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One-body properties of nuclear matter with off-shell propagation
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Symmetric nuclear matter is studied in the self-consistent, in-medmatrix approach. One-body spectral
function, optical potential, and scattering width are calculated. Properties of quasiparticle excitations at the
Fermi surface are discussed. Dispersive self-energies are dominated by contributions i@, tP®,-°D,
and P, partial waves.
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[. INTRODUCTION width, and spectral function, obtained with a separable Paris
interaction with several partial wavéAppendix B. In Ap-

Single-particle properties of nucleons are modified insidgoendix A we describe in details the numerical methods that
the strongly interacting nuclear matfé. The optical poten-  allow us to tackle the problem.
tial describes the average interaction of a nucleon with the We find that normal nuclear density is at the limit of the
medium. At negative energies, the single-particle potentiafegion of the®s,-3D; pairing instability. Owing to the dress-
reflects the modifications of the quasiparticles in the nucleaing of propagators in the gap equation the superfluid gap is
matter. The spectral function of a nucleon is a measure of theery small, if not vanishingdepending on the details of the
energy distribution of a plane wave state in the system, anihteraction in the deuteron chanpeWWe leave the detailed
can be observed in electron scattering experiments. analysis of the pairing in symmetric nuclear matter with re-

Single-particle properties can be calculated from thedlistic interactions to a different work, and study in the fol-
Brueckner-Hartree-FockBHF) theory[3,2]. Hole-hole dia- lowing the normal state of nuclear matter.
grams must be added to the lowest order results to obtain a
meaningful imaginary part of the self-energy. Due to the vio-
lation of the Hugenholz—Van Hove property by the BHF
approach, the overall normalization of the single-particle en- In this section we recall the basic equations of the ap-
ergies is sometimes a problem. BHF calculations use a qugroach used, more details and discussion can be found in
siparticle approximation for the propagators; therefore, a fi{4—6,10,13—1% The T-matrix approximation sums ladder
nite order diagram has kinematical limits on the total energyiagrams with dressed particle-particle and hole-hole propa-
in the scattering. A finite total energy in the interaction couldgators for the in-medium two-particle propagator. The re-
introduce distortions in the far energy tails of the calculatectardedT matrix is
spectral functions.

Recently the in-mediur-matrix approximation has been 3
applied to the nuclear mattf4—10]. One obtains nontrivial " , dw,dw,d’q

- : - (PIT(PQ)[p")=V(p,p)+

self-energies by summing a ladder of hole-hole and particle- 327°
particle propagators. The self-energies obtainedfacderiv-
able [11,7]; within this approximation, the single-particle XV(p,a)A(p1, w1)A(P2,w2)
properties are consistent with global thermodynamical prop-

II. IN-MEDIUM T MATRIX

erties of the system. A necessary requirement for the in- X[l_f(wl)_f(“fZ)]<q|T(P,Q)|p,>,
medium T-matrix approach is to use fully self-consistent Q-w—wytie
self-energies and propagators. The propagators are dressed (1)

with the imaginary and real parts of the self-energy, and the
full spectral function for nucleons must be taken. It requires B . o
a serious numerical effort in the calculations, but using awh?_rel P12=P/2%q a_nd f(‘]j’)th's _the Fg_rr%: d's,:r.'b'“.'t'on' A
guasiparticle approximation in tHematrix ladder gives too ]E)ar |adwave expansion ot the in-mediummatrix 1S per-
strong pairing5,12,8, too much scatteringg,5|, and incor- orme
rect single-particle energigd].

In the present work we calculate single-particle self- <p|T|(|J,ST)(P,Q)|p’>
energies and spectral functions using fully self-consistent
propagators. We take the complete energy dependence of the (ST , dw;dw,q°dq (Js7
self-energies and spectral functions into account in order to =V (p.p HE — a2 Vir (p.a)
access reliably the high energy tails of the spectral functions.
We present results on the single-particle potential, scattering X(A(P1,01)A(P2,®2))p q

><[1—f(w1)—f(wz)]
*Electronic address: piotr.bozek@ifj.edu.pl Q—wi—wyrtie

1

@TS (PO pY (2

0556-2813/2002/65)/0543068)/$20.00 65 054306-1 ©2002 The American Physical Society



P. BOZEK PHYSICAL REVIEW C 65 054306

after angle averaging the intermediate two-particle propaga-
tor ((---)=[dQ/4m...).

