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Resonance states with the complex absorbing potential method

H. Masui* and Y. K. Ho
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~Received 31 July 2001; published 18 April 2002!

We present a study of the complex absorbing potential~CAP! method to solve resonance states in a nuclear
physics problem. Compared to atomic physics cases, nuclear potentials have a short-range property, and the
resonances generally have large decay widths. We find that an appropriate functional form of the CAP method
is necessary for an accurate calculation. The functional form dependence of the CAP method and the conver-
gence of the resonance eigenvalues are investigated in a two-body system. We also apply the CAP method to
examine a three-body system. Our results are in good agreement with others in the literature.
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I. INTRODUCTION

There has been continuous interest in theoretical stu
of resonance phenomena in both atomic physics and nuc
physics. Several methods have been developed over th
cent years, including the complex scaling method~CSM! or,
under a different name, the complex coordinate rotat
method@1#, the method that employs the analytical contin
ation in the coupling constant~ACCC! @2#, and the Jost func-
tion method~JFM! @3#. The most appealing point of the CSM
is that one can solve for resonance states in just the s
way as for a bound state. The coordinates~momenta! of the
system are rotated in the complex coordinate~momentum!
plane. After the complex rotation, the resonance wave fu
tion is damped in the asymptotic region, and the comp
eigenvalue gives the resonance parametersEr and G/2,
whereEr is the resonance energy, andG is the total decay
width. The proof for the validity of this method is known a
the ‘‘ABC theorem’’@4#. Successful applications of the CSM
have been documented in the literature both for atomic ph
ics @1# and for nuclear physics@5#. In the ACCC method, the
resonances can be obtained by using an analytical conti
tion from bound states. The momentum of the resona
state is obtained by using a Pade´ approximation in terms of a
function of the potential coupling constant. A successful
plication of the ACCC in nuclear physics was shown in R
@6#. Another recent development in the studies of resonan
is the JFM@3#. With the help of the definite functional form
of the asymptotic, the ‘‘Jost function’’ of the Schro¨dinger
equation can be obtained accurately. Therefore, reson
poles on the complex momentum planes can also be obta
accurately by using the JFM@7,8#. While the CSM is a pow-
erful computational tool, it has some difficulties in solvin
certain problems. In dealing with a resonance state that h
large decay width, one must use a large rotational angl
locate the resonance pole in the complex energy~momen-
tum! plane. Furthermore, for a ‘‘realistic’’ nuclear potentia
the calculation of the matrix elements for the rotated Ham
tonian could be quite complicated@9#. In contrast to atomic
physics, typical nuclear potentials have the following ch

*Present address: Division of Physics, Graduate School of
ence, Hokkaido University, Sapporo 060-0810, Japan.
0556-2813/2002/65~5!/054305~6!/$20.00 65 0543
es
ar
re-

n
-

e

c-
x

s-

a-
e

-
.
es

ce
ed

s a
to

-

-

acteristics: They are short ranged and have a strong repu
core. The short-range nature is usually represented by us
Gaussian-type function as a phenomenological nuclear in
action. From the restriction of the analyticity of the Gauss
function, the rotational angle can only be taken less than 4
and the range of the repulsive core is extended due to
complex rotation. Therefore, the use of large angles in
CSM would lead to computational difficulties for some pro
lems @9#.

Recently, a computational procedure has been propo
for solving resonance-state problems: the complex absor
potential~CAP! method@10–12#. The fundamental principle
of this method is similar to that of the CSM. Before adding
CAP to the Hamiltonian, a resonance wave function diver
in the asymptotic region. When one adds a CAP to the or
nal Hamiltonian, the divergent property of the wave functi
becomes convergent. In the diagonalization of the modifi
Hamiltonian, which includes the CAP, the divergence of t
wave function is ‘‘absorbed’’ by the CAP, and as a result, t
eigenfunction of the resonance state converges in
asymptotic region. In addition to the fact that it is necess
to perform the calculation of the matrix elements only on
in the CAP method, the matrix elements themselves
treated in real quantities. Furthermore, the CAP method d
not introduce any complex rotation of the coordinates~mo-
menta! to the original Hamiltonian. Complex quantities a
therefore involved only in the diagonalization of the Ham
tonian. As will be demonstrated in the present investigati
the CAP method is an interesting alternative, as well a
powerful tool for solving the resonance states in few-bo
systems.

In this paper, we study resonance states for a nuc
physics case by using the CAP method. In Sec. II, we brie
explain the CAP method, and in Sec. III we present the c
culations for two- and three-body systems. We will summ
rize and discuss our present results in Sec. IV.

