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Nuclear anapole moments are parity-odd, time-reversal-evenE1 moments of the electromagnetic current
operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity
nonconservation~PNC!, its experimental isolation was achieved only recently, when a new level of precision
was reached in a measurement of the hyperfine dependence of atomic PNC in133Cs. An important anapole
moment bound in205Tl also exists. In this paper, we present the details of the first calculation of these anapole
moments in the framework commonly used in other studies of hadronic PNC, a meson-exchange potential that
includes long-range pion exchange and enough degrees of freedom to describe the five independentS-P
amplitudes induced by short-range interactions. The resulting contributions ofp, r, andv exchange to the
single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange
currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole mo-
ment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from
other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are
consistent with the broad ‘‘reasonable ranges’’ defined by theory, they are not in good agreement with the
constraints from the other experiments. We explore possible explanations for the discrepancy and comment on
the potential importance of new experiments.

DOI: 10.1103/PhysRevC.65.045502 PACS number~s!: 21.30.Fe, 13.75.Cs, 24.70.1s, 24.80.1y
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I. INTRODUCTION

The strangeness-conserving (DS50) weak nucleon-
nucleon interaction is of considerable interest. It provides
one experimentally accessible means of probing the neu
current component of the hadronic weak interaction, as
component plays no role in flavor-changing reactions. F
thermore, the question of how long-range weak forces
tween nucleons are connected to the underlying elemen
weak quark-boson couplings of the standard model is an
portant strong-interaction question, one with potential c
nections to poorly understood phenomena such as theDI
51/2 rule. One of the challenges in the field has been
experimental determination of the various spin and isos
contributions to the low-energy weakNN interaction, as this
interaction is dwarfed by much larger strong and electrom
netic forces. The weak effects can be isolated only by p
cisely measuring tiny effects associated with the parity n
conservation~PNC! accompanying this interaction. Becau
the PNC effects are typically of relative size;1027, only
one class of elementaryNN scattering experiments,pW 1p,
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has reached the requisite sensitivity. PNC effects have
been isolated in nuclear experiments, but only a few nuc
systems are sufficiently well understood to permit theor
to relate the observable to the underlyingNN interaction. For
these reasons there is interest in finding new experime
constraints.

Shortly after Lee and Yang’s proposal that weak inter
tions violate parity, Vaks and Zeldovich@1# noted indepen-
dently that an elementary particle~as well as composite sys
tems like the nucleon or nucleus! could have a new
electromagnetic moment, the ‘‘anapole moment,’’ cor
sponding to a PNC coupling to a virtual photon. One con
bition to the anapole moments of hadrons would thus a
from PNC loop corrections to the electromagnetic vert
Despite some early work on the contribution of the nucle
anapole moment to high-energy electron-nucleon scatte
@2#, the interest in anapole moments might have been lim
to theorists had not Flambaum, Khriplovich, and Sushkov@3#
pointed out their enhanced effects in atomic PNC exp
ments in heavy atoms. As the anapole moment is spin de
dent, it contributes to the small hyperfine dependence
atomic PNC.~The dominant PNC effects in such expe
ments arise from the coherent vector coupling of the
changedZ0 to the nucleus and are thus independent
nuclear spin.! While nuclear-spin-dependent effects do ar
from vector- ~electron-! axial ~nucleus! Z0 exchange, this
©2002 The American Physical Society02-1
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nuclear coupling does not grow systematically with t
nucleon numberA of the nucleus: naively, the axial couplin
in an odd-A nucleus is to the unpaired valence nucleo
Flambaumet al. @3# observed that the anapole moment o
heavy nucleus grows asA2/3, so that weak radiative correc
tions to spin-dependent atomic PNC associated with the
pole moment would typically dominate over the correson
ing tree-levelZ0 exchange for sufficiently largeA (A*20).
This growth means that spin-dependent atomic PNC eff
should be dominated by the anapole moment—a radia
‘‘correction’’—and measurable in heavy atoms.

Nevertheless, spin-dependent atomic PNC effects are
exceedingly small, typically;1% of the size of nuclear
spin-independent atomic PNC effects. Despite consider
effort, only limits existed on the anapole contribution un
very recently. However, with the Colorado group’s measu
ment @4# of atomic PNC in 133Cs at the level of 0.35%, a
definitive (7s) nuclear-spin-dependent effect emerged fro
the hyperfine differences. This measurement is the princ
motivation for the work presented here. The goal of t
present study is to carry out an analysis of the133Cs anapole
moment that follows as closely as possible the formali
developed and employed in otherNN and nuclear tests of th
low-energy hadronic weak interaction@5#. That formalism is
based on the finite-range PNCNN potential of Desplanques
Donoghue, and Holstein~DDH!, a potential that contains
sufficient freedom to describe the long-rangep exchange
and the short-range physics governing the five indepen
PNC S-P NN amplitudes@6#. The resultingp-, r-, and
v-exchange PNCNN potential is employed in estimating th
loop contributions to the single-nucleon anapole moment
the exchange current and nuclear polarization contributi
to the nuclear anapole moment for133Cs. We also presen
results for Tl, where an interesting anapole limit exists@7,8#.

The current work extends the treatment of Ref.@9# by
including heavy-meson PNC contributions, thereby go
beyond long-rangep exchange to the full DDH potential
This extension is crucial in describing the isospin charac
of both the single-nucleon and nuclear polarizability con
butions to the anapole moment. The main results of our st
were recently presented in a Letter@10#. Here we give the
technical details of the heavy-meson current and polariza
ity calculations, and discuss the associated shell-model
culations and their potential shortcomings. Our approach
fers from most earlier calculations@3,11–15# by avoiding
one-body reductions of the currents and potentials: excha
currents and polarizabilities are evaluated from shell-mo
two-body densities matrices, modified by short-range co
lation functions that mimic the effects of missing hig
momentum components. We also use a form for the ana
operator in which components of the three-current c
strained by current conservation are rewritten in terms o
commutator with the Hamiltonian and thus explicitly r
moved.

The paper is organized as follows. In Sec. II we define
anapole moment and the electron-nucleus interaction it
duces, and discuss connections with the generalized Sieg
theorm. In Sec. III we describe the DDH PNCNN interac-
tion arising fromp,r, andv exchange and its connection
04550
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with the S-P amplitudes. The treatment of the one-bod
exchange-current, and polarization contributions to the a
pole moment are given in Sec. IV. The summation over
termediate nuclear states in the polarizability is performed
closure, after calibrating this approach in a series of m
complete shell-model calculations in lighter nuclei. Oth
technical details—particularly the rather complicated hea
meson exchange-current evaluations—are presented in
pendixes A–D. In Sec. V experimental values for the anap
moments of 133Cs and 205Tl are deduced from the corre
sponding hyperfine PNC measurements. Other tests of
low-energy PNCNN interaction are discussed and the co
straints they impose on various PNC meson-nucleon c
plings described. We address the issue of uncertainties in
shell-model nuclear structure calculations and attempt to
sess the effects of missing correlations phenomenologic
In the concluding section VI we discuss the resulting d
crepancies and possible future work that would help add
some of the open questions.

II. ANAPOLE OPERATOR AND CURRENT
CONSERVATION

In this section we describe the anapole moment in te
of a classical current distribution@16,17#. The corresponding
operator for a quantum mechanical current is obtained fro
multipole expansion that satisfies the generalized Siege
theorem. We illustrate, in a simple one-body nuclear mod
the relationship between the anapole moment and the P
NN interaction and the consequences of current conse
tion.

A. Anapole moments in classical electromagnetism

Given classical charge and current distributionsr(xW 8)
and jW(xW 8), the scalar and vector potentialsF(xW ) and AW (xW )
are obtain from integrals over the Green’s function. Afte
Taylor expansion around the source pointxW 8 one obtains

F~xW !5E d3x8
r~xW 8!

4puxW2xW 8u

5E d3x8r~xW 8!H 12xW 8•¹W 1
1

2
~xW 8•¹W !21•••J 1

4puxW u
,

~1!

AW ~xW !5E d3x8
jW~xW 8!

