
PHYSICAL REVIEW C, VOLUME 65, 054306
One-body properties of nuclear matter with off-shell propagation

P. Bożek*
Institute of Nuclear Physics, PL-31-342 Cracow, Poland

~Received 31 January 2002; published 22 April 2002!

Symmetric nuclear matter is studied in the self-consistent, in-mediumT-matrix approach. One-body spectral
function, optical potential, and scattering width are calculated. Properties of quasiparticle excitations at the
Fermi surface are discussed. Dispersive self-energies are dominated by contributions from the1S0 , 3S1-3D1,
and 3P1 partial waves.
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I. INTRODUCTION

Single-particle properties of nucleons are modified ins
the strongly interacting nuclear matter@1#. The optical poten-
tial describes the average interaction of a nucleon with
medium. At negative energies, the single-particle poten
reflects the modifications of the quasiparticles in the nuc
matter. The spectral function of a nucleon is a measure of
energy distribution of a plane wave state in the system,
can be observed in electron scattering experiments.

Single-particle properties can be calculated from
Brueckner-Hartree-Fock~BHF! theory @3,2#. Hole-hole dia-
grams must be added to the lowest order results to obta
meaningful imaginary part of the self-energy. Due to the v
lation of the Hugenholz–Van Hove property by the BH
approach, the overall normalization of the single-particle
ergies is sometimes a problem. BHF calculations use a q
siparticle approximation for the propagators; therefore, a
nite order diagram has kinematical limits on the total ene
in the scattering. A finite total energy in the interaction cou
introduce distortions in the far energy tails of the calcula
spectral functions.

Recently the in-mediumT-matrix approximation has bee
applied to the nuclear matter@4–10#. One obtains nontrivial
self-energies by summing a ladder of hole-hole and parti
particle propagators. The self-energies obtained areF deriv-
able @11,7#; within this approximation, the single-particl
properties are consistent with global thermodynamical pr
erties of the system. A necessary requirement for the
medium T-matrix approach is to use fully self-consiste
self-energies and propagators. The propagators are dre
with the imaginary and real parts of the self-energy, and
full spectral function for nucleons must be taken. It requi
a serious numerical effort in the calculations, but using
quasiparticle approximation in theT-matrix ladder gives too
strong pairing@5,12,8#, too much scattering@8,5#, and incor-
rect single-particle energies@7#.

In the present work we calculate single-particle se
energies and spectral functions using fully self-consist
propagators. We take the complete energy dependence o
self-energies and spectral functions into account in orde
access reliably the high energy tails of the spectral functio
We present results on the single-particle potential, scatte
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width, and spectral function, obtained with a separable P
interaction with several partial waves~Appendix B!. In Ap-
pendix A we describe in details the numerical methods t
allow us to tackle the problem.

We find that normal nuclear density is at the limit of th
region of the3S1-3D1 pairing instability. Owing to the dress
ing of propagators in the gap equation the superfluid ga
very small, if not vanishing~depending on the details of th
interaction in the deuteron channel!. We leave the detailed
analysis of the pairing in symmetric nuclear matter with
alistic interactions to a different work, and study in the fo
lowing the normal state of nuclear matter.

II. IN-MEDIUM T MATRIX

In this section we recall the basic equations of the
proach used, more details and discussion can be foun
@4–6,10,13–15#. The T-matrix approximation sums ladde
diagrams with dressed particle-particle and hole-hole pro
gators for the in-medium two-particle propagator. The
tardedT matrix is

^puT~P,V!up8&5V~p,p8!1E dv1dv2d3q

32p5

3V~p,q!A~p1 ,v1!A~p2 ,v2!

3
@12 f ~v1!2 f ~v2!#

V2v12v21 i e
^quT~P,V!up8&,

~1!

where p1,25P/26q and f (v) is the Fermi distribution. A
partial wave expansion of the in-mediumT matrix is per-
formed

^puTll 8
(JST)

~P,V!up8&

5Vll 8
(JST)

~p,p8!1(
l 9

E dv1dv2q2dq

8p4
Vll 9

(JST)
~p,q!