II. COMPLEX ABSORBING POTENTIAL METHOD

In this section, we briefly explain the basic formulation
the complex absorbing potential method. For details,
Refs.@10–12#.

We consider the time-independent Schro¨dinger equation,
i-
©2002 The American Physical Society05-1



l

nc

th
th
b

n-

-

m

s

o
r

e

th

in

ia
e

e
rs

n-

ical

o-
ials,
tial
h is
po-
to

er-

tial

tial
e
ce

er
ose
ose
hod
for

nal

e
s a

t ori-

of
ics

f
tial
o-

H. MASUI AND Y. K. HO PHYSICAL REVIEW C 65 054305
where an analytical potentialW(r ) is added to the origina
HamiltonianH as

H~h!5H2 ihW~r !. ~1!

Hereh is a positive real number, andW(r ) is an absorbing
potential for the asymptotic divergence of the resona
wave function. The addition of the potentialW(r ) to the
Hamiltonian has the same kind of effect as that when
complex scaling method is used. The divergent tail of
resonance wave function is ‘‘absorbed’’ by the complex a
sorbing potentialW(r ). Hence we obtain a converged eige
function in the asymptotic region, asf(r )→0 for r→`.

In an actual calculation for solving the Schro¨dinger equa-
tion of the modified Hamiltonian~1!, it is necessary to deter
mine the functional form of the CAP,W(r ). The functional
form of W(r ) is not arbitrary, and the requirements are su
marized in Ref.@10#. The important requirement forW(r ) is
as follows:

Re@W~r !#>0 for r>0

and

Re@W~r !#→` for r→`. ~2!

Due to the above requirement, the divergent tail of the re
nance wave function is absorbed into the potentialW(r ) in
the asymptotic region. One of the typical functional form
the W(r ) is a polynomial type,r n. Note that, from the othe
requirement forW(r ) in Ref. @10#, the exponential-type
function exp(rn), where n is a positive number, cannot b
used as an absorbing potentialW(r ).

After adding the absorbing potential, we diagonalize
modified Hamiltonian~1! using a basis set$f i%, and obtain
an eigenvalueE(h) which depends on the parameterh:

^f i uH~h!uf j&⇒E~h!. ~3!

If we use a ‘‘complete’’ basis set, in principle, we can obta
the exact resonance energyEres by takingh→0 @10#. How-
ever, in practice, we use a ‘‘finite’’ basis set. Then the dev
tion from the true eigenvalueEresdepends on the value of th
h, as Efb(h). Hence for the resonance energyE(h), there
exists an optimal valueh5h̃. We expand theE(h) in the
manner of a truncated Taylor series of ordern, as

E(n)5E(n)~ h̃ !5Efb~ h̃ !1(
j 51

n
~2h̃ ! j

j !

djEfb~h!

dh j U
h5h̃

.

~4!

The optimal value ofh̃ will be found by satisfying

uE(n)~ h̃ !2Eresu5~minimum!. ~5!

Although the order of the expansionn can be taken as larg
enough, it is sufficient practically to be taken up to the fi
order,n51, as

uh•dEfb~h!/dhuh5h̃5~minimum!. ~6!
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This truncation of the first order provides sufficiently co
verged results, as shown in Refs.@10–12#. Also, from a com-
putational point of view, such a truncation has an econom
efficiency. Therefore, in the CAP method, we search for anh̃
which satisfies Eq.~6!.

III. CALCULATION AND RESULTS

In this section, we show the calculational results for tw
and three-body systems using Gaussian-type potent
which are usually employed as effective nuclear poten
models. Nuclear potentials have a particular nature whic
absent in the atomic physics case. Typically, the nuclear
tential is a relatively short-range interaction in comparison
the Coulomb interaction. Hence the power of the conv
gence is stronger than the Coulomb interaction (;1/r ), and
the tail of the potential converges as an exponen
(;e2r), or, in effective model cases, a Gaussian (;e2r 2

).
In choosing a suitable CAP, the behavior of the poten

tail plays a major role. Hence it is worthwhile to examin
first a suitable form of the CAP, after which the resonan
states can be calculated by using this CAP.

A. A two-body system

First we work on a two-body system, since many oth
accurate calculational methods are available for the purp
of comparison. Here we compare the CAP results to th
obtained by using another method, the Jost function met
@3#, which is one of the accurate calculational method
studying resonance states.