4puxW2xW 8u

5E d3x8 jW~xW 8!H 12xW 8•¹W 1
1

2
~xW 8•¹W !21•••J 1

4puxW u
.

~2!

In the scalar potential expansion, the first term inside
curly brackets generates the total charge~monopole! mo-
ment; the second term, the electric dipole moment; and
third term, a combination of the quadrupole and monop
2-2
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NUCLEAR ANAPOLE MOMENTS PHYSICAL REVIEW C65 045502
charge moments@18#. For the vector potential, the first term
vanishes as there is no net current. After carefully taking
constraints of current conservation and the boundednes
the current density into account@which place six constraints
on the bilinear productsj (xW 8) ixj8#, there remain three inde
pendent components in the second term, corresponding t
magnetic dipole moment of a classical current distributi
Similarly, the third term involves a symmetric product of tw
coordinates with the current, generating 18 independent
linear combinations, with 10 constraints. The remaining
independent components comprise the static magnetic q
rupole moment and theE1 moment known as the ‘‘anapol
moment’’ ~AM !.

One can extract the vector potential due to the A
explicitly,

AW (anapole)~xW !5S 2aW
¹2

M2 1
¹W

M
aW •

¹W

M
D 1

4puxW u
, ~3!

where

aW 5
M2

6 E d3x8xW 83@xW 83 jW~xW 8!#. ~4!

~We multiply and divide byM2 for consistency with the
definition of aW we will later introduce via the Dirac equa
tion.! We can remove the second term in Eq.~3! by a gauge
transformation, so that

AW (anapole)~xW !5
aW

M2
d (3)~xW !. ~5!

Current conservation allows Eq.~4! to be rewritten as

aW 52
M2

4 E d3x8x82 jW~xW 8!. ~6!

~We use the Lorentz-Heaviside unit in whicha5e2/4p\c
51/137.! Equation~6! is often presented as the definition
the AM @3,12–17,19#. However, it is important to note tha
this form is obtained only after exploiting the constraints
current conservation.

It is apparent, for the ordinary electromagnetic curre
that the associated AM operator is odd under a parity tra
formation. Therefore a nonzero AM requires either the int
duction of an axial-vector component into the current o
parity admixture in the ground state~allowing the ordinary
electromagnetic current to have a nonvanishing expecta
value!. This requirement of PNC associates the AM with t
weak interaction.

Another important property is the contact nature of t
AM vector potential. Thus an atomic electron interacts w
the AM of the nucleus only to the extent that its wave fun
tion penetrates the nucleus.

Figure 1 gives a classical picture of the anapole mom
as a current winding. Although the currents on the inner a
outer sides of the torus oppose one another, there is a
contribution because of ther 2 weighting ~in spherical coor-
04550
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dinates! of the current in the definition of the AM, leading t
an AM that points upward. The illustrated current distrib
tion is odd under a parity reversal, as we have noted it m
be for the ordinary electromagnetic current. If, however,
current has a chirality—a small ‘‘pitch’’ corresponding to
left- or right-handed winding that would signal PNC—
parity-even contribution to the operator would be induced

B. Anapole operator

Although one could quantize Eq.~6! directly to generate
the anapole moment operator, a better procedure is to a
the assumption of current conservation, as this is often v
lated in nuclear models. Switching to a standard spher
multipole decomposition yields the momentum-space cha
and current operators@20#

r~qW !5(
J,M

~2 i !J4pYJM* ~Vq!MJM
Coul~q!, ~7!

jWl~qW !5(
J,M

~2 i !JA2p~2J11!D Ml
(J) ~2fq ,2uq ,fq!

3@TJM
el ~q!2lTJM

mag~q!#, ~8!

and the associated charge, transverse electric, and trans
magnetic multipole projections of definite angular mome
tum and~in the absence of PNC! parity:

MJM
Coul~q!5E d3x jJ~qx!YJM~Vx!r~xW !, ~9!

TJM
el ~q!5E d3x

1

q
¹W 3@ j J~qx!YW JJ1

M ~Vx!#• jW~xW !, ~10!

TJM
mag~q!5E d3x jJ~qx!YW JJ1

M ~Vx!• jW~xW !, ~11!

whereqW is the ~outgoing! three-momentum transfer,j J the
spherical Bessel function,YJM and YW JJ1

M the ordinary and
vector spherical harmonics, andD Ml

(J) (2fq ,2uq ,fq) the
rotation matrix.

The transformation properties of the possible multipo
moments under parity~P! and time-reversal~T! are listed in
Table I. Systems that are parity and time-reversal invari
can have only even-rank Coulomb moments~charge, charge

FIG. 1. A toroidal current winding generates a nonzero anap
moment.
2-3
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quadrupole, etc.! and odd-rank transverse magnetic mome
~magnetic dipole, magnetic octupole, etc.!. TheP- andT-odd
moments, which would arise in the standard model fr
small CP-violating contributions to the weak interaction
correspond to the odd-rank Coulomb and even-rank tra
verse magnetic multipoles~electric dipole, magnetic quadru
pole, etc.!. The PNC butT-even moments, which would aris
from the usual weak interaction, correspond to the odd-r
transverse electric multipoles, with the lowest of these be
the dipole moment known as the anapole moment.

For consistency with Eq.~5!, we require

¹2AW ~xW !52 jW~xW !, ~12!

which then defines the anapole operator

a1l5 lim
qW 2→0

2 iA6pM2

qW 2

T1l
el . ~13!

The simplest case is the general expression for the ma
element of a conserved four-current for a free spin-1

2 particle

Ū~p8!Jm~q!U~p!5Ū~p8!S F1~q2!gm2 i
F2~q2!

2M
smnqn

1
a~q2!

M2 ~q”qm2q2gm!g5

2 i
d~q2!

M
smnqng5DU~p!, ~14!

from which the four moments of Table I can be immediate
identified. The two vector terms define the DiracF1(q2) and
Pauli F2(q2) form factors. The axial terms that follow ar
the anapole and electric dipole terms, respectively. The a
pole term reduces in the nonrelativistic limit to

a~q2!

M2 ~q”qm2q2gm!g5→
a~q2!

M2 qW 2~sW 2q̂q̂•sW !

5
a~q2!

M2 qW 2sW' , ~15!

showing that the current is transverse and spin depend
From this current we then have the AM operator for a no
relativistic point particle:

â1l5a~0!s1l . ~16!

TABLE I. Properties of multipole moments under parity an
time reversal. A slash~no slash! denotes odd~even! behavior.

MCoul Tel Tmag

J50 PT
J51 P” T” P” T PT
J52 PT PT” P” T”
J53 P” T” P” T PT
A A A A
04550
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C. Current conservation and the extended Siegert’s theorem

The anapole operatora1l has been defined in terms o
T1l

el , and it is well known that this operator can be tran
formed into other forms by exploiting the continuity equ
tion. These forms are equivalent in calculations where c
sistent charge and current operators can be constructed
exact matrix elements evaluated. However, we are intere
in nuclear calculations where, when one goes beyond
simplest descriptions to models that treat the interacti
among the nucleons, current conservation is not preser
We lack a prescription for constructing the many-body c
rents consistently that are necessary for current conserva
and for addressing the renormalizations that account for
limited Hilbert spaces employed in nuclear models. In su
cases there is a preferred form forT1l

el , the form in which all
components of the three-current constrained by current c
servation are reexpressed in terms of the charge operato

A familiar example is the case ofE1 transitions generated
by the ordinary electromagnetic current. ThenT1l

el generates

a one-body operator proportional topW /M , which is of order
v/c, wherev is the nucleon velocity. It can be shown that th
exchange-current contribution toT1l

el is also of this order. As
the exchange currents, in general, cannot be constru
faithfully, it follows that errors will arise that are necessari
of leading order in the velocity.

