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Local density approximation for systems with pairing correlations
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This paper presents a formulation of a local density approximation for fermion systems with pairing corre-
lations based on a rapidly converging renormalization scheme for the pairing field.
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The proof that for any fermion system there exists aA(r) cannot be definedWhen summing over the spectrum,
unique energy density functional of the density matter distrithe sum becomes an integral if the spectrum is continuous
bution p(r) alone, namelyEqs=minfd*rEper(p(r)), is dis-  and vice versa for an integral. | shall be casual in using either
armingly simple{1]. However, except for some trivial cases, a summation or integration notation, hoping that the context
the exact form of this functional is still a mystery and no makes this distinction obviousThe existence of this par-
constructive algorithms for its determination have been sugticular divergence was the main obstacle in introducing an
gested so far. Significant progress has been achieved howsxtension of the LDA approach to systems with pairing cor-
ever within the Kohn-Sham local density approximationrelations. Fortunately, this divergence is one more example
(LDA) of the density functional theor§DFT). For a normal  of the infinities that infest quantum field theof@FT) and
fermion system(with no pairing correlations Kohn and  for which the techniques to regularize them in a controlled
Sham have shown that the ground state energy of any fefashion exist and can be extended and applied to inhomoge-
mion system is a functional of its kinetic energy and mattemeous systems as well now.
density distributions, namelf g;=minfd* & pa ((r),p(r)). It is instructive to show how this divergence emerges and
The current philosophy is that one should determine thishe simplest system to illustrate this is an infinite homoge-
functional from homogeneous infinite matter calculationsneous one. Since the divergence is due to high momenta,
and then use it to describe properties of either infinite inhothus small distancels; —r,|, this type of divergence is uni-
mogeneous or finite systenig]. By the same token, one versal and has the same character in both finite and infinite
would expect that the formulation of a LDA for fermion systems. Until recently, methods to deal with this divergence
systems with pairing correlations should be straightforwardyere known only for infinite homogeneous systeffis-12]
and that a corresponding universal LDA energy density funcand only recently ideas were put forward on how to imple-
tional &pa(7,p,v) of the kinetic energy 7(r)  ment arenormalization scheme for the case of finite or inho-
=23;|Vui(r)|?, normal p(r)=2%;|v;i(r)|* and anomalous mogeneous systenid,5]. Assuming for the sake of simplic-
v(r)==;v; (r)u;(r) densities exists(l shall be concerned ity that the spectrum of the HF operator is simpiyk)
here explicitly with the case of pairing in the so-called =#2k?/2m, one can represent the anomalous density matrix
weak coupling limit. Generalizations seem possible how-as follows[3-5]:
ever) The LDA extension described in Ref2] is in terms

of tAhe Aanomalous density = matrix v(rq,r) d3k  exdik-(r;—r,)]A

=(gs|#;(r1) ,(r2)|gs). Upon variation of the quasiparticle v(rl,r2)=f (2m)° 2\[e(K) — ]2t AZ &)

wave functionsv;(r),u;(r) under standard restrictions one K

obtains the Kohn-Sham equations, with a structure identical 5

to the Hartree-Fock-BogoliuboyHFB) or Bogoliubov—de _ e (1 — A

Genes equations: - (Zw)sexm (1= ra)] 2\[e(K)— w2+ A2
[h(r) = p]ug(r) +A(r)ve(r) =Eug(r), (1) A } Amexpike|r—r,)) "

A*(NUg(n—[h* (1) = ploe(N=Eve(n), () 2le(k)=u=iy] amhfn=r|
where h(r) is the single-particle HamiltonianA(r)= where,u,:hzk§/2m. The last integral expression is well de-

