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Tensor representation of the nucleon-nucleon amplitude
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Many approaches to nucleon-nucleus elastic and inelastic scattering are based on the use of the free-space
nucleon-nucleon transition amplitude. In calculations where the full spin dependence of this amplitude is
needed, its use is more tractable when it is expressed in terms of irreducible tensor operators of the spins of the
interacting nucleons. We present general formulas for this representation, which is particularly useful for
inelastic scattering studies involving spin-flip transitions of a target nucleon.
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I. INTRODUCTION Il. FORMALISM

Assuming that we use plane wave states, normalized such
The free nucleon-nucleom(N) transition amplitude, both that

on and off the energy shell,,2] is a basic dynamical input . o
off ab initio multiple scattering scattering formalisms either (rlky=(2m) " 3expik-r), )
within a many-body[3,4] or a few-body[5] framework. L.
These formalisms have been applied with success to descrify@en the freeNN scattering amplitud® (»,K’,K), describ-
elastic and inelastic scattering from staf¢(and references ing scattering from two-nucleon states with relative momenta
therein and unstable nucldi7,8]. The spin and isospin de- K andK'’ for relative energyw in their center-of-mas&.m.)
pendent amplitudes of the transition amplitude can be calcurame, is related to the antisymmetrized transition matrix el-
lated readily from realistid\N interaction models, such as ements by
the Parid9] and Bonn 10] interactions. It was shown in Ref. A
[2] that the off-shell behavior of th N transition amplitude >, o2y oy TM >,
is very stable against the underlyi?g interaction. In ad- M(w, K", K)=(K' M (@) K) = - 52 (K lto()|K,
dition, the on-shell values must reproduce the available ex- (2
perimentalNN data. Thus, the dynamic&IN input of the

multiple scattering expansions is very well defined, at leasyvherex is theNN reduced mass. These amplitudes are op-
on the energy shell. erators in both th&N spin and isospin spaces.

Traditionally, theNN transition amplitude has been pre- ~ The Wolfenstein decomposition of théN amplitude for

sented using the Wolfenstein parametrizafih]. This rep- Lhe scattedring of an iI”Cide'@) anhd struck(l) ”UCIIGfO” ha? o
resentation involves six amplitude$ . . . 7, being the co- D2€€n used extensively. It gives the most general form of the

efficients of spin operators, which are scalar products of th mplitude, consistent with time-reversal, parity, and rota-

o N o ional invariance, as
Pauli spin vectorsr; for the projectile and struck nucleons
with a set of unit vectors defined by the scattering plane of M (o £ ,@ZAJFB((;O.ﬁ)((;l,ﬁ)JrC((;oﬂ;l)_ﬁ
the nucleon pair. This representation is not convenient in

2

cases, such as in inelastic scattering, where one needs to +D(0o-m)(oy-M)+E(og- 1) (oq-1)

account fully for the the spin dependence of Nl interac- . oL

tion [12]. +F(oo-D(or-m)+(o1-m)(og- 1],
Equivalently, the amplitude can be expressed in central, (3)

spin-orbit, and the usual tensor compon8pt[13]. Alterna-
tively, the NN transition amplitude can also be expressed inyhere the orthogonal set of unit vectons= (KX K')/|K
terms of irreducible tensor operators in the space of §pin % K'|, 1= (K" +K)/|K' + K], andm=1xn are defined by

(=0.1) of the mtt_aractlng paqu-Kq(_S) [14]. This IS, for in- the NN scattering plang11]. The coefficient amplitudes
stance, a convenient representation for analysis of deuteroE 7 can also be expressed as complex functions of

scattering from spin-zero targets. .
A more tractable representation for treating the spin delh® momentum transfey= (K" —X), and the total momen-

pendence of th&IN interaction in proton scattering analysis tum Q= (K’ +K)/2 of theNN pair in their c.m. frame. They

is presented here, in which the scattering amplitude is exfemain operators in isotopic spin space, so for instance

