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Local density approximation for systems with pairing correlations

Aurel Bulgac
Department of Physics, University of Washington, Seattle, Washington 98195–1560

~Received 8 August 2001; revised manuscript received 24 September 2001; published 25 April 2002!

This paper presents a formulation of a local density approximation for fermion systems with pairing corre-
lations based on a rapidly converging renormalization scheme for the pairing field.
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The proof that for any fermion system there exists
unique energy density functional of the density matter dis
bution r(r) alone, namelyEgs5min*d3rEDFT„r(r)…, is dis-
armingly simple@1#. However, except for some trivial case
the exact form of this functional is still a mystery and n
constructive algorithms for its determination have been s
gested so far. Significant progress has been achieved h
ever within the Kohn-Sham local density approximati
~LDA ! of the density functional theory~DFT!. For a normal
fermion system~with no pairing correlations! Kohn and
Sham have shown that the ground state energy of any
mion system is a functional of its kinetic energy and mat
density distributions, namely,Egs5min*d3rELDA„t(r),r(r)….
The current philosophy is that one should determine
functional from homogeneous infinite matter calculatio
and then use it to describe properties of either infinite in
mogeneous or finite systems@1#. By the same token, on
would expect that the formulation of a LDA for fermio
systems with pairing correlations should be straightforw
and that a corresponding universal LDA energy density fu
tional ELDA(t,r,n) of the kinetic energy t(r)
52( i u“v i(r)u2, normal r(r)52( i uv i(r)u2 and anomalous
n(r)5( iv i* (r)ui(r) densities exists.~I shall be concerned
here explicitly with the case ofs pairing in the so-called
weak coupling limit. Generalizations seem possible ho
ever.! The LDA extension described in Refs.@2# is in terms
of the anomalous density matrix n(r1 ,r2)
5^gsuĉ↑(r1)ĉ↓(r2)ugs&. Upon variation of the quasiparticl
wave functionsv i(r),ui(r) under standard restrictions on
obtains the Kohn-Sham equations, with a structure ident
to the Hartree-Fock-Bogoliubov~HFB! or Bogoliubov–de
Genes equations:

@h~r!2m#uE~r!1D~r!vE~r!5EuE~r!, ~1!

D* ~r!uE~r!2@h* ~r!2m#vE~r!5EvE~r!, ~2!

where h(r) is the single-particle Hamiltonian,D(r)5
2dEgs /dn* (r) andm is the chemical potential. Each quas
particle state could be characterized by additional quan
numbers besides the quasiparticle energyE, which I shall not
explicitly display however. In all the formulas presented he
I shall likewise not display the spin degrees of freedom. O
can show that the mere locality of the pairing fieldD(r)
leads to a divergent diagonal part of the anomalous den
n(r,r) @3–5#. When ur12r2u→0 the anomalous density ma
trix has the singular behaviorn(r1 ,r2)5(E>0vE* (r2)uE(r1)
}1/ur12r2u. As a result, the local self-consistent pairing fie
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D(r) cannot be defined.~When summing over the spectrum
the sum becomes an integral if the spectrum is continu
and vice versa for an integral. I shall be casual in using eit
a summation or integration notation, hoping that the cont
makes this distinction obvious.! The existence of this par
ticular divergence was the main obstacle in introducing
extension of the LDA approach to systems with pairing c
relations. Fortunately, this divergence is one more exam
of the infinities that infest quantum field theory~QFT! and
for which the techniques to regularize them in a control
fashion exist and can be extended and applied to inhomo
neous systems as well now.

It is instructive to show how this divergence emerges a
the simplest system to illustrate this is an infinite homog
neous one. Since the divergence is due to high mome
thus small distancesur12r2u, this type of divergence is uni
versal and has the same character in both finite and infi
systems. Until recently, methods to deal with this divergen
were known only for infinite homogeneous systems@6–12#
and only recently ideas were put forward on how to imp
ment a renormalization scheme for the case of finite or in
mogeneous systems@4,5#. Assuming for the sake of simplic
ity that the spectrum of the HF operator is simply«(k)
5\2k2/2m, one can represent the anomalous density ma
as follows@3–5#:

n~r1 ,r2!5E d3k

~2p!3

exp@ ik•~r12r2!#D

2A@«~k!2m#21D2
~3!