— 0Eqs/ 8v*(r) and u is the chemical potential. Each quasi- fined for all values of the coordinates,. Once one has
particle state could be characterized by additional quanturrecognized the existence of a divergence, the next step is to
numbers besides the quasiparticle enéigwhich I shall not  devise a way to regularize the theory. In a nutshell, what one
explicitly display however. In all the formulas presented herehas to do is to subtract the divergent pamn/(4742|r,

| shall likewise not display the spin degrees of freedom. One-r,|) from the rest in the limifr,—r,|—0. Formally one

can show that the mere locality of the pairing fiedr)  can justify this apparently rather arbitrary procedure, either
leads to a divergent diagonal part of the anomalous densityy following the steps outlined typically in renormalizing the
v(r,r) [3-5]. When|r;—r,|—0 the anomalous density ma- gap equation in infinite systems—by relating the divergent
trix has the singular behaviar(ry,r;) =Seg=ovg (ro)ug(rq) part with the scattering amplitudé—10—or by using well-

o« 1/]r,—r,|. As a result, the local self-consistent pairing field known approaches in QFT—for example, dimensional regu-
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larization[11,12], or another QFT approach of introducing naturally expect. On the other hand, as soon as the momen-
appropriate counterterms with explicit cutoffs—or one cantum of a quasiparticle state is sufficiently different from the
follow the philosophy of the pseudopotential approachFermi momentum, whemk—kg|~mA (kg)/2%ke<kg, the
[4,5,13. In all cases one naturally arrives at the same finakffect of the pairing correlations on the single-particle prop-
value for the gap. The renormalized gap equation can berties is small, if not negligible. To a very good accuracy
written as

1 d3k
- 5_ f (2m)3

ikem

1 1 E(k)=[e(k) — u]?+A%(K)=\[e(k) — u]*+ A%(ke)

2\[e(W—pPP+A? 2Ae(k)—pu—iy] ~|e(K)— u

+

5 (5 and thus the use of kindependent pairing field is a fair
4mh approximation. This is just another way of stating that the
size of the Cooper paft’ks /mA [9] is much larger then the
average interparticle separation in the weak coupling limit.
Typically this takes place when the range of the pairing in-

where the coupling constagtis defined as

9o(f —y) = 52Egs . 6) teraction is smaller than the size of the Cooper pair as well,
Sv*(ry) v(ry) and thus the pairing interaction could be described by a
single coupling constant.
Previous approachg$-12] use (k) only in the second Even though apparently the divergence has been success-

term under the integral and in that case the last imaginarfully dealt with (in infinite homogeneous systeins closer

term does not appear. | have assumed here the simplest daspection of the entire approach reveals an inconsistency,

pendence of the LDA energy density functional on thewhich is somewhat hard to spot. The divergence is due to

anomalous density»(r), namely, &(r(r),p(r),|v(r)|?), high momenta and for that reason one has subtracted the

merely for the sake of the simplicity of the presentation, butterm A/2[ (k) — w—iy] in Egs.(4) and(5). Far away from

more general forms can be used as well. A note of caution: ithe Fermi surface, however, the problematic term

would be incorrect to interpret some of the above formulas im\/2\[ (k) — x]2+ A? behaves rather lik&/2|e(k) — | in-

the same manner as similar looking formulas appearing istead. The main difference between these two subtraction

various treatments of the pairing correlations with a zeroprocedures appears for holelike states. As the Fermi energy is

range interactioV(r,—r,)=gd(r,—r,) (which can be re- finite, the integral over states below the Fermi level is also

lated to the zero energy two-particle scattering amplitgde finite. This feature, which breaks the approximate symmetry

=4mh2a/m). As it has been well known for quite some between the particle and hole states, is rather unsatisfactory

time, even in the low density region, whég|a|<1, there and it has no theoretical underpinning. On one hand, in cal-

are significant medium polarization corrections to the pairingculating the integral over the single-particle spectrum above

gap[14]. The present LDA treatment is not limited by simi- the fermi level one expects a relatively fast convergence,

lar restrictions on the density. In the LDA energy densitywhen the energy of the particle states is a “few gaps

functional the polarization effects are already implicitly in- away.” On the other hand, the integral over the hole states

cluded in the definition oE(7(r),p(r),|»(r)|?) and the cou- converges only for energies of the order of the Fermi energy

pling constantg has no simple and direct relation to the eF=ﬁ2k§/2m. Clearly, in most cases of interest, the so called

vacuum two-particle scattering amplitudeln this sense the weak coupling limit, whenA<eg, there is absolutely no

