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Axial current conservation in nonrelativistic nuclear physics: The nonlinear o model
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We analyze partially conserved axial current in the nonlinear realization of chiral symmetry in nuclear
physics. We construct the two-nucleémeson-exchangeaxial currents and associated pion emission and
absorption operators and compare them with those derived earlier in thedimeadel. We show the absence
of necessity of meson-exchange currents in the nonlinear model, in contrast with the linear one.

DOI: 10.1103/PhysRevC.65.045503 PACS nunier24.80-+y, 25.10+s, 11.30-j, 11.40—q

I. INTRODUCTION (MEs), as derived in the Bethe-Salpet@S) formalism[2]
in the two models(1) the nonlinear theory is chirally invari-
Theoretical studies of axial meson-exchange curren@nt both in the impulse approximatigif\) (one-nucleon cur-
(MEC) have a long history: their perhaps most importantrent only and with MEC(two-nucleon currenf whereag?2)
applications have been to neutrino reactions with astrophysthe linear realization requires both to maintain chiral symme-
cal significance, such as thgp—De™ v,. More recently a try. The latter result has been confirmed in the nonrelativistic
new class of nuclear weak neutral curréINC) reactions  (NR) limit: In an earlier publicatiori3] a systematic study of
has been measured in the form of parity violating inelasticaxial current(partia) conservation or, equivalently, of chiral
electron-deuteron scattering which also calls for axial MEC symmetry was begun in the traditional nonrelativigchro
The latter process involves both vectpelectromagnetic dinger equationapproach to nuclear physics. There it was
(EM) and WNQJ and axial vector currents. Whereas one canfound that PCAC in models with linear realization of chiral
define “model-independent” EM meson exchange currentSymmetry puts constraints not only on the form of the axial
[1], it is less clear if that can be done for axial exchangecurrent operator, which requires both IA and MEC, but also
current. Theraison d’are for the axial MEC seems weaker on the nuclear wave function, by way of fixing the potential
than the one for EM current: The exact conservation of theentering the nuclear Schiimger equation.
EM current is underwritten by the local gauge invariance of In view of the aforementioned “equivalence” of the two
QED, to be contrasted with the “merelyartially conserved theories, it seems reasonable to expect that the same kind of
axial current(PCAC). PCAC, on the other hand, is a conse- constraint will carry over into the nonline@NL) realization
quence of bothspontaneoushand explicitly broken chiral  in the NR limit. We shall show in this paper, however, that
symmetry of the strong interactions, which even in the caséhis conjecture is incorrect. This begs the question: what is
of a single nucleon and in the limit of no explicit breaking, the cause of these differences? In this paper we offer an
i.e., in the chiral limit, is rather complicated and not fully answer to this question by way of extending the NR analysis
understood. Specifically, there are two distinct ways chiralf Ref. [3] to the nonlinear realization of chiral symmetry.
symmetry can be realized) the linear andii) the nonlinear We show that even at the nonrelativistic level there are dra-
realization. The jury is still out on the question of which matic differences between the two realizations of chiral sym-
realization is the “right” one or if the question is a meaning- metry, i.e., between the two standard versions of the
ful one. model, as there are also in the relativistic case, “equivalence
There is a nonlinear “unitary” transformation between the theorem” notwithstanding.
relativistic chiral Lagrangians in the two realizations, which ~ This paper falls into five sections. After the Introduction,
often obfuscates manifest differences between them. Thig Sec. Il, we try to define chiral symmetry in nonrelativistic
(unitary) “equivalence theorem” holds only at the level of systems. In Sec. Il we construct one- and two-nucleon axial
exactsolutions to the two Lagrangians, which in realigf ~ currents that respect chiral symmetry and PCAC at the level
course are not available. But if there is “equivalence” at the of nuclearmatrix elements, starting from the Nt model. In
relativistic level, there ought to be also “equivalence” at the Sec. IV we compare the results with those of the linear
nonrelativistic level, especially because both the linear andnodel and discuss the differences. In Sec. V we summarize
nonlinearNN interactions reduce to the same nonrelativis-and draw the conclusions. In the Appendix we define the
tic interaction. We wish to explore this question here. nonlinear o model in its relativistic and nonrelativistic
Some indications as to the answer already exist, howeveforms.
In any (no matter how goodapproximation to the linear and
nonlinears, models, differences are bound to show up. These
differences have been clearly exhibited in the case of relativ-
istic nuclear bound-state axial current matrix elements

