole boson with angular momentum and padfy has solvable pure-SB) eigenstates, which can be organized

=0*, and a quadrupole boson with"=2*, respectively. into rotational bands; the degeneracies within these bands are

They represent correlated valence nucleon pairs and are tfiéed by adding the S(8) term L? to the Hamiltonian. The

basic building blocks of the IBM. The pair operatd?§ and ~ ground bands are pure in both cases, and higher-energy pure

p;M are components of a\(u)=(0,2) SU3) tensor, and bands coexist with mlxe(_j—symmetry_states.

their Hermitian adjoints,Py and B, =(—1)*P are There are several significant differences between the

characterized byX, )= (2 %) 20 2o bosonic and fermionic PDS Hamiltonians, however. For ex-
It can be shown that f6h2=h0, the Hamiltonian of Eq. ample, the ground band of the Hamiltoniahgy (ho,ho),

(37) becomes a S(3) scalar[related to the Casimir operator Eq.. (37), is c'haracterlzed .byM’”):(ZN’O)’ €., it de-

of SUB3)] and for hy=—hy/5, it transforms as a;u) scribes an axially symmetric prolate nucleus. It is also pos-

~(2.2) SU3) tensorzcomp%nént. In generad, s, (ho h,) sible tofind an IBM Hamiltonian with partial SB) symme-

is, therefore, not a S@3) scalar, nevertheless it turns out that iry for an oblate nucleus. It can be shown that these two

it always has an exact zero-energy eigenstate, denoted ASes exhaust all pqssipilitigs for partial (S)szmmetry
what follows by|c;N), where the integeN gives the total with a two-body Hamiltonian in the IBM-1 with one type of

number of bosons in the system. The sfatdl) describes a monqpolg and qua(_irupole bosons. In contrast, the fermionic
. Hamiltonians considered here can accommodate ground
condensate of bosons and can be written as

bands of prolate[(\,,0)], oblate [(0,ux,)], and triaxial
[(Ng,1ty) With N,#0, u,# 0] shapes.
T Another difference between the fermionic and the bosonic
leiN)y= \/_[(S " \/—do)/\/—] 0)- 39 PDS cases discussed here lies in the physical interpretation
of the excited solvable bands. While these bands represent
It is the lowest weight state in the $8) irrep (\,u) double v, etc., excitations in the IBM, they correspond to
=(2N,0) and serves as an intrinsic state for the(3U giant monopole and quadrupole resonances in the fermion
ground band. The rotational members of the ground bandase.
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Furthermore, whereas the pure eigenstates ofransition strengths, and eigenstate structures of the partial-
H,sm(hg,hy) can be generated by repeated action of the bosymmetry Hamiltonians to those of a symplectic shell-model
son pair operatoP}, on the boson condensate and subseHamiltonian containing a realistic quadrupole-quadrupole in-
quent angular momentum projection, a similar straightfor-teraction. Although the PDS Hamiltonians cannot account
ward construction process for the special eigenstates dbr intershell correlations, we have observed that various fea-
H(B,.,) has not been identified yet. The situation seems tdures of the quadrupole-quadrupole interaction are repro-
be more complicated in the fermion case, which is also reduced with a particular parametrization of the partial-
flected in the fact thatl (8, 3,) has two possible families of Symmetry Hamiltonians. PDS eigenfunctions do not contain
pure eigenstates, one finite, the other infinite. The associatioddmixtures from differenN7z configurations, but belong
of the special states to one or the other family depends on thentirely to one level of excitation. We have found that, for
07w symplectic starting configuration. reasonable interaction parameters, lfew level to which a

The comparison of partial dynamical symmetries inparticular PDS band belongs is also dominant in the corre-
bosonic and fermionic systems above illustrates that, in spitgponding band of exa,- Q, eigenstates. Moreover, within
of similar algebraic structures of the associated Hamiltothis dominant excitation, eigenstates of both Hamiltonians
nians, two given systems with partial symmetries may exhave similar SUB) distributions. Structural differences, nev-
hibit not only different physical interpretations, but also dif- ertheless, do arise and are reflected in the very sensitive in-
ferent systematic features and different mechanisms foierband transition rates. Overall, however, we may conclude

generating the partial symmetries in question. that PDS eigenstates approximately reproduce the structure
of the exactQ,-Q, eigenstates, for both ground and most
VIl. SUMMARY AND CONCLUSIONS resonance bands.

