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Axial current conservation in nonrelativistic nuclear physics: The nonlinears model
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We analyze partially conserved axial current in the nonlinear realization of chiral symmetry in nuclear
physics. We construct the two-nucleon~meson-exchange! axial currents and associated pion emission and
absorption operators and compare them with those derived earlier in the linears model. We show the absence
of necessity of meson-exchange currents in the nonlinear model, in contrast with the linear one.
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I. INTRODUCTION

Theoretical studies of axial meson-exchange curr
~MEC! have a long history: their perhaps most importa
applications have been to neutrino reactions with astroph
cal significance, such as thepp→De1ne . More recently a
new class of nuclear weak neutral current~WNC! reactions
has been measured in the form of parity violating inelas
electron-deuteron scattering which also calls for axial ME
The latter process involves both vector@electromagnetic
~EM! and WNC# and axial vector currents. Whereas one c
define ‘‘model-independent’’ EM meson exchange curr
@1#, it is less clear if that can be done for axial exchan
current. Theraison d’être for the axial MEC seems weake
than the one for EM current: The exact conservation of
EM current is underwritten by the local gauge invariance
QED, to be contrasted with the ‘‘merely’’partially conserved
axial current~PCAC!. PCAC, on the other hand, is a cons
quence of bothspontaneouslyand explicitly broken chiral
symmetry of the strong interactions, which even in the c
of a single nucleon and in the limit of no explicit breakin
i.e., in the chiral limit, is rather complicated and not ful
understood. Specifically, there are two distinct ways ch
symmetry can be realized:~i! the linear and~ii ! the nonlinear
realization. The jury is still out on the question of whic
realization is the ‘‘right’’ one or if the question is a meanin
ful one.

There is a nonlinear ‘‘unitary’’ transformation between t
relativistic chiral Lagrangians in the two realizations, whi
often obfuscates manifest differences between them. T
~unitary! ‘‘equivalence theorem’’ holds only at the level o
exactsolutions to the two Lagrangians, which in reality~of
course! are not available. But if there is ‘‘equivalence’’ at th
relativistic level, there ought to be also ‘‘equivalence’’ at t
nonrelativistic level, especially because both the linear
nonlinearpNN interactions reduce to the same nonrelativ
tic interaction. We wish to explore this question here.

Some indications as to the answer already exist, howe
In any ~no matter how good! approximation to the linear an
nonlinearS models, differences are bound to show up. Th
differences have been clearly exhibited in the case of rela
istic nuclear bound-state axial current matrix eleme
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~MEs!, as derived in the Bethe-Salpeter~BS! formalism @2#
in the two models:~1! the nonlinear theory is chirally invari
ant both in the impulse approximation~IA ! ~one-nucleon cur-
rent only! and with MEC~two-nucleon current!, whereas~2!
the linear realization requires both to maintain chiral symm
try. The latter result has been confirmed in the nonrelativis
~NR! limit: In an earlier publication@3# a systematic study o
axial current~partial! conservation or, equivalently, of chira
symmetry was begun in the traditional nonrelativistic~Schrö-
dinger equation! approach to nuclear physics. There it w
found that PCAC in models with linear realization of chir
symmetry puts constraints not only on the form of the ax
current operator, which requires both IA and MEC, but a
on the nuclear wave function, by way of fixing the potent
entering the nuclear Schro¨dinger equation.

In view of the aforementioned ‘‘equivalence’’ of the tw
theories, it seems reasonable to expect that the same kin
constraint will carry over into the nonlinear~NL! realization
in the NR limit. We shall show in this paper, however, th
this conjecture is incorrect. This begs the question: wha
the cause of these differences? In this paper we offer
answer to this question by way of extending the NR analy
of Ref. @3# to the nonlinear realization of chiral symmetr
We show that even at the nonrelativistic level there are d
matic differences between the two realizations of chiral sy
metry, i.e., between the two standard versions of thes
model, as there are also in the relativistic case, ‘‘equivale
theorem’’ notwithstanding.

This paper falls into five sections. After the Introductio
in Sec. II, we try to define chiral symmetry in nonrelativist
systems. In Sec. III we construct one- and two-nucleon a
currents that respect chiral symmetry and PCAC at the le
of nuclearmatrix elements, starting from the NLs model. In
Sec. IV we compare the results with those of the linears
model and discuss the differences. In Sec. V we summa
and draw the conclusions. In the Appendix we define
nonlinear s model in its relativistic and nonrelativistic
forms.