3^A~p1 ,v1!A~p2 ,v2!&P,q

3
@12 f ~v1!2 f ~v2!#

V2v12v21 i e
^quTl 9 l 8

(JST)
~P,V!up8& ~2!
©2002 The American Physical Society06-1
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P. BOŻEK PHYSICAL REVIEW C 65 054306
after angle averaging the intermediate two-particle propa
tor (^•••&5*dV/4p . . . ).

The imaginary part of the retarded self-energy is obtain
by closing a pair of external vertices in theT matrix with a
fermion propagator

Im S~p,v!5E dv1d3k

16p4
A~k,v1!^~p2k!/2uIm T~p1k,v

1v1!u~p2k!/2&A@ f ~v1!1b~v1v1!#, ~3!

where

A~p,v!5
22 ImS~p,v!

@v2p2/2m2ReS~p,v!#21Im S~p,v!2
~4!

is the self-consistent spectral function of the nucleon a
b(v) is the Bose distribution. The real part of the self-ene
is related to ImS by a dispersion relation

ReS~p,v!5SHF~p!1PE dv8

p

Im S~p,v8!

v82v
. ~5!

The Hartree-Fock self-energy is

SHF~p!5E d3k

~2p!3
V@~p2k!/2,~p2k!/2#An~k!, ~6!

where the momentum occupancyn(k) is calculated with the
full spectral function@Eq. ~10! below#. Equations~1!, ~3!,
~5!, and~4! are to be solved iteratively and at each iterati
the chemical potentialm is adjusted to fulfill the condition on
the density

r5E dvd3p

16p4
A~p,v! f ~v!50.16 fm23. ~7!

The T-matrix approximation sums ladder diagrams co
tributing to the ground state energy. In this way it regulariz
the short range core in the nucleon interaction similarly
the BHF approach. At the same time, the self-consis
T-matrix approximation isF derivable@11#. It was shown for
a model interaction that if a fully self-consistentT-matrix
calculation is performed the thermodynamic consistency
lations are fulfilled@7#. In theT-matrix approximation a non
zero imaginary self-energy appears and leads to a nontr
spectral function. It is crucial to keep the full off-shell d
pendence of the propagators in the calculations. It is poss
to treat the resulting energy integrals using numerical me
ods described in the Appendix A. All the calculations a
done using the Fermi energy as the origin of the ene
scale. The figures are also plotted using this convention.
calculations are done using a separable parametrizatio
the Paris potential@16,17#. The Fermi energy obtained i
221.4 MeV and the binding energy is215.1 MeV at normal
density. This is not the saturation point for this interactio
05430
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but the values quoted above are quite reasonable and
some confidence in the single-particle properties we wan
study.

III. OPTICAL POTENTIAL

The real part of the self-energy defines the single-part
pole in the propagator

vp5p2/2m1ReS~p,vp!.

The free dispersion relation is modified due to interactio
with the medium. The resulting effective potenti
ReS(p,vp) is attractive. It leads, in particular, to a reductio
of the effective massm* 5pdp/dvp . We find m* .0.85m
at the Fermi momentum, this value depends somewha
the chosen interaction. The effective mass can be wri
@1# as the product of the k mass mk /m5„1
1@m] Im S(k,v)/k]k#uv5vk

…

21 and the v mass mv /m

5„12@] Im S(k,v)/]v#uv5vk
…. We find mk /m.0.62 and

mv /m.1.37 at the Fermi momentum.
The real part of the self-energy is the sum of the Hartr

Fock and dispersive contributions~5!. For the chosen inter-
action the Hartree-Fock potential is attractive. It means t
the repulsive core is relatively soft. From calculations us
model interactions@7# with a repulsive Hartree-Fock compo
nent, we find that the corresponding dispersive self-energ
more attractive leading to a similar total single-particle p
tential. However, for potentials with a very hard core t
calculation of the single-particle potential as a sum of
Hartree-Fock and dispersive contributions@Eq. ~5!# could be-
come numerically unstable. The real part of the dispers
self-energy is negative around the Fermi energy and aro
the quasiparticle pole~Fig. 1!. The value of the real part o
the self-energy on-shell is the effective potential felt by t