II. CHIRAL SYMMETRY IN NONRELATIVISTIC
NUCLEAR SYSTEMS

Any quantum mechanical symmetry consists of three
parts: (1) an invariance(“gauge”) transformation,(2) the
*Present address: Viadnstitute, P. O. Box 522, 11001 Belgrade, corresponding Nitner currents, and3) the Naher charges
Yugoslavia. form (“close”) the (Lie) algebra of the invariancéLie)
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group. In a relativistic field theory the linear chiral transfor- This equation is a consequence of tfexacl Heisenberg

mation is defined with the help of thg, matrix. As there is equations of motion and ought to hold in every reasonable

no such thing as &5 matrix in nonrelativistic quantum me- approximation.

chanics, there can be no corresponding transformation and Now we specialize to nonrelativistic nuclear physics by

symmetry, so we are faced with the general question of deimiting ourselves to that subspace of the complete Hilbert

finining linearly realized chiral symmetry in nonrelativistic space that contains at most térea) nucleons interacting by

nuclear physics. We can do that only by a nonrelativisticexchanging onévirtual) meson at a time. The total Hamil-

reduction of the relativistic currents, while having to forgo or tonian of the nucleusi is the sum of the kinetic and poten-

lose the invariance; see Rdf]. Nonlinear realization of tial energiesH=T+V of the nucleons, and the total axial

chiral symmetry, on the other hand, does not depend on theurrentJZ(R) consists of one- and two-nucleon parts.

s matrix, but only on thelynamicalpion field’s nonlinear

transformation properties. The emphasis is here on the word 1. Linear o model

“dynamical,” as a static pion field does not possess a canoni- - ag stated above, there is no NR equivalent of faema-

cal momentum, So th.e Nlmer' charges vanish |dent|cal!y. rix; hence, the axial current in the NR limit of the linear

Thus,. nonlinearly re'al'|z.ed .Ch.'ral symmetry can .be qef'n,e(inodel isnot a Noether current. The nuclear axial charge

sven in the nonrelativistic limit, as long as the pion field is gensitypg is given by the sum of nonrelativistic one-nucleon
ynamical. However, nonrelativistic nuclear physics does not _. o a . :

ordinarily involve dynamical pions, only their “remnants” in axial charge densitiegs ; ,. The axial current conservation

the form of the static two-body one-pion-exchange potentia quation is broken up into one- and two-body parts without
(OPEB. So, once again, chiral symmetry disappears in non-SS of generahty. The divergence of the complet_e Of‘e'b"dy
relativistic nuclear physics. In the following we shall make curre_lr_lt egutarl]ls—l tlrge(sj the _c?mhmutat(ér of _:he kinetic en-
these remarks quantitative. This lack ofumique definition ergy I and the one-body axial charge density

of the (nonrelativistig chiral transformation is the major dif- 1801 i } _ 217801 -

ference of PCAC from EM current conservati@igauge in- V- Js(1-body I[T.ps(1-body ]~ f,mIT%(1 bod)b(4)
variance”).

~ Thus, it ought to be clear thahpproximatg nonrelativis-  js of O(M~2), i.e., zero to leading order in W, due to

tic chiral symmetry depends on tlidegree of approxima-  similar momentum dependences of the kinetic enargnd

tion to the Original relativistic theory. There am Ieas): two the axial Charge densiwg(l_body) Operatorsl where
distinct levels of approximation of relevance to the present

discussion(1) (relativistic or nonrelativisticdynamic nucle-
ons and dynami¢relativistic or nonrelativisticpions and2) Peiy (PP == o)
nonrelativistic nucleons and static pions or nonrelativistic
nucleons alonéno pions. Further, for practical reasons, we a5 well as to the absence of nondiagonal isospin operators
shall confine ourselves to the one-meson-exchange potentighm T, The test of the conservation of the complete nuclear
approximation, which has a well-defined meaning within ayia| current is whether or not the potentiabommutes with
quantum field theoryQFT). Any substantial deviation from the one-body axial charge density. It turns out that, as a resuit
the original QFT, such as the introduction of a mean- ¢ the momentum dependence of the operatid-body),
field one-body potential, may forfeit the underlying chiral only a completely trivial, viz., a spatially everywhere con-
symmetry. stant, potential commutes with the axial charge. In nuclear
physics, therefore, onalwaysneeds a two-body axial cur-
Partial conservation of the nuclear axial current rentJ&(2-body)= EJA<kJ5y(jk)(2-body) to compensate for the