[E d3k

~2p!3
exp@ ik•~r12r2!#H D

2A@«~k!2m#21D2

2
D

2@«~k!2m2 ig#J 1
Dm exp~ ikFur12r2u!

4p\2ur12r2u
, ~4!

wherem5\2kF
2/2m. The last integral expression is well de

fined for all values of the coordinatesr1,2. Once one has
recognized the existence of a divergence, the next step
devise a way to regularize the theory. In a nutshell, what
has to do is to subtract the divergent partDm/(4p\2ur1
2r2u) from the rest in the limitur12r2u→0. Formally one
can justify this apparently rather arbitrary procedure, eit
by following the steps outlined typically in renormalizing th
gap equation in infinite systems—by relating the diverg
part with the scattering amplitude@6–10#—or by using well-
known approaches in QFT—for example, dimensional re
©2002 The American Physical Society05-1
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larization @11,12#, or another QFT approach of introducin
appropriate counterterms with explicit cutoffs—or one c
follow the philosophy of the pseudopotential approa
@4,5,13#. In all cases one naturally arrives at the same fi
value for the gap. The renormalized gap equation can
written as

2
1

g
5E d3k

~2p!3 F 1

2A@«~k!2m#21D2
2

1

2@«~k!2m2 ig#G
1

ikFm

4p\2
, ~5!

where the coupling constantg is defined as

gd~r12r2!5
d2Egs

dn* ~r1!dn~r2!
. ~6!

Previous approaches@6–12# use «(k) only in the second
term under the integral and in that case the last imagin
term does not appear. I have assumed here the simples
pendence of the LDA energy density functional on t
anomalous densityn(r), namely, E„t(r),r(r),un(r)u2…,
merely for the sake of the simplicity of the presentation, b
more general forms can be used as well. A note of cautio
would be incorrect to interpret some of the above formulas
the same manner as similar looking formulas appearing
various treatments of the pairing correlations with a ze
range interactionV(r12r2)5gd(r12r2) ~which can be re-
lated to the zero energy two-particle scattering amplitudg
54p\2a/m). As it has been well known for quite som
time, even in the low density region, whenkFuau!1, there
are significant medium polarization corrections to the pair
gap@14#. The present LDA treatment is not limited by sim
lar restrictions on the density. In the LDA energy dens
functional the polarization effects are already implicitly i
cluded in the definition ofE„t(r),r(r),un(r)u2… and the cou-
pling constantg has no simple and direct relation to th
vacuum two-particle scattering amplitudea. In this sense the
LDA is similar in spirit to the Landau Fermi liquid theory.

Equation~5! can be used to extract from known properti
of homogeneous infinite matter@such as«(k), D and den-
sity# the specific value of the coupling constantg to be used
in constructingE„t(r),r(r),un(r)u2…. Assuming that a full
microscopic calculation of homogeneous matter at a gi
densityr5kF

3/3p2 has been performed and that the value
the pairing gap at the Fermi level is known, one can, us
Eq. ~5!, calculate directlyg(r) and thus obtain the simples
approximation to the LDA energy density function
ELDA„t(r), r(r), un(r)u2…5 E0„t(r), r(r)…1 g„r(r)…un(r)u2,
whereE0„t(r),r(r)… is the Kohn-Sham energy density fun
tional in the absence of pairing correlations. In many tre
ments of the pairing correlations in infinite systems auth
often underline the dependence of the pairing gap on
mentum, that isD(k). On one hand, typical calculations@15#
of the pairing fieldD(k) in infinite systems~with no medium
polarization effects taken into account so far! show that for
large momenta the pairing field decreases, as one w
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naturally expect. On the other hand, as soon as the mom
tum of a quasiparticle state is sufficiently different from t
Fermi momentum, whenuk2kFu'mD(kF)/\2kF!kF , the
effect of the pairing correlations on the single-particle pro
erties is small, if not negligible. To a very good accuracy

E~k!5A@«~k!2m#21D2~k!'A@«~k!2m#21D2~kF!

