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Resonance states with the complex absorbing potential method
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We present a study of the complex absorbing potef@&lP) method to solve resonance states in a nuclear
physics problem. Compared to atomic physics cases, nuclear potentials have a short-range property, and the
resonances generally have large decay widths. We find that an appropriate functional form of the CAP method
is necessary for an accurate calculation. The functional form dependence of the CAP method and the conver-
gence of the resonance eigenvalues are investigated in a two-body system. We also apply the CAP method to
examine a three-body system. Our results are in good agreement with others in the literature.
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[. INTRODUCTION acteristics: They are short ranged and have a strong repulsive
core. The short-range nature is usually represented by using a
There has been continuous interest in theoretical studieGaussian-type function as a phenomenological nuclear inter-
of resonance phenomena in both atomic physics and nucleaction. From the restriction of the analyticity of the Gaussian
physics. Several methods have been developed over the riénction, the rotational angle can only be taken less than 45°,
cent years, including the complex scaling metfiG$M) or,  and the range of the repulsive core is extended due to the
under a different name, the complex coordinate rotatiorcomplex rotation. Therefore, the use of large angles in the
method[1], the method that employs the analytical continu-CcSM would lead to computational difficulties for some prob-
ation in the coupling constafCCC) [2], and the Jost func-  |ems][g].
tion method(JFM) [3]. The most appealing point of the CSM  Recently, a computational procedure has been proposed
is that one can solve for resonance states in just the samgy solving resonance-state problems: the complex absorbing
way as for a bound state. The coordinaemmenta of the  otential(CAP) method[10—~12. The fundamental principle
system are rotated in the complex coordinatmentum  of this method is similar to that of the CSM. Before adding a
plane. After the complex rotation, the resonance wave funccap to the Hamiltonian, a resonance wave function diverges
tion is damped in the asymptotic region, and the complexn, the asymptotic region. When one adds a CAP to the origi-
eigenvalue gives the resonance parametgrsand I'/2,  na) Hamiltonian, the divergent property of the wave function
whereE, is the resonance energy, afidis the total decay pecomes convergent. In the diagonalization of the modified
width. The proof for the validity of this method is known as Hamijltonian, which includes the CAP, the divergence of the
the “ABC theorem"[4]. Successful applications of the CSM \yaye function is “absorbed” by the CAP, and as a result, the
have been documented in the literature both for atomic physsigenfunction of the resonance state converges in the
ics[1] and for nuclear physidb]. In the ACCC method, the  asymptotic region. In addition to the fact that it is necessary
resonances can be obtained by using an analytical continugs perform the calculation of the matrix elements only once
tion from bound states. The momentum of the resonancg the CAP method, the matrix elements themselves are
state is obtained by using a Paaigproximation in terms of a  treated in real quantities. Furthermore, the CAP method does
function of the potential coupling constant. A successful apnot introduce any complex rotation of the coordinatem-
plication of the ACCC in nuclear physics was shown in Ref.menta to the original Hamiltonian. Complex quantities are
[6]. Another recent development in the studies of resonancagerefore involved only in the diagonalization of the Hamil-
is the JFM[3]. With the help of the definite functional form tonjan. As will be demonstrated in the present investigation,
of the asymptotic, the “Jost function” of the Schiinger  the CAP method is an interesting alternative, as well as a
equation can be obtained accurately. Therefore, resonang@yerful tool for solving the resonance states in few-body
poles on the complex momentum planes can also be obtaingq,stems_
accurately by using the JFM,8]. While the CSM is a pow- In this paper, we study resonance states for a nuclear
erful computational tool, it has some difficulties in solving physics case by using the CAP method. In Sec. II, we briefly
certain problems. In dealing with a resonance state that hasgkplain the CAP method, and in Sec. Il we present the cal-
large decay width, one must use a large rotational angle tgy|ations for two- and three-body systems. We will summa-