Partial conservation of axial current demands that thd€mporal change O_f the axial charge density in the litear
(hadronig axial current.]f‘L5 satisfy the continuity equation model(see Ref[3)):

P/ +pi
2M

, ©)

gHIo5=—f moII%+ - .. 1  V-J5(2-body=—i[V,p5(1-body0]— fﬂmiﬂa(z-body?é)
or, equivalently, Thus the commutatdi/,_,, p2] is a nonvanishing object that
plays a crucial role in maintaining nuclear PCAC in the lin-
a IpE(R) 2 a ear> model. We shall not show the form of the axial two-
V- Js(R) +—— =~ MR + - -, (2)  body current in the linea¥. model, as it can be found in Sec.

Il B of Ref. [3]. We just note here that botlr and
Qs . o _ m-exchange currents are involved, as dictated by the one-
wherell® is the (canonical pion field operator. In the quan meson-exchange approximation for the two-body potential

tum mechanical framework this can be written as an equatlogmd the PCAC condition, Ed6).

relating the divergence of the three-current and the commu- Finally, one may ask why the one-body mean-field poten-

tator of the Hamiltonian and the axial charge density: tial, which is commonplace in many nuclear physics appli-
a ) a - cation, has been omitted? The answer is that it does not have
V-J5(R) +i[H,p5(R)]= — f ;m7II%(R). (3 a chirally invariant relativistic field-theoretical definition
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from which one could deduce a nonrelativistic version of themetry does not survive in the static pion limit.

potential and the corresponding one-body axial “meson- A detailed comparison of the axial MEC derived in the
exchange” current. The mean-field approximation generalllinear (see Ref.[3]) and nonlinear>, models(see below
breaks symmetrie@ranslational, gaugeand the same is true indicates a clear functional difference between the two. No
of chiral symmetry. Any axial current made to satisfy PCAC amount of adjusting of parameters can turn one into another.
with a one-body potential must necessarily contain an eleThat, however, does not necessarily mean that the difference

ment of arbitrariness. is observable in experiment: the common wisdom at the mo-
_ ment holds that the dominant axial MEC is induced by inter-
2. Nonlinear o model mediate A resonance state, which does not appear in the

Nuclear PCAC holds in the nonlinear model as well, Simplest versions of either of these two models.
only this time the one- and two-nucleon parts of the axial
currentJ? are separatelypartially) cons_erved. This_means IIl. NUCLEAR AXIAL CURRENT
that all (both one- and two-bodythe axial currents in mo- IN THE NONRELATIVISTIC NONLINEAR 3 MODEL

mentum space have the forfsee Sec. I
One can take the nonrelativistic reduction of the relativis-

qq)=jdq)—[a-ja(a](g>+m3)~ . (7)  tic Lagrangian Eq(Al) to any given order in M, of course
with different detailed results, but always with the same ge-
This generic form can be often found in the older literatureneric structure. The deciding factor here is the presence or
as anad hocprescription for the construction of the gauge- absence of the time-dependent pion field: for static pion
invariant EM currents, which is, of course, arbitrary. But in fields there is no conjugate momentum and hence no axial
the case of the nonline@ model it is a definite prediction charge algebra, irrespective of other properties of the La-
and it represents the well-known statement that the chiragrangian. Thus, e.g., the nucleons may remain relativistic, as

Ward identities are trivially satisfied in that model. described by the Dirac equatidithough their interactions
The axial current continuity equation in the momentumwith pions would necessarily break Lorentz symmetry due to
space becomes the static, i.e., Lorentz-variant pionand still their axial
charge algebra would not close. Such a “semirelativistic”
q-J2(q)=0(m2), (8 model seems unnatural and we replace it with one with non-
o ) _ _ i relativistic nucleons and static pions.
which is equivalent to the configuration space equation In the following we look at the nonlinear model axial
V-JS(R)=—fvmiHa(R). ) currents in a nonrelativistic setting by first expanding the

relativistic Lagrangian Eq(A1) in powers of #%/f2, then
making a nonrelativistic reduction, and finally applying
Nother's theorem to obtain the axial current. Thus we find a
set of nonrelativistic axial currents that are partially con-
servedindependently of each othé&fThis is the distinguish-
qng feature of the nonlinear realization of chiral symmetry.