II. CHIRAL SYMMETRY IN NONRELATIVISTIC
NUCLEAR SYSTEMS

Any quantum mechanical symmetry consists of thr
parts: ~1! an invariance~‘‘gauge’’! transformation,~2! the
corresponding No¨ther currents, and~3! the Nöther charges
form ~‘‘close’’ ! the ~Lie! algebra of the invariance~Lie!
©2002 The American Physical Society03-1
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V. DMITRAŠINOVIĆ PHYSICAL REVIEW C 65 045503
group. In a relativistic field theory the linear chiral transfo
mation is defined with the help of theg5 matrix. As there is
no such thing as ag5 matrix in nonrelativistic quantum me
chanics, there can be no corresponding transformation
symmetry, so we are faced with the general question of
finining linearly realized chiral symmetry in nonrelativist
nuclear physics. We can do that only by a nonrelativis
reduction of the relativistic currents, while having to forgo
lose the invariance; see Ref.@3#. Nonlinear realization of
chiral symmetry, on the other hand, does not depend on
g5 matrix, but only on thedynamicalpion field’s nonlinear
transformation properties. The emphasis is here on the w
‘‘dynamical,’’ as a static pion field does not possess a cano
cal momentum, so the No¨ther charges vanish identically
Thus, nonlinearly realized chiral symmetry can be defin
even in the nonrelativistic limit, as long as the pion field
dynamical. However, nonrelativistic nuclear physics does
ordinarily involve dynamical pions, only their ‘‘remnants’’ in
the form of the static two-body one-pion-exchange poten
~OPEP!. So, once again, chiral symmetry disappears in n
relativistic nuclear physics. In the following we shall ma
these remarks quantitative. This lack of a~unique! definition
of the ~nonrelativistic! chiral transformation is the major dif
ference of PCAC from EM current conservation~‘‘gauge in-
variance’’!.

Thus, it ought to be clear that~approximate! nonrelativis-
tic chiral symmetry depends on the~degree of! approxima-
tion to the original relativistic theory. There are~at least! two
distinct levels of approximation of relevance to the pres
discussion:~1! ~relativistic or nonrelativistic! dynamic nucle-
ons and dynamic~relativistic or nonrelativistic! pions and~2!
nonrelativistic nucleons and static pions or nonrelativis
nucleons alone~no pions!. Further, for practical reasons, w
shall confine ourselves to the one-meson-exchange pote
approximation, which has a well-defined meaning with
quantum field theory~QFT!. Any substantial deviation from
the original QFT, such as the introduction of a mea
field one-body potential, may forfeit the underlying chir
symmetry.

Partial conservation of the nuclear axial current

Partial conservation of axial current demands that
~hadronic! axial currentJm5

a satisfy the continuity equation

]mJm5
a 52 f pmp

2 Pa1••• ~1!

or, equivalently,

“•J5
a~R!1

]r5
a~R!

]t
52 f pmp

2 Pa~R!1•••, ~2!

wherePa is the~canonical! pion field operator. In the quan
tum mechanical framework this can be written as an equa
relating the divergence of the three-current and the com
tator of the Hamiltonian and the axial charge density:

“•J5
a~R!1 i @H,r5

a~R!#52 f pmp
2 Pa~R!. ~3!
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This equation is a consequence of the~exact! Heisenberg
equations of motion and ought to hold in every reasona
approximation.

Now we specialize to nonrelativistic nuclear physics
limiting ourselves to that subspace of the complete Hilb
space that contains at most two~real! nucleons interacting by
exchanging one~virtual! meson at a time. The total Hamil
tonian of the nucleusH is the sum of the kinetic and poten
tial energiesH5T1V of the nucleons, and the total axia
currentJ5

a(R) consists of one- and two-nucleon parts.

1. Linear s model

As stated above, there is no NR equivalent of theg5 ma-
trix; hence, the axial current in the NR limit of the linearS
model is not a Noether current. The nuclear axial char
densityr5

a is given by the sum of nonrelativistic one-nucleo
axial charge densitiesr5,1-b

a . The axial current conservatio
equation is broken up into one- and two-body parts with
loss of generality. The divergence of the complete one-b
current equals2 i times the commutator of the kinetic en
ergy T and the one-body axial charge density

“•J5
a~1-body!52 i @T,r5~1-body!#2 f pmp

2 Pa~1-body!
~4!

is of O(M 22), i.e., zero to leading order in 1/M , due to
similar momentum dependences of the kinetic energyT and
the axial charge densityr5

a(1-body) operators, where

r5,(i )
a ~pi8 ,pi !5

t ( i )
a

2
s( i )•S pi81pi

2M D , ~5!

as well as to the absence of nondiagonal isospin opera
from T. The test of the conservation of the complete nucl
axial current is whether or not the potentialV commutes with
the one-body axial charge density. It turns out that, as a re
of the momentum dependence of the operatorr5

a(1-body),
only a completely trivial, viz., a spatially everywhere co
stant, potential commutes with the axial charge. In nucl
physics, therefore, onealwaysneeds a two-body axial cur
rent J5

a(2-body)5( j ,k
A J5,(jk)(2-body) to compensate for th

temporal change of the axial charge density in the lineaS
model ~see Ref.@3#!:

“•J5
a~2-body!52 i @V,r5

a~1-body!0#2 f pmp
2 Pa~2-body!.