The imaginary part of the retarded self-energy is obtained
by closing a pair of external vertices in tAematrix with a
fermion propagator

ReZ(p,sp) (MeV)

d(,!)]_dsk
ImE(p,w)=f o Ak, 0){((p—=K)/12ImT(p+k,w

+)|(p=K)2alf(01) +blo+wi)],  (3)

where
—-2Im3(p,w)
A(p,w)= 5 5 5 @4
[w—p2m—ReX(p,w)]*+IM3(p,w) .80 . I . I : I
0 200 400 600
is the self-consistent spectral function of the nucleon and p (MeV)
b(w) is the Bose distribution. The real part of the self-energy
is related to In®, by a dispersion relation FIG. 1. The real part of the self-energy on-shslblid line), the
Hartree-Fock self-energyotted ling, and the dispersive part of the
do’ IM3(p,w’) self-energy(dashed ling The dashed-dotted line represents the fit
ReE(p,w)=2HF(p)+7>f — . (5  from Eq.(8).
™ o' —w
_ but the values quoted above are quite reasonable and give
The Hartree-Fock self-energy is some confidence in the single-particle properties we want to
study.
p = f d% \Y, k)/2 k)/2 k 6
HF(P)= (2m)3 [(p=kyi2(p=k)i2]an(k), (6) IIl. OPTICAL POTENTIAL

The real part of the self-energy defines the single-particle

where the momentum occupaneyk) is calculated with the pole in the propagator

full spectral function[Eq. (10) below]. Equations(1), (3),
(5), and(é}) are to bg S(_)Ived. iteratively apd at each _iteration wp= p2/2m+ ReS (p,wp).
the chemical potentiak is adjusted to fulfill the condition on

the density The free dispersion relation is modified due to interactions
with the medium. The resulting effective potential
dwdp s ReX (p,w)) is attractive. It leads, in particular, to a reduction
p=J 6t A(p,»)f(»)=0.16 fm . () of the effective massn* =pdp/dw,. We find m* =0.85m
at the Fermi momentum, this value depends somewhat on
The T-matrix approximation sums ladder diagrams Con_the chosen interaction. The effective mass can bS written
tributing to the ground state energy. In this way it regularizes[l] as the product Of_l the k- mass my/m=(1
the short range core in the nucleon interaction similarly as+[m’9 Imz(k'“’)/kak”w:wk) and the » massm,/m
the BHF approach. At the same time, the self-consistent (1—[dIm2(k,w)/dw][,=,). We find m/m=0.62 and
T-matrix approximation isb derivable[11]. It was shown for m,/m=1.37 at the Fermi momentum.
a model interaction that if a fully self-consistemtmatrix The real part of the self-energy is the sum of the Hartree-
calculation is performed the thermodynamic consistency reFock and dispersive contributiorfS). For the chosen inter-
lations are fulfilled 7]. In the T-matrix approximation a non- action the Hartree-Fock potential is attractive. It means that
zero imaginary self-energy appears and leads to a nontrividhe repulsive core is relatively soft. From calculations using
spectral function. It is crucial to keep the full off-shell de- model interaction§7] with a repulsive Hartree-Fock compo-
pendence of the propagators in the calculations. It is possibleent, we find that the corresponding dispersive self-energy is
to treat the resulting energy integrals using numerical methmore attractive leading to a similar total single-particle po-
ods described in the Appendix A. All the calculations aretential. However, for potentials with a very hard core the
done using the Fermi energy as the origin of the energgalculation of the single-particle potential as a sum of the
scale. The figures are also plotted using this convention. Thelartree-Fock and dispersive contributigiesg). (5)] could be-
calculations are done using a separable parametrization abme numerically unstable. The real part of the dispersive
the Paris potential16,17. The Fermi energy obtained is self-energy is negative around the Fermi energy and around
—21.4 MeV and the binding energy is15.1 MeV at normal the quasiparticle pol€Fig. 1). The value of the real part of
density. This is not the saturation point for this interaction,the self-energy on-shell is the effective potential felt by the
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FIG. 2. The energy dependence of the single-particle potential F|G. 3. The single-particle width-Im 3(p, ) as function of

Re2 (p,w) at fixed momentum. energy forp=0, 170, 340, and 510 MeV: solid, dashed, dotted, and
dashed-dotted lines, respectively.

quasiparticle in the medium. For positive energies of the par-
ticle it corresponds to the optical potential. The depth of the IV. SCATTERING WIDTH
single particle potential is around70 MeV and it is de-
creasing with momentum. In the range of positive single par
ticle energies (280 Me¥ p<500 MeV), the single-particle
potential can be fitted with the fori8]

