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Partial dynamical symmetry in the symplectic shell model
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We present an example of a partial dynamical symmetry~PDS! in an interacting fermion system and
demonstrate the close relationship of the associated Hamiltonians with a realistic quadrupole-quadrupole in-
teraction, thus shedding light on this important interaction. Specifically, in the framework of the symplectic
shell model of nuclei, we prove the existence of a family of fermionic Hamiltonians with partial SU~3!
symmetry. We outline the construction process for the PDS eigenstates with good symmetry and give analytic
expressions for the energies of these states andE2 transition strengths between them. Characteristics of both
pure and mixed-symmetry PDS eigenstates are discussed and the resulting spectra and transition strengths are
compared to those of real nuclei. The PDS concept is shown to be relevant to the description of prolate, oblate,
as well as triaxially deformed nuclei. Similarities and differences between the fermion case and the previously
established partial SU~3! symmetry in the interacting boson model are considered.
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I. INTRODUCTION

Symmetries play an important role in physics. Consta
of motion associated with a symmetry govern the integra
ity of a given classical system, and at the quantum le
symmetries provide labels for the classification of states,
termine selection rules, and simplify the relevant Ham
tonian matrices. Algebraic, symmetry-based, theories h
been firmly established as an elegant and practical appr
to a variety of physical systems~see, for example, Refs
@1–12#!. These theories offer the greatest simplificatio
when the interaction under consideration is symmetry p
serving in the selected state labeling scheme, that is, w
the Hamiltonian either commutes with all the generators o
particular group~exact symmetry! or when it is written in
terms of and commutes with the Casimir operators of a ch
of nested groups~dynamical symmetry!. In both cases basi
states belonging to inequivalent irreducible representat
of the relevant groups do not mix, the Hamiltonian mat
has block structure, and all properties of the system can
expressed in closed form. An exact or dynamical symme
not only facilitates the numerical treatment of the Ham
tonian, but also its interpretation and thus provides consi
able insight into the physics of a given system.

Naturally, the application of exact or dynamical symm
tries to realistic situations has its limitations: Usually t
assumed symmetry is only approximately fulfilled, and i
posing certain symmetry requirements on the Hamilton
might result in constraints that are too severe and incom
ible with experimentally observed features of the syste
The standard approach in such situations is to break the s
metry. In cases where a symmetry-breaking Hamiltonian
involved, it is possible to decompose the offending ter
into basic parts~irreducible tensor operators! that exhibit
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0556-2813/2002/65~5!/054309~20!/$20.00 65 0543
ts
l-
l

e-
-
ve
ch

s
-

en
a

in

s

be
y

r-

-

-
n
t-
.

m-
is
s

specific transformation properties. Provided the appropr
group coupling coefficients and the matrix elements of so
elementary tensor operators are available, matrix elemen
operators that connect inequivalent irreducible represe
tions can be determined and the exact eigenvalues and e
states can then be obtained~at least in principle!. While
group theoretical considerations still play an important r
in evaluating the coupling coefficients and matrix eleme
for such a calculation and in truncating model spaces
have become too large for a complete numeric treatment,
basic simplicity of the symmetry-based approach is lost.

Alternatively, one might consider some intermedia
structure, which allows for symmetry breaking, but preser
the advantages of a dynamical symmetry for a part of
system. Partial dynamical symmetry~PDS! @13# provides
such a structure. It corresponds to a particular symme
breaking for which the Hamiltonian is not invariant under t
symmetry group and hence various irreducible represent
~irreps! are mixed in its eigenstates, yet it possesses a su
of ‘‘special’’ solvable states that respect the symmetry. T
notion of partial dynamical symmetry generalizes the co
cepts of exact and dynamical symmmetries. In making
transition from an exact to a dynamical symmetry, states
are degenerate in the former scheme are split but not m
in the latter, and the block structure of the Hamiltonian
retained. Proceeding further to partial symmetry, so
blocks or selected states in a block remain pure, while ot
states mix and lose the symmetry character. Quasiexa
solvable models, as discussed in Ref.@14#, exhibit a special
form of partial symmetry for which the solvable states sp
complete representations.

Other generalizations of the idea of dynamical symme
are possible. Van Isacker@15#, for example, suggested t
break the dynamical symmetry associated with an interm
ate groupG2 in a subchainG1.G2.G3 for all states of the
system, while preserving the remaining~dynamical! symme-
tries. The resulting Hamiltonian is, in general, not analy
©2002 The American Physical Society09-1
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JUTTA ESCHER AND AMIRAM LEVIATAN PHYSICAL REVIEW C 65 054309
cally solvable, but its eigenstates can still be~partly! classi-
fied by quantum labels associated with the groupsG1 and
G3. An approximate symmetry scheme called quasidyna
cal symmetry was discussed by Bahri and Rowe@16#. They
considered strong but coherent mixing of the irreducible r
resentations associated with a given dynamical symme
Both methods of extending the concept of dynamical sy
metry differ from the notion of partial dynamical symmet
introduced above since, unlike in the partial-symmetry ca
the eigenvalues of the Hamiltonians cannot be obtained
lytically, not even for a part of the system.

The partial-symmetry scheme was introduced in boso
systems, where it was applied to the spectroscopy of
formed nuclei. In Ref.@17#, a Hamiltonian with partial SU~3!
symmetry was constructed in the framework of the intera
ing boson model~IBM ! of nuclei @6#, and the calculated
spectrum andE2 rates of 168Er were compared to exper
mental results. The PDS Hamiltonian was found to rep
duce the experimentally observed feature of nondegene
rotationalg and b bands (K-band splitting! and to possess
several bands of solvable states, whereas previous atte
to describe the168Er data had involved Hamiltonians wit
SU~3! dynamical symmetry, which can only yieldg and b
bands with degenerate angular momentum states, or
achieved agreement with the data by completely breaking
SU~3! symmetry. Employing the same Hamiltonian, Sin
and Leviatan@18,19# investigated the structure of the lowe
collective K501 excitation in deformed rare-earth nucle
Implications of the partial dynamical symmetry for the mi
ing behavior of this collective band were discussed and c
pared to broken-SU~3! predictions. In another study, Re
@20#, in the context of the IBM-2, the proton-neutron versi
of the interacting boson model@6,21#, Talmi was able to
explain simple regularities in spectra of the Majorana ope
tor as an example of partial dynamical symmetry. More
cently, the relevance of partialF-spin symmetry was studie
in the framework of the IBM-2. It has long been known th
F spin, the SU~2! quantum number associated with the tw
valued proton-neutron degree of freedom of the IBM
cannot be conserved in nuclear spectroscopy. However,
viatan and Ginocchio@22# demonstrated that empirical en
ergy systematics in the deformed Dy-Os region can be re
duced under the assumption of partialF-spin symmetry.
Moreover, the associated partial-symmetry Hamiltonia
point to the existence ofF-spin multiplets of scissors state
with a moment of inertia equal to that of the ground ban
These predictions were tested against recent analyses oM1
transition strengths.

The subject of partial symmetries and supersymmetry
nuclear physics was considered by Jolos and von Brentan
the context of the interacting boson-fermion model@23# and
the particle-rotor model@24#.

Partial symmetries can be associated with continuou
well as discrete groups. The dynamical groups employe
the IBM, e.g., are continuous. In Ref.@25#, an example of a
partial symmetry that involves point groups was presente
the context of molecular physics. Ping and Chen use
model of N coupled anharmonic oscillators to describe t
molecule XY6. The partial symmetry of the Hamiltonian a
05430
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lowed them to derive analytic expressions for the energie
a set of unique levels and to discuss the structure of
associated eigenstates. Furthermore, the numerical cal
tions required to obtain the energies of the remaining~non-
unique! levels were greatly simplified since the Hamiltonia
could be diagonalized in a much smaller space.

Partial symmetries have relevance not only for discr
spectroscopy but also for the study of stochastic propertie
dynamical systems. A generic classical or quantu
mechanical Hamiltonian exhibits mixed dynamics: areas
regular motion and chaotic regions coexist in phase sp
and even when a system seems to be fully chaotic, reg
states may exist. Whelanet al. @26# used Hamiltonians with
partial dynamical symmetries to investigate quantu
mechanical systems that are partly regular and partly cha
In the context of the interacting boson model, it was dem
strated that partial symmetries impose a particular pha
space structure that leads to a suppression of chaos in m
systems. Canetta and Maino@27# carried out a quantum
statistical analysis of regular and chaotic dynamic behav
in the IBM-2. Varying the Hamiltonian parameters, they o
served a nearly regular region in parameter space—far a
from dynamical symmetry limits—which they linked to th
existence of a partial dynamical symmetry. Since Hamil
nians with partial symmetries are not completely integra
and may exhibit stochastic behavior, they are an ideal t
for studying mixed systems with coexisting regularity a
chaos.

Partial symmetries are not confined to bosonic systems
Ref. @28#, an example of a partial symmetry in an interacti
fermion system was presented. A family of Hamiltonia
with partial SU~3! symmetry was introduced in the frame
work of the symplectic shell model of nuclei@29#. The
Hamiltonians were shown to be closely related to t
deformation-inducing quadrupole-quadrupole interaction a
to possess both mixed-symmetry and solvable pure-SU~3!
rotational bands. For the example of the~prolate! deformed
light nucleus20Ne, it was demonstrated that various featur
of the quadrupole-quadrupole interaction can be reprodu
with a particular parametrization of the PDS Hamiltonian
In that work, the partial dynamical symmetry was identifi
directly at the fermion level. It is also possible to start with
bosonic PDS Hamiltonian and map the bosonic genera
into fermionic generators of the same algebra. This appro
was taken by Mamistvalov@30#, who studied partial symme
try in a schematic SU(2)3SU(2)-type Lipkin model. Very
recently, partially solvable shell-model Hamiltonians wi
seniority-conserving interactions were investigated by Ro
and Rosensteel@31#.

It is the purpose of this work to investigate the fermion
PDS Hamiltonians presented in Ref.@28# in more detail. Spe-
cifically, the construction process for the pure eigenstate
outlined and analytic expressions for the energies of p
states and the strengths ofE2 transitions between thes
states are given. Properties of the special solvable state
discussed and an application to the oblate deformed l
nucleus 12C and the prolate nucleus20Ne are presented
Moreover, an application to24Mg demonstrates the rel
9-2
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PARTIAL DYNAMICAL SYMMETRY IN TH E . . . PHYSICAL REVIEW C 65 054309
evance of the PDS concept for well-deformed, triax
nuclei.

In the following section, the symplectic shell mod
~SSM! is reviewed. In Sec. III, a family of symplectic Hami
tonians with partial SU~3! symmetry is introduced and the
relation to the quadrupole-quadrupole interaction is es
lished. Properties of the special eigenstates of the P
Hamiltonians are discussed in Sec. IV, and applications
realistic nuclear systems are presented in Sec. V. In Sec
the fermionic PDS Hamiltonians are compared to the ear
introduced bosonic PDS Hamiltonians@17–19#, and Sec. VII
summarizes our work. Appendix A contains further releva
material regarding SU~3! coupling coefficients and reduce
matrix elements and Appendix B presents expressions
matrix elements of operators employed in the calculation

II. THE SYMPLECTIC SHELL MODEL

The SSM is an algebraic, fermionic, shell-model sche
that includes multiple 2\v one particle–one hole excita
tions. It includes all essential observables for a descriptio
nuclear monopole and quadrupole collective vibrations
well as for rigid and irrotational flow rotations. Since th
model allows for intershell excitations and since its obse
ables are expressible in microscopic shell-model ter
it provides a multishell realization of the nuclear sh
model @29#.