~6!

Thus the commutator@V2-b,r5
a# is a nonvanishing object tha

plays a crucial role in maintaining nuclear PCAC in the li
earS model. We shall not show the form of the axial two
body current in the linearS model, as it can be found in Sec
III B of Ref. @3#. We just note here that boths and
p-exchange currents are involved, as dictated by the o
meson-exchange approximation for the two-body poten
and the PCAC condition, Eq.~6!.

Finally, one may ask why the one-body mean-field pote
tial, which is commonplace in many nuclear physics app
cation, has been omitted? The answer is that it does not h
a chirally invariant relativistic field-theoretical definitio
3-2
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AXIAL CURRENT CONSERVATION IN . . . PHYSICAL REVIEW C65 045503
from which one could deduce a nonrelativistic version of
potential and the corresponding one-body axial ‘‘mes
exchange’’ current. The mean-field approximation genera
breaks symmetries~translational, gauge! and the same is true
of chiral symmetry. Any axial current made to satisfy PCA
with a one-body potential must necessarily contain an
ment of arbitrariness.

2. Nonlinear s model

Nuclear PCAC holds in the nonlinears model as well,
only this time the one- and two-nucleon parts of the ax
current J5

a are separately~partially! conserved. This mean
that all ~both one- and two-body! the axial currents in mo-
mentum space have the form~see Sec. III!

J5
a~q!5 j5

a~q!2@q• j5
a~q!#~q21mp

2 !21. ~7!

This generic form can be often found in the older literatu
as anad hocprescription for the construction of the gaug
invariant EM currents, which is, of course, arbitrary. But
the case of the nonlinearS model it is a definite prediction
and it represents the well-known statement that the ch
Ward identities are trivially satisfied in that model.

The axial current continuity equation in the momentu
space becomes

q•J5
a~q!5O~mp

2 !, ~8!

which is equivalent to the configuration space equation

“•J5
a~R!52 f pmp

2 Pa~R!. ~9!

This, in turn, is equivalent to the continuity equation~3! with
the commutator@H,r5

a(R)#50 set equal to zero. As dis
cussed above, that is only possible ifr5

a50, the result proved
in the Appendix. Thus, nuclear PCAC is independent of
nuclear HamiltonianH in the nonrelativistic nonlinearS
model, and there is no need for consistency between
nuclear axial current and nuclear dynamics~Hamiltonian and
wave functions!. This is a consequence of the vanishi
nucleon axial charge in this model.

3. Comparison

The nuclear axial current matrix elements in the nonlin
s model satisfy PCAC even when the nuclear wave fu
tions used in the calculation arenot solutions to the Schro¨-
dinger equation with the corresponding one-pion-excha
potential, in contrast to the linear realization of chiral sy
metry. The same conclusion holds for the nuclear pion p
duction amplitude. Thus we have found a lack of need
consistency between the pion creation and absorption op
tors and the nuclear Hamiltonian.

This finding is in accorance with the results found in t
same model, within the relativistic Bethe-Salpeter appro
@2#. Moreover, the result agrees with the original philosop
of the nonlinear effective Lagrangian approach, viz.,
achieve PCAC without cancellations between different d
grams and independently of the~nuclear! dynamics@4#. Now
we see that this program has also the feature that chiral s
04550
e
-
y

-

l

al

e

he

r
-

e
-
-
f
ra-

h
y

-

m-

metry does not survive in the static pion limit.
A detailed comparison of the axial MEC derived in th

linear ~see Ref.@3#! and nonlinearS models ~see below!
indicates a clear functional difference between the two.
amount of adjusting of parameters can turn one into anot
That, however, does not necessarily mean that the differe
is observable in experiment: the common wisdom at the m
ment holds that the dominant axial MEC is induced by int
mediateD resonance state, which does not appear in
simplest versions of either of these two models.

III. NUCLEAR AXIAL CURRENT
IN THE NONRELATIVISTIC NONLINEAR S MODEL

One can take the nonrelativistic reduction of the relativ
tic Lagrangian Eq.~A1! to any given order in 1/M , of course
with different detailed results, but always with the same g
neric structure. The deciding factor here is the presence
absence of the time-dependent pion field: for static p
fields there is no conjugate momentum and hence no a
charge algebra, irrespective of other properties of the
grangian. Thus, e.g., the nucleons may remain relativistic
described by the Dirac equation~though their interactions
with pions would necessarily break Lorentz symmetry due
the static, i.e., Lorentz-variant pions! and still their axial
charge algebra would not close. Such a ‘‘semirelativist
model seems unnatural and we replace it with one with n
relativistic nucleons and static pions.