locate the resonance pole in the complex endrggmen-  rize and discuss our present results in Sec. IV.
tum) plane. Furthermore, for a “realistic” nuclear potential,

the calculation of the matrix elements for the rotated Hamil-
tonian could_ be quite comphca_te{@]. In contrast to atomic Il COMPLEX ABSORBING POTENTIAL METHOD
physics, typical nuclear potentials have the following char-
In this section, we briefly explain the basic formulation of
the complex absorbing potential method. For details, see
*Present address: Division of Physics, Graduate School of SciRefs.[10-12.
ence, Hokkaido University, Sapporo 060-0810, Japan. We consider the time-independent Sainger equation,
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where an analytical potentidV/(r) is added to the original This truncation of the first order provides sufficiently con-
HamiltonianH as verged results, as shown in Reff$0—17. Also, from a com-
putational point of view, such a truncation has an economical

H(7)=H—inW(r). (1) efficiency. Therefore, in the CAP method, we search foran

Here 7 is a positive real number, ant¥(r) is an absorbing which satisfies Eq(6).

potential for the asymptotic divergence of the resonance
wave function. The addition of the potentis¥(r) to the IIl. CALCULATION AND RESULTS
Hamiltonian has the same kind of effect as that when the | this section, we show the calculational results for two-
complex scaling methpd is used. The divergent tail of theyq three-body systems using Gaussian-type potentials,
resonance wave function is “absorbed” by the complex abyyhich are usually employed as effective nuclear potential
sorbmg potennaW(r)_ Hgnce we obtain a converged eigen- models. Nuclear potentials have a particular nature which is
function in the asymptotic region, as(r)—0 for r—oo. absent in the atomic physics case. Typically, the nuclear po-
In an actual calculation for solving the Schioger equa-  tentjal is a relatively short-range interaction in comparison to
tion of the modified Hamiltonianl), it is necessary to deter- the Coulomb interaction. Hence the power of the conver-
mine the functional form of the CARV(r). The functional gence is stronger than the Coulomb interactieni(r), and
form of W(r) is not arbitrary, and the requirements are sum+he tail of the potential converges as an exponential
marized in Ref[10]. The important requirement fa/(r) is (~e"), or, in effective model cases, a Gaussiane(rz).

as follows: In choosing a suitable CAP, the behavior of the potential
REW(r)]=0 for r=0 tail plays_ a major role. Hence it is worthyvhile to examine
first a suitable form of the CAP, after which the resonance
and states can be calculated by using this CAP.
RgW(r)]—w for r—co. 2 A. A two-body system

Due to the above requirement, the divergent tail of the reso- First we work on a two-body system, since many other
nance wave function is absorbed into the potentigt) in ~ accurate calculational methods are available for the purpose

the asymptotic region. One of the typical functional form of Of comparison. Here we compare the CAP results to those

function expt™), wheren is a positive number, cannot be Studying resonance states. _ , .

used as an absorbing potenti&(r). In the two-body system, we consider the one-dimensional
After adding the absorbing potential, we diagonalize the"@dial Schrdinger equation

modified Hamiltonian(1) using a basis sdtp;}, and obtain 52 (1+1)

an eigenvalud=( ) which depends on the parameter _ ﬁ(ﬁ(rH 3 SOV SN =ES(r), (7)

(ilH(m)|dj)=E(n). ()
where the convention i$2/2u=1, so as to be arbitrary
If we use a “complete” basis set, in principle, we can obtainynits, We use the same type of potential of Hél, a two-
the exact resonance enerBy.s by taking »—0 [10]. HOw-  range Gaussian type potential
ever, in practice, we use a “finite” basis set. Then the devia-
tion from the true eigenvalug,.sdepends on the value of the V(r)=—8\exd —(r/2.52%]+2 exd — (r/5)?], (8)
7, asEg(7). Hence for the resonance energy»), there

exists an optimal valugj=7. We expand theéE(7) in the
manner of a truncated Taylor series of ordelas

where\ is a strength parameter. By changiRg an eigen-
value of the Hamiltonian for Eq(8) becomes a resonance
state. Since the potential is of Gaussian type, which has a
very shot-range interaction, we use a Gaussian basis set ori-
ented at the center, for solving the Satirger equatior{7):

n

—i g
£ =E0(7) =By + 3, - )
=1

j! dy’

=7 @ ¢i(r)=N(b;)exp —r2/2b?). 9

Hereb; is the width parameter of the Gaussian, &id,) is

the normalization constant.