This, in turn, is equivalent to the continuity equati@ with
the commutatofH,p2(R)]=0 set equal to zero. As dis-
cussed above, that is only possible#= 0, the result proved
in the Appendix. Thus, nuclear PCAC is independent of th
nuclear HamiltonianH in the nonrelativistic nonlineal
model, and there is no need for consistency between the

nuclear axial current and nuclear dynamielamiltonian and A. Model and its axial Nother current

wave functjon}s This.is a consequence of the vanishing \ye expand the LagrangiafAl) to leading order in the
nucleon axial charge in this model. nucleon mass and the second nontrivial order fr, 1Avhile
keeping astatic pion field, i.e., expand tc@(f;z) and set
_ , _ =0, and find

The nuclear axial current matrix elements in the nonlinear
o model satisfy PCAC even when the nuclear wave func-
tions used in the calculation aret solutions to the Schro L=y
dinger equation with the corresponding one-pion-exchange
potential, in contrast to the linear realization of chiral sym-
metry. The same conclusion holds for the nuclear pion pro- +
duction amplitude. Thus we have found a lack of need of
consistency between the pion creation and absorption opera- v o X
tors and the nuclear Hamiltonian. WH ETVE

This finding is in accorance with the results found in the
same model, within the relativistic Bethe-Salpeter approach (10
[2]. Moreover, the result agrees with the original philosophy
of the nonlinear effective Lagrangian approach, viz., to
achieve PCAC without cancellations between different dia- “weinberg[5] was addressing precisely this aspect when he em-
grams and independently of tlieucleaj dynamicg4]. Now  phasized the nons nature of the nonlinear realization of chiral
we see that this program has also the feature that chiral symsymmetry.

3. Comparison

V"Z
|(9t+m

v %[(ﬁn)2+miﬂ2]

f N
m—ﬂ- lﬂ’T'(O"Vﬂ')lﬂ
1 2
o] e

ko

o (axX V)2t
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whereV=V —V. The Lagrangiar{10) is only invariant un- 2. Nucleon-pion axial current vertex
der chiral transformations, EGA3), to first order in 1f .. To construct the nucleon-pion axial current vertex in this
This means that the associatedth&r current isnot exactly model we start from the corresponding term in the axial
conserved even in the chiral limthe remnant being of finite  Nother current, Eq(11), and add the pion-pole graph
order in 1f ., in this case of)(f_?).

Next we apply Nther’s theorem together with the axial

[
a ’ by — b ’
transformation properties, EGA3), to find AT(P1.P".a.KY) = 55 e ptp’+ 501X q
i
- - 7e. - . Ty
‘]g:_wa”a—’—gA(//T(?U)q’ o+ m?2 PutPit 50Xk }
Lo (14)
" (V=V) oXxV T \2
T M Tt oM TXE gt---. (1) where three-momentum conservation reqs- p,+g+k

=0. This axial current vertex alone maintains chiral symme-

. _ ) . try, as can be seen from the corresponding divergence, i.e.,
Note that these terms can be divided into different categorieg,e \ward identity, which reads

depending on how many pion and/or nucleon fields they con-
tain. For example, those containing one pion only, three q.A?(p,p’,q,kb):@(fﬂmi)_ (15)
pions only, etc.; one nucleon only, one nucleon plus one
pion, nucleon plus two pions, etc. We shall separate out two
such terms:(1) the one-nucleon axial current ar{@) the
one-nucleon plus one-pion axial current. We cannot do much To construct the partially conserved nonrelativistic axial
more with this in configuration space, so we turn to the motwo-nucleon current in this model we start from the corre-
mentum representation. sponding axial current vertel4) and attach the free pion
“leg” to the second nucleon:

C. The two-nucleon axial current

B. Axial current vertices and their Ward identities i
!
P1t Pt 501X Ky

a - > a 9NN
1. One-nucleon axial current vertex J5.2-b0af K1:K2, Q) = (70) X 7(2)) 2f .M
The complete one-body current vertex receives a contri-
bution from the one nucleon term in the tder current —
(11, as well as one from the pion-pole graph. Since the
Goldberger-TreimanGT) relation gaM =g..nnf» (herega o2)-Ka
=1.26) holds in the nonlineasr model, we can write the Xm+(l<—>2), (16
one-body axial current vertex as 27w