Siegert @21# showed that the situation could be grea
improved by exploiting the continuity equation

¹W • jW~xW !52 i @H,r~xW !# ~17!

to write TJ
el , in the long-wavelength limit, entirely in term

of the charge operator. This generates the familiar dip
form of the transverse electric operator, proportional tovrW,
wherev is the energy transfer. The importance of this rewr
ing is that the charge operator, which is of order (v/c)0, has
exchange current corrections only of order (v/c)2 or of rela-
tive size;1%. Thus the Siegert’s form of theE1 operator is
a far more controlled operator in nuclear calculations.

A form of T1l
el consistent with Siegert’s theorem is i

common use@22#:

TJM
el8 ~q!8

Ei2Ef

q S J11

J D 1/2

MJM
Coul~q!2 i S 2J11

J D 1/2

3E d3x jJ11~qx!YW JJ111
M ~Vx!• jW~xW !,

~18!

where8 means the equality holds after taking matrix e
ments^ f uÔu i &. This form has the correct leading-order b
havior for transitions due to the first term, with the seco
term vanishing asq→0. But for a static moment, the firs
term vanishes; the leading-order behavior is then gover
by the second term, which the naive Siegert’s theorem d
not properly constrain.

However, the extension of Siegert’s theorem to arbitrarq
was derived by Friar and Fallieros@23,22#: at every order in
2-4
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q those components of the current constrained by cur
conservation are identified and rewritten in terms of
charge operator. The result is

TJM
el9 ~q!8

Ei2Ef

q S J11

J D 1/2E d3x
~qx!J

~2J11!!!

3gJ~qx!YJM~Vx!r~xW !2
q

J12

3E d3x
~qx!J

~2J11!!!
hJ~qx!YW JJ111

M ~Vx!•@xW3 jW~xW !#,

~19!

wheregJ andhJ are polynomials inq @23#. Combining Eq.
~19! and Eq.~13! one finds@9#

al52
M2

9 E d3xx2$ j l~xW !1A2p@Y2~Vx! ^ jW~xW !#l%.

~20!

This is the AM operator form used here and in our ear
work; to our knowledge all other analyses have been ba
on the naive form of Eq.~6!.

We stress that the three transverse electric operatorsTel,
Tel8, and Tel9 are equivalent for simple one-body mode
which ignore nucleon-nucleon interactions, provided the
sulting one-body currents are properly generated by mini
substitution. The differences in these operators arise w
they are used in more realistic calculations.

D. Simple examples

In this section we illustrate how this equivalence is ma
fested in noninteracting shell model calculations of t
nuclear AM of 133Cs. The PNC interaction is also taken to
a one-body effective potential,HPNC

(1) .
The elements of the calculation include the following.
~i! Extreme single-particle forms for the ground-sta

nuclear wave function. As133Cs is an odd-even nucleus wit
J57/21, the odd proton is placed in the 1g7/2 shell, outside
an otherwise fully spin-paired closed core.

~ii ! The strong Hamiltonian is a one-body harmonic osc
lator potential with spin-orbit interaction. While this descri
tion is primitive, it does yield the proper ground-state sp
and parity for the~nearly spherical! nucleus133Cs. The har-
monic oscillator wave functions allow analytic calculatio
of polarizabilities, etc.

~iii ! HPNC
(1) is treated perturbatively: only linear terms a

retained.
Thus the resulting Hamiltonian is

H5H01HPNC
(1) , ~21!

with

H05(
i 51

A
pW ~ i !2

2M
1

1

2
Mv2xW~ i !22 f sW~ i !• lW~ i !; ~22!
04550
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HPNC
(1) 5(

i 51

A
gS1gVt3~ i !

2M
sW ~ i !•pW ~ i !, ~23!

wherev is related to the harmonic oscillator size parame
b by v51/Mb2, the spin-orbit strengthf can be determined
from shell splittings near the 3s2d1g shell, andgS andgV ,
the isoscalar and isovector strengths in the one-body P
potential, can be chosen to represent the average pote
exerted by the core nucleons. The analytic expressions
obtain illustrate the functional dependence on all of the
parameters. Thus we are not concerned here with spe
numerical values.

By minimal substitution

H→H1eF, pW →pW 2eAW , ~24!

one can derive the charge and current densities to order 1M ,

r~xW !5e(
i 51

A
11t3~ i !

2
d (3)~xW2xW i ! ~25!

and

jWconv~xW !5e(
i 51

A
11t3~ i !

2M
$pW ~ i !,d (3)~xW2xW i !%sym,

~26a!

jWmag~xW !5e(
i 51

A
mS1mVt3~ i !

4M
¹W 3@sW ~ i !d (3)~xW2xWi !#,

~26b!

jWs.o.~xW !5e(
i 51

A
11t3~ i !

2

f

2
xW~ i !3sW ~ i !d (3)~xW2xW i !,

~26c!

jWPNC~xW !5e(
i 51

A
11t3~ i !

2M

gS1gV

2
sW ~ i !d (3)~xW2xW i !,

~26d!

where the subscriptsconv, mag, s.o., andPNC denote the
current densities arising from convection~kinetic energy!,
magnetization~intrinsic nucleon spin!, the spin-orbit interac-
tion, and the PNC potential, respectively. The first three
vector currents while the last is axial vector. Current cons
vation is then easily verified

¹W •@ jWconv~xW !1 jWmag~xW !1 jWs.o.~xW !1 jWPNC~xW !#

52 i @H01HPNC
(1) , r~xW !#. ~27!

Contributions to the AM are generated by the axial-vec
current acting between the unperturbed nuclear ground s
and by vector currents that contribute becauseHPNC

(1) perturbs
the ground state,
2-5
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^cuT1
eluc&5^c0uT1

el(A)uc0&

1(
x0

S ^c0uT1
el(V)ux0&^x0uHPNC

(1) uc0&
Ec0

2Ex0

1H.c.D ,

~28!

wherec0 andx0 are single-particle unperturbed eigenfun
tions of definite~and opposite! parities, and the superscrip
~A! and ~V! label the components ofT1

el generated by the
axial-vector and vector currents, respectively.

The special case of no spin-orbit interaction is interest
because the first-order perturbed wave function~in fact, the
result can be generalized to all orders! is given by the Michel
transformation@24#

c0~xW !→c~xW !5S 12 ig
sW

2
•xW Dc0~xW !>e2 isW•(gx) x̂c0~xW !,

~29!

whereg5gS6gV for a proton~1! or neutron (2). Equation
~29! shows thatHPNC

(1) generates a spin rotation along th
radial direction characterized by a small angle proportio
to g and to the distance to the center of the nucleus. Cons
an S1/2 state aligned along the1z axis. The spin probability
around a ring, centered at the origin, would be uniform a
in the 1z direction: we visualize this as a uniform array
up spinors. When the weak interaction is turned on,
Michel rotation will produce a spin helix@16# structure for
this chain of spinors as shown in Fig. 2. If we picture ea
spin as a small current loop, the combination of all horizon
spin componentsSi can be viewed as a toroidal curre
winding producing an AM, as discussed in Sec. II A.

Moreover, if the Michel-transformed wave function
used in a calculation of the AM, one finds that the contrib
tions from jWPNC and jWconv cancel exactly, so thatjWmag is
entirely responsible for the AM. Even with the inclusion
the spin-orbit interaction, the magnetization current rema
the major contribution to the AM@3#.

The sum over intermediate states in Eq.~28! simplies con-
siderably in the harmonic oscillator since the momentum
eratorpW only generates transitions of one\v. Thus the tran-
sitions that must be consider in the extreme single-part
limit are the simple 1p and 2p1h single-shell transitions o
Fig. 3 @15#.

Some preliminary algebraic manipulations are helpf
Using the commutation relation

FIG. 2. Spin helix structure due to the parity mixing.
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F pW 2

2M
1

1

2
Mv2xW2,xW G52 i

pW

M
, ~30!

the PNC one-body potential can be rewritten as

HPNC
(1) 5

g

2M
sW •pW 5 i

g

2M S @H0 ,sW •xW #1
f

2
@sW • lW,sW •xW # D .

~31!

Using this result in the polarization sum yields

a(pol)5 i
gM2

2
^ i u@sW •xW ,T1

el(V)#u i &

1
gM2

2
f(

n
^ i usW •~xW3 lW !un&

3^nuT1
el(V)u i &/~Ei2En!1H.c. ~32!