The notion of partial dynamical symmetries extends and

The fundamental concept underlying algebraic theories itomplements the familiar concepts of exact and dynamical
quantum physics is that of an exact or dynamical symmetrysymmetries. It is applicable when a subset of physical states
Realistic quantum systems, however, often require the assexhibit a symmetry that does not arise from the invariance
ciated symmetry to be broken in order to allow for a properproperties of the relevant Hamiltonian. Recent studies, in-
description of some observed basic features. Partial dynam¢juding the one presented here, show that partial symmetries
cal symmetry describes an intermediate situation in whictmay indeed be realized in various quantum systems. This
some eigenstates exhibit a symmetry that the associatgfldicates that PDS is not a mere mathematical concept, but
Hamiltonian does not share. The objective of this approach ifnay serve as a practical tool in realistic applications of alge-
to remove undesired constraints from the theory while prepraic methods to physical systems.
serving the useful aspects of a dynamical symmetry, such as
solvability, for a subset of eigenstates. . ' ACKNOWLEDGMENTS
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try, but still possess a subset of “special” solvable eigen- APPENDIX A: SU(3) WIGNER COEFFICIENTS
states that respect the symmetry. The construction process AND WIGNER-ECKART THEOREM
for these special states was outlined and analytic expressions
for their energies and foE2 transition rates between them If « represents a set of labels used to distinguish
were given. orthonormal basis states within a given irreducible

To illustrate that the PDS Hamiltonians introduced hereSU(3) representation N,u), the Wigner coefficients
are physically relevant, we have presented applications '[()()\1,/Ll)al;()\z,,LLz)a2|()\,,u)a>p are defined as the ele-
oblate, prolate, and triaxially deformed nuclei. Specifically, ments of a unitary transformation between coupled and un-
we have compared the energy spectra, reduced quadrupateupled orthonormal irreps of $8) in the @ schemd40],

| w)a),= 20 ((Nama)ar; (N ) ol (N, ) @), | (Mg ma) ag)| (Mg i) @), (A1)
a @y

and the inverse transformation is given by

|()\11M1)011>|()\2:M2)012>:p(§)a (M) ags (N o) ao| (N, ) a) (N, ) @), (A2)
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Here a=eAM, for the SU(3PDSU(2)®U(1) (canonical group chain andx= xIm for the SU3)D>SO(3) reduction em-
ployed in this work. The subgroup chains impose certain restrictions on the above couplings, for example, the usual angular
momentum coupling rules=1,+1,, ..., |l;—1,/, andm=m;+m, apply for the chain containing 6).

The outer multiplicity labelp=1,2, . .. pmay IS Used to distinguish multiple occurrences of a givany) in the direct
product (1, 1) X (N2, u2): p=1,2, ... pmax» Wherep,ax denotes the number of possible coupliny$ (1) X (N2, u2), and
the possible X,u) irreps in the product can be obtained by coupling the appropriate Young dia¢gdn®'Reilly [66]
determines a closed formula for the decomposition of the outer prodycig) X (\o,u,) of SU(3) irreps for arbitrary
positive integers\;,u;, and derives necessary and sufficient conditions for &35lbrep (A, ) to appear as summand in
(N, p2) X (Mg, ).

It is possible to factor out the dependence of the above SO&)(3) Wigner coupling coefficient on timesubgroup label
by defining so-called double-barred or “reduced” @Ucoupling coefficients,

(M) ey lymy ()\Z,MZ)KZIZmZK)\’M)Klm)p
=((\psu)rlys ()\Z’MZ)KZIZH()\’M)Kl)p (lymy, lzm2|lm>.