FIG. 1. The real part of the self-energy on-shell~solid line!, the
Hartree-Fock self-energy~dotted line!, and the dispersive part of th
self-energy~dashed line!. The dashed-dotted line represents the
from Eq. ~8!.
6-2
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ONE-BODY PROPERTIES OF NUCLEAR MATTER WITH . . . PHYSICAL REVIEW C65 054306
quasiparticle in the medium. For positive energies of the p
ticle it corresponds to the optical potential. The depth of
single particle potential is around270 MeV and it is de-
creasing with momentum. In the range of positive single p
ticle energies (280 MeV,p,500 MeV), the single-particle
potential can be fitted with the form@18#

ReS~p,vp!.H0exp~2b2k2/4! ~8!

with H05270 MeV andb50.58 fm ~dashed-dotted line in
Fig. 1!. The range of nonlocalityb is small reflecting the fac
that the effective massm* is not very different from the free
one. The depth of the potential for positive energies is c
sistent with the values obtained from phenomenolog
analyses of the optical potential@19#. The single particle po-
tential is weakly dependent on the temperature; atT
54 MeV, ReS(p,vp) is shifted up by less than 1 MeV
from its value at zero temperature.

In Fig. 2 is presented the energy dependence of the
part of the self-energy. The energy dependence of the sin
particle potential is responsible for the time nonlocality
the optical potential. In the whole range of frequencies
Fig. 2 some energy dependence of the potential can be s
This energy dependence is decreasing with momentum.
energies close to the Fermi energy the energy dependen
the single-particle potential is similar to the one presente
Ref. @2#. The energy dependence determines the quasipar
strength

Zp5S 12
] ReS~p,v!

]v U
v5vp

D . ~9!

At the Fermi momentum we findZpF
.0.73. On the other

hand, in the range 50 MeV,v,200 MeV ReS(p,v) is
relatively flat as function of energy.

FIG. 2. The energy dependence of the single-particle poten
ReS(p,v) at fixed momentum.
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IV. SCATTERING WIDTH

The off-shell scattering width is nonzero on both sides
the Fermi energy but larger at positive energies~Fig. 3!. At
negative energies the tail of the scattering width extends v
far. It is a general feature of self-consistent calculatio
Dressed propagators in theT-matrix ladder make the imagi
nary part of theT-matrix nonzero even at very negative e
ergies. On the other hand, quasiparticle approximations h
a kinematical limit on the lowest energy in the scatterin
The scattering width decreases with momentum. It can
understood by the fact that at low momenta the interactio
dominated by the strongestS waves. Other calculations
@20,3,2,21,22,5,8,9# of the variational, BHF, Born, or
T-matrix type give qualitatively but not quantitatively simila
results. The differences are partly due to different short ra
properties of the interactions used.

Consistently with general features of Fermi liquids at ze
temperature, we find that ImS(p,v50)50 ~Fig. 3!. The
same relation, coming form the restricted phase space
fulfilled by other approximations@20,2,22#. At higher tem-
peratures a nonzero scattering width at the Fermi energy
pears. As can be seen from Fig. 4 the scattering width at
Fermi energy is increasing as the square of the tempera
as expected from phase space arguments@23#.