i
Pt m? q- ( p1+ pi+50(1)>< Ky

where ki=p;,—pj,i=1,2. Three-momentum conservation

X 0 o) q demandsk; +k,+q=0. This MEC maintains PCAC by it-
Is5,0)(Pi 'pi)ngT O q2_2_+m ' (12 self, as can be seen from the corresponding divergence
, - . - 325 poaf K1, K2, @)= O(f ,m?); (17)
which separately satisfies tlieonrelativisti¢ single-nucleon
axial Ward-Takahashi identitg¢VT ID) i.e., PCAC is satisfied by thiéndividual) two-body current
independently of the one-body current and of the commuta-
tor [V,pd(R)], i.e., as if[V,pd(R)]=0.
ot oot | Ta("“)'q) [V.p5(R)] [V.p5(R)]
“I5,M\Fi M) Ml D2 2 [ IaNNT ()| Tong
9 +ms 2M IV. COMPARISON
2
_ R N 1. The functional forms of the axial one-body currents are
i| 2= |I'%(pi ,pi;1-body). . . R .
g+ m: identical(up to the overall multiplicative constanh the two

models; the forms of the two-body axial currents are entirely
different(so much so that they cannot be meaningfully com-
pared. The dominant axial MEC is believed to be induced
Note the absence ¢fT,pZ(1-body)| on the right-hand side by the A resonance and is transverse, i.e., unconstrained by
(RHS of the identity. This is consistent with vanishing of the continuity equation, in either formalism. It remains to be
this commutator. The one-body axial current is just the renorseen if this ambiguity in axial MEC can be settled by a
malized (by a factor ofg,) version of the linearr model judiciously chosen experiment.

one. It is commonly assumed that the same holds for the Of course, one must remember that we have constructed
axial charge, as well. The latter assumption, however, is inenly the leading term and lightest meson axial MEC. If one
correct, as shown in the Appendix. were to continue this process to include heavier mesons, one

13
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might find further significant differences that would ulti- ) - g
mately lead to observable consequences. [p3(0X),pR(0y)]=i?PS(x—y) 7V — | ¥
; - : . 8f
This point is not purely academic: the standard model is a g
gauge theory with exactly conserved weak left isospin cur- #i2P°5(x—y) p°(0X). (19

rent; the phenomenological effective field theories that pur-

port to describe it always violate this symmeteyg., by the  Clearly, there is no closure here. This is merely a manifesta-

pion mass term There must be an observable consequencéon of point(3) in the Appendix, viz., that in the nonlinear

of this nonconservation, though it is not known today. model the nucleon axial charge does not close the chiral
The nuclear axial current matrix elements in the nonlineaalgebra by itself, i.e., without the pionic part. Hence no chiral

o model satisfy PCAC even when the nuclear wave funcLET that depends on closure can hold in this model and in

tions used in the calculation aret solutions to the Schro the static pion approximation.

dinger equation with the corresponding one-pion-exchange

potential, in contrast to the linear realization of chiral sym- 2. Linear 3 model

metry. The same holds for the nuclear pion production am- The nonrelativistic linearr model has its own problems,

plitude. Thus we ha_ve founo_l a lack of necgssity Of CONSISh o vever: the chiral algebra does not close either. More spe-
tency between the pion creation and absorption operators an ically, whereas the commutatot&10a and (A10c) still

the nuclear Hamiltonian. .
NPT . . hold, the double axial charge commutaté&10b) does not.
This finding is in accordance with the results found in the, detail g { )

same model, within the relativistic Bethe-Salpeter approach

[2]. Moreover, the result agrees with the original philosophy [ p\2

of the nonlinear effective Lagrangian approach, viz., to [pg(o,x),pg(o,y)]zisabcﬁ(x—y)\PTE(m) v
achieve PCAC without cancellations between different dia-

grams and independently of tkeucleaj dynamicg4]. Now #i82P°5(x—y) p°(0X), (20)

we see that this program has also theginally unwanted

feature that chiral symmetry does not survive in the statighe difference being thep(M)? factor. This discrepancy is a
pion limit. manifestation of the relativistic nature of the linear realiza-
tion of chiral symmetry and of the nonrelativistic approxima-
tion used here. For this reason here, just as in the static pion
nonlinear 3 model, we do not expect the Tomozawa-

At this stage one ought to make sure that the distinctionyeinberg and other related chiral LETs to be fulfilled for
between PCAC and chiral symmetry is clear: the former is ayyclei.

necessary precondition for the latter, whereas the latter also
demands closure of the chiral charge algebra. The chiral
charge algebra is a prerequisite for many chiral low-energy
transistors (LETs), though not al? Specifically, the We showed explicitly that théspatial parts of theaxial
Tomozawa-WeinbergTW) relations demand itsee Adler’'s  current in the nonlineas model satisfies PCAC separately at
original derivation. Thus, the model Lagrangiafi0) does the one- and two-nucleon levels without constraints from the
not lead to TW relations in nuclei even though it satisfiesHamiltonian. Nor is there compulsion to introduce two-body
PCAC. Closure of the chiral charge algebra is often taken fotixial current. In this sense the nonlinearmodel is pro-
granted, however, although the above example warns againgundly different from the linear one. Therefore one cannot