A. Symplectic generators

The symmetry algebra of the symplectic scheme
spanned by one-body operators that are bilinear produc
the ~relative! position (xsi , i 51,2,3, s51, . . . ,A21) and
momentum (psi) observables,

Qi j 5(
s

xsixs j ,

Ki j 5(
s

psips j ,

Li j 5(
s

~xsips j2xs jpsi!,

Si j 5(
s

~xsips j1psixs j!, ~1!

whereA21 is the number of Jacobi ‘‘particles’’ remainin
after removal of the center-of-mass contribution. Toget
the operators generate the 21-dimensional symplectic alg
sp~6,R!, that is, the Lie algebra of linear transformations th
preserve a skew-symmetric bilinear form on a s
dimensional real vector space. It is the smallest Lie alge
that contains both the quadrupole moments and the m
nucleon kinetic energy, and it has several physically relev
subalgebras. These include gcm~3! and its subalgebra
@R5#so(3), associated with the geometric collective mod
and its rotational limit, respectively, the algebra gl~3,R! of
the general linear motion group, as well as su~3! and its
05430
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subalgebra so~3!, associated with the Elliott model and th
rotation group, respectively. The sp~6,R! algebra furthermore
includes the canonical subalgebras sp~2,R! and sp~4,R!,
which have been studied by Arickxet al. @32,33#, and by
Peterson and Hecht@34#, respectively, as possible approx
mations to the full three-dimensional symplectic model.

For many purposes, it is advantageous to express the s
plectic generators in terms of harmonic oscillator boson c
ation and annihilation operatorsbsi

† 5(xsi2 ipsi)/A2 andbsi

5(xsi1 ipsi)/A2. The symplectic generators may then be e
pressed as one-body operators that are quadratic in the o
lator bosons@35#

Ai j 5
1

2 (
s

bsi
† bs j

† ,

Bi j 5
1

2 (
s

bsibs j ,

Ci j 5
1

2 (
s

~bsi
† bs j1bs jbsi

† !. ~2!

Alternatively, one may use the spherical components of
oscillator bosons,bs,1,61

†(10) 57(bs1
† 6 ibs2

† )/A2, bs,1,0
†(10)5bs3

† ,

and b̃s,1,61
(01) 57(bs16ibs2)/A2, b̃s,1,0

(01) 5bs3, to write the gen-
erators as SU~3! tensor operators@36,37#,

Ĥ05A3(
s

$bs
†(10)3b̃s

(01)%00
(00)1

3

2
~A21!,

Ĉlm
(11)5A2(

s
$bs

†(10)3b̃s
(01)% lm

(11) ~ l 51,2!,

Âlm
(20)5

1

A2
(

s
$bs

†(10)3bs
†(10)% lm

(20) ~ l 50,2!,

B̂lm
(02)5

1

A2
(

s
$b̃s

(01)3b̃s
(01)% lm

(02) ~ l 50,2!. ~3!

The notationTlm
(l,m) indicates that the operatorT possesses

good SU~3! @superscript (l,m)# and SO~3! ~subscript lm!
tensorial properties. Sincebs

†bs
† adds two quanta to particles,

thereby moving it up across two major oscillator shells,Âlm
(20)

creates a 2\v excitation in the system. Analogously,B̂lm
(02) ,

which is related toÂlm
(20) by Hermitian conjugation,B̂lm

(02)

5(21)l 2m(Âl 2m
(20) )†, annihilates a 2\v excitation. TheĈlm

(11)

act onlywithin a major harmonic oscillator shell. They gen
erate the group SU~3! of the well-known Elliott model@38#,

A3Ĉ2m
(11)5Q2m

E [A4p

5 (
s

@r s
2Y2m~ r̂ s!1ps

2Y2m~ p̂s!#

~m50,61,62!,

Ĉ1q
(11)5L̂q ~q50,61!, ~4!
9-3
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JUTTA ESCHER AND AMIRAM LEVIATAN PHYSICAL REVIEW C 65 054309
whereQ2m
E denotes the symmetrized quadrupole operato

Elliott, which does not couple different major shells, andL̂q
is the orbital angular momentum operator. The harmonic
cillator HamiltonianĤ05( i 51

3 Ĉii is a SU~3! scalar and gen-
erates U~1! in U(3)5SU(3)3U(1).

Alternatively, one can realize the symplectic generators
terms of fermionic creation and annihilation operators@36#,

Ĉlm
(11)5(

h
A1

6
h~h11!~h12!~h13!$ah

†3ãh% lmS50
(11)S50

1ÔC
cm~A!,

Âlm
(20)5(

h
A 1

12
~h11!~h12!~h13!~h14!

3$ah12
† 3ãh% lm S50

(20)S50 1ÔA
cm~A!,

B̂lm
(02)5(

h
A 1

12
~h11!~h12!~h13!~h14!

3$ah
†3ãh12% lm S50

(02)S50 1ÔB
cm~A!, ~5!

whereah lm1/2s
† @ ãh lm1/2s5(21)h1 l 1m11/21sah l 2m1/22s# is

a single-particle creation~annihilation! operator, which pro-
duces~destroys! a fermion with angular momentuml, pro-
jection m, and spin 1/2, projections in the hth major oscil-
lator shell. The sums run over all shells, and the coupling
total spinS50 with projectionS50 reflects the fact that the
generators act on spatial degrees of freedom only. The
eratorsÔcm(A) remove the spurios center-of-mass cont
from the generators. Details regarding the fermionic reali
tion of Sp~6,R! can be found in Ref.@36#.

B. Symplectic basis states

A basis for the symplectic model is generated by apply
symmetrically coupled products of the 2\v raising operator
Â(20) with itself to the usual 0\v many-particle shell-mode
states. Each 0\v starting configuration is characterized b
the distribution of oscillator quanta into the three cartes
directions$s1 ,s2 ,s3%, wheres1>s2>s3. Heres i denotes
the eigenvalue of the U~3! weight operatorCii 5(s(bsi

† bsi

11/2), which essentially counts the number of oscilla
bosons in the i th direction of the system. Sinces
51,2, . . . ,A21, it follows that thes i are half-integer num-
bers for even-A and integers for odd-A nuclei. Equivalently,
one may employ quantum numbersNs(ls ,ms), wherels

5s12s2 , ms5s22s3 are the Elliott SU~3! labels, and
Ns5s11s21s3 is the eigenvalue of the harmonic oscill
tor HamiltonianĤ05Ĉ111Ĉ221Ĉ33, which takes the mini-
mum value consistent with the Pauli exclusion princip
Each such set of U~3! quantum numbers uniquely determin
an irrep of the symplectic algebra, since it characterize
sp~6,R! lowest weight state. Note that a lowest weight vec
of sp~6,R! is also a lowest weight state of its u~3! subalgebra.
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Any component of the symplectic lowering operatorB(02)

~and ofĈi j with i , j ) annihilates such a lowest weight stat
In contrast, application of the symplectic generatorÂ(20)

to this lowest weight vector allows one to successively bu
a basis for the sp~6,R! irrep under consideration: The produ
of N/2, N50,2,4, . . . , raising operatorsÂ(20) is multiplicity-
free and generatesN\v excitations for each starting con
figuration Ns(ls ,ms). Each such product operato
P N(ln ,mn) can be labeled according to its U~3! content,
$n1 ,n2 ,n3% or N(ln ,mn), where (ln ,mn) ranges over the
set

V5$~n12n2 ,n22n3!un1>n2>n3>0;

N5n11n21n3 ;n1 ,n2 ,n3 even integers%. ~6!

The raising polynomialP N(ln ,mn) is then coupled with
uNs(ls ,ms)& to good SU~3! symmetryr(lv ,mv), with r
denoting the multiplicity in the coupling (ln ,mn)
^ (ls ,ms). The quanta distribution in the associated lowe
weight state is given by$v1 ,v2 ,v3%, with Nv[Ns1N
5v11v21v3 , v1>v2>v3 and lv5v12v2 , mv5v2
2v3. The states of the Sp(6,R).SU(3) basis are thus la
beled by three types of U~3! quantum numbers:Gs

[$s1 ,s2 ,s3%5Ns(ls ,ms), the symplectic bandhead o
Sp~6,R! lowest weight U~3! symmetry, which specifies the
sp~6,R! irreducible representation; Gn[$n1 ,n2 ,n3%
5N(lnmn), the U~3! symmetry of the raising polynomial
andGv[$v1 ,v2 ,v3%5Nv(lv ,mv), the U~3! symmetry of
the coupled product. A given symplectic representation sp
Ns(ls ,ms) is infinite dimensional, sinceN/2, the number of
oscillator excitations, can take any non-negative inte
value. In practical applications, one must, therefore, eit
truncate the symplectic Hilbert space, or restrict onesel
interactions and observables for which the matrix eleme
depend solely on the symplectic irrep and can be calcula
analytically. The basis state construction is schematically
lustrated in Fig. 1 for a typical Elliott starting state wit
(ls ,ms)5(0,m). A similar figure for (ls ,ms)5(l,0) is
given in Ref.@28#.

FIG. 1. Basis construction in the symplectic model. SU~3!-

coupled products of the raising operatorÂ(20) with itself act on an
Elliott starting state with (ls ,ms)5(0,m) ($s1 ,s25s1 ,s3%) to
generate symplectic 2\v, 4\v, . . . excitations. Also shown are
the SU~3! labels (l,m) and quanta distributions$v1 ,v2 ,v3% for
some excited states.
9-4
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PARTIAL DYNAMICAL SYMMETRY IN TH E . . . PHYSICAL REVIEW C 65 054309
To complete the basis state labeling, additional quan
numbersa are required. This can be accomplished by red
ing Sp(6,R).SU(3) states with respect to the subgro
U~1!3SU~2! of SU~3! and assigning labelsa5«LML @39#.
This SU~2! subgroup, however, is not the physical orbi
angular momentum subgroup SO~3! of SU~3!. States with
good angular momentum values can be obtained from
SU(3).U(1)3SU(2) ~canonical! basis by projection
@38,40#. The associated quantum numbers area5kLM ,
wherek is a multiplicity index, which enumerates multipl
occurrences of a particularL value in the SU~3! irrep (l,m)
from 1 to kL

max(l,m),

kL
max~l,m!5@~l1m122L !/2#2@~l112L !/2#

2@~m112L !/2#, ~7!

where @•••# is the greatest non-negative integer functi
@41#. The kL

max(l,m) occurrences ofL can be distinguished
in a variety of ways. The physically most significant sche
is that of Elliott @38#, in which case the projection ofL along
the body-fixed three-axis, denotedK, is used to sort theL
values into the familiarK bands of the rotational mode
Unfortunately, states defined in this manner are not ortho
mal with respect to the multiplicity quantum numberK @42#.
To avoid the resulting complications, such as working w
non-Hermitian matrices, the Elliott basis is usually orthon
malized using a Gram-Schmidt process. Vergados@43#, for
example, gives a prescription to construct orthogonal b
states in a systematic manner for all (l,m), such that the
physical interpretation ofK as a band label can be approx
mately maintained@44#. In the present work, we employ th
orthonormal basis of Vergados. For simplicity, however,
use the running indexk51,2, . . . ,kL

max to distinguish mul-
tiple occurrences ofL in a given SU~3! irrep (l,m) and list
the corresponding Vergados labels where appropriate.
dynamical symmetry chain and the associated quantum
bels of the above scheme are given by@29#:

Sp~6,R! . U~3! . SO~3! . SO~2!