The large value of the scattering width above the Fe
energy is due to the short range part of the interaction po
tial. Splitting the total width into contributions from differen
partial waves shows that the3S1-3D1 partial wave is domi-
nant~Fig. 5!. For momenta up to twice the Fermi momentu
and energies around the Fermi energy, the deuteron pa
wave gives by far the most important contribution to t
scattering width. It is also in this kinematical region that t
overall scattering width is the largest. We have observe
similar large contribution due to this partial wave for th
Mongan@24# and Yamaguchi@25# separable potentials. Con
sistently, for all these interactions we obtain similar valu

al FIG. 3. The single-particle width2Im S(p,v) as function of
energy forp50, 170, 340, and 510 MeV; solid, dashed, dotted, a
dashed-dotted lines, respectively.
6-3
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P. BOŻEK PHYSICAL REVIEW C 65 054306
for ZpF
.0.7. Large values of the scattering width at lar

energies lead to long tails in the spectral functions.
The imaginary part of the self-energy at the quasipart

pole is the scattering width of the quasiparticle. From Fig
we see that around the Fermi momentum, narrow quasi
ticle excitation exists. The scattering width behaves
2Im S(p,vp)}(p2pF)2, as expected from the restricte

FIG. 4. The temperature dependence of the single particle w
2Im S(p,v50) at the Fermi energy forp50, 170, 340, and 510
MeV; solid, dashed, dotted, and dashed-dotted lines, respectiv

FIG. 5. The single particle width2Im S(p,v) as function of
energy forp50, 340, and 680 MeV. The total width is plotted usin
the solid line. The dashed, dotted, and dashed-dotted lines repr
the 3S1-3D1 , 1S0, and 3P1 partial waves contributions, respec
tively.
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phase space for scattering@23#. The on-shell scattering width
does not reflect the very large values of the off-shell scat
ing width ~Fig. 3!. For momenta close to the Fermi surface
is small; and particles with large energies have a scatte
probability proportional to the total density and cross secti
At finite temperature quasiparticles at the Fermi surfa
aquire a finite lifetime~Fig. 6!.

V. SPECTRAL FUNCTION

The role of correlation induced by the medium can
judged by the modifications of the spectral function. No
trivial, dispersive self-energies lead to broad spectral fu
tion with non-Lorentzian shapes and long tails. High ene
parts of the spectral functions could be revealed by elec
scattering experiments. It is important to calculate the fo
of the spectral functions including contributions form sho
range correlations. In Fig. 7 are presented the spectral fu
tions for three representative momenta. For zero momen
the spectral function has a broad peak below and a ba
ground part above the Fermi energy. It is the reverse fop
5355 MeV. Following the behavior of the scattering widt
the spectral function for any momentum goes to zero at
Fermi energy. For momenta close to the Fermi energy
spectral function has a very sharp peak at the single-par
energy. It has also a significant background part, which c
not be ignored in the sum rules or in the calculation of
fective interactions between quasiparticles. Similar to
scattering width the self-consistent calculation gives rise t
long tail in the spectral function at negative energies.

The spectral function can be used to obtain the mom
tum distribution

n~p!5E dv

2p
A~p,v! f ~v! . ~10!

th

.

ent

FIG. 6. The single particle width2Im S(p,v) at the quasipar-
ticle pole as function of the momentum atT50 ~solid line! andT
54 MeV ~dotted line!.
6-4
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ONE-BODY PROPERTIES OF NUCLEAR MATTER WITH . . . PHYSICAL REVIEW C65 054306
Short range correlations modifying the spectral function
reflected in the nucleon momentum distribution~see Fig. 8!.
The free Fermi distribution is depleted belowpF and a high
momentum tail inn(p) is formed. At the Fermi momentum
the discontinuity in the occupancy is reduced from 1 toZpF

~9!. The Fermi momentum in the interacting system sho
be the same as in the free one@26,11#. This relation is ap-
proximately fulfilled in the present calculation, but not
well as in our previous work using onlyS wave interactions
@7#. A possible source of the discrepancy could be the us
the partial-wave expansion, which spoils theF derivability
of the self-energies. At finite temperature the Fermi surfac
washed out, but the depletion of the Fermi sea and the h
momentum tail are the same. It means that the short ra
correlations stay essentially the same atT54 MeV. The
same can also be seen by inspecting the self-energies

FIG. 7. The spectral functionA(p,v) as function of energy for
p50, 255, and 350 MeV; solid, dashed, and dotted lines, resp
tively.

FIG. 8. The momentum distribution of nucleons at zero te
perature~solid line! and atT54 MeV ~dotted line!.
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finite temperature the scattering width is increased only
the vicinity of the Fermi energy.