pressed in terms of spin tensor operators associated with the

colliding particles. A(w,0,0)=Ag+ A (79 1) = AT Py+ AT=IP,, (4

where ther are the isospin Pauli operators for the two
*Electronic address: raquel@wotan.ist.utl.pt nucleons and the?; are projectors for the total isospin
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states. In this equatiotdy and.A, represent the isoscalar and TheseMS,Vz(I@’Sv’|M|I€Sv) are in any case calculated

isovector components of in the isospin space. during the construction of thN amplitudes from the par-
The A, ..., F amplitudes can be derived on and off the tjz] wave transition amplitudeMi,SL(lC’,IC), e.g., Appendix

energy shel[1,2,6] from a realisticNN interaction, such as,
for example, the Parif9] and Bonn[10] interactions.

Equivalently, theNN scattering amplitude can be repre- )
sented in terms of central, spin-orbit, and tensor components. , >, >\ _ < SL—L’~,M BrvngdS
The work of Franey and LovéFL) [13] makes use of this (K IMIK) = 2 Ywrga KIML (K5K)
representation, where the form factors of the components are R
nonlocal, with a direct and an exchange term and given in xy'(\"LS%(IC), (8)
terms of sums of Yukawa forms, the ranges and strenght of
each term being determined by fitting the on-siN scat- Mo . ;
tering data. The FL transition amplitude is usually referred adVhereY(is) is a spin-angle function
a pseudadF matrix, since it is not constructed from a poten-
tial model and violates unitarity bad[yL5].

In the example of nucleon elastic scattering on a spin-zero
target only the centrall and spin-orbitC components con-
tribute to the first order term of the multiple scattering ex- ) .
pansion of the optical potenti&B,4]. Second and higher or- @nd Yix and Xs, are spherical harmonicgl6] and total
der terms, however, involve contributions from all SPiNors of theNN pair. Combining Eq(7) and Eq.(8) results

component$6]. Of course, for elastic scattering from a non-

C of [6]. We adopt the convention that

T 3LL'SM

y(“ﬂsw“C'):AEv(LASV|JM>YLA</%'>XSV, (9)

spin-zero nucleus, or for inelastic scattering involving spin- s = - 2 L/

flip transitions of a struck nucleon in the target, a full treat- My (KK = — > iFH(LUATSY'[IM)
ment of the scattering amplitude needs to be considered. In IMLLIAA!

these applications, approximate treatments need to lze per- X (LASY|J M)YL'A’(]AC’)YEA(”C)
formed to handle the orthogonal set of unit vectars (k Is

XK')/|kxK'[, I=(K'+K)/|K’ +K|, andm=1Xn [6,17]. XML (K7, K). (10

In elastic scattering processes involving a more general
target, and in inelastic scattering, in which the full spin de-The partial wave sums are, of course, over values that satisfy

pendence of the interacting nucleons enters,Nfeampli-  the Pauli principle requirement, i.e.+ S+ T be odd.
tudes are more conveniently constructed such that It is now convenient to reexpress the spin-space projector
in terms of irreducible tensor operators in the space of Spin
</€’|M|ﬁ>=a§ﬁMgag’>(/€',K)Taa(so)rbﬁ(sl), 5 14
Re Img

where7,,(Sp) is the irreducible tensor operator for the pro- T T — T T T
jectile particle(0) with spinsg(a=0, . . . ,3); Tpa(s1) is the \ . 0'8_' ---- o=m/4 ]
irreducible tensor operator for the struck parti¢l with 0 04 — =2 ]
spins; (b=0,...,%,). Explicitly, sinces,=s,=3, 828 i ] i ]

2 - 0

Tod3) =1, Tia(3)=04(1), (6) I 1 oal ]

4 .1 1 L 1 L ' .1 1 1 1 1
with o4(1) the spherical components 5f1 with respect to 40 . 2 . 4 . 6 0_10 . 2 . 4 . 6
the choserz axis. It is understood that thd (3 depend on ' ' ' '
the isospin of the two nucleons. The amplitudes relevant to : -
the pp, pn, andnn cases are obtained from the isospin sin- _ ,_0'2 i —
glet (T=0) and triplet {=1) amplitudes. The explicit de- 5~ fom 7T 0T —
pendence of thé/ andMga;) on w and T will not be shown 0 | N |
in the following.