EM(7) —E._|= (minimum. 5 We investigate the dependency on the functional form of
[E(7) = Bred = ) © the absorbing potential. In previous studies of atomic physics

Although the order of the expansiancan be taken as large [10.11, the absorbing potential&/(r) were taken as"-type
enough, it is sufficient practically to be taken up to the firstfunctions, in which the powers of the potential were 2

The optimal value ofp will be found by satisfying

order,n=1, as and 6 in Refs[10] and[11], respectively. The calculation of
Ref. [11] showed that the power of the absorbing potential
| 7-dEg(7)/d 7;|,]=;7=(minimum). (6) (n=6) is sufficient to “absorb” the divergence of the reso-
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FIG. 1. » trajectory of the resonance pole in the complex energy  FIG. 2. 5 trajectory of the resonance energy with changing
plane for the 8 state. The solid line was obtained by using the for the Gs state where\=0.11.
power ofn=4, and the dashed line by usimg-6.

nance wave function. In atomic physics, a typical ratio be-
tween the total decay width and the resonance energy is

I'/E,~10°-10 2. (10) 0.30

0.06
The divergence comes from the imaginary part of the com- 0.25J 005
plex momentunk=\2u(E,—iI'/2), whereu is the reduced o 2 om
mass of the system. Therefore, when the rat&, is small, 5 020 2
the divergence of the resonance wave function becomes ¢ s
weak. However, in nuclear physics, a typical ratio is SR e

= 0.01 I
I'/E,~10 2 (to the same ordegr (11 0.10 /’
0 %1077 210 w10

which is considerably large compared to the atomic physics oosf{l / n
case. An absorbing potential with power 6 could be too
strong to absorb the divergence of the resonance wave func- 0 <10 x10- 610 810

tion in this case. Thus, to investigate the dependence of the

shape on the absorbing potential, we calculate the resonance

state using two different absorbing powers 6 and 4. FIG. 3. Calculation of 7 dE(#)/d 7| in search of its minima.
The 7 trajectories are obtained by changing the coeffi-

cient of the absorbing potential for each power of\V(r),

n=6 and 4, respectively. We use a potential strength. of

=0.47 in this calculation. Figure 1 shows the two trajectories

on the complex energy plane. They exhibit different behav- —-0.36

iors for the change of). From an empirical point of view in

the CAP method, the minimum dfy dE(%)/7| appears

around the “cusp” of the trajectory. However a cusp does notz -0.37}

show up clearly in thev=6 case. We calculated the mini- ‘€

mum of |dE(#%)/ 7| and obtained the resonance energy. g

The results are summarized in Table I. Here we use the N8 _gag]

AN]

TABLE I. The resonance energy obtained by the complex ab- £

sorbing potential(CAP) method and the Jost function method

n

u

(JFM). —0.39¢
n ReE (arb. units)  ImE (arb. units) 7 0.40
6 3.439<10 2 ~3.134x10°°  4.2x10°° 1.48 1.49 1.50 1.51
4 3.43810°? —5.267x107° 3.5x1077 Re. E (arb. units)
JFM 3.439%<10°2 —5.157x10°° FIG. 4.  trajectory for the resonance eigenvalues with different