Ns~ls ,ms! N~ln ,mn!r Nv~lv ,mv! k L M
~8!

When applying the formalism to realistic nuclei, we assi
rotational band labels according to the calculatedB(E2)
rates.

The quadratic Casimir operators of SU~3! and Sp~6,R!,

ĈSU35
1

2
@C2

(11)
•C2

(11)1C1
(11)

•C1
(11)#, ~9!

ĈSp(6)522Â0
(20)

•B̂0
(02)22Â2

(20)
•B̂2

(02)1ĈSU(3)

1
1

3
Ĥ0

224Ĥ0, ~10!

have the following eigenvalues in the dynamical symme
basis:

^ĈSU(3)&@~l,m!#52~l21m21lm13l13m!/3, ~11!
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^ĈSp(6)&@Ns~ls ,ms!#

52~ls
21ms

21lsms13ls13ms!/31Ns
2/324Ns .

~12!

The collection of all 0\v configurations provides a com
plete Hilbert space for the Elliott SU~3! submodel of the
SSM and is referred to as the 0\v horizontal shell-model
space. The set of states built on a given U~3! irrep
Ns(lsms) is called the vertical extension of that irrep. Ea
vertical extension can be partitioned into horizontal slic
with the states within the (N/2)th slice representable as
homogeneous polynomial of degreeN/2 in the Â(20) tensors
acting on the parent 0\v configuration~see also Fig. 2!.
Interactions can thus be classified according to their effec
this structure; pairing, for example, causes horizontal m
ing, both within each ‘‘cone’’~symplectic irrep! and between
different cones, while the quadrupole-quadrupole interact
induces horizontal and vertical mixing, but does not conn
different cones.

C. Symplectic Hamiltonians

A primary goal of the symplectic shell model is to achie
a microscopic description of deformed nuclei. These nuc
exhibit collective behavior, that is, modes of excitation
which an appreciable fraction of the nucleons in the syst
participate in a coherent manner, as, for example, is the c
for rotations. An appropriate Hamiltonian for describing r
tational phenomena within the symplectic model consists
the harmonic oscillator, which provides the background sh
structure, the quadrupole-quadrupole interactionQ2•Q2, and
a residual interaction that should include, for examp
single-particle spin orbit and orbit-orbit terms, as well
pairing and other interactions. However, most applications
the theory are much less ambitious than this, restricting
interaction to terms that can be expressed solely in term
generators of the symplectic algebra@29,45–47#. Interactions
of the latter form do not mix different symplectic irreps an
therefore, the Hamiltonian matrix for such interactions b
comes block diagonal. Indeed, in most practical applicati

FIG. 2. Symplectic shell-model space. The schematic plot ill
trates a model space with multiple symplectic representations. E
‘‘cone’’ corresponds to a sp~6,R! irrep and is uniquely characterize
by U~3! quantum numbersNs(ls ,ms), where (ls ,ms) denotes
the Elliott SU~3! quantum labels for the associated 0\v shell-
model configuration. For a given starting representat
(ls ,ms) (s51,2,3,4 here!, one obtains multiple SU~3! configura-
tions, (lv ,mv), at eachN\v level of excitation (N.0), indicated
here by small filled circles.
9-5
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the Hilbert space of the system is truncated to one sin
symplectic representation. This is accomplished by selec
the vertical slice~symplectic irrep! constructed from the
leading starting irrep of the 0\v space. The leading irrep
is defined to be the U~3! representation,Ns(ls ,ms), from
the lowest layer with the most symmetric spatial p
mutation symmetry consistent with the Pauli principle, a
the maximal possible SU~3! Casimir operator value

^ĈSU(3)&@(ls ,ms)#. For 12C, for instance, the leading irre
is given byNs (ls ,ms) 5 24.5~0,4!, which corresponds to
the symplectic weightss15s259.5, s355.5; for 20Ne, one
finds Ns(ls ,ms)548.5 ~8,0!, since s1521.5, s25s3
513.5 @29#; and 24Mg hasNs(ls ,ms)562.5 ~8,4!, that is,
s1527.5 s2519.5, s3515.5 @46#. The single symplectic
irrep approximation is a sensible choice for nuclear syste
that have a dominant quadrupole-quadrupole force, since
interaction does not mix symplectic representations and
vors states with largêĈSU(3)&@(ls ,ms)# values.

A typical Hamiltonian for a calculation in a space tru
cated in the manner described above, is given by a harm
oscillator termH0 plus a collective potential, and a residu
interaction:

H5H01Vcoll1Vres . ~13!

We choose the collective potential to be a simple quadra
rotationally invariant, function of the microscopic quadr
pole moment@48#, Q2m5A(16p)/5(sr s

2Y2m( r̂ s), namely,

Vcoll52xQ2•Q2 . ~14!

The quadrupole-quadrupole interaction is a standard ingr
ent in models that aim at reproducing rotational spectra
nuclear deformations. It emerges~apart from a constant! as a
leading contribution in the multipole expansion of a gene
two-body force. It mixes states from different oscillat
shells, since the quadrupole operator has nonvanishing
trix elements between shells differing by zero or two osc
lator quanta. A major strength of the symplectic model is
ability to fully accommodate the action of the quadrupo
operator, which can be written in terms of symplectic ge
erators,

Q2m5A3~Ĉ2m
(11)1Â2m

(20)1B̂2m
(02)!. ~15!

As a result, the model is able to reproduce intraband
interbandE2 transition strengths between low lying, as w
as giant resonance, states without introducing proton
neutron effective charges.

The effective residual interactionVres is included to re-
place noncollective components of a more realistic Ham
tonian and the neglected effects of couplings to other sp~6,R!
representations. As in previous works, we chooseVres to be
a rotationally invariant function of the SU~3! generators. For
prolate and oblate nuclei we use,

Vres5d2L̂21d4L̂4, ~16!
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where L̂ denotes the angular momentum operator, Eq.~4!.
This allows us to reproduce the energy splittings betwe
states of a rotational band. For triaxial nuclei, such as24Mg,
it becomes necessary to include further terms, in orde
reproduce the experimentally observed ‘‘K-band splitting,’’
the energy differences found between states with the s
angular momentum but differentK-band assignments. Thi
can be achieved by including ‘‘SU(3).SO(3) integrity ba-
sis’’ operatorsX̂3[(L̂3QE)(1)•L̂ and X̂4[(L̂3QE)(1)•(L̂
3QE)(1) in the residual interaction@49#:

Vres8 5c3X̂31c4X̂41d2L̂21d4L̂4. ~17!

The evaluation procedure for the matrix elements of
symplectic generatorsA(20), B(02), andC(11), and of the in-
tegrity basis operatorsX̂3 andX̂4 is discussed in Appendix B

III. PDS HAMILTONIANS
AND THE QUADRUPOLE-QUADRUPOLE

INTERACTION

In this section we introduce a family of fermionic Hami
tonians with partial dynamical symmetry. Motivated by th
fact that a realistic quadrupole-quadrupole interaction bre
SU~3! symmetry within a given major oscillator shell, w
define a family of HamiltoniansH(b0 ,b2), which allows us
to study the features of the symmetry-breaking terms in so
detail. The Hamiltonians do not couple different oscillat
shells and, for a particular choice of the parametersb0 and
b2, reduce to a form that is closely related to the quadrupo
quadrupole interaction restricted to a shell. We prove t
this family of Hamiltonians exhibits partial SU~3! symmetry
and give rules for determining the ‘‘special’’ irreps and th
associated pure eigenstates.

In the symplectic shell model, the quadrupole-quadrup
interaction can be expressed in terms of symplectic gen
tors @50#,

Q2•Q253~Ĉ21Â21B̂2!•~Ĉ21Â21B̂2!. ~18!

Employing the commutation relationsB̂2•Â22Â2•B̂2

5 10
3 Ĥ0 and B̂2•Ĉ22Ĉ2•B̂2520B̂0/A6, given in Ref.@50#,

this can be rewritten as

Q2•Q253Ĉ2•Ĉ216Â2•B̂2110Ĥ0

1@~6Ĉ2•B̂2110A6B̂013B̂2•B̂2!1H.c.#,

~19!

where 3Ĉ2•Ĉ25Q2
E
•Q2

E and H.c. denotes the Hermitia
conjugate of the expression in parentheses. The first th
terms in the expansion, Eq.~19!, act solely within a major
harmonic oscillator shell, while the second line conne
states differing in energy by62\v and64\v. It is prima-
rily the presence of the multi-\v correlations that differen-
tiates the SSM from the Elliott SU~3! model. The symplectic
model allows for coherent multishell admixtures in its wa
functions and thus achieves the experimentally obser
9-6
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nuclear deformation and absoluteB(E2) rates. In contrast
the Elliott model requires effective charges, since it emplo
the algebraic~or Elliott! quadrupole-quadrupole interaction

Q2
E
•Q2

E56ĈSU(3)23L̂2, ~20!

which does not connect different oscillator shells.
Although matrix elements ofQ2 and Q2

E are identical
within a harmonic oscillator shell, the correspondi
quadrupole-quadrupole interactions exhibit differences h
as well: TheĈ2•Ĉ2 andĤ0 terms in the expansion, Eq.~19!,
are diagonal in the dynamical symmetry basis, Eq.~8!,
whereasA2•B2 contains contributions that mix differen
SU~3! irreps. This follows from the relations

Â0•B̂0[Â0
(20)

•B̂0
(02)5

1

A6
$Â3B̂%0

(00)2A5

6
$Â3B̂%0

(22),

Â2•B̂2[Â2
(20)

•B̂2
(02)5

5

A6
$Â3B̂%0

(00)1A5

6
$Â3B̂%0

(22),

~21!

where

$Â3B̂%0
(00)5

1

2A6
S ĈSU(3)1

1

3
Ĥ0

224Ĥ02ĈSp(6)D . ~22!

The term$Â3B̂%0
(00) is a SU~3! scalar, but$Â3B̂%0

(22) breaks
SU~3! symmetry. Within a major oscillator shell, it is mainl
this symmetry-breaking term that distinguishes the action
Q2•Q2 from the effect of the Elliott interactionQ2

E
•Q2

E ,
which respects the symmetry.

To explore this latter aspect in more detail, we rewrite
collective quadrupole-quadrupole interaction as follows:

Q2•Q259ĈSU(3)23ĈSp(6)1Ĥ0
222Ĥ023L̂226Â0B̂0

1$terms coupling different h.o. shells%. ~23!

The quadratic Casimir invariants of SU~3!, ĈSU(3) , and of
Sp~6,R!, ĈSp(6), and their eigenvalues, are given in Eqs.~9!–
~12!. In order to focus on the action ofQ2•Q2 within a
harmonic oscillator shell, we introduce the following fami
of rotationally invariant Hamiltonians:

H~b0 ,b2!5b0Â0•B̂01b2Â2•B̂2

5
b2

18
~9ĈSU(3)29ĈSp(6)13Ĥ0

2236Ĥ0!