As a typical value for the nuclear spin-orbit strength isf /v
[a;0.1, one can work to first order inf, yielding, for the
various AM contributions,

a(conv)>
gM

8
^ i ux2sW u i &2

gM

4
f(

n
^ i usW •~xW3 lW !un&

3^nu 1
2 ~x2pW 2 ixW !u i &/~Ei2En!1H.c. , ~33!

a(mag)>
gM

4
mH ^ i u~sW •xW !xW2x2sW u i &

2 f(
n

^ i usW •~xW3 lW !un& ^nu 1
2 sW 3xW u i &/

~Ei2En!1H.c.J , ~34!

a(s.o.)>2
gM2

8
f ^ i ux2@~sW •xW !xW2x2sW #u i &, ~35!

a(PNC)>2
gM

8
^ i ux2sW u i &. ~36!

As theO( f 0) terms froma(conv) anda(PNC) exactly cancel,
a(mag) determines the leading-order~LO! contribution

aLO5
gM

4
m^ i u~sW •xW !xW2x2sW u i &. ~37!

FIG. 3. Valence and core excitations produced by the PNC
tential acting on an extreme single-particle harmonic oscillat
ground state. The levels illustrated are appropriate for133Cs.
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TABLE II. Matrix elements corresponding to four choices of the anapole operator. Note the dimensi
parametera[ f /v5 f Mb2, whereb is the oscillator parameter. The results are in units ofC[4pA2/7(gS

1gV)Mb2, another dimensionless quantity.

^uuauu&/e T1
el

T1
el8 T1

el9 Cartesian

conv 21.1
124a 1

25.4
114a

22.8
124a 1

22.7
114a

24/3
124a 1

26
114a

0.5
124a1

210.125
114a

mag 11.16
124a 1

50.22
114a

11.16
124a 1

50.22
114a

11.16
124a 1

50.22
114a

11.16
124a 1

50.22
114a

s.o. 215.6
124a 1

230.6a
114a

28.8a
124a 1

219.9a
114a

244a/3
124a 1

233a
114a

222a
124a 1

249.5a
114a

PNC 13/2 11/2 22/3 77/8

Total 11.16220a
124a 1

50.2229a
114a Same Same Same
a
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For the next-to-leading-order~NLO! O( f 1) contributions, we
approximateEi2En.2\v ~as the spin-orbit correction to
this are higher order! and invoke closure:

aNLO
(conv).

gM

4
a^ i u$sW •~xW3 lW !, 1

2 ~x2pW 2xW !%u i &, ~38!

aNLO
(mag).

gM

4
am^ i u$sW •~xW3 lW !, 1

2 ~sW 3xW !%u i &. ~39!

Therefore, assuming these matrix elements are of the s
order of magnitude, one obtains, for the relative sizes,

uaNLO
(conv)/aLOu;UamU, ~40!

uaNLO
(mag)/aLOu;uau, ~41!

ua(s.o.)/aLOu;U a

2mU^x2&

b2
;A1/3U a

2mU;uau, ~42!

where in the last line we assume an odd-proton nucleus
A;100, similar to Cs.

In Table II we present our results for the AM of133Cs in
this single-particle scheme using the four differentT1

els dis-

cussed previously@T1
el , T1

el8 , T1
el9 , and the one from the

Cartesian decomposition using Eq.~13! and Eq.~6!# to de-
fine our anapole operator. Agreement is achieved only w
~i! all the currents—conv, mag, s.o., andPNC—and~ii ! a
complete set of excitations—valence and core—are con
ered. This illustrates a point made earlier: that the use
incomplete current operators or Hilbert spaces breaking
rent conservation will in general lead to difficulties.

The table also shows that the contribution of the mag
tization current, which is separately conserved (¹W • jW (mag)

50), is independent of the choice of the anapole opera
This term is entirely responsible for the leadingO(a0) result
~given theconv-PNC cancellation in this order!. It is also
apparent that the NLO contribution attributed to a given c
rent depends on the anapole operator chosen: it is the
over all contributions, not individual contributions, that
kept constant in calculations satisfying current conservat
The numerical value of the LO contribution~61.4! is reduced
04550
me

th

n

d-
of
r-

-

r.

-
m

n.

by ;20% to 50.5 when the NLO contributions are includ
(a50.1), consistent with our earlier assertion that these c
rections are perturbations.

III. PNC NUCLEON-NUCLEON POTENTIAL

The AM calculations presented here are the first to e
ploy an NN weak potential sufficiently general to describ
long-rangep exchange and all five short-rangeS-P NN am-
plitudes. This section summarizes the isospin structure of
DS50 hadronic weak interaction and its description in ter
of p, r, andv exchange.

A. Isospin structure of the hadronic weak interaction

The standard model specifies the weak charged and
tral currentsJW and JZ associated with the absorption an
emission of weak bosons by quarks@25#. The couplings to
the light quarks (u,d,s) are

JW
m 5cosuCūgm~12g5!d1sinuCūgm~12g5!s, ~43!

JZ
m5

1

A2 cosuW
H ūgmS 12

8

3
sin2uW1g5Du

2d̄gmS 12
4

3
sin2uW1g5Dd

2 s̄gmS 12
4

3
sin2uW1g5D sJ , ~44!

whereuC is the Cabbibo angle, with sinuC;0.22, anduW is
the Weinberg angle, with sin2uW;0.23. The effective quark-
quark weak interaction at low energies can be described
phenomenological current-current Lagrangian

LWeak5
GF

A2
~J†

WJW1JWJW
† 1J†

ZJZ!. ~45!

By assigning proper isospin and strangeness quan
number to each quark field, we can decompose these
ronic currents

JW5cosuCJW
(1,0)1sinuCJW

(1/2,1), ~46!

JZ5JZ
(1,0)1JZ

(0,0) , ~47!
2-7
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where the first superscript denotes the change in isospin (DI )
and the second in strangeness (DS). The currentJW

(1,0) drives
the u→d transition, whileJW

(1/2,1) drives theu→s transition.
We can construct the strangeness-conserving (DS50) had-
ronic weak-interaction Lagrangian density

L weak
(DS50)5

GF

A2
@~cos2uCJW

(1,0)†JW
(1,0)1sin2uCJW

(1/2,1)†JW
(1/2,1)

1H.c.!1JZ
(1,0)†JZ

(1,0)1JZ
(1,0)†JZ

(0,0)

1JZ
(0,0)†JZ

(1,0)1JZ
(0,0)†JZ

(0,0)#. ~48!

An important aspect of this Lagrangian density is its is
pin content. The symmetric product of twoJW

(1,0) currents
forms DI 50 ~isoscalar! andDI 52 ~isotensor! interactions,
while the symmetric product of twoJW

(1/2,0) currents forms a
DI 51 ~isovector! interaction. Therefore the charged curre
weakNN interaction in theDI 51 channel is suppressed b
tan2uC relative to theDI 50 or 2 contributions. As there is
no isovector suppression for the neutral-current, one c
cludes that theDI 51 NN channel provides experimentalis
their best opportunity for studying the neutral current co
ponent of the hadronic weak interaction.