basis set sizes.
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0.10 TABLE IIl. Resonance energies for thes ktate withA =0.51
obtained by using different basis sets.
0.08 ReE ImE
= Basis (arb. units (arb. unitg 7
2 006
s spd 1.055 —0.3458 2.%10°°
S spdf 1.059 —0.3700 4.510°°
= oM spd-f-mod. 1.061 —0.3533 3.410 °
spdfg-mod. 1.063 —0.3636 4.KX10°°
0.02 spd-fgh-mod. First-minima 1.075 —0.3518 3.6¢10 °
spd-fgh-mod. Second-minima  1.043 —0.3582 6. 10 °
0 2%10” 410 6x10” 8x10” 1x10™ JFM 1.046 —0.3582

n
FIG. 5. Minima of| 5 dE( %)/ | for differentb,,,.

numberN is large. In each case, except fér= 25, the agree-

—20 basis set only for checking the dependency of the powerrnent with the other calculational res(the JFM calculation

! .1s good to within three or four digits. Hence we consider that
of n. In both cases, resonance energies calculated by usi

" "His is sufficient for most nuclear physics cases.
the CAP method have some small deviation from that of the So far, we have only used a simple Gaussian basis set for

JFM calculation, since we use a small number of the basis S?ﬁe Os state of the system. However, it would be necessary to

N=20). However, it is obvious, from Fig. 1 and Table I, . . . . .
'Ehat the)absorbing potential of tie=4 casegi]s suitable much employ a Iarger'baS|s set to investigate the flrst-exc[ted state.
In order to take into account the correct nodal behavior of the

more than that of the=6 case. . . N . .
To see the applicability for the calculation of a broaderbaSIs set, we multiply an™ term by the basis function:

resonance, we investigate the §tate of the\ =0.11 case. In &i(r)=N(b;)(r/b;)Niexp — r2/2bi2). (12
Fig. 2, we can see a clear cusp in thetrajectory of the .
resonance pole. Here we use the power of the absorbin ere we takek; up to 5, and label the wave functions of

potentialn=4. The number of the basis =30, and the Ti:.O’l' t ' ’t5 tﬁss_d P, d Y h—wfa;/he tt;)/pe_s, retspectlvelly.l ‘
maximum size of the length parameter in the basis functior%h0 'g;’ei ltga e‘th (t3h epetn tta_nlceto teh ;}E'g E_Sj » We calculate
iS bya=6.0 fm. As seen from Fig. 3, we obtain the optimal e s state wi € potential streng o

~ . The results are summarized in Table Ill, and thé&rajec-
value of 5, and the resonance energy is deduced to b thea,

X ) . §ories are shown in Fig. 6. For the calculation of faeg-
1.494—|0.3864(a_rb. units. The result is close to th.e result andh-wave types, we label them using the name “mod.” to
calculated by using the JFM: 1.4900.3888(arb. units. distinguish from the normal parametrization of the Gaussian

We also investigate the dependence on the basis set NURY; i harameteb, . In the normal parametrization, the basis
berN and the maximum size of the length paraméigty.  get parametel, is taken from almost 0 thy,,,. On the other
Figure 4 shows each respectiyetrajectory obtained by us- hand, in the “mod” case,b is taken fromb, ., to 2
ing the basis set numbéd=25, 30, and 35 with a fixed b by reason of convergence

. H max» "
value by,,=6 fm, respectively. We see that thetrajecto- In the calculation o pd-fgh-mod., it can be seen from
r|e.s.have a strong dependence on th.e basis set nuniee . Fig. 6 that there are two minima of almost equal depth in
minima of | » dE( %)/ 5| are also obtained, and are shown in |7 dE( )/ 7|. If we take the second minimum, we obtain a
Fig. 5. ,

The resonance energies calculated for xhe0.11 case 03
are summarized in Table Il. It is shown that the dependence
on the length parametds,,,, is small when the basis set

1s-state A =0.51 spd-fgh-mod.