1~b02b2!Â0•B̂0 . ~24!

For b05b2, one recovers a Sp(6,R).SU(3) dynamical
symmetry Hamiltonian:H(b0 ,b25b0) contains only SU~3!
scalars, that is, it does not mix different SU~3! irreps. Fur-
thermore, all eigenstates at a givenN\v excitation that be-
long to the same symplectic and SU~3! irreps are degenerate
Additional SO~3! rotational terms, such asL̂2 and L̂4 split
05430
s

re

f

e

the degeneracies, but do not change the wave functions.
the special choiceb0512, b2518, one finds thatH(b0
512,b2518) is closely related to the quadrupol
quadrupole interaction,

Q2•Q25H~b0512,b2518!1const23L̂2

1$terms coupling different h.o. shells%, ~25!

where the value of const56ĈSp(6)22Ĥ0
2134Ĥ0 is fixed for

a given symplectic irrepNs(ls ,ms) and N\v excitation.
Although H(b0 ,b2) does not couple different harmonic o
cillator shells, it contains the SU~3!-symmetry-breaking term

$Â3B̂%0
(22) and is, therefore, expected to exhibit in-shell b

havior similar to that ofQ2•Q2.
From Eq.~21! it follows that H(b0 ,b2) is generally not

SU~3! invariant. We will now show thatH(b0 ,b2) exhibits
partial SU~3! symmetry. Specifically, we claim that amon
the eigenstates ofH(b0 ,b2), there exists a subset of solvab
pure-SU~3! states, the SU(3).SO(3) classification of
which depends on both the Elliott labels (ls ,ms) of the
starting state and the symplectic excitationN. In general, we
find that allL states in the starting configuration (N50) are
solvable with good SU~3! symmetry (ls ,ms). For excited
configurations, withN.0 (N even!, we distinguish two
possible cases:

~a! ls.ms : the pure states belong to (l,m)
5(ls2N,ms1N) at the N\v level and haveL5ms

1N,ms1N11, . . . ,ls2N11 with N52,4, . . . subject to
2N<(ls2ms11).

~b! ls<ms : the special states belong to (l,m)5(ls

1N,ms) at the N\v level and haveL5ls1N,ls1N
11, . . . ,ls1N1ms with N52,4, . . . .

To prove the claim, it is sufficient to show thatB̂0 anni-
hilates the states in question@sinceH(b05b2) is diagonal in
the dynamical symmetry basis#. For N50 this follows im-
mediately from the fact that the 0\v starting configuration is
a Sp~6,R! lowest weight which, by definition, is annihilate
by the lowering operators of the Sp~6,R! algebra. The latter
include the components of the generatorB̂(02).

For N.0, we have to study the action of the symplec
generatorB̂0 in more detail. The operatorB̂0 has the form
B̂05(s(bs1bs11bs2bs21bs3bs3)/A6, i.e., it is a rotational
invariant and can remove two oscillator quanta from any o
of the three cartesian directions. A state of angular mom
tum L in a SU~3! irrep can be obtained by angular mome
tum projection from the lowest weight vector associated w
the irrep. SinceB̂0 is rotationally invariant, it commutes with
this projection operator and, therefore, it suffices to consi
the effect of acting withB̂0 on lowest weight vectors. Le
$s1 ,s2 ,s3% be the quanta distribution for a 0\v lowest
weight state withls.ms . An excited state at theN\v level
belongs to a SU~3! irrep that is completely characterized b
its lowest weight vector. This lowest weight vector contai
Nv[v11v21v35s11s21s31N oscillator quanta,
which are distributed into the three cartesian directionsi
51,2,3) such thatv i>s i . In particular, the lowest weigh
9-7
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vector of the SU~3! irrep (l,m)5(ls2N,ms1N) at N\v

has the quanta distribution$s1 ,s21N,s3%. Acting with B̂0

on a N\v state with quantum labels (l,m)5(ls2N,ms

1N) andL results in a (N22)\v state with SU~3! character
(l8,m8)5(ls2N12,ms1N22) and angular momentum
L85L. The lowest weight vector of the irrep (l8,m8) has the
quanta distribution$s1 ,s21N22,s3%. Note that the sym-

plectic generatorB̂0 cannot connect (l,m)5(ls2N,ms

1N) at N\v with any other irrep (l9,m9) at the (N
22)\v level, since the lowest weight vector associated w
(l9,m9)Þ(l8,m8) has fewer oscillator quanta in either th
one- or the three-direction than the starting (0\v) configu-
ration, i.e., such (l9,m9) would belong to a different sym
plectic representation. Comparing the number of occurren
of a given angular momentum valueL in (l,m) at N\v and
(l8,m8) at (N22)\v, one finds the following: As long as
ls2N11>ms1N holds, the difference DL(N)
[kL

max(l,m)2kL
max(l8,m8) is 1 for L5ms1N,ms1N

11, . . . ,ls2N11, and zero otherwise@with kL
max as de-

fined in Eq.~7!#. Therefore, whenDL(N)51, a linear com-
binationufL(N)&5(kckuN\v(ls2N,ms1N)kLM & exists

such thatB̂0ufL(N)&50, and thus our claim for family~a!
holds.

The proof for family~b! can be carried out analogousl
Here the special irrep (l,m)5(ls1N,ms) is obtained by
addingN quanta to the one-direction of the starting config
ration. In this case there is no restriction onN, hence family
~b! is infinite. Note that adding quanta to the three-direct
doesnot yield another family of pure states, since the mu
plicity for a givenL value in the associated ‘‘special’’ irreps
(l,m)5(ls ,ms2N), decreases asN increases, i.e.DL(N)
<0 for all L andN.

The SU~3! irreps of family ~b!, (l,m)5(ls1N,ms) at
the N\v level, span a one-dimensional subspace of the f
three-dimensional, Sp~6,R! model space. This set of irrep
can be generated by a sp~2,R! subalgebra of sp~6,R! with
generatorsA11, B11, C11, as was demonstrated by Arick
@32#. Similarly, the SU~3! irreps of family ~a!, (l,m)5(ls

2N,ms1N) at theN\v level can be generated by a sp~2,R!
algebra with generatorsA22, B22, C22. However, it needs to
be emphasized that the solvable states of the present
example span, in general, onlypart of the above SU~3!
irreps.

IV. SOLVABLE STATES AND THEIR PROPERTIES

All 0 \v states are eigenstates ofH(b0 ,b2). They are
unmixed and span the entire (ls ,ms) irrep. In contrast, for
the excited levels (N.0), the pure states span only part
the corresponding SU~3! irrep. There are other states at ea
excited level that do not preserve the SU~3! symmetry and
therefore contain a mixture of SU~3! irreps.

To construct the pure states forN.0, we proceed as fol-
lows: Let (l,m) at N\v be the irrep that contains a pur
state with angular momentumL and projection M,
ufLM(N)&. This state can be written as
05430
h

es
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ufLM~N!&5 (
k51

kL
max(l,m)

ck~L !uN\v~l,m!kLM &, ~26!

where kL
max(l,m) denotes the maximum multiplicity ofL

in (l,m), Eq. ~7!. Obviously, ufLM(N)& is an unmixed
eigenstate of H(b0 ,b2) if ^c(N22)uB̂0ufLM(N)&50
holds for all statesuc(N22)& at the (N22)\v level. From
the proof it follows thatB̂0 acting on states in the ‘‘special’
irrep (l,m) at N\v can only produce states belongin
to the ‘‘special’’ irrep (l8,m8) at (N22)\v,
hence ^(N22)\v(l8,m8)k8LM uB̂0ufL(N)&50 for k8
51,2, . . . ,kL

max(l8,m8) ensures thatufLM(N)& is pure. The
kL

max(l,m) coefficientsck(L), which characterize the pur
state, are thus uniquely determined by thekL

max(l8,m8)
5kL

max(l,m)21 equations

(
k

ck~L !^~N22!\v~l8,m8!k8LM uB̂0uN\v~l,m!kLM &

50, ~27!

and the normalization requirement(kuck(L)u251. The
proof given in the preceding section guarantees the existe
of a solution.

Making use of the Wigner-Eckart theorem for SU~3! ~see
Appendix A!, the relations in Eq.~27! can be rewritten as

^~l8,m8!uuuB(02)uuu~l,m!&

3(
k

ck~L !^~l,m!kL;~02!0uu~l8,m8!k8L&50,

where ^•;•uu•& denotes a reduced Wigner coupling coef
cient for SU~3!. Since the triple-reduced matrix eleme
of B(02) is generally nonzero, we obtain the followin
conditions:

(
k51

kL
max(l,m)

ck~L !^~l8,m8!k8L;~20!0uu~l,m!kL&50

~k851, . . . ,kL
max~l,m!21!. ~28!

Note that the matrix elements of the symplectic genera
are not relevant for the determination of theck(L), and the
SU~3! Wigner coefficients,̂ •;•uu•&, can be evaluated nu
merically @51# or analytically@53#.

To illustrate the procedure outlined above, we consi
the case of 12C. The leading irrep for the nucleus i
(ls ,ms)5(0,4), thus the pure states belong to (l,m)
5(0,4) at 0\v, (l,m)5(2,4) at 2\v, (l,m)5(4,4) at
4\v, etc. At 0\v, all states (L50,2,4) are unmixed. At
2\v, the possibleL values are 0, 22, 3, 42, 5, 6, and we have
DL50(2\v)50 and DL(2\v)51 for L52,3,4,5,6. Since
the valuesL53,5,6 occur only once (kL

max@(2,4)#51), the
associated states are pure@c1(L)51.0#. For L52,4, for
which kL

max@(2,4)#52, the appropriate coefficientsck(L)
may be determined from the requirements
9-8
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c1~L !^~0,4!L;~2,0!0uu~2,4!1L&

1c2~L !^~0,4!L;~2,0!0uu~2,4!2L&50,

uc1~L !u21uc2~L !u251. ~29!

For L52, one finds^(0,4)2;(2,0)0uu(2,4)k2&520.852 80
~0.053 72! for k51 (k52) @51#, and thusuf2M(2\v)&
50.063 u2\v(2,4)12M &1 0.998 u2\v(2,4)22M &. Simi-
larly, for L54, one obtains ^(0,4)4;(2,0)0uu(2,4)k4&
520.751 07~0.234 40! for k51 (k52) @51#, and there-
fore c1(4)5 0.298 andc2(4)5 0.955. Analogously, one ca
proceed for the 4\v level. There are, for instance, threeL
54 states, one of which is pure. One findsuf4M(4\v)&
5 2 0.637 u 4\v (4, 4)14M & 1 0.761 u 4\v (4, 4)24M &
20.124 u2\v(4,4)34M &, and similarly for the other states

For a nucleus with (ls ,ms)5(l,0), l.2, pure states
with (l8,m8)5(l22,2), L52,3, . . . ,l21, exist at 2\v
according to the proof given in Sec. III. The odd angu
momentum values,L53,5, . . . ,l21, occur only once (k
51) and the associated states are pure. The even-L values,
on the other hand, occur twice, withk51 or 2, correspond-
ing to Vergados labels 0 and 2, respectively. Sin
^(l,0)L;(2,0)0uu(l 2 2,2)kL& 5 @2(l11)22L(L 1 1)#1/2/
@3l(l11)#1/2 for k51 and 0 fork52 @43#, it follows that
ck(L)50 ~1.0! for k51 (k52). Consequently, the pur
K52 band at 2\v consists of states with (l8,m8)
5(l22,2), k51 ~k52! for odd ~even! L values, i.e.,
k5kL

max(l22,2). An example for such a nucleus is given
Sec. V B, where the20Ne system is discussed.