LDA is similar in spirit to the Landau Fermi liquid theory. physical reason to take into account single-particle states so
Equation(5) can be used to extract from known propertiesfar away from the Fermi level in order to describe global or

of homogeneous infinite matt¢such ase(k), A and den- mean-field properties of nuclei in particular.

sity] the specific value of the coupling constanto be used | show here how a relatively simple regularization scheme

in constructing&(7(r),p(r),|v(r)|?). Assuming that a full can easily deal with this problem in a very clear and easily

microscopic calculation of homogeneous matter at a givefimplementable manner, suitable for any system, finite or in-

densityp=k2/37? has been performed and that the value offinite, homogeneous or inhomogeneous. The regularized

the pairing gap at the Fermi level is known, one can, usinganomalous density is calculated from the following expres-

Eq. (5), calculate directlyg(p) and thus obtain the simplest sion:

approximation to the LDA energy density functional

Eon(7(1), (D), (N2 = Ex((r), p(1)) + glp(r)|¥(1)2, ‘.

Where§o(r(r),p(r)) is the thn—Sham energy density func- Vreg(r)::f dEgura(E)vE (N ug(r)

tional in the absence of pairing correlations. In many treat- 0

ments of the pairing correlations in infinite systems authors «

often underline the dependence of the pairing gap on mo- —fﬁECdsg (8)&—%(”%“)

mentum, that is\ (k). On one hand, typical calculatiof5] . oHF 2 le—pl|+iy

of the pairing fieldA (k) in infinite systemgwith no medium

polarization effects taken into account so)fahow that for & reg

I - ) + r'eo(r,w), )

arge momenta the pairing field decreases, as one would 2

w—
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FIG. 1. In region | all three wave vectotg(r),kg(r) andk(r) FIG. 2. The gap\ and the effective coupling constagd; as a
are real and both subtraction terms are present. In regiur)lis  function of the cutoff energ§ for three regularization schemes.
imaginary and the corresponding subtraction term in Edp)  The full lines correspond to calculations using E¢$5)—(17).
should be dropped. In region Il all three wave vectors are imagi_CircIes correspond to the regularization scheme presented in Ref.
nary and both subtraction terms in E@5) should be dropped. [5] (when only terms withk. are present The pentagrams corre-
Even though in region Ike(r) becomes imaginary for larger the spond to the vacuum regularization schepié]. The calculation

corresponding subtraction term containkr) is real everywhere ~Was perff)gmed for homogeneous neutron matter wijth
and it should be retained. =0.08 fm 3 andg=—250 MeV fn?.

wheregyes(E) andgye(e) are the HFB and HF density of and after some straightforward manipulations one can show
states, respectively, that the renormalized anomalous density introduced above

acquires the following form:

[h(1)—&]4,(1) =0, ® A(rmk(r)
E, rymk(r

V() 0(1) )= |, GE G E et - =D

F(rl.rz.M):f dngF(S)ﬁ ©

 ke(n) kc<r>+kF<r>]_A<r>mlc<r>
2ke(N) ke —ke(D | 2282

m
= T"9(r, 1)+ O(|r 1))
Py — 1) +0([r= 1| [ ke(r) kF<r>+|c<r>]_ s

(10) T 200 ke (D —To(n)