TABLE Il. Resonance energies for thes Gtate withA =0.11 E 02}
obtained by using basis sets with differésiand b, ,. \E first minima second minima
g
ReE ImE =
N brax (@rb. unitg  (arb. unitg  (arb. units 7 01t
25 6.0 1.497 —0.3803 8.&%10°°
30 6.0 1.494 -0.3864 3.%10°°
35 6.0 1.490 -0.3871 2.X10°° L
35 7.0 1.491 —0.3882 1.&10°° 310~ 4x10” 5x10” 6x10” 7107 8x10”
35 5.0 1.492 —0.3861 3.5x10°° n
JFM 1.489 —0.3888 FIG. 6. Minima of |pdE(#n)/#| for the 1s state in the

spd-fgh-mod with A =0.51.

054305-4



RESONANCE STATES WITH THE COMPLEX ABSORBING . .. PHYSICAL REVIEW 65 054305

result much closer to that of the JFM calculation. The ap- Ix10”
pearance of these two minima with a comparable depth in-
dicates that it is necessary to improve the functional form of
the CAP and is also necessary to take into account the
second-order correction in E¢4).

810~

6x10”

m)/dnl

B. Three-body system

E!

=
To summarize the results in the two-body case so far, the &

CAP calculation showed a good agreement with the other
calculational results, where we employed the JFM, within 2107
several digits. Therefore, it has been shown that the CAF
method is a powerful tool for use in searching for resonance s s s s s
poles in the complex energy plane, only performing the cal- 0 1x10” 2107 310”
culations of the matrix elements of real quantities. n

Hence, it is worthwhile to investigate its applicability for £ g Minima of | 7 dE(7)/5| for A=2.5 in a three-body
solving the resonance states in many-body systems, and Wgstem.
proceed to the study of a three-body system. As our first step,
we consider a three-boson system with equal neutron massgss wave function. To avoid complexity, we start the calcu-
for simplicity. Other calculational results are available for |ation by only using the totaB-wave state and the=1=0
this systeni6,9]. Here, we use the potential to be the sameconfiguration.
form as in Ref[6], a two-range Gaussian, In aL=1=0 calculation, it is useful to choose the com-
V(r)=—120exg—r?)+3xexd —(r/3)?] (MeV), (13 plex absorbing potential as having the same radial depen-

and our convention is to take?/m=41.47 MeVfnt. \ is a ggggiJg:ciigdd?f}eiltggtﬂérg]néhpi general case, the radial
strength parameter. We calculate the three-boson resonance
state by changing the strength parameter —ipW(r,R)=—in(r*+R%. (16)
To solve the resonance state of this system, we use a
combination of the Gaussian basis, which is centered at thés performed in the two-body calculation, we changen

ax10”

origin, as follows: order to find the appropriatg, which makes the minimum of
(r,R)=N(by)N(dj)exp( — r2/2b?)exp — R2/2d2). yiM . EQ-(6). .
i(r,R)=N(bi)N(di)exp( —r*/2b7) expl ) y'*(Ll4) This system has onSwave bound state in the range of
A=<2.4, which becomes a slightly unbound state\at2.5.
Herer andR are the Jacobi coordinate for the particles 1 toe first show the\ =2.5 case as an example.
2, and 1-2 to 3, respectively, agd\" is the angular momen- Figure 7 shows they trajectory of the complex eigen-
tum part combined as value for thex =2.5 case. We can clearly see a cusp in#he
M trajectory of the eigenvalue. The existence of a cusp indi-
Yir=YieYilm, (19  cates the existence of a sharp minimum of E). Next we

wherel and L are corresponding angular momenta for thelnvestigate the minimum dfp- dE/dp|. The obtained result
coordinatesr and R, respectively. Due to the absence of a for |77‘dE/‘ljl77| is shown '”1'1:'9- 8. The minima appear 4t
spin-dependence force in the interaction, and because we argt-7<10" " and 1.2X10" "% The deepest minimum is at
treating the boson case, we do not consider the spin part of