In the following we look at the nonlinears model axial
currents in a nonrelativistic setting by first expanding t
relativistic Lagrangian Eq.~A1! in powers ofp2/ f p

2 , then
making a nonrelativistic reduction, and finally applyin
Nöther’s theorem to obtain the axial current. Thus we find
set of nonrelativistic axial currents that are partially co
servedindependently of each other.1 This is the distinguish-
ing feature of the nonlinear realization of chiral symmetry

A. Model and its axial Nöther current

We expand the Lagrangian~A1! to leading order in the
nucleon mass and the second nontrivial order in 1/f p , while
keeping astatic pion field, i.e., expand toO( f p

22) and set

ṗ50, and find

L5c†F i ] t1
¹W 2

2M
Gc2

1

2
@~¹W p!21mp

2 p2#

1S f

mp
Dc†t•~sW •¹W p!c

1S 1

2 f p
D 2

c†t aF ¹J

2M
1 i

sW 3¹W

2M
Gc•~p3¹W p!a1•••,

~10!

1Weinberg@5# was addressing precisely this aspect when he e
phasized the non-g5 nature of the nonlinear realization of chira
symmetry.
3-3
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V. DMITRAŠINOVIĆ PHYSICAL REVIEW C 65 045503
where¹J5¹W 2¹Q . The Lagrangian~10! is only invariant un-
der chiral transformations, Eq.~A3!, to first order in 1/f p .
This means that the associated No¨ther current isnot exactly
conserved even in the chiral limit, the remnant being of finite
order in 1/f p , in this case ofO( f p

22).
Next we apply No¨ther’s theorem together with the axia

transformation properties, Eq.~A3!, to find

J¢5
a52 f p¹W p a1gAc†S t a

2
sW DC

1c†F ~¹W 2¹Q !

M
1 i

sW 3¹W

2M
G S t3

p

2 f p
D a

c1•••. ~11!

Note that these terms can be divided into different catego
depending on how many pion and/or nucleon fields they c
tain. For example, those containing one pion only, th
pions only, etc.; one nucleon only, one nucleon plus o
pion, nucleon plus two pions, etc. We shall separate out
such terms:~1! the one-nucleon axial current and~2! the
one-nucleon plus one-pion axial current. We cannot do m
more with this in configuration space, so we turn to the m
mentum representation.

B. Axial current vertices and their Ward identities

1. One-nucleon axial current vertex

The complete one-body current vertex receives a con
bution from the one nucleon term in the No¨ther current
~11!, as well as one from the pion-pole graph. Since
Goldberger-Treiman~GT! relation gAM5gpNNf p ~here gA
51.26) holds in the nonlinears model, we can write the
one-body axial current vertex as

J5,(i )
a ~pi8 ,pi !5gA

t ( i )
a

2 Fs( i )2qS s( i )•q

q21mp
2 D G , ~12!

which separately satisfies the~nonrelativistic! single-nucleon
axial Ward-Takahashi identity~WT ID!

q•J5,(i )
a ~pi8 ,pi !. f pS mp

2

q21mp
2 D gpNNt ( i )

a S s( i )•q

2M D
52 i S f pmp

2

q21mp
2 DGp

a ~pi8 ,pi ;1-body!.

~13!

Note the absence of@T,r5
a(1-body)# on the right-hand side

~RHS! of the identity. This is consistent with vanishing o
this commutator. The one-body axial current is just the ren
malized ~by a factor ofgA) version of the linears model
one. It is commonly assumed that the same holds for
axial charge, as well. The latter assumption, however, is
correct, as shown in the Appendix.
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2. Nucleon-pion axial current vertex

To construct the nucleon-pion axial current vertex in th
model we start from the corresponding term in the ax
Nöther current, Eq.~11!, and add the pion-pole graph

AI
a~p1 ,p8,q,kb!5

1

2 f pM
«abctcFp1p81

i

2
s(1)3q

2
q

q21mp
2 q•S p11p181

i

2
s(1)3k1D G ,

~14!

where three-momentum conservation readsp11p21q1k
50. This axial current vertex alone maintains chiral symm
try, as can be seen from the corresponding divergence,
the Ward identity, which reads

q•AI
a~p,p8,q,kb!5O~ f pmp

2 !. ~15!