'u«~k!2mu

and thus the use of ak-independent pairing field is a fai
approximation. This is just another way of stating that t
size of the Cooper pair\2kF /mD @9# is much larger then the
average interparticle separation in the weak coupling lim
Typically this takes place when the range of the pairing
teraction is smaller than the size of the Cooper pair as w
and thus the pairing interaction could be described by
single coupling constant.

Even though apparently the divergence has been succ
fully dealt with ~in infinite homogeneous systems!, a closer
inspection of the entire approach reveals an inconsiste
which is somewhat hard to spot. The divergence is due
high momenta and for that reason one has subtracted
term D/2@«(k)2m2 ig# in Eqs.~4! and ~5!. Far away from
the Fermi surface, however, the problematic te
D/2A@«(k)2m#21D2 behaves rather likeD/2u«(k)2mu in-
stead. The main difference between these two subtrac
procedures appears for holelike states. As the Fermi ener
finite, the integral over states below the Fermi level is a
finite. This feature, which breaks the approximate symme
between the particle and hole states, is rather unsatisfac
and it has no theoretical underpinning. On one hand, in
culating the integral over the single-particle spectrum ab
the fermi level one expects a relatively fast convergen
when the energy of the particle states is a ‘‘few gapsD
away.’’ On the other hand, the integral over the hole sta
converges only for energies of the order of the Fermi ene
eF5\2kF

2/2m. Clearly, in most cases of interest, the so call
weak coupling limit, whenD!eF , there is absolutely no
physical reason to take into account single-particle state
far away from the Fermi level in order to describe global
mean-field properties of nuclei in particular.

I show here how a relatively simple regularization sche
can easily deal with this problem in a very clear and eas
implementable manner, suitable for any system, finite or
finite, homogeneous or inhomogeneous. The regulari
anomalous density is calculated from the following expr
sion:

n reg~r!ªE
0

Ec
dEgHFB~E!vE* ~r!uE~r!

2E
m2Ec

m1Ec
d«gHF~«!

D~r!

2

c«* ~r!c«~r!

u«2mu1 ig

1
D~r!

2
G reg~r,m!, ~7!
5-2
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wheregHFB(E) andgHF(«) are the HFB and HF density o
states, respectively,

@h~r!2«#c«~r!50, ~8!

G~r1 ,r2 ,m!5E d«gHF~«!
c«* ~r1!c«~r2!

u«2mu1 ig
~9!

5
m

2p\2ur12r2u
1G reg~r,m!1O~ ur12r2u!.

~10!

g is as usual a small infinitesimal quantity andr5r1,2 in the
limit ur12r2u→0. As in Ref.@5#, I shall use a Thomas-Ferm
approximation for the single-particle wave functionsc«(r)
and energies in order to evaluate the regulator. After in
ducing the local wave vectorsl c(r)<kF(r)<kc(r)

h~r!52
\2

“

2

2m
1U~r!, ~11!

F\2kc
2~r!

2m
1U~r!G5Ec1m, ~12!

F\2l c
2~r!

2m
1U~r!G52Ec1m, ~13!

\2kF
2~r!

2m
1U~r!5m ~14!

FIG. 1. In region I all three wave vectorsl c(r),kF(r) andkc(r)
are real and both subtraction terms are present. In region IIl c(r) is
imaginary and the corresponding subtraction term in Eq.~15!
should be dropped. In region III all three wave vectors are ima
nary and both subtraction terms in Eq.~15! should be dropped
Even though in region IIkF(r) becomes imaginary for largerr, the
corresponding subtraction term containingkF(r) is real everywhere
and it should be retained.
05130
-

and after some straightforward manipulations one can sh
that the renormalized anomalous density introduced ab
acquires the following form:

n reg~r!ªE
0

Ec
dEgHFB~E!vE* ~r!uE~r!2

D~r!mkc~r!

2p2\2

3H 12
kF~r!

2kc~r!
ln

kc~r!1kF~r!

kc~r!2kF~r!J 2
D~r!mlc~r!

2p2\2

3H 12
kF~r!

2l c~r!
ln

kF~r!1 l c~r!

kF~r!2 l c~r!J . ~15!