~0.050 . . . 0ro o) Oeeseee QO
A=20 i A=25
-0.052f °
01 r=2.6

—0.054} % o}
2 -0.056| = o A=27
= w |
w —0.058} = =28
E 03} ® CSM
= —0.060

© CAP method )
—0.062 | A=29
-0.4
-0.064
A=3.0
1.100 1.105 1.110 1115 1.120 -2 -1 0 1 2 3 4
Re. E (MeV) Re E (MeV)
FIG. 7. n-trajectory of the complex eigenvalue far=2.5 in a FIG. 9. Resonance states obtained by using the CAP method and
three-body system. the CSM.
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7=1.1x10 1% and by using this; we obtain the resonance In spite of the fact that successful results can be obtained
energy,E,.—1.11-i0.0571 MeV. By changing the upto by using the CAP method, there are, however, several factors
3, we can calculate the resonance states using the CAPRhich are necessary to be considered for using the CAP
method. The calculation of the complex scaling method isnethod. First, for a given physical system, we need to
performed for the purpose of comparison. As shown in Figchoose an optimized absorbing potential while there is no
9, the correspondence of the results obtained by these twslch necessity in using the CSM and ACCC. In nuclear
methods is reasonably good. physics where the range of the mutual interaction between

The result shown in Fig. 9 shows that the CAP method ighe particles is shorter than the Coulomb interaction, we have
applicable for solving a three-body system. The functionafound that the practical form diVis of r%. By using such a
form of the complex absorbing potential of HG6) is one of CAP, we have obtained good convergence of the resonance
the possibilities. Even though the CAP can be chosen asigenvalues even for broad resonance states. Second, for a
different radial dependencies forand R, by using a simple practical limitation, calculations using a finite basis set can
functional form of the CAP we obtained a converging resultonly be performed. Therefore, we must perform the matrix
for resonance states compared with the results obtained liagonalization of the Hamiltonian for various values in

using the CSM. order to locate the optimizeg, from which the resonance
energy and width can be deduced. In contrast, it is not nec-
IV. SUMMARY AND DISCUSSION essary for the ACCC calculation to perform such repeated

] _diagonalization. However, there is an advantage for the CAP

In the present work, we have studied resonances ifnethod over ACCC. In general, the CAP method is capable
nuclear physics using the complex absorbing potet@aAlP)  f calculating the resonance energy and the total width for a

method. In a two-body system, we have obtained accuratgign-lying multichannel resonance in a straightforward man-
results that are in a good agreement with the other accuraigsy, The computational process for a multichannel resonance
results obtained by using the Jost function metti®éM). In i5 the same as that for a single-channel resonance. Calcula-

a three-body system, we have also obtained a good agregsns for high-lying resonances using the ACCC method
ment between the CAP results and those of the CSM. Hencgjight be more involved.

we have demonstrated that the CAP method is capable of | fyture work, it is of interest and worthwhile to use the

producing accurate resonance parameters—the resonance @ixp method, together with the use of the realistic nuclear
ergy E; and the decay width’ is not only for two-body  (nucleus interactions, in the studies of the many-body reso-
systems but also for three-body systems in nuclear physicsyant systems such as three-neutron resondisdeand pro-
Generally, in an actual calculation, the computational timggp, emissiorf13]. Recently, the CSM was used to investigate
is devoted almost to the calculations of the matrix elements,clear resonances in the framework of the Hartree-Fock
of the Hamiltonian(H). When the CSM is applied, it is (HF) approach14]. It would be of interest to combine the

necessary to investigate the convergence with respected gAp method and the HF approach to investigate resonances
the changes of the rotational angle Therefore we need to iy nuclear physics.

calculate the matrix elements for each rotation angle. It

would take a considerable effort and much computer time to

examine the convergence, especially when the calculations

of (H) are complicated. On the other hand, in the CAP ACKNOWLEDGMENTS
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