In the two-body system, we consider the one-dimensio
radial Schro¨dinger equation

2
]2

]r 2
f~r !1

l ~ l 11!

r 2
f~r !1V~r !f~r !5Ef~r !, ~7!

where the convention is\2/2m51, so as to be arbitrary
units. We use the same type of potential of Ref.@6#, a two-
range Gaussian type potential

V~r !528l exp@2~r /2.5!2#12 exp@2~r /5!2#, ~8!

wherel is a strength parameter. By changingl, an eigen-
value of the Hamiltonian for Eq.~8! becomes a resonanc
state. Since the potential is of Gaussian type, which ha
very shot-range interaction, we use a Gaussian basis se
ented at the center, for solving the Schro¨dinger equation~7!:

f i~r !5N~bi !exp~2r 2/2bi
2!. ~9!

Herebi is the width parameter of the Gaussian, andN(bi) is
the normalization constant.

We investigate the dependency on the functional form
the absorbing potential. In previous studies of atomic phys
@10,11#, the absorbing potentialsW(r ) were taken asr n-type
functions, in which the powers of the potential weren52
and 6 in Refs.@10# and@11#, respectively. The calculation o
Ref. @11# showed that the power of the absorbing poten
(n56) is sufficient to ‘‘absorb’’ the divergence of the res
5-2
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RESONANCE STATES WITH THE COMPLEX ABSORBING . . . PHYSICAL REVIEW C65 054305
nance wave function. In atomic physics, a typical ratio b
tween the total decay widthG and the resonance energyEr is

G/Er;1029–1022. ~10!

The divergence comes from the imaginary part of the co
plex momentumk5A2m(Er2 iG/2), wherem is the reduced
mass of the system. Therefore, when the ratioG/Er is small,
the divergence of the resonance wave function beco
weak. However, in nuclear physics, a typical ratio is

G/Er;1023 ~to the same order!, ~11!

which is considerably large compared to the atomic phys
case. An absorbing potential with powern56 could be too
strong to absorb the divergence of the resonance wave f
tion in this case. Thus, to investigate the dependence of
shape on the absorbing potential, we calculate the reson
state using two different absorbing powersn56 and 4.

The h trajectories are obtained by changing the coe
cient of the absorbing potentialh for each power ofW(r ),
n56 and 4, respectively. We use a potential strength ol
50.47 in this calculation. Figure 1 shows the two trajector
on the complex energy plane. They exhibit different beh
iors for the change ofh. From an empirical point of view in
the CAP method, the minimum ofuh dE(h)/hu appears
around the ‘‘cusp’’ of the trajectory. However a cusp does
show up clearly in then56 case. We calculated the min
mum of uh dE(h)/hu and obtained the resonance ener
The results are summarized in Table I. Here we use th

FIG. 1. h trajectory of the resonance pole in the complex ene
plane for the 0s state. The solid line was obtained by using t
power ofn54, and the dashed line by usingn56.

TABLE I. The resonance energy obtained by the complex
sorbing potential~CAP! method and the Jost function metho
~JFM!.

n ReE (arb. units) ImE (arb. units) h

6 3.43931022 23.13431025 4.231029

4 3.43831022 25.26731025 3.531027

JFM 3.43931022 25.15731025
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FIG. 2. h trajectory of the resonance energy with changingh
for the 0s state wherel50.11.

FIG. 3. Calculation ofuh dE(h)/dhu in search of its minima.

FIG. 4. h trajectory for the resonance eigenvalues with differe
basis set sizes.
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H. MASUI AND Y. K. HO PHYSICAL REVIEW C 65 054305
520 basis set only for checking the dependency of the po
of n. In both cases, resonance energies calculated by u
the CAP method have some small deviation from that of
JFM calculation, since we use a small number of the basis
(N520). However, it is obvious, from Fig. 1 and Table
that the absorbing potential of then54 case is suitable muc
more than that of then56 case.

To see the applicability for the calculation of a broad
resonance, we investigate the 0s state of thel50.11 case. In
Fig. 2, we can see a clear cusp in theh trajectory of the
resonance pole. Here we use the power of the absor
potentialn54. The number of the basis isN530, and the
maximum size of the length parameter in the basis func
is bmax56.0 fm. As seen from Fig. 3, we obtain the optim
value of h̃, and the resonance energy is deduced to
1.4942 i0.3864~arb. units!. The result is close to the resu
calculated by using the JFM: 1.4902 i0.3888~arb. units!.

We also investigate the dependence on the basis set n
ber N and the maximum size of the length parameterbmax.
Figure 4 shows each respectiveh trajectory obtained by us
ing the basis set numberN525, 30, and 35 with a fixed
valuebmax56 fm, respectively. We see that theh trajecto-
ries have a strong dependence on the basis set numberN. The
minima of uh dE(h)/hu are also obtained, and are shown
Fig. 5.

The resonance energies calculated for thel50.11 case
are summarized in Table II. It is shown that the depende
on the length parameterbmax is small when the basis se

FIG. 5. Minima of uh dE(h)/hu for different bmax.