A. Chiral algebra closure

V. SUMMARY AND CONCLUSIONS

it. define model-independent axial currents along the same lines
_ as in the EM cas¢l]. This is in agreement with an earlier
1. Nonlinear % model study of the relativistic Bethe-Salpeter approach to nuclear
Of course, in the nonlineat model with only nucleons ~Systemg2]. - .
the axial Charge Vanishésee the Appendpxand there is no A|th0ugh PCAC is satisfied at the Opel’atOI’ IeVel, chiral

point in talking about chiral algebra closure at all. But we Symmetry isnot preserved, as the axial charges do not close
wish to address this question in the nonlinear model witithe chiral algebra, a necessary condition for many, if not all,

static pions when there might be a vestige of an axial chargghiral low-energy theorems. The reason for this is that the
operator. Indeed, EqA5) together withir=0 leads to one-nucleon elastic matrix element of the axial charge van-

ishes(pZ)y=0, in the first-order perturbative approximation
to the nonlinealo- model, in agreement with general results

a_ ot X a of chiral symmetry and those of heavy-baryon chiral pertur-
ps=" 4af v, (18 pation theory §PT). This implies that the nucleon axial
i charge operator vanishes in nonrelativistic nuclear models
based on the nonlinear realization of chiral symmetry with
which in turn leads to static or fully integrated out piongsuch as the potential

models.
This stands in marked contrast to nonrelativistic nuclear
2Some LETs depend on the spatial components of the currents. dynamics based on the linearmodel and the Bjorken and
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[ 9a

[ 9a | _[9mnN
2f 2M |

ef'he nonlinear function of the pion fields is to be understood

of two-nucleon or meson-exchange axial currents as well as
their consistency with the underlying nuclear Hamiltonian
[3]. Nucleons in such models have nonvanishing axial charg

operators, which doot close the chiral algebra either, due to o of ifestl h
the nonrelativistic approximation made in their derivation. as an expansion in powers ~ [4.8]. Manifestly, such a

Consequently, chiral symmetry in nonrelativistic nuclearS€"€s has infinitely many terms, which makes it impossible
physics without pionic degrees of freedom is an imperfeclto use in its entirety with our present methods. Rather, the

concept, whether realized linearly or nonlinearly. Without theF €Ynman rules and the associatedtiéo currents are also
dlefined by the power series expansiovhich is essentially

taneously broken chiral symmetry. the method used in chiral perturbation thechrhat expan-

These results have consequences in at least two figlds: sion, however, will be the cause of chiral noninvariance of
In the field of axial meson-exchange current in nuclear weak€ €xpanded Lagrangian and consequently of axial current

decays and parity violating leptonuclear scattering. It hadionconservation. o
been a custom, for more than two decades, to calculate the '€ nonlinearchiral transformatiorisare
axial MEC in the form of corrections to the axial charge

Nauenberg variation there@®], which require the existence ( f )
m

ko

operator rather than to the currdit. As the nucleon axial a o €577

charge has been shown to vanish in the nonlireanodel Ssm=1,e5| 1- 252 ta 2t | (A2)
used there, it is manifest that the whole subject will have to g T

be reexaminedi) In the so-called effective field theory ap-

proach to the two-nucleon problem in which the pions have ST =i 7'><_ﬂ' W A3
been “integrated out,” i.e., where onle.g., static contagt 5% = 1&s af_ | (A3)

NN potentials are used, chiral symmetry is not defined, be-

cause the axial charge generators aII_ vanish_and thus thenich leave the LagrangiafAl1) invariant up to the pion
chiral charge algebra becomes trivial, i.e., equivalent 10 the,,gs term. Hence, the associated axial vector Noether cur-