C. The two-nucleon axial current

To construct the partially conserved nonrelativistic ax
two-nucleon current in this model we start from the cor
sponding axial current vertex~14! and attach the free pion
‘‘leg’’ to the second nucleon:

J5,2-body
a ~k1 ,k2 ,q!5~tW (1)3tW (2)!

a
gpNN

2 f pM Fp11p181
i

2
s(1)3k1

2
q

q21mp
2 q•S p11p181

i

2
s(1)3k1D G

3
s(2)•k2

~k2
21mp

2 !
1~1↔2!, ~16!

where k i5pi2pi8 ,i 51,2. Three-momentum conservatio
demandsk11k21q50. This MEC maintains PCAC by it-
self, as can be seen from the corresponding divergence

q•J5,2-body
a ~k1 ,k2 ,q!5O~ f pmp

2 !; ~17!

i.e., PCAC is satisfied by this~individual! two-body current
independently of the one-body current and of the commu
tor @V,r5

a(R)#, i.e., as if@V,r5
a(R)#50.

IV. COMPARISON

The functional forms of the axial one-body currents a
identical~up to the overall multiplicative constant! in the two
models; the forms of the two-body axial currents are entir
different ~so much so that they cannot be meaningfully co
pared!. The dominant axial MEC is believed to be induce
by theD resonance and is transverse, i.e., unconstrained
the continuity equation, in either formalism. It remains to
seen if this ambiguity in axial MEC can be settled by
judiciously chosen experiment.

Of course, one must remember that we have constru
only the leading term and lightest meson axial MEC. If o
were to continue this process to include heavier mesons,
3-4
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AXIAL CURRENT CONSERVATION IN . . . PHYSICAL REVIEW C65 045503
might find further significant differences that would ult
mately lead to observable consequences.

This point is not purely academic: the standard model
gauge theory with exactly conserved weak left isospin c
rent; the phenomenological effective field theories that p
port to describe it always violate this symmetry~e.g., by the
pion mass term!. There must be an observable conseque
of this nonconservation, though it is not known today.

The nuclear axial current matrix elements in the nonlin
s model satisfy PCAC even when the nuclear wave fu
tions used in the calculation arenot solutions to the Schro¨-
dinger equation with the corresponding one-pion-excha
potential, in contrast to the linear realization of chiral sy
metry. The same holds for the nuclear pion production a
plitude. Thus we have found a lack of necessity of cons
tency between the pion creation and absorption operators
the nuclear Hamiltonian.

This finding is in accordance with the results found in t
same model, within the relativistic Bethe-Salpeter appro
@2#. Moreover, the result agrees with the original philosop
of the nonlinear effective Lagrangian approach, viz.,
achieve PCAC without cancellations between different d
grams and independently of the~nuclear! dynamics@4#. Now
we see that this program has also the~originally unwanted!
feature that chiral symmetry does not survive in the sta
pion limit.

A. Chiral algebra closure

At this stage one ought to make sure that the distinct
between PCAC and chiral symmetry is clear: the former i
necessary precondition for the latter, whereas the latter
demands closure of the chiral charge algebra. The ch
charge algebra is a prerequisite for many chiral low-ene
transistors ~LETs!, though not all.2 Specifically, the
Tomozawa-Weinberg~TW! relations demand it~see Adler’s
original derivation!. Thus, the model Lagrangian~10! does
not lead to TW relations in nuclei even though it satisfi
PCAC. Closure of the chiral charge algebra is often taken
granted, however, although the above example warns ag
it.

1. Nonlinear S model

Of course, in the nonlinearS model with only nucleons
the axial charge vanishes~see the Appendix! and there is no
point in talking about chiral algebra closure at all. But w
wish to address this question in the nonlinear model w
static pions when there might be a vestige of an axial cha
operator. Indeed, Eq.~A5! together withṗ50 leads to

r5
a5C†S t3p

4 f p
D a

C, ~18!

which in turn leads to

2Some LETs depend on the spatial components of the curren
04550
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@r5
a~0,x!,r5

b~0,y!#5 i«abcd~x2y!pcC†S t•p

8 f p
2 DC

Þ i«abcd~x2y!rc~0,x!. ~19!

Clearly, there is no closure here. This is merely a manife
tion of point~3! in the Appendix, viz., that in the nonlinearS
model the nucleon axial charge does not close the ch
algebra by itself, i.e., without the pionic part. Hence no chi
LET that depends on closure can hold in this model and
the static pion approximation.