Having constructed the solvable eigenstates of the P
HamiltonianH(b0 ,b2), Eq. ~24!, we can now give analytic
s
on

he
or
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expressions for their energies. We haveE(N50)50 for the
0\v level, and

E~N!5b2

N

3 S Ns2ls1ms261
3

2
ND ~ls.ms!,

E~N!5b2

N

3 S Ns12ls1ms231
3

2
ND ~ls<ms!,

~30!

for N.0. For instance, forNs(ls ,ms) 5 24.5 ~0,4!, which
corresponds to 12C, this yields E(N50)50, E(2\v)
519b2 , E(4\v)542b2, etc.

The partial SU~3! symmetry ofH(b0 ,b2) is converted
into partial dynamical SU~3! symmetry by adding to the
Hamiltonian SO~3! rotation terms that lead toL(L11)-type
splitting but do not affect the wave functions. The solvab
states then form rotational bands and since their wave fu
tions are known, one can evaluate the quadrupole trans
rates between them,

B~E2,Li→L f !5e2b4S Z

AD 2 5

16p

u^L f uuQ2uuLi&u2

2Li11
. ~31!

Hereb5A\/mv is the harmonic oscillator length paramete
Z and A are the nuclear charge and mass, respectively,
the convention for the reduced matrix elements is summ
rized in Appendix A. For unmixed initial and final state
ufLi

(Ni)&5 (k i
ck i

(Li)uNi\v(l i ,m i)k iL i& and ufL f
(Nf)&

5(k f
ck f

(L f)uNf\v(l f ,m f)k fL f&, the matrix element ofQ2

is given by
^fL f
~Nf !uuQ2uufLi

~Ni !&

5dNi ,Nf
d (l i ,m i )(l f ,m f )

~21!fm iA6^CSU(3)&@~l i ,m i !# (
k ik f

ck i
~Li !ck f

~L f !^~l i ,m i !k iL i ;~11!2uu~l i ,m i !k fL f&r51

1dNi ,(Nf12)A3^~l f ,m f !uuuA(20)uuu~l i ,m i !&(
k ik f

ck i
~Li !ck f

~L f !^~l i ,m i !k iL i ;~20!2uu~l f ,m f !k fL f&

1dNi ,(Nf22)A3^~l f ,m f !uuuB(02)uuu~l i ,m i !&(
k ik f

ck i
~Li !ck f

~L f !^~l i ,m i !k iL i ;~02!2uu~l f ,m f !k fL f&, ~32!
n

ob-
gy
wherefm50 for m50 and 1 otherwise.
For intraband transitions, the above expression reduce

the first term on the right-hand side. For interband transiti
there are three possibilities: For transitions fromN\v to
(N12)\v, the second term has to be evaluated; forN\v
→(N22)\v transitions, the third term is required; forls
Þ0, msÞ0, i.e., for triaxially deformed nuclei, aN50
→N50 transition is possible as well; in that case t
relevant contribution originates from the first term. F
example, for a transition fromLi52 to L f50 in the
ground band of12C, b51.668 fm, 6̂ ĈSU(3)&@(0,4)#5112,
to
s

and thus B(E2,0\vLi52→0\vL f50)50.1925 e2fm4

3112u^(0,4)2;(1,1)2uu(0,4)0&u2/554.31 e2fm452.64 W.u.
~Weisskopf units! ~which corresponds to 4.65 W.u., when a
effective chargee* 51.327 is used!.

V. APPLICATIONS TO LIGHT NUCLEI

To illustrate that the PDS Hamiltonians of Eq.~24! are
physically relevant, we present applications to prolate,
late, and triaxially deformed nuclei. We compare ener
9-9
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spectra, reduced quadrupole transition rates, and eigens
of

HPDS5h~N!1jH~b0512,b2518!1g2L̂21g4L̂4,
~33!

to those of the symplectic Hamiltonian

HSp(6)5Ĥ02xQ2•Q21d2L̂21d4L̂4. ~34!

Here the functionh(N), which contains the harmonic osci
lator termĤ0, is simply a constant for a givenN\v excita-
tion. We select light,p shell andds shell, nuclei for which a
full, three-dimensional symplectic calculation can be carr
out, that is, a limitation to a submodel of the Sp~6,R! model
is not required. Since we employ Hamiltonians compos
solely of sp~6,R! generators, we restrict the model space
one sp~6,R! irrep ~represented by one ‘‘cone’’ in Fig. 2!. We
include excitations up to 8\v.

A. The 12C case

The first nucleus to be considered is12C, with four pro-
tons and four neutrons in the valencep shell. This nucleus
has previously been studied in the Sp~2,R! submodel of the
SSM @33,54#. Here we employ the full, three-dimensiona
symplectic shell model. The leading sp~6,R! irrep for this
case isNs(ls ,ms) 524.5(0,4). At the 2\v level SU~3!
irreps (l,m)5(2,4), ~1,3!, ~0,2! occur, at the 4\v level we
have (l,m)5(0,6), ~1,4!, ~2,2! 2, ~4,4!, ~3,3!, ~1,1!, ~0,0!,
and so on for higher excitations. The parameters ofHSp(6)
were fitted~simultaneously! to the ground band energies an
the 21

1→01
1 reduced quadrupole transition strength, for sy

plectic model spaces including excitations up to 2\v, 4\v,
6\v, and 8\v. The resultingB(E2) strengths are listed in
Table I and several low-lying rotational bands are shown
Fig. 3. The left part of the figure shows the experimen
energies of the ground band@55#, while the center portion
~labeled Q2•Q2) shows the calculated ground band (K
501), as well as several resonance bands that are domin
by 2\v excitations (K521,02,11,03), 4\v excitations (K
541), and 6\v excitations (K561). The parameters o
HPDS were determined as follows:g2 andg4 were fixed by
the level splittings of the ground band,j was chosen to fit the

TABLE I. B(E2) values~in Weisskopf units! for ground band
transitions in 12C. Compared are several symplectic calculatio
PDS results, and experimental data.Q denotes the static quadrupo
moment of theLp521

1 state and is given in units ofeb. The ex-
perimental values are taken from Refs.@52,55#. PDS results are
rescaled by an effective chargee* 51.33 and the symplectic calcu
lations employ bare charges.

Transition ModelB(E2) ~W.u.! B(E2) ~W.u.!
Ji→Jf 2\v 4\v 6\v 8\v PDS Expt.

2→0 4.65 4.65 4.65 4.65 4.65 4.6560.26
4→2 4.35 4.27 4.24 4.23 4.28 n/a
Q ~eb! 0.059 0.060 0.060 0.060 0.058 0.0660.03
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energy difference between theK521 andK502 bandheads
of the symplectic calculation, andh(N) was adjusted to re-
produce approximately the relative positions of theK
501,21,41, and 61 bandheads. The resulting spectrum is th
shown on the right side of Fig. 3, labeled PDS.

SinceHPDS does not mix states with differentN\v exci-
tations, theB(E2) values obtained in the PDS calculatio
require an effective chargee* 51.33 to match the experi
mental values@55# ~compare Table I!. Overall, we find little
deviation between the energies and electromagnetic tra
tion strengths of the two approaches. A better measure for
level of agreement between the PDS and symplectic res
is given by a comparison of the eigenstates. According to
proof given in Sec. III, the HamiltonianHPDS should have
sets of solvable, pure-SU~3! eigenstates, which can be org
nized into rotational bands: All 0\v states should be pur
(ls ,ms)5(0,4) states, and at 2\v a rotational band with
good SU~3! symmetry (l,m)5(2,4) and L52,3,4,5,6
should exist. Similarly, we expect pure-SU~3! bands at 4\v
with (l,m)5(4,4) andL54,5,6,7,8, at 6\v with (l,m)
5(6,4) and L56,7,8,9,10, etc. An analysis of the PD
eigenstates shows that this is indeed the case. The assoc
rotational bands are indicated in Fig. 3.

Figure 4 shows the decomposition of representative (Lp

521) states of the five lowest rotational bands for theHSp(6)
andHPDS Hamiltonians. The left side of the figure illustrate
the amount of mixing in the wave functions of th
8\v (Q2•Q2) calculation: Members of the ground ban
(K501) are nearly pure ('90%) 0\v states and the reso
nance bands have strong 2\v contributions (>60%). The
K521 , 11, and 03 bands contain admixtures fromN\v ex-
cited states withN.2, while theK502 contains admixtures
from both the 0\v space and from higher oscillator shell
The relative strengths of the SU~3! irreps within the 2\v
space are given as well. We find that each rotational b
tends to be dominated by one representation, namely,~2,4!

,

FIG. 3. Energy spectra for12C. Comparison between exper
mental values~left! @55#, results from a symplectic 8\v calculation
~center! and a PDS calculation~right!. K501 indicates the ground
band in all three parts of the figure. In addition, resonance ba
dominated by 2\v excitations (K521,02,11,03), 4\v excitations
(K541), and 6\v excitations (K561) are shown for the Sp~6,R!
and PDS calculations. Additional mixed resonance bands~not
shown!, dominated by 4\v and 6\v excitations, exist for this
nucleus. The angular momenta of the positive parity states in
rotational bands areL50,2,4, . . . for K50 and L5K,K11,K
12, . . . otherwise. Bands that consist of pure-SU~3! eigenstates of
the PDS Hamiltonian are indicated.
9-10
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PARTIAL DYNAMICAL SYMMETRY IN TH E . . . PHYSICAL REVIEW C 65 054309
for the K521 andK502 bands,~1,3! for K511, and ~0,2!
for K503, with the other irreps contributing less than 3%
The right side of Fig. 4 shows the structure of the PDS eig
states. Since the HamiltonianHPDS does not mix different
major oscillator shells, each eigenstate belongs entirely
oneN\v level of excitation. Here the ground band belon

FIG. 4. Decompositions for calculatedLp521 states of12C.
Individual contributions from the relevant SU~3! irreps at the 0\v
and 2\v levels are shown for both a symplectic 8\v calculation
~denotedQ2•Q2) and a PDS calculation. In addition, the tot
strengths contributed by theN\v excitations forN.2 are given
for the symplectic case.
05430
-

to

to the 0\v space, while the four resonance bands are p
2\v configurations. Comparing this with the symplectic r
sults, we observe that theN\v level to which a particular
PDS band belongs also dominates the corresponding s
plectic band. Furthermore, within this dominant excitatio
eigenstates ofHSp(6) and HPDS have very similar SU~3!
structure, that is, the relative strengths of the various SU~3!
irreps in the symplectic states are approximately reprodu
in the PDS case. This holds for theK501 andK521 bands,
which are pure in the PDS scheme, as well as for the mi
K502 , 11, and 03 bands. The above statements are also t
for higherN\v excitations, as is illustrated in Fig. 5 for th
L56 states of theN52, K521 ; N54, K541; and N
56, K561 bands. Note also that, in the symplectic ca
admixtures from higher shells in theL56 wave functions
originate predominantly from the ‘‘special’’ irreps (l,m) 5
(N,4!.