We first decompose thdN amplitude of Eq(2) into spin 02 1 T 01 1 IR
singlet (S=0) and triplet =1) componentsi f,y, where 0 2 4 6 0 2 4 6
v andv’ refer to the incident and final state spin projections Q (fm'1) Q (fm'1)
in stateS

FIG. 1. Real and Imaginary parts of the Isoescalar components
of M3 and MY}, at E_,,=135 MeV, as a function of the total
(K'IM|K)= > ME,V(IC’,IC)|SV’><SV|, (7)  momentumQ, with g=1 fm~1. The arrow indicates the on-shell
S value.
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where @,b) refer to the ranks of the nucleon spin tensors, M3 M
and

MEP(K! K) =3 MK KN @b (18)
S

with
wonn| Sy S1 S
S &ab|
N3(ab)= — So S1 Sy. (19
S01 a b «

The amplitude$v (3 can be expressed in terms of the trans-
ferred momentuny, total momentum@, and the anglep
between these two vectors, thatlis{3” (w,q, Q. $). On the
energy shellg=n/2 andq?/4+ Q%=2uwlh?.

For checking purposes, we note that{3”=.4 and o 0.1
M{=M{P=—icry2. o4 005
We need to consider the nonvanishing amplitubf&s” , %2 _0.05

MP=ME2, MEY, MY, MG, andMEY. The ampli-
tudes also satisfyvi fff’é:(— 1)"+qM§f(‘qb) . All terms with a
=b=x=1 are seen to be zero as a result the vanishing of g 5. |maginary part of the Isovector componentsEay,
the 94 coefficient. As a result of this geometric coefficient, =135 Mev.

the tensor7, , satisfiesT = (—1)97,_,.

momentumg and the total momentun@. The angle¢ be-
IIl. RESULTS tween these two vectors was taken to its on-shell vadue,
= /2. The axis of quantization is chosen in the direction of
For illustrative purposes, we show in here the calculatedhe incident beam. The curve represented in each surface
off-shell amplitudesM (K'i‘qb) at E| ,,=135 MeV, making use represents the corresponding on-shell value.
of the Paris potentidl9]. We useNNAMP [18], which calcu- It follows from the figures that the effect of the nonlocali-
lates all the Wolfenstein and tensor representation amplitudeses for the rank 0 components of the tensor representation,
on and off the energy shell. The tensor amplituBVE%b) are MY andM (g, might be significant when used in multiple
evaluated from the angular momentum amplituts}’qJ_ . fol- scattering frameworks. The amplitudes in other reference
lowing the procedure described in the text. These anguladystems can be readily obtained from these through rotation.
momentum amplitudes are obtained as REfsl9]. For this
particular example, we have used a maximum number of six IV. CONCLUSION
partial waves.

We have verified that the tensor amplitudes do not Varymeltzoijur:;mea:(ry}e\évse tﬁg\&e trc:rawss(i:t?c?:in? "ctﬂr(;\éeggerg I%(aer;?ral
strongly with energy and with the anglé. From all the P P

. 00 . . combination for the spherical components of the spin opera-
amplitudes, anWI 11 (and thus the Wolfenste|n amplitudg tors of the two interacting particles. This is a more treatable
represented in Fig. 1, shows a slight dependence othe

. > o : representation to be used in multiple scattering formalisms
other amplltgdes remaining fairly mdependent on this paramy., ot require a full treatment of the spin of thEN transition
eter. In this figure, the calculated amplitudes are evaluated aatmplitude
q=1 fm™1, the solid and the dashed lines corresponding to ‘
¢=ml2 and = /4, respectively. The arrow indicates the
on-shell value.

In Figs. 2 and 3, we represent the real and imaginary parts The authors would like to thank J. A. Tostevin and R. C.
of the isoescalar components in the isospin space. In Figs. dohnson for many useful discussions. This work was sup-
and 5 we show the corresponding isovector components. Theorted by Fundg para a Ciacia e TecnologigPortuga)

amplitudes are represented as a function of the transferratirough Grant No. POCTI/1999/FIS/36282.
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