The only formal difference between this expression and
corresponding expression introduced in Ref.@5# is in the
terms containing the second cutoff momentuml c(r) ~last
line!. If either one of the wave vectorsl c(r) or kc(r) be-
comes imaginary, then the corresponding terms in the re
malized anomalous densityn reg(r) should be dropped. How
ever, if the wave vectorkF(r) becomes imaginary, the
renormalized anomalous density is real and the above d
nition should be used, see Fig. 1 for a generic situation.

It is convenient to introduce a notation for the cut-o
anomalous densitync(r)ª*0

EcdEgHFB(E)vE* (r)uE(r) and
an effective position running coupling constant

1

ge f f~r!
5

1

g
2

mkc~r!

2p2\2 H 12
kF~r!

2kc~r!
ln

kc~r!1kF~r!

kc~r!2kF~r!J
2

mlc~r!

2p2\2 H 12
kF~r!

2l c~r!
ln

kF~r!1 l c~r!

kF~r!2 l c~r!J . ~16!

i-

FIG. 2. The gapD and the effective coupling constantge f f as a
function of the cutoff energyEc for three regularization schemes
The full lines correspond to calculations using Eqs.~15!–~17!.
Circles correspond to the regularization scheme presented in
@5# ~when only terms withkc are present!. The pentagrams corre
spond to the vacuum regularization scheme@16#. The calculation
was performed for homogeneous neutron matter withr
50.08 fm23 andg52250 MeV fm3.
5-3
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In the limit kF→0 ~in vacuum! the value of this effective
running coupling constant agrees with that derived in R
@16#. Using these notations one obtains for the renormali
pairing field

D~r!52gn reg~r!52ge f f~r!nc~r!. ~17!

Even though the cutoff momentakc(r) and l c(r) and the
cutoff quasiparticle energyEc explicitly appear in the defi-
nition of both the effective coupling constant and of the c
off anomalous density, the gapD(r) is indeed cutoff inde-
pendent, once the cutoff energyEc has been taken
sufficiently far from the Fermi surface. This situation is sim
lar to the situation described in Ref.@5#, with the single dif-
ference that in the present case the convergence is ach
for significantly smaller values ofEc . As one can judge from
Fig. 2, the present regularization scheme is indeed very
converging, while the regularization scheme presented
Ref. @5# converges as expected at energies of the order o
Fermi energyeF5\2kF

2/2m. At the same time, the traditiona
approach based on ad function with cutoff energyEc @16#
„for which ge f f(r)5g/@12gmkc(r)/2p2\2#… converges ex-
tremely slowly, and even atEc51000 MeV is still about
20% off the converged value.

When computing the total energy of such a system
has to be careful and evaluate

Egs5E d3r F \2

2m
tc~r!2D~r!nc~r!G1E d3rE0„0,r~r!…,

~18!
o

tt.

t,

D

l-
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where the kinetic energy density is evaluated astc(r)
ª2*0

EcdEgHFB(E)u“vE(r)u2. @I have assumed here the sim
plest dependence ofE0(t,r) on t.# Only this combined ex-
pression, containing the trace of the kinetic energy with
trace of the pairing field and of the cutoff anomalous dens
is converging as a function of the cutoff quasiparticle ene
Ec @11#. The reason is thattc(r) diverges in a similar manne
asnc(r) as a function ofEc .

The formalism described here paves the way to a LDA
pairing in the spirit of the Kohn-Sham theory@1#. One has
simply to add to the usual LDA energy density functiona
pairing termg„r(r)…unc(r)u2 with a density dependent ‘‘bare
coupling constantg„r(r)…,’’ extracted from homogeneous in
finite matter calculations. For the descriptions of many s
tems ~e.g., nuclei, Fermionic atomic condensates,3He and
neutron matter! a term linear inunc(r)u2 will most likely
suffice. However, as we already know from the Landa
Ginzburg theory, terms proportional tounc(r)u4 might be-
come relevant and in such a case the energy density f
tional should be generalized appropriately. Irrespective of
specific functional dependence of the energy density fu
tional on the anomalous densitync(r), the emerging Kohn-
Sham equations will be local and the ultraviolet divergen
in the pairing field will have exactly the same character
the one studied here and consequently, can be dealt
using the same approach.
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