The physical states are strongly interacting composi
nucleons, and mesons. The strong interaction dresses th
derlying quark-boson couplings, and we have not yet de
oped the theoretical tools needed to evaluate the strong
fects quantitatively. The physical couplings associated w
the effective operators for nucleons and mesons are thus
pected to differ – perhaps substantially—from the unde
ing bare couplings. One famous example of this is theDI
51/2 rule in strangeness-changing weak decays: in exp
ments one finds a strong enhancement ofDI 51/2 overDI
53/2 amplitudes, relative to expectations based on the
derlying standard-model couplings and efforts to evalu
strong renormalizations. One reason for the interest in P
is the hope that we can learn more about such strong eff
by adding precise data onDS50 weak hadronic interactions

B. Meson-exchange and the long-range PNCNN potentials

The most straightforward contribution to the PNC nucle
potential is from the direct exchange ofW6 andZ0 between
bare nucleons. Because of the small Compton wavelen
of these bosons (;0.002 fm), direct exchanges effective
occur only when two nucleons overlap. We do not yet ha
an adequate understanding of such short-range contribu
to either the PNC or parity-conserving~PC! NN interactions.
Fortunately, for energies characteristic of bound nucleo
the NN interaction takes place primarily at distances lar
compared to the nucleon size. This is due in part to
strong repulsion in theNN interaction at short distances an
in part because nuclei are moderately dilute Fermi syste
Thus we expect long-range contributions, which can be
scribed without explicit reference to the structure of t
nucleon, to dominate the PNC interaction at low energie

The strong PC NN interaction at low energies
(&400 MeV) has been quite successfully modeled in ter
04550
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of meson-exchange potentials. The complicated sh
distance quark and gluon dynamics governing this inter
tion are parametrized by various meson-nucleon coupli
and phenomenological form factors constrained by exp
ment. This meson-exchange strong-interaction model ca
enlarged to include the weak PNCNN interaction by replac-
ing one of the strong meson-nucleon couplings by a w
coupling. All of the physics ofW and Z exchange between
quarks—and the attendant strong interaction dressing
buried inside the weak meson-nucleon vertices. As in
case of the strongNN interaction, the weak vertices depen
on momentum-independent meson-nucleon couplings
phenomenological form factors. For this model to ma
sense, one should, at a minimum, be able to derive a con
tent and reliable set of meson-nucleon couplings from P
observables. Should such a set emerge, the longer-term
would be to develop a first-principles understanding of
relationship between the effective hadronic couplings and
underlying standard-model bare couplings, dressed b
complicated soup of strong quark-quark interactions.

In developing a sensible meson-exchange model for
PNC NN force, one must first truncate the tower of possib
dynamical mesons, effectively ‘‘integrating out’’ those whic
do not contribute explicitly to the interaction. At sma
center-of-mass energies light mesons dominate the PNC
tential because they have longer ranges. Candidates b
the chiral symmetry breaking scale of;1 GeV include the
pseudoscalar mesonsp(140 MeV), h(549 MeV), and
h8(958 MeV); the scalar mesonsS(975 MeV) and
d(983 MeV); and the vector mesonsr(769 MeV),
v(783 MeV), andf(1020 MeV). One could also conside
various multiple meson exchanges that cannot be facto
into the product of a single weak exchange and a nuc
wave function contribution. Included in this class are cross
diagrams, diagrams with intermediate nucleon resonan
etc. Barton’s theorem@26#, which states thatCP invariance
forbids any coupling between neutralJ50 mesons and on
shell nucleons, helps to restrict the possibilities, eliminat
exchanges ofp0, h, h8, S, and d0 ~to the extent thatCP
violation can be ignored!. Furthermore, McKellar and Pick
have argued thatd6 exchange can be regarded as a fo
factor correction top6 exchange@27# and f is strongly
suppressed relative tor andv. This motivates a PNC poten
tial based onp6, r0, r6, and v0 exchanges.~We will
present below another argument that will make this poten
seem less arbitrary.!

The PC and PNC meson-nucleon interaction Lagrang
density in thep-, r-, andv-exchange model is

LPC5 igpNNN̄8g5tW•pW N

2grNNN̄8S gm2 i
mV

2M
smnqnD tW•rW mN

2gvNNN̄8S gm2 i
mS

2M
smnqnDvmN, ~49!
2-8



one
a

NUCLEAR ANAPOLE MOMENTS PHYSICAL REVIEW C65 045502
LPNC52
f p

A2
N̄8~tW3pW !3N

1N̄8S hr
0tW•rW m1hr

1r3
m1

hr
2

2A6
~3t3r3

m2tW•rW m!D
3gmg5N1N̄8~hv

0 vm1hv
1 t3vm!gmg5N, ~50!

where gpNN , grNN , and gvNN are the strongp-, r-, and
v-nucleon coupling constants andf p , hr

(0,1,2), and hv
(0,1)
n

el
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04550
~the superscripts denote the rank of isospin! are the weak
p-, r-, andv-nucleon coupling constants.~In the literature
f p is also frequently calledhp or hp

1 .! Note that the
g5 convention is that of Bjorken and Drell, and thatq is
the outgoing momentum of the produced meson.~Both of
these conventions are opposite in sign to those of@6#.!
Evaluating the one-boson exchange diagrams, where
of the vertices is PC and the other PNC, and making
nonrelativistic reduction, one obtains the PNCNN
potential
HPNC
(2) ~rW !5

iF p

M
@tW~1!3tW~2!#3@sW ~1!1sW ~2!#•uW p~rW !1

1

M S H F0tW~1!•tW~2!1
F1

2
@t~1!31t~2!3#

1
F2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!#J $~11mV!i @sW ~1!3sW ~2!#•uW r~rW !1@sW ~1!2sW ~2!#•vW r~rW !%

1H G01
G1

2
@t3~1!1t3~2!#J $~11mS!i @sW ~1!3sW ~2!#•uW v~rW !1@sW ~1!2sW ~2!#•vW v~rW !%

1
1

2
@t3~1!2t3~2!#@sW ~1!1sW ~2!#•@G1vW v~rW !2F1vW r~rW !# D , ~51!
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where rW5rW12rW2 , uW (rW)5@pW ,e2mr/4pr #, vW (rW)

5$pW ,e2mr/4pr %, andpW 5pW 12pW 2. The various coefficients in
this potential are products of PC and PNC couplings:Fp

5gpNNf p /A32, F052grNNhr
0/2, F152grNNhr

1/2, F2

52grNNhr
2/2, G052gvNNhv

0 /2, andG152gvNNhv
0 /2. We

use the strong couplingsgpNN513.45, grNN52.79, and
gvNN58.37. Vector dominance fixes the strong scalar a
vector magnetic momentsmS520.12 andmV53.70. Note
that thep-exchange channel isI 51; numerically, it domi-
nates the isovectorNN weak interaction. This is the chann
which tests the strength of the neutral-current componen
the hadronic weak interaction.

While the field has seen considerable experimen
progress in constraining the PNC meson-nucleon couplin
the theoretical situation has hardly advanced beyond
benchmark analysis of Desplanques, Donoghue, and
stein ~DDH! @6#, carried out 20 years ago. Using SU(6)W
symmetry, current algebra, and the constituent quark mo
DDH related charged current components off p and thehV

i to
experimental PNC amplitudes forDS51 nonleptonic hy-
peron decays. Portions of the neutral current contributi
were also related to hyperon decays, while the remain
pieces—unaccessible through symmetry techniques—w
computed using explicit quark-model calculations. Unc
tainties associated with the latter imply considerable lattitu
in the theoretical predictions. The resulting ‘‘best value
and ‘‘reasonable ranges’’ are given in Table III. The case
f p is particularly acute, as this coupling is nominally dom
nated by neutral-current interactions.
d
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s
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Subsequent to the DDH work, other approaches, such
soliton models@30# and QCD sum rules@31#, have been
applied to the weak meson-nucleon couplings. None of th
approaches, however, has yielded a sharper theoretical
ture. Part of the difficulty may lie in the assumption of v
lence quark dominance in the evaluation of the DD
‘‘quark-model’’ terms ~those contributions not determine
from current algebra or sum rules, but evaluated in the qu
model!. In particular, it has recently been shown, in the co
text of chiral perturbation theory, that chiral corrections
the leading-order PNCpNN interaction may be large@32#.
These corrections, which have no analog in constituent qu

TABLE III. Weak meson-nucleon coupling ‘‘best values’’ an
‘‘reasonable ranges’’~in units of 1027) from the standard-mode
calculations of Desplanques, Donoghue, and Holstein. For comp
son, the last two columns give the corresponding results of Dubo
and Zenkin~DZ! and Feldman, Crawford, Dubach, and Holste
~FCDH!.