2. Linear S model

The nonrelativistic linears model has its own problems
however: the chiral algebra does not close either. More s
cifically, whereas the commutators~A10a! and ~A10c! still
hold, the double axial charge commutator~A10b! does not.
In detail,

@r5
a~0,x!,r5

b~0,y!#5 i«abcd~x2y!C†
tc

2 S p

M D 2

C

Þ i«abcd~x2y!rc~0,x!, ~20!

the difference being the (p/M )2 factor. This discrepancy is a
manifestation of the relativistic nature of the linear realiz
tion of chiral symmetry and of the nonrelativistic approxim
tion used here. For this reason here, just as in the static
nonlinear S model, we do not expect the Tomozaw
Weinberg and other related chiral LETs to be fulfilled f
nuclei.

V. SUMMARY AND CONCLUSIONS

We showed explicitly that the~spatial parts of the! axial
current in the nonlinears model satisfies PCAC separately
the one- and two-nucleon levels without constraints from
Hamiltonian. Nor is there compulsion to introduce two-bo
axial current. In this sense the nonlinears model is pro-
foundly different from the linear one. Therefore one cann
define model-independent axial currents along the same l
as in the EM case@1#. This is in agreement with an earlie
study of the relativistic Bethe-Salpeter approach to nucl
systems@2#.

Although PCAC is satisfied at the operator level, chi
symmetry isnot preserved, as the axial charges do not clo
the chiral algebra, a necessary condition for many, if not
chiral low-energy theorems. The reason for this is that
one-nucleon elastic matrix element of the axial charge v
ishes,̂ r5

a&N50, in the first-order perturbative approximatio
to the nonlinears model, in agreement with general resu
of chiral symmetry and those of heavy-baryon chiral pert
bation theory (xPT!. This implies that the nucleon axia
charge operator vanishes in nonrelativistic nuclear mod
based on the nonlinear realization of chiral symmetry w
static or fully integrated out pions~such as the potentia
models!.

This stands in marked contrast to nonrelativistic nucl
dynamics based on the linears model and the Bjorken and.
3-5
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Nauenberg variation thereof@6#, which require the existenc
of two-nucleon or meson-exchange axial currents as we
their consistency with the underlying nuclear Hamiltoni
@3#. Nucleons in such models have nonvanishing axial cha
operators, which donot close the chiral algebra either, due
the nonrelativistic approximation made in their derivation

Consequently, chiral symmetry in nonrelativistic nucle
physics without pionic degrees of freedom is an imperf
concept, whether realized linearly or nonlinearly. Without t
pionic degrees of freedom one cannot even talk about sp
taneously broken chiral symmetry.

These results have consequences in at least two field~i!
In the field of axial meson-exchange current in nuclear w
decays and parity violating leptonuclear scattering. It h
been a custom, for more than two decades, to calculate
axial MEC in the form of corrections to the axial charg
operator rather than to the current@7#. As the nucleon axial
charge has been shown to vanish in the nonlinearS model
used there, it is manifest that the whole subject will have
be reexamined.~ii ! In the so-called effective field theory ap
proach to the two-nucleon problem in which the pions ha
been ‘‘integrated out,’’ i.e., where only~e.g., static contact!
NN potentials are used, chiral symmetry is not defined,
cause the axial charge generators all vanish and thus
chiral charge algebra becomes trivial, i.e., equivalent to
isospin algebra.
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APPENDIX: NUCLEON AXIAL CHARGE
IN THE NONLINEAR s MODEL

We shall show that the single-nucleon elastic matrix e
ment of the axial charge operator vanishes in the nonlineaS
model. For this purpose we shall need some basic facts a
the axial charge in the said model.

1. Lagrangian and the Nöther currents

The Lagrangian density of Weinberg’s nonlinears model
@4# is given by

L5c̄@ i ]”2M #c1
1

2
R@R~]mp!22mp

2 p2#1RS f

mp
D

3~ c̄gmg5tc!•]mp

1RS gpNN

2gAM D 2

~ c̄gmtc!•~p3]mp!, ~A1!

where

R5F11S gpNN

2gAM D 2

p2G21

5F11S p

2 f p
D 2G21

and
04550
s

e

r
t

n-

k
s
he

o

e

-
he
e

.

-

ut

S f

mp
D5S gA

2 f p
D5S gpNN

2M D .

The nonlinear function of the pion fields is to be understo
as an expansion in powers ofp/ f p @4,8#. Manifestly, such a
series has infinitely many terms, which makes it impossi
to use in its entirety with our present methods. Rather,
Feynman rules and the associated No¨ther currents are also
defined by the power series expansion~which is essentially
the method used in chiral perturbation theory!.3 That expan-
sion, however, will be the cause of chiral noninvariance
the expanded Lagrangian and consequently of axial cur
nonconservation.