Long tails in the spectral function have implications f
saturation properties of nuclear matter. Increased kinetic
ergy due to the high momentum tail inn(p) is compensated
by increased removal energies due to the negative energy
of the spectral function. A detailed discussion at differe
densities will be presented elsewhere.

VI. SUMMARY

We study the single-particle properties of nucleons
nuclear matter using a conserving, in-mediumT-matrix ap-
proximation. The calculations are done in a self-consist
way with dressed propagators in the ladder diagrams. To
knowledge, it is the first such calculation in the literatu
using realistic interactions and several partial waves. The
discretization of the spectral function and self-energies
lows to discuss the details of their energy dependence.
find that the basic features of a consistent approximation
Fermi liquid system are fulfilled. The scattering width is ze
at the Fermi energy, and the quasiparticles at the Fermi
face have infinite lifetime. The momentum occupancy ha
discontinuity ofZpF

at the Fermi momentum. The off-she
scattering width is very large at energies.300–400 MeV
and momenta below 400 MeV. In this region the main co
tribution comes from the3S1-3D1 partial wave. The3P1 and
1S0 partial waves give also important contributions to t
on-shell self-energies. The scattering width on-shell is
very large, maximally 26 MeV. Finite temperature effec
are concentrated around the Fermi surface. At finite temp
ture, the scattering width gets finite around the Fermi ene
without modifying the real single-particle potential and t
short range correlations. The quasiparticle renormaliza
factor is ZpF

.0.73 and is largely independent on the inte

action used. The effective mass ism* .0.85m.

ACKNOWLEDGMENT

This work was partly supported by the KBN under Gra
No. 2P03B02019.

APPENDIX A: NUMERICAL METHODS

Calculations using self-consistent spectral functions
quire the evaluation of energy integrals in Eqs.~1! and ~3!.
This is the main numerical difficulty for any self-consiste
approximation; only in the last years self-consistent a
proaches have been applied to the study of highTc supercon-
ductors@27–30# and nuclear matter@4,8,5,7,9#. Some calcu-
lations are performed in the imaginary time formalis
@27,28# that requires a numerical procedure for the analyti
continuation to calculate the spectral function. A simpler w
is to use the real-time formalism operating with the retard
T-matrix, the retarded self-energy, and the spectral func
@29,5#. The real-time formalism was also used for other c
culations of the nuclear matter@8,9# performed at zero tem
peratures. To deal with the off-shell propagation a numer
parametrization of the energy dependence of the spe

c-

-
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P. BOŻEK PHYSICAL REVIEW C 65 054306
function A(p,v) by a set of Gaussians has been used@4,8#.
Alternatively, the spectral function can be represented a
sum of d functions @30,9#. The above two methods can b
easily applied at zero temperature, where a narrow Gaus
or one of thed functions describes the quasiparticle peak
momenta close to the Fermi surface.

The alternative approach, here employed, uses a d
discretization of the spectral function and self-energies
functions of the energy. If the discretization inv is uniform
the energy integrals in Eqs.~1! and ~3! can be performed
efficiently by Fourier transforms. This method can be us
directly at finite temperature@5,29#, but not for low tempera-
tures where the quasiparticles are very narrow around
Fermi surface~Fig. 6!. At zero temperature we have

A~pF ,v!52pZpF
d~v2EF!1B~p,v!, ~A1!
f

to
on
tio

k-
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where the background partB is smooth and can be dis
cretized. Generally, for any momentum close to the Fe
momentum the spectral function is rapidly changing in t
vicinity of the quasiparticle peak; therefore, it has to be sp
into a quasiparticle peak and a smooth background.
sharp peak is approximated by ad function and the smooth
part is discretized. We have found numerically that this se
ration in the spectral function is needed if the width of t
quasiparticle peak22 ImS(p,vp) is smaller than approxi-
mately three times the spacing in the energy discretiza
Dv. We use the following representation of the spect
function:

A~p,v!52pZpd~v2vp!1B~p,v!. ~A2!