Coupling ‘‘Reasonable range’’ ‘‘Best value’’
DZ
@28#

FCDH
@29#

fp 0.0↔11.4 4.6 1.1 2.7
hr

0 230.8↔11.4 211.4 28.4 23.8
hr

1 20.38↔0.0 20.19 0.4 20.4
hr

2 211.0↔27.6 29.5 26.8 26.8
hv

0 210.3↔5.7 21.9 23.8 24.9
hv

1 21.9↔20.8 21.1 22.3 22.3
2-9
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models, reflect the presence of ‘‘disconnected’’ lightq̄q sea
contributions. Given the present interest of hadron struc
physicists in the sea quark structure of light hadrons,
possibility of important sea quark contributions makesf p a
particularly interesting object of study. Achieving agreeme
among all determinations of this coupling is, thus, importa
As we observe below, the current interpretation of the Cs
Tl AMs in terms of DDH couplings shows that such agre
ment is not yet in hand.

In can be argued that an analysis in terms of mes
exchange PNC couplings is in fact quite general, if limited
low-energy observables: the DDH couplings are a shorth
for another representation of the low-energy PNCNN inter-
action, one based on the five independentS-P amplitudes
@33,34#. The DDH description in terms ofp, r, andv ex-
change can be viewed as an effective theory, valid at mom
tum scales much below the inverse range of the vector
sons. At low momentum the detailed short-range behavio
the potential is not resolvable: thus one could characte
the vector-meson contribution to the weakNN interaction by
five strengths describing the fiveS-P amplitudes. A sixth
parameter would be needed to describep exchange, as this
interaction is long ranged. The six DDH couplings thus a
equivalent to such a description of the weak potential.

In an ideal world one would determine the low-ener
NN S-P amplitudes or, equivalently, the six weak meso
nucleon couplings by a series ofNN scattering experiments
Such experiments require measurements of asymme
;1028, the natural scale for the ratio of weak and stro
amplitudes, 4pGFmp

2 /gpNN
2 . As we will detail later, only a

single NN measurement, the longitudinal analyzing pow
for AL for pW 1p, has produced a definitive result. This res
has been supplemented by PNC measurements in few-
nuclei and in some special nuclear systems where nuc
structure uncertainties can be largely circumvented, allow
the experiments to be interpreted reliably. An analysis
these results, which have been in hand for some time,
gests that the isoscalar PNC interaction—which is domina
by r and v exchange—is comparable to or slightly larg
than the DDH ‘‘best value,’’ while the isovecto
interaction—dominated byp exchange—is significantly
weaker@5#. As the isovector channel is expected to be e
hanced by neutral currents, there is great interest in confi
ing this result. One reason for the interest in the133Cs AM is
the hope that spin-dependent atomic PNC measurement
provide such a cross-check.

IV. CONTRIBUTIONS TO NUCLEAR ANAPOLE
MOMENTS

The DDH meson-exchange model—which we have
gued provides a very general description of the PNCNN
interaction at low energies—has become the standard
malism for discussing low-energy properties of the weakNN
interaction. We now extend this formalism to nuclear AM
discussing the various PNC meson-exchange mechanism
which a virtualE1 photon can be absorbed by the nucleu

~i! Figure 4 illustrates a PNC pion cloud dressing of
04550
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nucleon~one pion-nucleon coupling is PNC and one PC! and
a vector-meson pole graph, leading toE1 photon absorption
by a nucleon. The axial currents corresponding to such p
loop and vector-meson dominance diagrams generate nu
onic AMs @9,35–38#, which we discuss in more detail in Se
IV A.

~ii ! The two-bodyHPNC
(2) also generates two-body axia

vector exchange currents~see Fig. 5!. The diagrams we
evaluate include~i! pair currents, whereE1 photons couple
to the NN̄ pairs excited by the two-body potential, and~ii !
transition currents, whereE1 photons couple to the ex
changed mesons@39#. Detailed calculations are described
Sec. IV B.

~iii ! The two-bodyHPNC
(2) polarizes the nucleus, producin

an opposite-parity ground-state component. This compon
then couples back to the unperturbed ground state via
amplitude for absorbing a virtualE1 photon. The resulting
polarizability requires one to sum over a complete set
opposite-parity intermediate states~Fig. 6!. This is discussed
in Sec. IV C.

The dependence of these contributions on nucleon n
ber A is important. As the one-body anapole contributi
involves a coupling to spin, it is easy to see that the nuc
onic contribution acts very much like a nuclear magne
moment: in a naive picture of an odd-A nucleus as an un
paired nucleon outside of a spin-paired core, the core con
bution cancels, leaving only the valence-nucleon contri
tion. While that contribution will depend on the quantu
labels of the valence orbital, there is no general growth of
nucleonic contribution withA. In contrast, it was the impor
tant observation that that polarization contribution grows

FIG. 4. One-body axial-vector currents contributing to nuc
onic anapole moments are generated by pion loop diagrams an
vector-meson dominance diagrams.

FIG. 5. Two-body axial-vector currents. One meson-nucle
vertex is strong; the second is weak.
2-10
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A2/3 @3# that led atomic experimentalists to realize that AM
might be measurable. This growth not only leads to lar
AMs in heavy nuclei, but guarantees that the AM will dom
nate over other sources of spin-dependent PNC, such a
rectV(electron)-A(nucleus)Z0 exchange~another nucleonic
coupling that effectively sees only the unpaired valen
spin!. Similarly, it was shown in@9# that the exchange
current contribution also grows likeA2/3. Note that the po-
larization contribution could be additionally enhanced if t
ground state is a member a fortuitous parity doublet. Th
has been some discussion of anapole~and electric dipole!
moment enhancements because of such accidental nea
generacies@40#.

In Figs. 4–6 the AM is shown interacting with an extern
photon. Yet the illustrated processes are not physical, as
anapole coupling vanishes for on-shell photons. The un
lying physical processes involve a scattering particle—e
an atomic electron, the source of the virtual photon. It f
lows that the AM need not be a gauge-invariant quant
instead it is one of a larger class of weak radiat
corrections—corrections naively ofO(GFa)—that together
form a gauge-invariant physical amplitude. Included in t
larger set of radiative corrections would be various ‘‘bo
diagrams corresponding to simultaneous exchange betw
the electron and nucleus of a photon andZ0, etc. However,
the long-distance contributions to the AM of a nucleus—
meson-cloud contributions and many-body contributions
to wave function polarization and exchange currents d
cussed here—are both dominant numerically and separa
gauge invariant@35#. This is one reason the set of anapo
contributions associated withHPNC

(2) discussed here is of suc
interest.

The calculations require wave functions for the nucle
ground-state and one- and two-body transition density ma
ces for evaluating the effects of one- and two-body opera
on the ground state. The wave functions were derived fr
shell-model~SM! diagonalizations with harmonic oscillato
Slater determinants and with suitable residual two-body
teractions. For 133Cs, the oscillator parameter isb
52.27 fm and the canonical SM space is between the m

FIG. 6. An opposite-parity polarization of the nuclear grou
state induced by the PNC weakNN interaction.
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shells of 50 and 82, i.e., 1g7/2-2d5/2-1h11/2-2d3/2-3s1/2. Cal-
culations were performed with the five valence protons
stricted to the first two of these shells and four neutron ho
to the last three. This produced anm-scheme basis of abou
200 000. Two interactions were employed: the Baldridg
Vary potential@41# and a recent potential developed by t
Strasbourg group@42#, both of which are based on the add
tion of multipole terms tog-matrix interactions and are de
signed for the132Sn region. As the results are very simila
here we only quote results from the Baldridge-Vary calcu
tion. For 205Tl, an oscillator parameterb52.54 fm was cho-
sen. The ground state was described as a proton hole in
orbits immediately below theZ582 closed shell, i.e.,
3s1/2-2d3/2-2d5/2 ~though the 1h11/2 lies between twod
shells, we omitted this opposite-parity shell to keep the S
space manageable!, and the two neutron holes are in th
space between magic shells of 126 and 82, i
3p1/2-2 f 5/2-3p3/2-1i 13/2-2 f 7/2-1h9/2. A simple Serber-
Yukawa force was used as the residual interaction.