The off-shell scattering width is nonzero on both sides of
the Fermi energy but larger at positive enerdieig. 3). At
negative energies the tail of the scattering width extends very
far. It is a general feature of self-consistent calculations.
Dressed propagators in tHematrix ladder make the imagi-
ReX (p,wp)=Hoexp — B%k?/4) (8)  nary part of theT-matrix nonzero even at very negative en-
ergies. On the other hand, quasiparticle approximations have

with Hy=—70 MeV andB=0.58 fm (dashed-dotted line in 2 kinematical limit on the lowest energy in the scattering.
Fig. 1). The range of nonlocality is small reflecting the fact 1he Scattering width decreases with momentum. It can be
that the effective mass* is not very different from the free unde;rstood by the fact that at low momenta the interaction is
one. The depth of the potential for positive energies is condominated by the stronges$ waves. Other calculations
sistent with the values obtained from phenomenological20:3:2:21,22,5,8/9 of the variational, BHF, Born, or
analyses of the optical potentf@9]. The single particle po- T-matrix type give qualitatively but not quantitatively similar
tential is weakly dependent on the temperature: Tat results. The differences are partly due to different short range
=4 MeV, ReX(p,wp) is shifted up by less than 1 Mev Properties of the interactions used. e
from its value at zero temperature. Consistently W|th general features of Fermllllqwds at zero
In Fig. 2 is presented the energy dependence of the reigmperature, we find that 1B(p,0=0)=0 (Fig. 3. The
part of the self-energy. The energy dependence of the singl$&Me relation, coming form the restricted phase space, is
particle potential is responsible for the time nonlocality of [Ulfilled by other approximation$20,2,23. At higher tem-
the optical potential. In the whole range of frequencies inPEratUres a nonzero scattering width at the Fermi energy ap-
Fig. 2 some energy dependence of the potential can be sed?fars- As can be seen from Fig. 4 the scattering width at the
This energy dependence is decreasing with momentum. FGf€rMi €nergy is increasing as the square of the temperature,
energies close to the Fermi energy the energy dependence ¥t expected from phase space argumg2gs _
the single-particle potential is similar to the one presented in 1he large value of the scattering width above the Fermi

Ref.[2]. The energy dependence determines the quasipartic'€r9Y is due to the short range part of the interaction poten-

strength tial. Splitting the total width into contributions from different

partial waves shows that thts;-3D partial wave is domi-

nant(Fig. 5. For momenta up to twice the Fermi momentum

Zp=( 1— JReX(p,0) ) 9) and energies around the Fermi energy, the deuteron partial
w:am

Jw

wave gives by far the most important contribution to the
scattering width. It is also in this kinematical region that the
) ) overall scattering width is the largest. We have observed a
At the Fermi momentum we find, =0.73. On the other gimilar large contribution due to this partial wave for the
hand, in the range 50 Me¥w<200 MeV ReX(p,w) is  Mongan[24] and Yamaguch|i25] separable potentials. Con-
relatively flat as function of energy. sistently, for all these interactions we obtain similar values
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FIG. 4. The temperature erendence of the single particle width 1. 6. The single particle width-Im 3. (p, ) at the quasipar-
—Im E(F);w:O) at the Fermi energy faqp=0, 170, 340, and 510 ticle pole as function of the momentum B0 (solid line) and T
MeV; solid, dashed, dotted, and dashed-dotted lines, respectively.— 4 \ev (dotted line.

for Z, =0.7. Large values of the scattering width at large ) ) )
F phase space for scatterif2B]. The on-shell scattering width

energies lead to long tails in the spectral functions. does not reflect the very large values of the off-shell scatter-

The imaginary part of the self-energy at the quaS|part|cIemg width (Fig. 3). For momenta close to the Fermi surface it

pole is the scattering width of the quasiparticle. From Fig. 6|s small; and particles with large energies have a scattering

we see that around the Fermi momentum, narrow quaSiIOar'robabilit roportional to the total density and cross section
ticle excitation exists. The scattering width behaves a abIlity prop ) ; y ; :
t finite temperature quasiparticles at the Fermi surface

_ _p.)2 i
Im 2 (p,wp)=(p—pg)°, as expected from the restricted aquire a finite lifetime(Fig. 6).