The background part is defined as
B~p,v!5H 22 ImS~p,v!

~v2vp!21Im S~p,v!2
for ~v2vp!21Im S~p,v!2.h

22 ImS~p,v!/h for ~v2vp!21Im S~p,v!2,h.

~A3!
The parameterh is set to cut off the rapidly changing part o
the spectral function. We useh.4Dv2. The strength of the
quasiparticle componentZp in Eq. ~A2! is adjusted to con-
serve the sum rule*(dv/2p)A(p,v)51. The weight of the
singular partZp is not the same as the renormalization fac
Zp @Eq. ~9!#. In Fig. 9 is shown an example of the separati
of the background and singular parts of the spectral func
A(p5255 MeV, v).

For a separable interaction Va(p,p8)

FIG. 9. The spectral functionA(p,v) as function of the energy
~solid line! for p5240 MeV and the corresponding smooth bac
ground partB(p,v) ~dashed line!. The position of thed function
representing the quasiparticle peak atv527.7 MeV is indicated
by the dotted line.
r

n

5(i,jli,j
a gi

a(p)gj
a(p8) the Ta matrix for the partial wavea

5(JST) is ^puTa(v,P)up8&5( i , jTi j
a (v,P)gi

a(p)gj
a(p8).

Where the matrixTi j
a 5(l i j

a 2Ji j
a )21 with the coefficientsJi j

a

given by the integrals

Ji j
a~V,P!5E dv1dv2d3k

32p5
gi

a~k!gj
a~k!

3
A~p1 ,v1!A~p2 ,v2!

V2v12v21 i e
@12 f ~v1!2 f ~v2!#.

~A4!

Substituting Eq.~A2! for the spectral functions we have

Im Ji j
a~V,P!52E dvd3k

32p4
gi

a~k!gj
a~k!B~p1 ,v!

3@122 f ~v!#B~p2 ,V2v!

2E d3k

8p3
gi

a~k!gj
a~k!B~p1 ,V2vp2

!Zp2

3@12 f ~V2vp2
!2 f ~vp2

!#

1Im E d3k

8p3
gi

a~k!gj
a~k!

3
Zp1

Zp2
@12 f ~vp1

!2 f ~vp2
!#

V2vp1
2vp2

1 i e
. ~A5!
6-6
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ONE-BODY PROPERTIES OF NUCLEAR MATTER WITH . . . PHYSICAL REVIEW C65 054306
The energy integral in the first term of Eq.~A5! is a con-
volution of the functions B(p1 ,v)@122 f (v)# and
B(p2 ,v). It can be evaluated by Fourier transformations
ing fast Fourier transform algorithms@31#. Moreover, the
Fourier transform and its inverse can be performed outsid
the momentum integral@32#. The second term of Eq.~A5! is
a standard two-dimensional integral without singulariti
The integral in the last term of Eq.~A5! is of the type often
occurring in quasiparticle calculations, such as theG matrix
or the quasiparticleT-matrix approximations. Angle averag
ing separately the numerator and the denominator unde
integral we have

Im E d3k

8p3
gi

a~k!gj
a~k!

Zp1
Zp2

@12 f ~vp1
!2 f ~vp2

!#

V2vp1
2vp2

1 i e

.Im E k2dk

2p2
gi

a~k!gj
a~k!

3
^Zp1

Zp2
@12 f ~vp1

!2 f ~vp2
!#&P,k

V2^vp1
1vp2

&P,k1 i e

52
k0

2

2p
gi

a~k0!gj
a~k0!

3
^Zp1

Zp2
@12 f ~vp1

!2 f ~vp2
!#&P,k0

]^vp1
1vp2

&P,k /]kuk5k0

, ~A6!

wherek0 is the solution of

V5^vp1
1vp2

&P,k0
.

The angle average in the denominator^vp1
1vp2

&P,k is a

function of the total and relative momentum (P and k). It
can be represented using a one-dimensional function

^vp1
1vp2

&P,k5
2

Pk
@F~P/21k!2F~P/22k!# ~A7!

with

F~x!5E
0

x

pdpvp .