v is as usual a small infinitesimal quantity andr; ,in the  The only formal difference between this expression and the
limit |r;—r,|—0. As in Ref.[5], | shall use a Thomas-Fermi corresponding expression introduced in R is in the
approximation for the single-particle wave functios(r) terms containing the second cutoff momentligr) (last
and energies in order to evaluate the regulator. After introtine). If either one of the wave vectoiig(r) or k.(r) be-

ducing the local wave vectots(r)<kg(r)<k.(r) comes imaginary, then the corresponding terms in the renor-
malized anomalous density.4(r) should be dropped. How-
h2v?2 ever, if the wave vectokg(r) becomes imaginary, the

h(r)=——~+U), (1) renormalized anomalous density is real and the above defi-

nition should be used, see Fig. 1 for a generic situation.
e It is convenient to introduce a notation for the cut-off
. E.
[ c(n +U(r)}=EC+,u, (12) anomalous densityv(r):=[ dEgurs(E)vE(r)ug(r) and
2m an effective position running coupling constant

h212(r) } 1 1 mk(n ke(r)  ke(r)+ke(r)
+U(N) |= —Ect . 13 - .
[ 2m () " 13 Jets(r) @ 2772ﬁ2: 2ke(1) Pkc(r)_kF(r)]
#2K2(r) mlc(r) Ke(r)  Ke(r)+1c(r)
2an +U(N=pu (14 - szﬁz[ BARG) r\'kF(r)—Ic(r)}' (16)
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In the limit kr—0 (in vacuum the value of this effective where the kinetic energy density is evaluated &a$r)
running coupling constant agrees with that derived in Ref-==2f§°dEgHFB(E)IVUE(r)|2. [I have assumed here the sim-
[16]. Using these notations one obtains for the renormalizeghlest dependence @&(r,p) on 7.] Only this combined ex-
pairing field pression, containing the trace of the kinetic energy with the
trace of the pairing field and of the cutoff anomalous density,
— E— is converging as a function of the cutoff quasiparticle ener
Aln) 9¥reqr) Gerd(1)velr). el E.[11]. T%e gr]eason is that.(r) diverges i#a sin?nilar mannergy
asv.(r) as a function of..
Even though the cutoff momenta(r) andl(r) and the Tch(e)formalism described here paves the way to a LDA to
cutoff quasiparticle energiz. explicitly appear in the defi- pairing in the spirit of the Kohn-Sham theofg]. One has
nition of both the eff(_active coupling_co_nstant and of _the Cut-simply to add to the usual LDA energy density functional a
off anomalous density, the gal(r) is indeed cutoff inde-  pairing termg(p(r))| v.(r)|? with a density dependent “bare
pendent, once the cutoff energf, has been taken coupling constang(p(r)),” extracted from homogeneous in-
sufficiently far from the Fermi surface. This situation is simi- finite matter calculations. For the descriptions of many sys-
lar to the situation described in R¢b], with the single dif-  tems (e.g., nuclei, Fermionic atomic condensatésle and
ference that in the present case the convergence is achievadutron mattera term linear in|v(r)|? will most likely
for significantly smaller values @&, . As one can judge from suffice. However, as we already know from the Landau-
Fig. 2, the present regularization scheme is indeed very fasbinzburg theory, terms proportional {o¢(r)|* might be-
converging, while the regularization scheme presented itome relevant and in such a case the energy density func-
Ref.[5] converges as expected at energies of the order of théonal should be generalized appropriately. Irrespective of the
Fermi energye: =72k2/2m. At the same time, the traditional Specific functional dependence of the energy density func-
approach based on @&function with cutoff energyE. [16] tional on the' anom_alous densiby(r), the emgrglng_Kohn—
(for which ge((r) =g/[1— gmk,(r)/2m2%2]) converges ex- Sham equations will be local and the ultraviolet divergence

tremely slowly, and even a@.=1000 MeV is still about in the pairing field will have exactly the same character as
20% off the co,nverged valuec the one studied here and consequently, can be dealt with

When computing the total energy of such a system oné&>NY the same approach.
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