V. SPECTRAL FUNCTION

50 The role of correlation induced by the medium can be

judged by the modifications of the spectral function. Non-
trivial, dispersive self-energies lead to broad spectral func-
tion with non-Lorentzian shapes and long tails. High energy
parts of the spectral functions could be revealed by electron
scattering experiments. It is important to calculate the form
of the spectral functions including contributions form short
range correlations. In Fig. 7 are presented the spectral func-
tions for three representative momenta. For zero momentum
the spectral function has a broad peak below and a back-
: ground part above the Fermi energy. It is the reversepfor

0 =355 MeV. Following the behavior of the scattering width,

[ the spectral function for any momentum goes to zero at the
Fermi energy. For momenta close to the Fermi energy the
spectral function has a very sharp peak at the single-particle
energy. It has also a significant background part, which can-
not be ignored in the sum rules or in the calculation of ef-
fective interactions between quasiparticles. Similar to the
scattering width the self-consistent calculation gives rise to a
long tail in the spectral function at negative energies.

The spectral function can be used to obtain the momen-
tum distribution

50

-ImZ(p,») (MeV)

FIG. 5. The single particle width-Im 3 (p,w) as function of
energy forp=0, 340, and 680 MeV. The total width is plotted using
the solid line. The dashed, dotted, and dashed-dotted lines represent
:ir\llilisl-:"Dl, !s,, and 3P, partial waves contributions, respec- n(p)=jg—:A(p,w)f(w) _ (10
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finite temperature the scattering width is increased only in
the vicinity of the Fermi energy.

Long tails in the spectral function have implications for

i saturation properties of nuclear matter. Increased kinetic en-
ergy due to the high momentum tail i{p) is compensated

by increased removal energies due to the negative energy tail
of the spectral function. A detailed discussion at different
densities will be presented elsewhere.

-
I

A(p,o;) (MeV™)
I

VI. SUMMARY

We study the single-particle properties of nucleons in
nuclear matter using a conserving, in-medilirmatrix ap-
proximation. The calculations are done in a self-consistent
3 : way with dressed propagators in the ladder diagrams. To our
-200 -100 0 100 200 knowledge, it is the first such calculation in the literature

o (MeV) using realistic interactions and several partial waves. The full
discretization of the spectral function and self-energies al-

FIG. 7. The spectral functioA(p,w) as function of energy for lows to discuss the details of their energy dependence. We
p=0, 255, and 350 MeV; solid, dashed, and dotted lines, respecfind that the basic features of a consistent approximation to a
tively. Fermi liquid system are fulfilled. The scattering width is zero

at the Fermi energy, and the quasiparticles at the Fermi sur-
Short range correlations modifying the spectral function ardace have infinite lifetime. The momentum occupancy has a
reflected in the nucleon momentum distributieee Fig. 8. discontinuity 01‘ZpF at the Fermi momentum. The off-shell
The free Fermi distribution is depleted belgy and a high  scattering width is very large at energie800—400 MeV
momentum tail inn(p) is formed. At the Fermi momentum and momenta below 400 MeV. In this region the main con-
the discontinuity in the occupancy is reduced from Zfp  tribution comes from théS;-3D, partial wave. The’P; and
(9). The Fermi momentum in the interacting system should'S, partial waves give also important contributions to the
be the same as in the free of#6,11]. This relation is ap- on-shell self-energies. The scattering width on-shell is not
proximately fulfilled in the present calculation, but not asvery large, maximally 26 MeV. Finite temperature effects
well as in our previous work using onlgwave interactions are concentrated around the Fermi surface. At finite tempera-
[7]. A possible source of the discrepancy could be the use dlre, the scattering width gets finite around the Fermi energy
the partial-wave expansion, which spoils tederivability =~ without modifying the real single-particle potential and the
of the self-energies. At finite temperature the Fermi surface ishort range correlations. The quasiparticle renormalization
washed out, but the depletion of the Fermi sea and the higfactor isZ, =0.73 and is largely independent on the inter-
momentum tail are the same. It means that the short ranggction used. The effective massnig = 0.85m.
correlations stay essentially the sameTat4 MeV. The
same can also be seen by inspecting the self-energies. At
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APPENDIX A: NUMERICAL METHODS

Calculations using self-consistent spectral functions re-
quire the evaluation of energy integrals in E¢b). and (3).
This is the main numerical difficulty for any self-consistent
approximation; only in the last years self-consistent ap-
proaches have been applied to the study of Aigbupercon-
ductors[27-30 and nuclear mattd#4,8,5,7,9. Some calcu-