This effectively one-dimensional parameterization allows
perform the integral corresponding to the quasiparticle p
of the spectral function very efficiently without using an
parabolic approximation forvp . The same method can als
be used inG-matrix calculations. The real part of the inte
gralsJi j

a is obtained using the dispersion relation

ReJi j
a~V,P!5E dV8

p

Im Ji j
a~V8,P!

V82V
.

The calculation of the energy integral in the equation
the self-energy~3! proceeds very similarly. We have
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Im S~p,v!

5E dv1d3k

16p4
B~k,v1!^~p2k!/2uIm T~p1k,v

1v1!u~p2k!/2&A@ f ~v1!1b~v1v1!#

1E d3k

8p3
^~p2k!/2uIm T~p1k,v

1vk!u~p2k!/2&A@ f ~vk!1b~v1vk!#. ~A8!

The energy integral in the first term is again of the form o
convolution and is calculated using Fourier transforms. T
integral in the second term is a standard two-dimensio
integral. Unlike in theG-matrix approximation, the calcula
tion of the self-energy requires the knowledge of the f
off-shell T matrix. Restricting oneself to contributions from
the on-shellT matrix leads to erroneous results@33#.

In the iteration of the self-consistent set of equations~1!,
~3!, ~4!, ~5!, and ~7! it is advantageous to parametrize th
energy dependence of the off-shell quantities with respec
the Fermi energy. The iterations are much faster, sinc
modification of the chemical potential between iteratio
does not change the most important features of thev depen-
dence ofS(p,v) andT(V,P), e.g., ImS(p,v50)50 and
the pairing singularity forT(V50,P50). The absolute en-
ergy scale is recovered only in the calculation of the to
density ~7! and final observables. This way of proceedi
with the iterations can make use of self-energies calcula
for other densities or temperatures to start a new iteratio

APPENDIX B: N-N INTERACTION AND NUMERICAL
PARAMETERS

We use a separable parametrization of the Paris pote
@16,17#. It contains all theJ50, J51, J52, and the
3D3-3G3 partial waves. For the most important1S0 and
3S1-3D1 partial waves we choose the rank 3 and 4, resp
tively. We have observed that the use of the separable pa
etrization of the Paris potential for the3P1 partial wave leads
to very high values of the effective massm* .0.95m. Since
the 3P1 phase shifts are not well reproduced by the para
etrization of Ref.@16#, we choose the MonganI parametri-
zation@24# for this partial wave. It is important to check tha
no unphysical bound states occur in the off-shellT matrix for
the given choice ofN-N potentials. The contribution from
such unphysical bound states, even far from the conside
on-shell energies, would spoil the calculated self-energie

The use of the Fourier transform algorithm for the c
culation of energy integrals requires a fixed spacing in
energy grid. It means that we have to set finite ranges
the kinematical variables in the model. The single-parti
momenta are in the rangep,1700 MeV. The total mo-
mentum of a nucleon pair is limited by 3400 MeV. The e
ergy dependence of theT-matrix T(V,P) is calculated for
6-7
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22500 MeV1P2/4m,V,3500 MeV. The energy rang
for the single particle self-energy is taken from21700 MeV
to 3500 MeV. The energy dependent functions are discret
with a grid spacing of 1.28 MeV.
,
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To obtain results with stability between iterations bet
than 1% we need typically seven iterations at zero temp
ture. The convergence of the iterations is faster and m
stable at finite temperature.
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and S. Schafoth, Z. Phys. B: Condens. Matter103, 21 ~1997!.
@29# B. Kyung, E. G. Klepfish, and P. E. Kornilovitch, Phys. Re

Lett. 80, 3109~1998!.
@30# M. Letz and F. Marsiglio, J. Low Temp. Phys.117, 149~1999!.
@31# W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne

Numerical Recipes inFORTRAN77~Cambridge University Press
Cambridge, 1986!.
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