The 12C example given above nicely illustrates the co
cept of a partial dynamical symmetry for a fermionic man
body system. The pure PDS eigenstates form rotatio

FIG. 5. Decompositions for calculatedLp561 states of12C.
The structures shown are representative for the members of thK
521, 41, and 61 rotational bands, respectively. States of the
bands are dominated byN\v excited configurations with (l,m)
5(N,4), N52,4,6,8, in the symplectic scheme and are pure in
PDS approach.
9-11
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bands that follow the pattern for solvable states of family~b!,
their energies andE2 transition strengths between them c
be evaluated analytically according to Eqs.~30!–~32!.

B. The 20Ne case

We now turn to a system with pure PDS eigenstates
follow pattern~a!: The 20Ne nucleus, with two valence pro
tons and neutrons each, has previously been described w
the symplectic model framework@29,47,58,59#. The leading
sp~6,R! irrep for this prolate nucleus isNs(ls ,ms)
548.5(8,0). We expect to find solvable, pure-SU~3! eigen-
states ofHPDS at 0\v, 2\v, and 4\v. More specifically,
there should be aK501 , L50,2,4,6,8 rotational band with
(l,m)5(8,0) at 0\v, a K521 , L52,3,4,5,6,7 band with
(l,m)5(6,2) at 2\v, and aK541 , L54,5 ‘‘band’’ with
(l,m)5(4,4) at 4\v. Pure PDS states at higher levels
excitation do not exist.

As in the 12C case, we compare the eigenstates ofHPDS
to those of the symplectic HamiltonianHSp(6). Least squares
fits to measured energies andB(E2) values of the ground
band of20Ne @60# were carried out for 2\v, 4\v, 6\v, and
8\v symplectic model spaces. The resulting energies
transition rates converge to values that agree with the dat
is illustrated in Fig. 6 and Table II. The parametersg2 andg4
in HPDS were determined by the energy splitting betwe
states of the ground band,j was adjusted to reproduce th
relative positions of the 2\v resonance bandheads andh(N)
was fixed by the energy difference@E(02

1)2E(01
1)#. Figure

6 and Table II demonstrate the level of agreement betw
the PDS and symplectic results.

An analysis of the structure of the ground and resona
bands reveals the amount of mixing in the 8\v symplectic
(Q2•Q2) wave functions. Figure 7 shows the decomposit
for representative (Lp521) states of the five lowest rota
tional bands. Ground band (K501) states are found to hav
a strong 0\v component (>64%), and three of the fou
resonance bands are clearly dominated (>60%) by 2\v
configurations. States of the first resonance band (K502),

FIG. 6. Energy spectra for20Ne. Experimental ground ban
(K501) energies@60# are shown on the left, while theoretical re
sults for both the ground band and 2\v resonances (K
502,11,21,03) are given in the center and on the right, for a sy
plectic 8\v and a PDS calculation, respectively. Rotational ban
that consist of pure eigenstates of the PDS Hamiltonian
indicated.
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however, contain significant contributions from all but th
highestN\v excitations. The relative strengths of the SU~3!
irreps within the 2\v space are shown as well. As in the12C
case, states are found to be dominated by one represent
@~10,0! for the K502 band,~8,1! for K511 , (6,2)k52 for
K521, and (6,2)k51 for K503 here#, while the other
irreps contribute only a few percent. Such trends
present also in the more realistic symplectic calculations
Suzuki @59#.

As expected,HPDS has families of pure-SU~3! eigenstates
that can be organized into rotational bands, Fig. 6. T
ground band belongs entirely toN50, (l,m)5(8,0), and all
states of theK521 band have quantum labelsN52,
(l,m)5(6,2), k52. TheK541 band at 4\v is not shown.
A comparison with the symplectic case shows that theN\v
level to which a particular PDS band belongs is also do
nant in the corresponding symplectic band, Fig. 7. As befo
within this dominant excitation, eigenstates ofHPDS and
HSp(6) have similar SU~3! distributions; in particular, both
Hamiltonians favor the same (l,m)k values. Significant dif-
ferences in the structure of the wave functions appear, h
ever, for theK502 resonance band. In the 8\v symplectic
calculation, this band contains almost equal contributio
from the 0\v, 2\v, and 4\v levels, with additional admix-
tures of 6\v and 8\v configurations, while in the PDS
calculation, it belongs entirely to the 2\v level. These struc-
tural differences are also evident in the interband transit
rates, as is illustrated in Table III. Whereas the intraba
B(E2) strengths are approximately equal in both a
proaches, we observe that the interband rates differ b
factor of 2–3 in most cases. These differences reflect
action of the intershell coupling terms that are present in
quadrupole-quadrupole interaction of Eq.~23!, but do not
occur in the PDS Hamiltonian. Increasing the strengthx of
Q2•Q2 in HSp(6) will also spread the other resonance ban
over manyN\v excitations. TheK521 band~which is pure
in the PDS scheme! is found to resist this spreading mor
strongly than the other resonances. For physically relev
values ofx, the low-lying bands have the structure shown
Fig. 7.

s
re

TABLE II. B(E2) values~in Weisskopf units! for ground band
transitions in 20Ne. Compared are experimental data, predictio
from several symplectic calculations, and PDS results. The s
quadrupole moment of theLp521

1 state is given in the last row
The experimental values are taken from Refs.@56,57,60#. PDS tran-
sition rates are rescaled by an effective chargee* 51.95, while the
symplectic calculations use bare charges.

Transition ModelB(E2) ~W.u.! B~E2! ~W.u.!
Ji→Jf 2\v 4\v 6\v 8\v PDS Expt.

2→0 14.0 18.7 19.1 19.3 20.3 20.361.0
4→2 18.4 24.5 24.6 24.5 25.7 22.062.0
6→4 17.1 22.3 21.5 20.9 21.8 20.063.0
8→6 12.4 15.2 13.3 12.4 12.9 9.061.3
Q ~eb! 20.14 20.16 20.16 20.16 20.17 20.2360.03
9-12
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FIG. 7. Decompositions for calculatedLp521 states of20Ne.
Individual contributions from the SU~3! irreps at the 0\v and 2\v
levels are shown for both a symplectic 8\v calculation~left side!
and a PDS calculation~right side!. For the symplectic approach th
summed contributions from SU~3! irreps at higher (N.2) excita-
tions are given as well.
05430
C. The 24Mg case

The final example to be considered here involves the
axially deformed nucleus24Mg, which has been the subjec
of several symplectic model studies@46,47,61,62#. With four
valence protons and neutrons in theds shell each, and a
leading sp~6,R! irrep Ns(ls ,ms)562.5(8,4), this system is
the most complicated one to be investigated here. Since
lsÞ0 andmsÞ0, the symplectic Hilbert space has a ve
rich structure. The~8,4! representation at 0\v contains three
rotational bands: aK50 band withL50,2,4,6,8; aK52
band with L52,3, . . .,10; and a K54 band with L
54,5, . . .,12. At the 2\v level, there are six possible SU~3!
irreps,~10,4!, ~8,5!, ~6,6!, ~9,3!, ~7,4!, and~8,2!, which con-
tain a total of fourK50, two K51, four K52, two K53,
three K54, oneK55, oneK56, . . . bands. At the 4\v
level, there are 15 different SU~3! irreps, at 6\v, there are
25, etc. Accordingly, the number of states for a given angu
momentum valueL increases dramatically with the inclusio
of higher excitations. This is illustrated in Table IV forL

TABLE III. Comparison of intraband and interbandB(E2) rates
for 20Ne. Shown are various transitions between states of the low
rotational bands.K501 denotes the ground band, which is dom
nated by 0\v configurations; members of the other bands cor
spond to 2\v resonances. Results are from the PDS calculat
~rescaled bye* 51.95) and from the 8\v symplectic approach
(e* 51.0). In the last column, ratios of the calculated transiti
strengths are given.

Transition ModelB(E2) ~W.u.! B(E2)@PDS#

Ji Ki Jf K f Sp~6,R! PDS B(E2)@Sp6#

2 01 0 01 19.3 20.3 1.05
2 02 0 01 5.8 12.6 2.16
2 03 0 01 0.10 0.32 3.16
2 01 0 02 2.9 5.7 1.94
2 02 0 02 20.3 27.8 1.37
2 03 0 02 0.15 0.13 0.84
2 01 0 03 0.17 0.48 2.80
2 02 0 03 0.25 0.26 1.01
2 03 0 03 12.9 16.8 1.30
4 01 2 01 24.5 25.7 1.05
4 02 2 01 10.9 22.8 2.09
4 11 2 01 2.3 5.8 2.55
4 21 2 01 0.63 2.3 3.66
4 03 2 01 0.09 0.30 3.34

TABLE IV. Dimensions of symplectic Hilbert spaces for24Mg.
Shown are the number ofL states (L50,1, . . . ,8) forspaces that
includeN\v excitations up toN50, 2, 4, and 6, respectively.

Symplectic Angular momentumL
space 0 1 2 3 4 5 6 7 8

0\v 1 0 2 1 3 2 3 2 3
(012)\v 4 3 11 10 17 15 19 16 18
(01214)\v 13 15 40 41 62 59 71 63 67
(0121416)\v 32 49 110 122 171 171 198 182 18
9-13
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50,1,2, . . . ,8.
Since the interactions inHSp(6) do not distinguish differ-

ent k multiplicities, it becomes necessary to make use
the integrity basis operatorsX̂3 and X̂4 discussed in
Sec. II, which allow us to reproduce the experimentally o
servedK band splitting in the spectrum of24Mg. Using the
Hamiltonian

HSp(6)8 5HSp(6)1c3X̂31c4X̂4 , ~35!

we carried out least squares fits to measured energies
B(E2) values for 2\v, 4\v, and 6\v symplectic spaces.

Figure 8 ~top! displays the energies obtained with th
6\v calculation~right part of the figure! in comparison with
the experimental values@63,64# ~left side!. In addition to the
ground (K501) and g (K521) bands, the calculatedK
541 band, which is dominated by 0\v configurations, and
several low-lying symplecticK50, 2, 4, and 6 bands, whic
are dominantly 2\v resonances, are shown. Table V lis
variousB(E2) transition rates between the low-lying stat
of 24Mg. We find that the results of the symplectic calcu
tions are in good agreement with the data@65#. Specifically,
the g band is correctly located and nearly all the calcula
intraband and interband transition rates fall, without the

FIG. 8. Energy spectra for24Mg. Energies from a PDS calcula
tion ~bottom! are compared to symplectic results~top!. Both
0\v-dominated bands (K501,21,41) and some 2\v resonance
bands (K502,03,04,22,23,42,43,61) are shown. The K
501,21,41 (61) states are pure~approximately pure! in the PDS
scheme. Experimental values for the ground andg-band energies,
taken from Refs.@63,64#, are given on the left.
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of an effective charge, within experimental uncertainties. T
4\v results are better than the 2\v results, with the 6\v
calculation yielding only moderate improvements.