The nonlinearchiral transformations4 are

d5pa5 f p«5
aS 12

p2

4 f p
2 D 1p aS «5•p

2 f p
D , ~A2!

d5C5 i «5•S t3p

4 f p
DC, ~A3!

which leave the Lagrangian~A1! invariant up to the pion
mass term. Hence, the associated axial vector Noether
rent reads

Jm5
a 5RFgAC̄gmg5

t a

2
C1C̄gmS t3p

4 f p
D a

C2 f pR]mp aG
3S 12

p2

4 f p
2 D 1p aRFgAC̄gmg5

t

2
C

2 f pR]mpG•S p

2 f p
2 D 1RC̄gmS t3p

4 f p
D a

C

5RFgAC̄gmg5

t a

2
C2 f pR]mpaG S 12

p2

4 f p
2 D

1p aRFgAC̄gmg5

t

2
C2 f pR]mpG•S p

2 f p
2 D

1RC̄gmS t3p

2 f p
D a

CS 12
p2

8 f p
2 D . ~A4!

3The above form of the nonlinear Lagrangian~A1! differs by the
presence ofgA in the denominators of the factors (gpNN/2MgA)
from the standard textbook version@8#. The source of this differ-
ence, as emphasized by Weinberg@4#, is the need to have both th
gA factor in the axial current and the empirically correct two-pio
nucleon contact interaction. This result can be obtained directly
a chiral rotation and unitary transformation@9# from the hybrid-
heterotics model of Bjorken and Nauenberg@6#; see also p. 323 in
Ref. @10#.

4The second power of the pion field in these transformation la
is what gives the nonlinear realization its name.
3-6
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This axial Nöther current isnot conserved, but has a diver-
gence ofO(mp

2 ). It is important to note that theR factors
must remain unexpanded, or else the truncated expan
will be another source of the Lagrangian’s~A1! symmetry
breaking and of axial current nonconservation, even in
chiral limit mp→0.

Now note that the axial charge has the form

J05
a 5r5

a52
p a

2 f p
~p•Pp!2 f pS 12

p2

4 f p
2 D Pp

a

2 iPCS t3p

4 f p
D a

C, ~A5!

where

Pp
a 5R 2ṗ a2S R

2 f p
D FC†

~t3p!a

2 f p
C1gAC†g5t aCG ,

~A6a!

PC5 iC† ~A6b!

are the pion and the nucleon field canonical conjugate
menta. There is also the vector~isospin! charge density

J0
a5c̄g0

t a

2
c2~Pp3p!a, ~A7!

which follows from the conserved polar vector No¨ther ~iso-
spin! current density

Jm
a 5C̄gm

t a

2
C1RH p3FR]mp2gAC̄gmg5

t

2 f p
C

2C̄gmS t3p

4 f p
2 DCG J a

, ~A8!

which is a consequence of the Lagrangian’s, Eq.~A1!, in-
variance under the isospin transformations

dp52«3p, ~A9a!

dC5 i S «•t

2 DC. ~A9b!

These two kinds of charges ‘‘close’’ the chiral algebra

@ra~0,x!,rb~0,y!#5 i«abcrc~0,x!d~x2y!, ~A10a!

@r5
a~0,x!,r5

b~0,y!#5 i«abcrc~0,x!d~x2y!, ~A10b!

@r5
a~0,x!,rb~0,y!#5 i«abcr5

c~0,x!d~x2y!, ~A10c!

as long as the pionp and nucleonC fields and their associ
ated momentapp ,PC satisfy the canonical~anti!commuta-
tion relations

@pa~0,x!,Pp
b ~0,y!#5 idabd~x2y! ~A11a!

$Ca~0,x!,PC
b ~0,y!%5 idabd~x2y!. ~A11b!
04550
ion

e

o-

Note the following.
~1! The charges~A5!,~A7! satisfy~‘‘close’’ ! the chiral al-

gebra Eqs.~A10a!, ~A10b! and ~A10c! independently of the
form or Lorentz invariance of the underlying Lagrangia
The closure merely depends on the existence of the pion
matter fields and their canonical momenta, as well as on t
chiral transformation properties, Eqs.~A3!. In other words,
even in the nonrelativistic version of the theory the chi
charges still exist and close the chiral algebra, as long as
pion fields are truly dynamical degrees of freedom~DOF!.
When the pion field loses its dynamical role, e.g., if it b
comes a static field with vanishing conjugate momentum,
chiral charges cease to exist.

~2! The requirement for the vector and axial charges
close the chiral algebra can be restated as follows:
charges must have the generic shapes given in E
~A5!, ~A7!. An arbitrary truncation or expansion of the axi
charges, Eq.~A5!, in powers ofp a/2f p will generally de-
stroy closure. Expansion and truncation of the Lagrangia
necessary, as otherwise the model would be intractable. C
sequently, the No¨ther current must be truncated, too. But t
truncation must not change thegeneric form of the axial
charge~A5!.