: lations are performed in the imaginary time formalism
02 - [27,29 that requires a numerical procedure for the analytical
continuation to calculate the spectral function. A simpler way
) Ml is to use the real-time formalism operating with the retarded
0 200 400 T-matrix, the retarded self-energy, and the spectral function
p (MeV) [29,5]. The real-time formalism was also used for other cal-
culations of the nuclear matt¢8,9] performed at zero tem-

FIG. 8. The momentum distribution of nucleons at zero tem-peratures. To deal with the off-shell propagation a numerical

perature(solid line) and atT=4 MeV (dotted line. parametrization of the energy dependence of the spectral

06 |-

04 |
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function A(p,w) by a set of Gaussians has been ugk8].  where the background paB is smooth and can be dis-
Alternatively, the spectral function can be represented as aretized. Generally, for any momentum close to the Fermi
sum of § functions[30,9]. The above two methods can be momentum the spectral function is rapidly changing in the
easily applied at zero temperature, where a narrow Gaussiaficinity of the quasiparticle peak; therefore, it has to be split
or one of thes functions describes the quasiparticle peak forinto a quasiparticle peak and a smooth background. The
momenta close to the Fermi surface. sharp peak is approximated bydafunction and the smooth
The alternative approach, here employed, uses a diregart is discretized. We have found numerically that this sepa-
discretization of the spectral function and self-energies asation in the spectral function is needed if the width of the
functions of the energy. If the discretization énis uniform  quasiparticle peak-2 ImX(p,w,) is smaller than approxi-
the energy integrals in Eq$l) and (3) can be performed mately three times the spacing in the energy discretization
efficiently by Fourier transforms. This method can be used\w. We use the following representation of the spectral
directly at finite temperaturgb,29], but not for low tempera- function:
tures where the quasiparticles are very narrow around the

Fermi surfacgFig. 6). At zero temperature we have A(p,w)=2m2,0(w—wy)+B(p,w). (A2)
Alpr,w)=2mZ, 6(w—Ep)+B(p,w), (Al)  The background part is defined as
|
-2Im3(p,w)

f _ 2 I 2
B(p.w)=! (0—wp)?+IM3(p,w)? or (= wp) "+ M2 (pw)™>7 (A3)

—2Im3(p,0)/ 7 for (w—wy)?+IMI(p,w)’<7.

'I;]he paramelztfen is set to cut off thAe rapldrl]y changmr? pfarrt] of =3, NG (P)g(p') the T* matrix for the partial wavew
the spectral function. We use=4A w*. The strength of the IS T% . P)p V=S T*(w P)a® ag
quasiparticle componert,, in Eq. (A2) is adjusted to con- WE1 Dh 's (p| _I_a(w )lpja - ."r(]wr'] )9 (E.)gj (P )a'
serve the sum rulé(dw/2w)A(p,w)=1. The weight of the erebt ehmatrlx (Afj = Jij) "~ with the coefficients);
singular partz, is not the same as the renormalization factord1ven by the integrals

Z, [Eq.(9)]. In Fig. 9 is shown an example of the separation 5
of the background and singular parts of the spectral function _, do;dw,d’k N
A(p=255 MeV, ). Ji'(Q,P)=f—9i (k)gj'(k)

For a separable interaction V<¢(p,p’)
—_ A(p1,01)A(P2,@7)
% 10 T L (CHRL ]
< (A4)
g
> ! Substituting Eq(A2) for the spectral functions we have
3
<
?5. a dwd3k N N
10 im35(.P) =~ | SRt g0 s 0)
2 X[1—2f(0)]B(p2. 2~ w)
10
stk F(K)gj'(K)B(py,Q )Z
— | =39 (K)g;j P1.it~w
3 J P2/ =Py
10_3 , / 8

20 0 10 X[1-f(Q~wp)—f(wp)]

o (MeV) RN
FIG. 9. The spectral functioA(p,w) as function of the energy +im f ﬁg‘ (k)gj(k)
(solid line) for p=240 MeV and the corresponding smooth back-
ground partB(p,w) (dashed ling The position of thes function Zplsz[l— f(wpl)—f(wpz)]
representing the quasiparticle peakest —7.7 MeV is indicated X -
by the dotted line. Q= wp, —wp, e

(A5)
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The energy integral in the first term of EGAS) is a con- Im3(p,w)
volution of the functions B(p;,w)[1—2f(w)] and
B(p,,w). It can be evaluated by Fourier transformations us- dw,d%k
ing fast Fourier transform algorithm1]. Moreover, the :f 167 B(k,w1){((p=K)/2ImT(p+k,

Fourier transform and its inverse can be performed outside of

the momentum integrdB2]. The second term of EGA5) is

+w)|[(p—K) /2l f(w1) +b(w+ w)]

a standard two-dimensional integral without singularities.