A. Nucleonic anapole moments

As illustrated in Fig. 4, the one-body PNC electroma
netic currents~parity even! can be derived from pion loop
diagrams, where one meson-nucleon vertex is weak and P
and the other strong and PC, and from vector-meson do
nance. After plugging these one-body PNC currents into
~20!, the one-body anapole operator takes the form

al
12body5(

i 51

A

@as~0!1av~0!t3~ i !#sl~ i !. ~52!

This form makes it clear that the contributions of spin-pair
core nucleons cancel, leaving only the valence nucleon A
The results from@9#, where only the pion contribution wa
considered, are

as~0!>20.193f pe, ~53!

av~0!>20.048f pe. ~54!

Thus the pion loops generate an isoscalar coupling tha
about 4 times larger than the isovector one. Later this ca
lation was extended to include ther0-pole contribution by
vector-meson dominance@35#. This work was further ex-
tended to included the full set of one-loop contributions
volving the DDH vector-meson PNC couplings@37#, using
the framework of heavy-baryon chiral perturbation theo
(HBxPT) and retaining contributions throughO(1/Lx

2),
whereLx54pFp;1 GeV is the chiral symmetry breakin
scale andFp>93 MeV is the pion decay constant. Th
yielded the nucleonic AM couplings

as~0!

e
>20.24f p20.37hr

120.11hv
0 10.07hf

0 21.43hA
1

10.0051hnS2K10.047S hV
nS̄K1

1
hV

pS0K1

A2
D

20.3~hA
pK1hA

nK!10.009hpLK20.125hV
pLK1

,

~55!
2-11



W. C. HAXTON, C.-P. LIU, AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW C65 045502
TABLE VI. Decomposition of the SM estimates of the anapole matrix element^I uuA1uuI &/e into its
weak-coupling contributions.

Nucleus Source f p hr
0 hr

1 hr
2 hv

0 hv
1

133Cs Nucleonic 0.59 0.87 0.90 0.36 0.28 0.29
Ex. cur. 8.58 0.02 0.11 0.06 20.57 20.57
Polariz. 51.57 216.67 24.88 20.06 29.79 24.59
Total 60.74 215.78 23.87 0.36 210.09 24.87

205Tl Nucleonic 20.63 20.86 20.96 20.35 20.29 20.29
Ex. cur. 23.54 20.01 20.06 20.03 0.28 0.28
Polariz. 213.86 4.63 1.34 0.08 2.77 1.27
Total 218.03 3.76 0.33 20.30 2.76 1.26
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av~0!

e
>20.37S hr

01
hr

2

A6
D 20.12hv

1 10.07hf
1 21.43hA

1

10.9S hV
01

3

4
hV

2 D10.0051hnS2K

10.047S 2hV
nS̄K1

1
hV

pS0K1

A2
D 20.3~hA

pK2hA
nK!

10.009hpLK20.125hV
pLK1

. ~56!

The HBxPT result for the pionic contribution is consiste
with the earlier pion loop estimates: the isoscalar couplin
1.3 times the pion loop value, while the isoscalar coupling
zero to this order inxPT. However, the vector meson
greatly enhance the isovector AM. An evaluation using DD
best values shows thatav(0);7as(0). That is, the inclusion
of the vector mesons enhances the AM and qualitativ
changes its isospin character, with the proton and neu
AMs opposite in sign. The HBxPT calculation included non
Yukawa-typepNN couplings ~defined ashv

i s and hA
i s in

@37#! associated with derivative interactions. Here we inclu
only the standard DDH contributions, omitting the rest. U
ing ‘‘best values’’ for the neglected terms@37#, this omission
is estimated to generate a 3% error in the dominant isove
coupling and 100% inas(0). Thereason for the omission i
consistency: such derivative couplings are absent in
DDH PNC NN potential, the parameters of which are co
strained by experiment. A consistent treatment of the der
tive coupling would require not only their propagatio
through the polarization and exchange current calculati
04550
is
s

ly
n

e
-

or

e
-
a-

s

for the AM, but also redoing the DDH potential fits to a
other low-energyNN and nuclear PNC observables. W
leave this ambitious task to future work.

Folding these expressions with our SM matrix eleme
@^I uu( i 51

A s( i )uuI &522.372 and 2.532,̂I uu( i 51
A s( i )t( i )uuI &

5 -2.305 and 2.282, for Cs and Tl, respectively# yields the
results in Table VI.

B. Exchange currents

The virtualE1 photon can also be absorbed on a pair
nucleons coupled by the PNC potential. Such PNC excha
currents are evaluated in the standard way. The transi
matrix is derived and reduced nonrelativistically, retaini
terms through 1/M . This resulting momentum-space curre
is then Fourier transformed to produce a coordinate-sp
two-nucleon current,

j m~xW ,xW1 ,xW2!5E dkW

~2p!3
eikW•xWE d~pW 18 2pW 1!

~2p!3
ei (pW 18 2pW 1)•xW1

3E d~pW 28 2pW 2!

~2p!3
ei (pW 28 2pW 2)•xW2

3 j m~kW ,pW 18 2pW 1 ,pW 28 2pW 2!, ~57!

wherexW is the field point,xW1 andxW2 the source points.
In Appendix A we give the two-body charge and curre

operators in momentum space. In Appendix B we give
nonvanishing three-current coordinate-space operators
O(1/M ), the forms needed for the AM calculation. Thep
contribution, which turns out to dominate numerically, is
jW (p)~xW ,xW1 ,xW2!5 jWg-PC
(p pair)~xW ,xW1 ,xW2!1 jWg-PNC

(p pair)~xW ,xW1 ,xW2!1 jW (ppg)~xW ,xW1 ,xW2!

5
2egpNNf p

8A2pM
~tW~1!•tW~2!2t~1!3t~2!3!H sW ~1!d (3)~xW2xW1!1sW ~2!d (3)~xW2xW2!2

1

2
@sW ~1!•¹W12sW ~2!•¹W2#

3F @d (3)~xW2xW1!1d (3)~xW2xW2!#~xW12xW2!1
1

2

uxW12xW2u
mp

¹W @d (3)~xW2xW1!1d (3)~xW2xW2!#G J e2mpuxW12xW2u

uxW12xW2u
. ~58!
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TABLE IV. A comparison of anapole moment estimates from a one-body Fermi gas average wit
two-body shell-model results. DDH best-value couplings are used, and no short-range correlation fu
corrections are included in either set of results. The labels PC and PNC denote whether the nucleon a
the photon has a PC or PNC meson-nucleon coupling.

^uuauu&/e3107 p pair r pairPC r pairPNC v pairPC v pairPNC ppg rrg rpgPC

133Cs FGA 110 13.0% 219.0% 20.4% 8.1% 234.9% 6.6% 0.5%
SM 67 12.9% 218.2% 8.6% 224.0%

205Tl FGA 275 12.8% 218.2% 20.3% 7.8% 235.5% 7.8% 0.0%
SM 227 15.4% 221.5% 12.8% 229.4%
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Note that this expression is valid in the long-waveleng
limit, where the three-momentum transfer associated w
the photon is small.

Even with the complete exchange currents in hand, ev
ating their shell-model matrix elements is a formidable ta
~The one previous AM exchange-current calculation trea
only p exchange@9#.! For example, the form ofjWrrg is far
more involved than any of the pionic contributions. The p
cedure we follow is to first identify which currents are n
merically significant by averaging the currents over t
nuclear core. Once identified, full two-body evaluations
then performed for these cases.

The one-body average, first performed for PNC potent
by Michel @24#, involves direct and exchange terms

^auO(1)ub&[(
g

^aguO(2)ubg&2^aguO(2)ugb&, ~59!

where the sum extends over all single-particle core sta
The averages are done in a Fermi gas, a simple choice
cause spin, isospin, and spatial averages can be perfo
independently. The nucleus is viewed as a single part
outside a spin-paired~but isospin asymmetric! Fermi sea.
The one-body average operators are obtained in closed f
though the average done over the spatial functions produ
in general, a complicated but smooth function of the sing
particle initial and final momenta~the Y and W functions
below!. The smoothness allows us to replace this funct
with an average value, with little loss of accuracy. Appen
C contains an example of this averaging procedure, while
full results for the various currents are listed in Appendix
In the case ofp exchange the result is

jW (p)~xW ,xW i !5 jWg PC
(p pair)~xW ,xW i !1 jWg PNC

(p pair)~xW ,xW i !1 jW (ppg)~xW ,xW i !