In analogy with the symplectic case, we include termsX̂3

and X̂4 in the PDS Hamiltonian,

HPDS8 5HPDS1c3X̂31c4X̂4 . ~36!

As we will see below, the introduction of these extra term
breaks the partial symmetry. We fixedc3 andc4 at the values
that were used in the 6\v symplectic calculation, deter
mined g2 and g4 from the level splittings in theK501
ground band, and adjustedj so as to reproduce the relativ
positions of selected 2\v bandhead states~we focused on
the lowest threeK50 bands and the firstK56 band!. Then
h(N) was chosen to reproduce approximately the positi
of the 2\v resonances relative to the ground andg bands.

We obtain an energy spectrum that agrees well with
results of the symplectic calculation, as is shown in Fig.
The B(E2) strengths for the ground andg bands, rescaled
by an effective chargee* 51.75, are given in Table V. We
find good agreement between the PDS and symplectic ca
lations for the intraband transitions, whereas there are la
deviations in the interband rates.

TABLE V. B(E2) strengths of24Mg. Compared are results from
2\v, 4\v, and 6\v symplectic calculations, a PDS calculatio
and experiment@57,63#. Both intraband and interband transition
between states of the ground (K501) and g (K521) band are
given. The static quadrupole moment of the 21

1 state is listed in the
last line ~in units of eb!. ~Measurements have given results foruQu
ranging from less than 0.16eb to nearly double that value. We lis
the value adopted in the review by Spear@57#.! The symplectic
model reproduces the observed transition rates without emplo
effective charges, while the PDS approach requirese* 51.75.

Transition ModelB~E2! B(E2)
Ji Ki Jf K f 2\v 4\v 6\v PDS Expt.

2 01 0 01 17.2 20.2 20.4 20.5 20.560.6
4 01 2 01 24.5 26.9 26.9 26.2 2364
6 01 4 01 25.2 25.5 25.2 22.5 34210

136

8 01 6 01 24.4 19.4 19.2 13.6 1626
125

3 21 2 21 31.6 35.6 35.3 36.6 3466
4 21 2 21 9.7 11.2 11.0 11.6 1663
5 21 3 21 15.3 17.0 16.6 16.8 2865
5 21 4 21 17.3 18.0 17.7 18.0 1466
6 21 4 21 15.3 19.4 18.3 20.1 2328

123

8 21 6 21 12.4 18.0 15.9 19.6 >3
2 21 0 01 1.1 1.3 1.3 3.1 1.460.3
2 21 2 01 2.2 1.7 1.9 3.4 2.760.4
3 21 2 01 1.9 2.4 2.3 5.6 2.160.3
4 21 2 01 0.2 1.0 0.9 2.7 1.060.2
4 21 4 01 2.9 2.1 2.3 4.1 1.061.0
5 21 4 01 1.0 2.4 2.0 6.0 3.960.8
6 21 4 01 0.2 1.2 1.0 3.2 0.820.3

10.8

Q ~eb! 20.171 20.186 20.185 20.191 20.1860.02
9-14
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FIG. 9. Decompositions for
calculatedLp561 states of24Mg.
Eigenstates resulting from th
symplectic 6\v calculation are
decomposed into their 0\v,
2\v, 4\v, and 6\v components
~denoted byQ2•Q2 in the figure!.
At the 0\v and 2\v levels, con-
tributions from the individual
SU~3! irreps are shown, for highe
excitations (N.2) only the
summed strengths are given
Eigenstates of the PDS Hamil
tonian belong entirely to oneN\v
level of excitation, here 0\v or
2\v. Contributions from the indi-
vidual SU~3! irreps at these levels
are shown. Members of theK
501,21,41 bands are pure in the
PDS scheme, andK561 states are
nearly (.99%) pure.
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According to the proof given in Sec. III, the three rot
tional bands at 0\v should be pure in the PDS scheme, a
at 2\v there should be a~short! rotationalK56 band with
L56,7, which belongs entirely to the (l,m)5(6,6) repre-
sentation. We find that the 0\v states are indeed pure, b
the K56, L56,7 band has small admixtures (,1%) from
2\v irreps other than (l,m)5(6,6), thus indicating tha
HPDS8 , unlike HPDS, is not an exact partial dynamical sym
metry Hamiltonian, due to the presence of theK-band split-
ting termsX̂3 and X̂4. This can be understood as follow
While X̂3 and X̂4 cannot mix different SU~3! irreps, their
eigenstates involve particular linear combinations of diff
entk values. Since the operatorsX̂3 andX̂4 do not commute
with B̂0, these linear combinations differ from configuratio
resulting from the PDS requirementB̂0uf&50. Fortunately,
a very small amount of symmetry breaking suffices to fit
relative positions of the ground andg bands, as can be in
ferred from the eigenstate decompositions plotted in Fig
Shown are the decompostions of theL56 states associate
with the calculatedHSp(6)8 and HPDS8 spectra. More specifi-
05430
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cally, we have plotted the contributions from the SU~3! irreps
at 0\v and 2\v, as well as the~summed! contributions
from 4\v and 6\v excitations.

As in the previous examples, we observe that the eig
states of both Hamiltonians have very similar structures:
a given state, the sameN\v level of excitation is dominant
in both calculations and, moreover, within this dominant e
citation, we find similar SU~3! distributions. The structura
differences that do exist are, again, reflected in the very s
sitive interband transition rates, as can be seen in Table

VI. COMPARISON OF PARTIAL SYMMETRIES
IN BOSONIC AND FERMIONIC MANY-BODY SYSTEMS

Partial dynamical symmetries were first studied in the
teracting boson model~IBM ! of nuclei @6#. In @17#, the fol-
lowing IBM Hamiltonian was used to reproduce measur
energies andE2 rates of168Er:

HIBM~h0 ,h2!5h0P0
†P01h2P2

†
• P̃2 , ~37!
9-15
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whereh0 ,h2 are arbitrary parameters andPL
† , L50 and 2,

are boson pair operators:

P0
†5d†

•d†22~s†!2,

P2m
† 52s†dm

† 1A7~d†d†!m
(2) . ~38!

The creation operatorss† and dm
† (m50,61,62) denote a

monopole boson with angular momentum and parityJp

501, and a quadrupole boson withJp521, respectively.
They represent correlated valence nucleon pairs and are
basic building blocks of the IBM. The pair operatorsP0

† and
P2m

† are components of a (l,m)5(0,2) SU~3! tensor, and

their Hermitian adjoints,P0 and P̃2m5(21)mP2,2m , are
characterized by (l,m)5(2,0).

It can be shown that forh25h0, the Hamiltonian of Eq.
~37! becomes a SU~3! scalar@related to the Casimir operato
of SU~3!# and for h252h0/5, it transforms as a (l,m)
5(2,2) SU~3! tensor component. In general,HIBM(h0 ,h2)
is, therefore, not a SU~3! scalar, nevertheless it turns out th
it always has an exact zero-energy eigenstate, denote
what follows by uc;N&, where the integerN gives the total
number of bosons in the system. The stateuc;N& describes a
condensate of bosons and can be written as

uc;N&5
1

AN!
@~s†1A2d0

†!/A3#Nu0&. ~39!

It is the lowest weight state in the SU~3! irrep (l,m)
5(2N,0) and serves as an intrinsic state for the SU~3!
ground band. The rotational members of the ground b

TABLE VI. Comparison of intraband and interbandB(E2) rates
for 24Mg. Shown are selected transitions between states of thK
501, 02, 03, and 22 bands. The PDS values are rescaled bye*
51.75. Ratios of the results from the two theoretical approaches
given in the last column.

Transition ModelB(E2) ~W.u.! B(E2)@PDS#

Ji Ki Jf K f Sp~6,R! PDS B(E2)@Sp6#

2 01 0 01 20.4 20.5 1.00
2 02 0 01 5.6 10.2 1.84
2 03 0 01 0.047 0.19 4.09
2 22 0 01 0.22 2.1 9.46
2 01 0 02 2.5 5.2 2.05
2 02 0 02 14.8 26.6 1.80
2 03 0 02 0.037 0.047 1.26
2 22 0 02 0.48 3.4 7.00
2 01 0 03 0.025 0.042 1.69
2 02 0 03 0.12 0.12 1.06
2 03 0 03 12.9 16.2 1.26
2 22 0 03 0.023 0.12 5.21
4 01 2 01 26.9 26.2 0.97
4 02 2 01 9.7 18.4 1.90
4 03 2 01 0.052 0.48 9.20
4 22 2 01 0.66 0.21 0.32
05430
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with good angular momentumL are obtained by projection
from uc;N&. Moreover, one finds that states of the form

uk&}~P22
† !kuc;N&, ~40!

are eigenstates ofHIBM(h0 ,h2) with eigenvalues Ek
56h2(2N1122k)k and good SU~3! symmetry (2N
24k,2k), where 2k<N. They are lowest weight states i
these representations and serve as intrinsic states repre
ing gk bands with angular momentum projectionK52k
along the symmetry axis.

Since HIBM(h0 ,h2) is rotationally invariant, it follows
that states of goodL projected fromuk50&5uc;N& and uk&,
k.0, are also eigenstates with energyEk and SU~3! symme-
try (2N24k,2k). The projected states span the entire (2N,0)
representation fork50, but only part of the correspondin
irrep for k.0. There are other excited states that do n
preserve the SU~3! symmetry and, therefore, contain a mi
ture of SU~3! irreps, including the ‘‘special’’ irreps (2N
24k,2k). SinceHIBM(h0 ,h2) is not a SU~3! scalar, but pos-
sesses a subset of solvable eigenstates with good SU~3! sym-
metry, it is a partial-symmetry Hamiltonian. AddingL̂2, the
Casimir operator of SO~3!, to HIBM(h0 ,h2) converts the par-
tial symmetry to a partial dynamical symmetry and contr
utes aL(L11) splitting, but does not affect the wave fun
tions.

The boson and fermion Hamiltonians,HIBM(h0 ,h2) of
Eq. ~37! andH(b0 ,b2) of Eq. ~24!, have several features i
common: Both display partial SU~3! symmetry, they are con
structed to be rotationally invariant functions of (l,m)
5(2,0) and (l,m)5(0,2) SU~3! tensor operators, and SU~3!
tensor decompositions show that both contain (l,m)5(0,0)
and ~2,2! terms only.HIBM(h0 ,h2), as well asH(b0 ,b2),
has solvable pure-SU~3! eigenstates, which can be organiz
into rotational bands; the degeneracies within these bands
lifted by adding the SO~3! term L̂2 to the Hamiltonian. The
ground bands are pure in both cases, and higher-energy
bands coexist with mixed-symmetry states.

There are several significant differences between
bosonic and fermionic PDS Hamiltonians, however. For
ample, the ground band of the HamiltonianHIBM(h0 ,h2),
Eq. ~37!, is characterized by (l,m)5(2N,0), i.e., it de-
scribes an axially symmetric prolate nucleus. It is also p
sible to find an IBM Hamiltonian with partial SU~3! symme-
try for an oblate nucleus. It can be shown that these t
cases exhaust all possibilities for partial SU~3! symmetry
with a two-body Hamiltonian in the IBM-1 with one type o
monopole and quadrupole bosons. In contrast, the fermio
Hamiltonians considered here can accommodate gro
bands of prolate@(ls,0)#, oblate @(0,ms)#, and triaxial
@(ls ,ms) with lsÞ0, msÞ0# shapes.