The integral in the last term of EGAS) is of the type often
occurring in quasiparticle calculations, such as Gmatrix
or the quasiparticld-matrix approximations. Angle averag-

d3k
+ f —{((p—k)/2|ImT(p+k,w
83

ing separately the numerator and the denominator under the + )| (P—K)/2) Al F(wy) + b+ wy)]. (A8)

integral we have
|mJ’d_3k (k) “(k)Zplsz[l_f(wpl)_f(wpz)]
87,.39i 9 Q—a)pl—wpz-i-ie

kedk
Zlmfﬁgi (k)gj'(k)

(2, Zp,[1~Fwp) ~ Flwp ) Dpk
Q_<wp1+ wp2>P’k+ ie

2
o [e3 o
== Egi (ko)gj'(ko)

(Zp,2p [ 1= f(wp) = T(wp ) Dpk,
Hwp, +0p)p k! K=k, ’

(AB)

wherekg is the solution of
Q=(wp, +©p,)p K,
The angle average in the denomina(wler wp2>pyk is a

function of the total and relative momentur® @ndk). It
can be represented using a one-dimensional function

(wp1+ wp2>p,k=%([F(P/2+ k)—F(P/I2—k)] (A7)
with

F(x)= fo pdpw, .

The energy integral in the first term is again of the form of a
convolution and is calculated using Fourier transforms. The
integral in the second term is a standard two-dimensional
integral. Unlike in theG-matrix approximation, the calcula-
tion of the self-energy requires the knowledge of the full
off-shell T matrix. Restricting oneself to contributions from
the on-shellT matrix leads to erroneous resu[&3].

In the iteration of the self-consistent set of equatiéhs
(3), (4), (5), and (7) it is advantageous to parametrize the
energy dependence of the off-shell quantities with respect to
the Fermi energy. The iterations are much faster, since a
modification of the chemical potential between iterations
does not change the most important features ofutltepen-
dence of2(p,w) andT(Q,P), e.g., ImX(p,0=0)=0 and
the pairing singularity foflT({1=0,P=0). The absolute en-
ergy scale is recovered only in the calculation of the total
density (7) and final observables. This way of proceeding
with the iterations can make use of self-energies calculated
for other densities or temperatures to start a new iteration.

APPENDIX B: N-N INTERACTION AND NUMERICAL
PARAMETERS

We use a separable parametrization of the Paris potential
[16,17. It contains all theJ=0, J=1, J=2, and the
3D;-3G; partial waves. For the most importaig, and
35,-3D, partial waves we choose the rank 3 and 4, respec-
tively. We have observed that the use of the separable param-
etrization of the Paris potential for ti#, partial wave leads
to very high values of the effective mas® =0.95m. Since
the 3P, phase shifts are not well reproduced by the param-

This effectively one-dimensional parameterization allows totrization of Ref.[16], we choose the Mongahparametri-
perform the integral corresponding to the quasiparticle pargation[24] for this partial wave. It is important to check that
of the spectral function very efficiently without using any N0 unphysical bound states occur in the off-sfiathatrix for
parabolic approximation fow, . The same method can also the given choice oN-N potentials. The contribution from

be used inG-matrix calculations. The real part of the inte-

gralsJjj is obtained using the dispersion relation

dQ’ ImJg(Q’',P)
Q-0

ReJ;}(Q,P)=f

such unphysical bound states, even far from the considered
on-shell energies, would spoil the calculated self-energies.
The use of the Fourier transform algorithm for the cal-
culation of energy integrals requires a fixed spacing in the
energy grid. It means that we have to set finite ranges for
the kinematical variables in the model. The single-particle
momenta are in the rangp<1700 MeV. The total mo-

The calculation of the energy integral in the equation formentum of a nucleon pair is limited by 3400 MeV. The en-

the self-energy(3) proceeds very similarly. We have

ergy dependence of thB-matrix T({2,P) is calculated for
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—2500 MeV+ P?/4m<Q <3500 MeV. The energy range
for the single particle self-energy is taken frorni700 MeV

PHYSICAL REVIEW C 65 054306

To obtain results with stability between iterations better
than 1% we need typically seven iterations at zero tempera-

to 3500 MeV. The energy dependent functions are discretizetlire. The convergence of the iterations is faster and more

with a grid spacing of 1.28 MeV.

stable at finite temperature.
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