TABLE II. Resonance energies for the 0s state withl50.11
obtained by using basis sets with differentN andbmax.

N bmax ~arb. units!
ReE

~arb. units!
ImE

~arb. units! h

25 6.0 1.497 20.3803 8.831025

30 6.0 1.494 20.3864 3.831025

35 6.0 1.490 20.3871 2.731025

35 7.0 1.491 20.3882 1.831025

35 5.0 1.492 20.3861 3.531025

JFM 1.489 20.3888
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numberN is large. In each case, except forN525, the agree-
ment with the other calculational result~the JFM calculation!
is good to within three or four digits. Hence we consider th
this is sufficient for most nuclear physics cases.

So far, we have only used a simple Gaussian basis se
the 0s state of the system. However, it would be necessar
employ a larger basis set to investigate the first-excited st
In order to take into account the correct nodal behavior of
basis set, we multiply anr l i term by the basis function:

f i~r !5N~bi !~r /bi !
l iexp~2r 2/2bi

2!. ~12!

Here we takel i up to 5, and label the wave functions o
l i50,1, . . . ,5 ass-, p-, . . . , h-wave types, respectively
To investigate the dependence of the basis set, we calcu
the 1s state with the potential strength ofl50.51.

The results are summarized in Table III, and theh trajec-
tories are shown in Fig. 6. For the calculation of thef-, g-
andh-wave types, we label them using the name ‘‘mod.’’
distinguish from the normal parametrization of the Gauss
width parameterbi . In the normal parametrization, the bas
set parameterbi is taken from almost 0 tobmax. On the other
hand, in the ‘‘mod’’ case,bi is taken from bmax to 2
3bmax, by reason of convergence.

In the calculation ofspd-f gh-mod., it can be seen from
Fig. 6 that there are two minima of almost equal depth
uh dE(h)/hu. If we take the second minimum, we obtain

TABLE III. Resonance energies for the 1s state withl50.51
obtained by using different basis sets.

Basis
ReE

~arb. units!
ImE

~arb. units! h

spd 1.055 20.3458 2.831025

spd f 1.059 20.3700 4.531025

spd-f -mod. 1.061 20.3533 3.431025

spd-f g-mod. 1.063 20.3636 4.131025

spd-f gh-mod. First-minima 1.075 20.3518 3.631025

spd-f gh-mod. Second-minima 1.043 20.3582 6.131025

JFM 1.046 20.3582

FIG. 6. Minima of uh dE(h)/hu for the 1s state in the
spd-f gh-mod with l50.51.
5-4
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RESONANCE STATES WITH THE COMPLEX ABSORBING . . . PHYSICAL REVIEW C65 054305
result much closer to that of the JFM calculation. The a
pearance of these two minima with a comparable depth
dicates that it is necessary to improve the functional form
the CAP and is also necessary to take into account
second-order correction in Eq.~4!.

B. Three-body system

To summarize the results in the two-body case so far,
CAP calculation showed a good agreement with the ot
calculational results, where we employed the JFM, wit
several digits. Therefore, it has been shown that the C
method is a powerful tool for use in searching for resona
poles in the complex energy plane, only performing the c
culations of the matrix elements of real quantities.

Hence, it is worthwhile to investigate its applicability fo
solving the resonance states in many-body systems, an
proceed to the study of a three-body system. As our first s
we consider a three-boson system with equal neutron ma
for simplicity. Other calculational results are available f
this system@6,9#. Here, we use the potential to be the sa
form as in Ref.@6#, a two-range Gaussian,

V~r !52120 exp~2r 2!13l exp@2~r /3!2# ~MeV!, ~13!

and our convention is to take\2/m541.47 MeV fm2. l is a
strength parameter. We calculate the three-boson reson
state by changing the strength parameterl.

To solve the resonance state of this system, we us
combination of the Gaussian basis, which is centered at
origin, as follows:

f i~r ,R!5N~bi !N~di !exp~2r 2/2bi
2!exp~2R2/2di

2!•Y l ,L
JM .
~14!

Here r andR are the Jacobi coordinate for the particles 1
2, and 1-2 to 3, respectively, andY l ,L

JM is the angular momen
tum part combined as

Y l ,L
JM5@Yl ^ YL#JM , ~15!

where l and L are corresponding angular momenta for t
coordinatesr and R, respectively. Due to the absence of
spin-dependence force in the interaction, and because w
treating the boson case, we do not consider the spin pa

FIG. 7. h-trajectory of the complex eigenvalue forl52.5 in a
three-body system.
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the wave function. To avoid complexity, we start the calc
lation by only using the totalS-wave state and theL5 l 50
configuration.