reduced Wigner coefficient geometric part (A3)
A3

The “geometric” part(--|-) is simply a SW2) Clebsch-  For more details on S@3) coupling and recoupling coeffi-
Gordan coefficient. From the unitarity of the full 8) cients, see the compilation in Appendix C of RE36] and
Wigner and the ordinary S@) Clebsch-Gordan coefficients references therein.
it follows that the double-bar coefficients are also unitary.
With the phase convention introduced in Ref0] they be-
come real, and therefore orthogonal. Draayer and Akiyama
[40] give a prescription for the unique determination, includ-
ing the phases, of S@) Wigner coefficients and derive their The calculations presented here require expressions for
relevant conjugation and symmetry properties. They furthermayix elements of the $6,R) generatorsh®®, B2, and
more provide a computer code that allows for a numericab(ll)
determination of the coefficien{$1]. Analytic expressions
for Wigner coefficients that are of particular interestpn ~(11)_ ¢
shell andds shell nuclear shell-model calculations are tabu-fions and, furthermore, the $8) generator<Cy;"=L4 and
lated in Ref.[67] for the canonical subgroup chain and in C(zf)= 1/J§QEM act only within one level of excitatiom.
Refs.[43,53,68 for the SU(3)DSO(3) chain. Matrix elements forC'? in the standard S(@3) bases are
The Wigner-Eckart theorem for the group &Jyields  given by[49,67,
SU(2)-reduceddouble-bay matrix elements of a S@) irre-
ducible tensor operator,

APPENDIX B: MATRIX ELEMENTS
OF RELEVANT OPERATORS

, and combinations thereof. None of these operators
connect states belonging to different symplectic representa-

(OO IEEII N )
(I3 T'2|14) =(- 1)4)"\/2<ésu(3)>[(7\,ﬂ)]5()«,,/)0\,#) ,

N (B1)

(Ad)

(13mg| T'2M2 1 ;my) = (11my ;1 ,my| 1 3ms)

where ésu(g) denotes the second-order Casimir oper-
ator of SU3), given in Eq.(9), and ¢,=1 for u#0
. . )22
Analogously, the generalized Wigner-Eckart theorem allowsngd $,=0 for u=0. The reduced matrix element
one to express matrix elements of @Yirreducible tensor (()\',M’)|||é(11)|||()\7M)> is related to the full S(B) matrix

operators as a sum ovgrof the product of g dependent  giement via the Wigner-Eckart theorem for @Jand the
generalized reduced matrix element multiplied by the COMephase is chosen to be consistent with that of R&d].

sponding Wigner coefficieri#0], Several strategies for calculating matrix elements of the
symplectic generator&?® andB(°? have been explored. A
s, aq| TO2 ez (\ o dlre_ct way is to use the $,R) commutation relations to
(Oarna) sl O e as) derive recursion formulas, as shown by Rosengt@égl An-
other approach is to start from approximate matrix elements

:g ((\pspa)as;(Nz,m2) azl (N3, ma) g), and to proceed by successive approximations, adjusting the
matrix elements until the commutation relations are precisely
X{(Ng,wa)|| [ TO242[[[(N g, 1)), - (A5)  satisfied[29]. Deenen and Quesr{&9] have employed a
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boson mapping to obtain generator matrix elements, angi( ,u)KIm|X3| LR m'
Castaoset al.[70] have derived simple analytical functions ' ’
for some special irreps. The most elegant method, outlined =6, ,1y(x, ) 0171 Omm3l(1+ 1) V21 +1W(1,1],1;1,2)

by Rowe in Ref[71], involves vector-valued coherent state
representation theory and evaluates matrix elements of the
symplectic raising and lowering operators by relating them

X (O w) el [[CEV (N ) 1) (B2)

to the matrix elements of a much simpler ud)Veyl alge-

this appendix, the reader is thus referred to Ref] for
details of the calculation.

Matrix elements of the SU(3) SO(3) integrity basis op-
erators X;=(LxQEF )y L and X,=(LxQF )y (L
X QF )y can be given in terms of S@ Racah re-
coupling coefficientsW(lq,15,1,13;115,159) [72] and the

SU(3)DS0(3) reduced matrix elements 6f'Y [49],

(v ) kIM[X4] (N
bra. A listing of the relevant formulas is beyond the scope of

Lu)k'l'm’)

=0 w0 011 OOl (1+1)

XA21+1 Y, (=D)L 217 1 W) ,2)7:1,1) ]2

KHIN
(O ) el [[CEDI (N ) 1)

X (O ) k"] CEP [N, ) 1) (B3)
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