~3! Of the two parts, the mesonic and the fermionic,
each charge only the former closes the chiral algebra by
self. The fermionic charges do not form a chiral algeb
without the mesonic, i.e., pionic, part, in contrast with t
linear realization of chiral symmetry, where each term clo
the algebra separately. This is in line with Weinberg’s ins
tence on the ‘‘non-g5’’ nature of chiral symmetry in the non
linear realization and with his interpretation@4,5# of chirality
as only being carried by pions.

2. Nucleon axial charge elastic matrix element

Next we shall prove that the single-nucleon elastic ma
element of the axial charge vanishes to lowest-order per
bation theory. To evaluate the first-order perturbation the
one-nucleon matrix element of Eq.~A5!, we switch to the
interaction representation; i.e., we turn the canonical m
menta into free ones and expandR in powers ofp2/2f p

2 .
Thus we find

^NuJ05
a uN&pert52^Nup aS p•ṗ

2 f p
D uN&

2 f p^NuS 12
p2

2 f p
2 D ṗ auN&

1S 1

4 f p
D ^NuC†~t3p!aCuN&50,

~A12!

where all fields and states are in the interaction picture n
Each of the three terms is separately zero, because each
tains an odd number of pion fields; hence, one pion field
always between the vacuum states, but the pion field m
have zero vacuum expectation value~VEV! to conserve par-
ity.
3-7
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V. DMITRAŠINOVIĆ PHYSICAL REVIEW C 65 045503
The same result can also be found in the book by
Alfaro et al., p. 379, Eq.~6.90! @10#, where it was derived in
a different, Lorentz-invariant way, however. This result
also in agreement with the heavy-baryonxPT, as can be see
from the following. In the heavy-fermionxPT @11#, one has

^NuJm5
a uN&5gAC̄gmg5

t a

2
C→ i

2
ūS g5smnvn

t a

2 Du,

~A13!

as the axial current, wherevn5(1,0W ). Hence, the nucleon
axial charge~the m50 component of the nucleon axial cu
rent! vanishes,

^Nur5
auN&5

i

2
ūS g5s0nvn

t a

2 Du50, ~A14!

by the antisymmetry ofsmn5( i /2)@gm ,gn#.
In another study of nonrelativistic chiral symmetry

nuclear systems@3# we discovered that the spatial part of th
axial current in the Bjorken-Nauenberg model is renorm
ized from unity togA51.26, whereas the axial charge~the
temporal component of the axial four-current! is not @3#. This
fact can be interpreted as the vanishing of that part of
axial charge that is associated with the gradient coupling
this paper it is shown that the same result holds in the n
linear s model, but this time the effective nucleon axi
charge vanishes altogether, because the interaction is p
pseudovector in that model.

At first sight this result is, if not paradoxical, then at lea
perplexing, for it stands in marked contrast to the usual
sumption made in nonrelativistic nuclear physics that in t
04550
e

l-

e
In
n-

ely

t
s-
s

model the axial charge is not only nonzero, but renormaliz
upwards togA51.26. Clearly, such nonrelativistic models o
the nuclear axial charge will have to be reexamined.

Moreover, it seems to imply that one has lost one sub
of generators of the chiral SU(2)L ^ SU(2)R algebra, i.e.,
that the chiral symmetry is lost and/or undefined. That is
so, as long as the pions are dynamical degrees of freed
the axial charge still exists in the nonlinear realization
chiral symmetry, but it is carried exclusively by the pions
not by the pions and the nucleons, as in the linear realizat

Hence the elastic matrix element of the nucleon ax
charge may vanish, as it indeed does. Other, nonelastic
trix elements need not vanish, or else the total axial cha
may then actually be zero. This last case occurs only w
the pions become static, or ‘‘integrated out,’’ as in ordina
nonrelativistic nucleons-only potential models of nucle
physics.

It is just that in the present case some of the chiral cha
elastic matrix elements vanish, contrary to naive expec
tions. That implies, however, that certain subsectors of
complete Fock space may have unexpected properties.
cifically, the nucleons-only subspace, which may be view
as the proper Hilbert space of the nonrelativistic nucl
physics, has vanishing axial charge elastic matrix eleme
Thus we may say that theeffectivenucleon axial charge den
sity operator in the nucleons only Hilbert subspace vanish
r5N

a 50, in the nonlinears model.
Consequently, in those versions of chiral models, such

xPT, in which the pions are static or have been ‘‘integra
out,’’ one cannot talk of chiral symmetry anymore becau
the chiral algebra does not close and/or the axial char
vanish altogether@12,13#.
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