isospin algebra. rent reads
ACKNOWLEDGMENTS a — ™ [iXm|\® a
' Js=R gA\If‘yﬂysi\P-ﬁ-\P'y# AT v—f, R, m
The author would like to acknowledge RCNP for support. m
— T
[ a —
APPENDIX: NUCLEON AXIAL CHARGE X ( 1 452 +taR gAWﬂszq’
IN THE NONLINEAR o MODEL 77
a
We shall show that the single-nucleon elastic matrix ele- _ . T. |7
. g eon & _ RO m || = |+ Ry, | W
ment of the axial charge operator vanishes in the nonliBear 2f w
model. For this purpose we shall need some basic facts about
the axial charge in the said model. — 78 w
=R gA‘I”}/#’y5?‘I’_f7TR¢9M1Ta 1—F
1. Lagrangian and the Naher currents
The Lagrangian density of Weinberg's nonlineamodel + 7R gAiyﬂsg«p_fﬂn(guﬂ (iz)
[4] is given by 2f7,
— 1 s o f — [Xm\? w
l::{ﬂ[lﬁ—l\/l]l//‘l'ER[R((?#‘n') _m,n_ﬂ'z]—F'R, m—ﬁ +R\If’yM Tﬂ. v l—w . (A4)

X(Py,ysTh) - Ot

gann |2 — 3The above form of the nonlinear Lagrangigiil) differs by the
ngM) (i/f‘}’uﬂlf)'(ﬂ'x ), (A1) presence ofy, in the denominators of the factorg (yn/2Mg,)
from the standard textbook versi¢8]. The source of this differ-
ence, as emphasized by Weinb@4g, is the need to have both the
where ga factor in the axial current and the empirically correct two-pion-
nucleon contact interaction. This result can be obtained directly by
)2}1 a chiral rotation and unitary transformati¢@] from the hybrid-

+R

heterotice model of Bjorken and Nauenbef§]; see also p. 323 in
Ref.[10].

“The second power of the pion field in these transformation laws
and is what gives the nonlinear realization its name.
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This axial Ndher current isnot conservedbut has a diver- Note the following.

gence of(’)(mi). It is important to note that th& factors (1) The chargesA5),(A7) satisfy(“close”) the chiral al-

must remain unexpanded, or else the truncated expansigebra Eqs(A10a), (A10b) and(A10c) independently of the

will be another source of the LagrangiarfA1l) symmetry form or Lorentz invariance of the underlying Lagrangian.

breaking and of axial current nonconservation, even in thdhe closure merely depends on the existence of the pion and

chiral limit m_—0. matter fields and their canonical momenta, as well as on their
Now note that the axial charge has the form chiral transformation properties, EG#3). In other words,

even in the nonrelativistic version of the theory the chiral

2 a w2 L a charges still exist and close the chiral algebra, as long as the
Jos=ps=— 5 (1) =T 1— e Hbs pion fields are truly dynamical degrees of freed¢BrOF).
N g When the pion field loses its dynamical role, e.g., if it be-
X a7\ 8 comes a static field with vanishing conjugate momentum, the
—illy| | W, (A5)  chiral charges cease to exist.
g (2) The requirement for the vector and axial charges to
where close the chiral algebra can be restated as follows: the

charges must have the generic shapes given in Egs.
i a (A5), (A7). An arbitrary truncation or expansion of the axial
WA gaV ysT V|, charges, Eq(A5), in powers ofw2/2f . will generally de-
(A6a)  stroy closure. Expansion and truncation of the Lagrangian is
necessary, as otherwise the model would be intractable. Con-
My=iv’ (A6b) sequently, the Niber current must be truncated, too. But the

_ . . _ truncation must not change ttgeneric form of the axial
are the pion and the nucleon field canonical conjugate mocharge(A5).

. R
a_mp2_a_|__
=R " (Zfﬁ)[

T(’TX m)?
2f

ks

menta. There is also the vect@sospin charge density (3) Of the two parts, the mesonic and the fermionic, of
a each charge only the former closes the chiral algebra by it-

JS:E,YOT_ o— (11X )3, (A7) sglf. The fermioniq charge; dp not form a chiral qlgebra

2 without the mesonic, i.e., pionic, part, in contrast with the

] . ) linear realization of chiral symmetry, where each term closes
which follows from the conserved polar vector tRer (iso-  the algebra separately. This is in line with Weinberg’s insis-
spin) current density tence on the “nonys” nature of chiral symmetry in the non-

a linear realization and with his interpretatip,5] of chirality

— 7 — T . . .
Ji:\pyu?qurR x| Rd,m—gaV 7’;,,75?‘1' as only being carried by pions.
w
X a 2. Nucleon axial charge elastic matrix element
—¥y, 4f§7 LI (A8) Next we shall prove that the single-nucleon elastic matrix

element of the axial charge vanishes to lowest-order pertur-
which is a consequence of the Lagrangian's, Bfl), in-  bation theory. To evaluate the first-order perturbation theory

variance under the isospin transformations one-nucleon matrix element of EGA5), we switch to the
interaction representation; i.e., we turn the canonical mo-
Sm=—eXm, (A98)  menta into free ones and expafin powers of 7?/2f2 .
Thus we find
| ET

woT
<N|J85| N>pert: - <N| ﬂa( T) |N>
These two kinds of charges “close” the chiral algebra i