Another difference between the fermionic and the boso
PDS cases discussed here lies in the physical interpreta
of the excited solvable bands. While these bands represeg,
double g, etc., excitations in the IBM, they correspond
giant monopole and quadrupole resonances in the ferm
case.

re
9-16
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Furthermore, whereas the pure eigenstates
HIBM(h0 ,h2) can be generated by repeated action of the
son pair operatorP22

† on the boson condensate and sub
quent angular momentum projection, a similar straightf
ward construction process for the special eigenstates
H(b0 ,b2) has not been identified yet. The situation seem
be more complicated in the fermion case, which is also
flected in the fact thatH(b0 ,b2) has two possible families o
pure eigenstates, one finite, the other infinite. The associa
of the special states to one or the other family depends on
0\v symplectic starting configuration.

The comparison of partial dynamical symmetries
bosonic and fermionic systems above illustrates that, in s
of similar algebraic structures of the associated Hami
nians, two given systems with partial symmetries may
hibit not only different physical interpretations, but also d
ferent systematic features and different mechanisms
generating the partial symmetries in question.

VII. SUMMARY AND CONCLUSIONS

The fundamental concept underlying algebraic theorie
quantum physics is that of an exact or dynamical symme
Realistic quantum systems, however, often require the a
ciated symmetry to be broken in order to allow for a prop
description of some observed basic features. Partial dyna
cal symmetry describes an intermediate situation in wh
some eigenstates exhibit a symmetry that the associ
Hamiltonian does not share. The objective of this approac
to remove undesired constraints from the theory while p
serving the useful aspects of a dynamical symmetry, suc
solvability, for a subset of eigenstates.

We have presented an example of a partial dynam
symmetry in an interacting many-fermion system. In t
framework of the symplectic shell model, we have co
structed a family of rotationally invariant Hamiltonians wi
partial SU~3! symmetry. We have demonstrated that the P
Hamiltonians are closely related to the deformation induc
quadrupole-quadrupole interaction and break SU~3! symme-
try, but still possess a subset of ‘‘special’’ solvable eige
states that respect the symmetry. The construction pro
for these special states was outlined and analytic express
for their energies and forE2 transition rates between the
were given.

To illustrate that the PDS Hamiltonians introduced he
are physically relevant, we have presented application
oblate, prolate, and triaxially deformed nuclei. Specifica
we have compared the energy spectra, reduced quadru
05430
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transition strengths, and eigenstate structures of the par
symmetry Hamiltonians to those of a symplectic shell-mo
Hamiltonian containing a realistic quadrupole-quadrupole
teraction. Although the PDS Hamiltonians cannot acco
for intershell correlations, we have observed that various f
tures of the quadrupole-quadrupole interaction are rep
duced with a particular parametrization of the parti
symmetry Hamiltonians. PDS eigenfunctions do not cont
admixtures from differentN\v configurations, but belong
entirely to one level of excitation. We have found that, f
reasonable interaction parameters, theN\v level to which a
particular PDS band belongs is also dominant in the co
sponding band of exactQ2•Q2 eigenstates. Moreover, within
this dominant excitation, eigenstates of both Hamiltonia
have similar SU~3! distributions. Structural differences, nev
ertheless, do arise and are reflected in the very sensitive
terband transition rates. Overall, however, we may concl
that PDS eigenstates approximately reproduce the struc
of the exactQ2•Q2 eigenstates, for both ground and mo
resonance bands.

The notion of partial dynamical symmetries extends a
complements the familiar concepts of exact and dynam
symmetries. It is applicable when a subset of physical sta
exhibit a symmetry that does not arise from the invarian
properties of the relevant Hamiltonian. Recent studies,
cluding the one presented here, show that partial symme
may indeed be realized in various quantum systems. T
indicates that PDS is not a mere mathematical concept,
may serve as a practical tool in realistic applications of al
braic methods to physical systems.
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APPENDIX A: SU„3… WIGNER COEFFICIENTS
AND WIGNER-ECKART THEOREM

If a represents a set of labels used to distingu
orthonormal basis states within a given irreducib
SU~3! representation (l,m), the Wigner coefficients
^(l1 ,m1)a1 ;(l2 ,m2)a2u(l,m)a&r are defined as the ele
ments of a unitary transformation between coupled and
coupled orthonormal irreps of SU~3! in the a scheme@40#,
u~l,m!a&r5 (
a1a2

^~l1 ,m1!a1 ;~l2 ,m2!a2u~l,m!a&ru~l1 ,m1!a1&u~l2 ,m2!a2&, ~A1!

and the inverse transformation is given by

u~l1 ,m1!a1&u~l2 ,m2!a2&5 (
r(l,m)a

^~l1 ,m1!a1 ;~l2 ,m2!a2u~l,m!a&ru~l,m!a&r . ~A2!
9-17
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Here a5eLML for the SU(3).SU(2)^ U(1) ~canonical! group chain anda5k lm for the SU~3!.SO~3! reduction em-
ployed in this work. The subgroup chains impose certain restrictions on the above couplings, for example, the usua
momentum coupling rules,l 5 l 11 l 2 , . . . , u l 12 l 2u, andm5m11m2 apply for the chain containing SO~3!.

The outer multiplicity labelr51,2, . . . ,rmax is used to distinguish multiple occurrences of a given (l,m) in the direct
product (l1 ,m1)3(l2 ,m2): r51,2, . . . ,rmax, wherermax denotes the number of possible couplings (l1 ,m1)3(l2 ,m2), and
the possible (l,m) irreps in the product can be obtained by coupling the appropriate Young diagrams@3#. O’Reilly @66#
determines a closed formula for the decomposition of the outer product (l1 ,m1)3(l2 ,m2) of SU~3! irreps for arbitrary
positive integersl i ,m i , and derives necessary and sufficient conditions for a SU~3! irrep (l,m) to appear as summand i
(l1 ,m1)3(l2 ,m2).

It is possible to factor out the dependence of the above SU(3).SO(3) Wigner coupling coefficient on them subgroup label
by defining so-called double-barred or ‘‘reduced’’ SU~3! coupling coefficients,

~A3!
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The ‘‘geometric’’ part ^••u•& is simply a SU~2! Clebsch-
Gordan coefficient. From the unitarity of the full SU~3!
Wigner and the ordinary SU~2! Clebsch-Gordan coefficient
it follows that the double-bar coefficients are also unita
With the phase convention introduced in Ref.@40# they be-
come real, and therefore orthogonal. Draayer and Akiya
@40# give a prescription for the unique determination, inclu
ing the phases, of SU~3! Wigner coefficients and derive the
relevant conjugation and symmetry properties. They furth
more provide a computer code that allows for a numer
determination of the coefficients@51#. Analytic expressions
for Wigner coefficients that are of particular interest inp
shell andds shell nuclear shell-model calculations are tab
lated in Ref.@67# for the canonical subgroup chain and
Refs.@43,53,68# for the SU(3).SO(3) chain.

The Wigner-Eckart theorem for the group SU~2! yields
SU~2!-reduced~double-bar! matrix elements of a SO~3! irre-
ducible tensor operator,

^ l 3m3uTl 2m2u l 1m1&5^ l 1m1 ; l 2m2u l 3m3&
^ l 3uuTl 2uu l 1&

A2l 311
.

~A4!

Analogously, the generalized Wigner-Eckart theorem allo
one to express matrix elements of SU~3! irreducible tensor
operators as a sum overr of the product of ar dependent
generalized reduced matrix element multiplied by the co
sponding Wigner coefficient@40#,

^~l3 ,m3!a3uT(l2 ,m2)a2u~l1 ,m1!a1&

5(
r

^~l1 ,m1!a1 ;~l2 ,m2!a2u~l3 ,m3!a3&r

3^~l3 ,m3!uuuT(l2 ,m2)uuu~l1 ,m1!&r . ~A5!
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For more details on SU~3! coupling and recoupling coeffi
cients, see the compilation in Appendix C of Ref.@36# and
references therein.

APPENDIX B: MATRIX ELEMENTS
OF RELEVANT OPERATORS

The calculations presented here require expressions
matrix elements of the Sp~6,R! generatorsÂ(20), B̂(02), and
Ĉ(11), and combinations thereof. None of these operat
connect states belonging to different symplectic represe
tions and, furthermore, the SU~3! generatorsĈ1q

(11)5L̂q and

Ĉ2m
(11)51/A3Q2m

E act only within one level of excitationN.

Matrix elements forĈ(11) in the standard SU~3! bases are
given by @49,67#,

^~l8,m8!uuuĈ(11)uuu~l,m!&

5~21!fmA2^ĈSU(3)&@~l,m!#d (l8,m8)(l,m) ,

~B1!

where ĈSU(3) denotes the second-order Casimir op
ator of SU~3!, given in Eq. ~9!, and fm51 for mÞ0
and fm50 for m50. The reduced matrix elemen

^(l8,m8)uuuĈ(11)uuu(l,m)& is related to the full SU~3! matrix
element via the Wigner-Eckart theorem for SU~3! and the
phase is chosen to be consistent with that of Ref.@49#.

Several strategies for calculating matrix elements of
symplectic generatorsÂ(20) andB̂(02) have been explored. A
direct way is to use the Sp~6,R! commutation relations to
derive recursion formulas, as shown by Rosensteel@35#. An-
other approach is to start from approximate matrix eleme
and to proceed by successive approximations, adjusting
matrix elements until the commutation relations are precis
satisfied @29#. Deenen and Quesne@69# have employed a
9-18
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boson mapping to obtain generator matrix elements,
Castan˜oset al. @70# have derived simple analytical function
for some special irreps. The most elegant method, outli
by Rowe in Ref.@71#, involves vector-valued coherent sta
representation theory and evaluates matrix elements of
symplectic raising and lowering operators by relating th
to the matrix elements of a much simpler u(3)^ Weyl alge-
bra. A listing of the relevant formulas is beyond the scope
this appendix, the reader is thus referred to Ref.@71# for
details of the calculation.

Matrix elements of the SU(3).SO(3) integrity basis op-
erators X̂3[(L̂3QE)(1)•L̂ and X̂4[(L̂3QE)(1)•(L̂
3QE)(1) can be given in terms of SO~3! Racah re-
coupling coefficientsW( l 1 ,l 2 ,l ,l 3 ; l 12,l 23) @72# and the
SU(3).SO(3) reduced matrix elements ofĈ(11) @49#,
al

d
e,

P

,

m

05430
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^~l,m!k lmuX̂3u~l8,m8!k8l 8m8&

5d (l8,m8)(l,m)d l 8 ldm8m3l ~ l 11!A2l 11W~ l ,1,l ,1;l ,2!

3^~l,m!k l uuĈ2
(11)uu~l,m!k8l &; ~B2!

^~l,m!k lmuX̂4u~l8,m8!k8l 8m8&

5d (l8,m8)(l,m)d l 8 ldm8m9l ~ l 11!

3A2l 11 (
k9 l 9

~21! l 1 l 911A2l 911@W~1,l ,2,l 9; l ,1!#2

3^~l,m!k l uuĈ2
(11)uu~l,m!k9l 9&

3^~l,m!k9l 9uuĈ2
(11)uu~l,m!k8l &. ~B3!
tt.
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