In a L5 l 50 calculation, it is useful to choose the com
plex absorbing potential as having the same radial dep
dence forr and R, although, in the general case, the rad
dependencies differ betweenr andR:

2 ihW~r ,R!52 ih~r 41R4!. ~16!

As performed in the two-body calculation, we changeh in
order to find the appropriateh̃, which makes the minimum o
Eq. ~6!.

This system has oneS-wave bound state in the range o
l<2.4, which becomes a slightly unbound state atl52.5.
We first show thel52.5 case as an example.

Figure 7 shows theh trajectory of the complex eigen
value for thel52.5 case. We can clearly see a cusp in theh
trajectory of the eigenvalue. The existence of a cusp in
cates the existence of a sharp minimum of Eq.~6!. Next we
investigate the minimum ofuh•dE/dhu. The obtained result
for uh•dE/dhu is shown in Fig. 8. The minima appear ath
54.7310211 and 1.1310211. The deepest minimum is a

FIG. 8. Minima of uh dE(h)/hu for l52.5 in a three-body
system.

FIG. 9. Resonance states obtained by using the CAP method
the CSM.
5-5
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H. MASUI AND Y. K. HO PHYSICAL REVIEW C 65 054305
h51.1310211, and by using thish we obtain the resonanc
energy,Eres51.112 i0.0571 MeV. By changing thel up to
3, we can calculate the resonance states using the
method. The calculation of the complex scaling method
performed for the purpose of comparison. As shown in F
9, the correspondence of the results obtained by these
methods is reasonably good.

The result shown in Fig. 9 shows that the CAP method
applicable for solving a three-body system. The functio
form of the complex absorbing potential of Eq.~16! is one of
the possibilities. Even though the CAP can be chosen
different radial dependencies forr andR, by using a simple
functional form of the CAP we obtained a converging res
for resonance states compared with the results obtaine
using the CSM.

IV. SUMMARY AND DISCUSSION

In the present work, we have studied resonances
nuclear physics using the complex absorbing potential~CAP!
method. In a two-body system, we have obtained accu
results that are in a good agreement with the other accu
results obtained by using the Jost function method~JFM!. In
a three-body system, we have also obtained a good ag
ment between the CAP results and those of the CSM. He
we have demonstrated that the CAP method is capabl
producing accurate resonance parameters—the resonanc
ergy Er and the decay widthG is not only for two-body
systems but also for three-body systems in nuclear phys

Generally, in an actual calculation, the computational ti
is devoted almost to the calculations of the matrix eleme
of the Hamiltonian^H&. When the CSM is applied, it is
necessary to investigate the convergence with respecte
the changes of the rotational angleu. Therefore we need to
calculate the matrix elements for each rotation angle
would take a considerable effort and much computer time
examine the convergence, especially when the calculat
of ^H& are complicated. On the other hand, in the CA
method, it is necessary only once to calculate the ma
elementŝ H&. Hence the CAP method is an efficient comp
tational tool for studying resonance states in many-nucl
systems.
.
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In spite of the fact that successful results can be obtai
by using the CAP method, there are, however, several fac
which are necessary to be considered for using the C
method. First, for a given physical system, we need
choose an optimized absorbing potential while there is
such necessity in using the CSM and ACCC. In nucle
physics where the range of the mutual interaction betw
the particles is shorter than the Coulomb interaction, we h
found that the practical form ofW is of r 4. By using such a
CAP, we have obtained good convergence of the resona
eigenvalues even for broad resonance states. Second,
practical limitation, calculations using a finite basis set c
only be performed. Therefore, we must perform the ma
diagonalization of the Hamiltonian for varioush values in
order to locate the optimizedh, from which the resonance
energy and width can be deduced. In contrast, it is not n
essary for the ACCC calculation to perform such repea
diagonalization. However, there is an advantage for the C
method over ACCC. In general, the CAP method is capa
of calculating the resonance energy and the total width fo
high-lying multichannel resonance in a straightforward ma
ner. The computational process for a multichannel resona
is the same as that for a single-channel resonance. Calc
tions for high-lying resonances using the ACCC meth
might be more involved.

In future work, it is of interest and worthwhile to use th
CAP method, together with the use of the realistic nucl
~nucleus! interactions, in the studies of the many-body res
nant systems such as three-neutron resonances@9#, and pro-
ton emission@13#. Recently, the CSM was used to investiga
nuclear resonances in the framework of the Hartree-F
~HF! approach@14#. It would be of interest to combine th
CAP method and the HF approach to investigate resona
in nuclear physics.
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