[p%(0X),p°(0y)]=182"%(0X) 8(x—Y), (AL0a) - fw(N|( 1- ;

K

m%N)

[p2(0),p2(0y)]=i£*%°(0X) S(x—Yy), (ALOb)
_|_

1
— (N|wT PNy =0,
[p2(0),p°(0y)]=i£3%E(0X) S(x—y), (A100) 4fw)< Y mxm ™ IND

. . . : Al12
as long as the piomr and nucleon?¥ fields and their associ- (Al2)
ated momentar,, 11, satisfy the canonicalanticommuta-  where all fields and states are in the interaction picture now.

tion relations Each of the three terms is separately zero, because each con-
a b b tains an odd number of pion fields; hence, one pion field is
[72(0x),IT2(0y)]=16%8(x~y) (Alla  always between the vacuum states, but the pion field must

(0x) 180 =i s ) (AL1D) have zero vacuum expectation valM¥EV) to conserve par-
“(0x),IT3(0y)} =167 8(x—y). ity.
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The same result can also be found in the book by Demodel the axial charge is not only nonzero, but renormalized
Alfaro et al, p. 379, Eq(6.90 [10], where it was derived in upwards tag,=1.26. Clearly, such nonrelativistic models of
a different, Lorentz-invariant way, however. This result isthe nuclear axial charge will have to be reexamined.
also in agreement with the heavy-barygRT, as can be seen Moreover, it seems to imply that one has lost one subset

from the following. In the heavy-fermiogPT [11], one has Of generators of the chiral SU(2p SU(2)g algebra, i.e.,
that the chiral symmetry is lost and/or undefined. That is not
a — 72 i vra s0, as long as the pions are dynamical degrees of freedom:
<N|J,L5|N>=9A‘P7ﬂ757‘1'—>iu V50w o | U, the axial charge still exists in the nonlinear realization of
(A13) chiral symmetry, but it is carried exclusively by the pions —
not by the pions and the nucleons, as in the linear realization.
as the axia| Current, Wher@”:(l,(-j)_ Hence' the nuc'eon Hence the elastic matrix element of the nucleon axial

axial charge(the =0 component of the nucleon axial cur- charge may vanish, as it indeed does. Other, nonelastic ma-

rend vanishes, trix elements need not vanish, or else the total axial charge
may then actually be zero. This last case occurs only when
a [ Va-a the pions become static, or “integrated out,” as in ordinary
<N|P5|N>:§U Y500,0" 5 |U=0, (A14) " nonrelativistic nucleons-only potential models of nuclear
physics.
by the antisymmetry ofr,,= (i/2)[ v, ,v.]- It is just that in the present case some of the chiral charge

In another study of nonrelativistic chiral symmetry in elastic matrix elements vanish, contrary to naive expecta-
nuclear systemg3] we discovered that the spatial part of the tions. That implies, however, that certain subsectors of the
axial current in the Bjorken-Nauenberg model is renormal-complete Fock space may have unexpected properties. Spe-
ized from unity tog,=1.26, whereas the axial chargine  cifically, the nucleons-only subspace, which may be viewed
temporal component of the axial four-currgistnot[3]. This ~ as the proper Hilbert space of the nonrelativistic nuclear
fact can be interpreted as the vanishing of that part of thghysics, has vanishing axial charge elastic matrix elements.
axial charge that is associated with the gradient coupling. IThus we may say that theffectivenucleon axial charge den-
this paper it is shown that the same result holds in the nonsity operator in the nucleons only Hilbert subspace vanishes,
linear & model, but this time the effective nucleon axial p2,=0, in the nonlineaw- model.
charge vanishes altogether, because the interaction is purely Consequently, in those versions of chiral models, such as
pseudovector in that model. xPT, in which the pions are static or have been “integrated

At first sight this result is, if not paradoxical, then at leastout,” one cannot talk of chiral symmetry anymore because
perplexing, for it stands in marked contrast to the usual asthe chiral algebra does not close and/or the axial charges
sumption made in nonrelativistic nuclear physics that in thisvanish altogethef12,13].
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