5
egpNNf p

2A2Mmp
2 @~un1up!1~un2up!t3#

3rH ^W8(p)&sW d (3)~xW2xW i !

2
2

mp
2 F ^Y3&pF

2sW d (3)~xW2xW i !2^Y1&

3@sW •¹W ,@¹W ,d (3)~xW2xWi !##

2
1

4
^Y2&$sW •¹Wi ,$¹Wi ,d (3)~xW2xW i !%%G J , ~60!
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whereup(n) is the projection operator of proton~neutron! and
r denotes the nuclear density.

The one-body estimate of the exchange current contr
tions to the AM can be obtained by plugging the averag
currents into Eq.~20!. The Fermi-gas-averaged AM resul
are tabulated in the FGA columns of Table IV. The resu
are given as a fraction of thep pair current contribution, as
this is the dominant term. These results are compared to
two-body SM results, similarly normalized to the SMp pair
current AM value. The absolutep pair current results are
also given for both calculations.

We see from the table that, while the Fermi gas aver
tends to overestimate the AM contribution by a factor
;2 –3, compared to the SM, the Fermi gas and SM ag
very well on the relative values of the various contribution
~The comparison is less impressive for Tl than for Cs, but
Fermi gas parameters used for both nuclei were tailored
Cs.! This suggests that the one-body average AM val
should be reliable indicators of which exchange-current c
tributions are important.

The Fermi gas model is an independent particle mod
The SM, while incorporating certain correlations, omits t
high-momentum components of the Hilbert space neces
for describing the short-range hard core. While the SM~and
associated Fermi gas! shortcomings could in principle be
corrected by introducing effective operators and wave fu
tion renormalizations, in practice this is never done. Inste
most frequently the omitted short-range physics is moc
up by a correlation function which, in SM PNC studies,
often taken from Miller and Spencer@43#,

f ~r 12!512~12br12
2 !e2ar12

2
, ~61!

with a51.1 fm22 and b50.68 fm22. This correlation
function reduces two-body matrix elements by;25% –30%
for p currents, 75%–80% forr andv currents,;80% for
pp currents, and;90% –95% forrr andrp.

No short-range correlation corrections have been inclu
in the results of Table IV. It is thus apparent that the tr
jWg-PC
v pair , jWrrg ~the most complicated current!, and j rpg

exchange-current contributions~with short-range correla-
tions included! would be;1% of the dominantp pair re-
sult. It is then reasonable to ignore these unimportant
complicated exchange currents, evaluating all others with
full two-body SM density matrix, modified by the Miller
Spencer correlation function. While a complete list of t
two-body AM operators is too long to list here, the domina
p operator is found to be
2-13
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aW (p)5
egpNNf pM

72A2p
@tW~1!•tW~2!2t3~1!t3~2!#

3Fx1
2sW ~1!1x2

2sW ~2!1A2p$x1
2@Y2~V1! ^ sW ~1!#1

1x2
2@Y2~V2! ^ sW ~2!#1%2

1

2
@sW ~1!•¹W12sW ~2!•¹W2#

3S ~x1
21x2

2!xW1A2p$x1
2@Y2~V1! ^ xW #1

1x2
2@Y2~V2! ^ xW #1%1

3

2

x

mp
xW D G e2mpx

x
, ~62!

wherexW5xW12xW2. The numerical results for the sum of a
exchange-current contributions to the Cs and Tl AMs
given in Table VI.

C. Nuclear polarization contributions

As illustrated in Fig. 6, the two-body PNCNN potential
perturbs the ground state, mixing it with excited states
opposite parity. The resulting odd-parity ground-state co
ponent allows the ordinary~vector! E1 current to couple to
the ground state. The first-order perturbation theory AM
thus

(
n

^I uaVun&^nuHPNC
(2) uI &

Eg.s.2En
1

^I uHPNC
(2) un&^nuaVuI &
Eg.s.2En

, ~63!

whereuI & is the unperturbed ground state of good parity a
the sum extends over a complete set of nuclear statesn of
angular momentumI and opposite parity. The operatoraV is
obtained by plugging the ordinary electromagnetic curr
into Eq. ~20!,

aW 1
V52

Me

6A2
(
i 51

A H 1

A2
rW1~ i !t3~ i !1@rW~ i ! ^ lW~ i !#1@11t3~ i !#

1
3

2
@rW~ i ! ^ sW ~ i !#1@ms1mvt3~ i !#J ~64!

wherems50.88 andmv54.706.
The summation over a complete set of intermediate

states for133Cs or 205Tl is impractical either directly or by
the summation-of-moments method discussed in Ref.@9# and
below. However, because no nonzeroE1 transition exists
among the valence orbits~e.g., theh11/2 and g7/2 orbitals
have opposite parity but cannot be connected by a dip
operator!, an alternative of completing the sum by closu
after replacing 1/DEn by an average valuê1/DE&, is quite
attractive:
04550
e

f
-

s

d

t

le
,

2(
n

^I uaVun&^nuHPNC
(2) uI &1^I uHPNC

(2) un&^nuaVuI &
DEn

→2 K 1

DEL(
n

^I uaVun&^nuHPNC
(2) uI &

1^I uHPNC
(2) un&^nuaVuI &

52 K 1

DEL ^I u$aV,HPNC
(2) %uI &. ~65!

While in principle the anticommutator generates a thr
body term, this term does not contribute in the shell-mo
spaces we employ. Such a term necessarily involves an
connectedE1 operator, the matrix element of which vanish
in the model space.~For example, in the case of Cs, th
lowest-rank odd-parity transition is quadrupole, involvin
the transition 1h11/2 to 1g7/2.) It follows that the anticom-
mutator effectively contracts to a two-body operator, whi
can be evaluated from the ground-state two-body den
matrix.

The closure approximation can be considered as an id
tity, clearly, if one knows the correct^1/E&, that is, how to
parametrize the relationship between the 1/E-weighted and
non-energy-weighted sums. In practical terms, this me
demonstrating that a systematic relationship exists betw
^1/E& and some experimentally known quantity, such as
position of theE1 giant resonance. Note that theE1 operator
is closely related to the anapole operatoraV.

To investigate the systematics we completed a serie
exact calculations in 1p- and light-2s1d-shell nuclei (7Li,
11B, 17,19,21F, 21,23Na), evaluating both thê1/E& and non-
energy-weighted sums. First, the ground states are de
mined from full 0\v diagonalizations. The polarization sum
involves the complete set of 1\v states that connect to th
ground state through the anapole operator. The summa
was performed by exploiting a variation of the Lanczos
gorithm to evaluate the effect of the nuclear propaga
1/Eg.s.2H ~see Sec. V D!. The algorithm efficiently com-
pletes the sum via moments, even though the dimension
the 1\v bases ranged up to;500 000. The appropriate clo
sure energies were found not only for the anapole polar
tion sum, but also for theE1 operator. This allowed us to
compare thê 1/E& appropriate for the AM calculation with
that appropriate for photoexcitation. As photoexcitation
sponse functions have been mapped in many nuclei, thi
turn allows us to relate the anapole^1/E& to an experimental
observable.

The results show that the anapole and photoexcitation
erage excitation energies track each other very well, p
vided one takes into account the three isospins contribu
to HPNC

(2) . Measured as a fraction of the 1/E-weighted giant
dipole average excitation energy, which iŝ1/E&21

;(22–26) MeV for these nuclei, the appropriate effecti
energies for the anapole closure approximation are 0.
60.056 forhr

0 andhv
0 ~isoscalar channel!, 0.89960.090 for

f p ~isovector channel!, and 1.2860.14 for hr
2 ~isotensor

channel!. The larger̂ 1/E& for hr
0 andhv

0 enhances the isos
2-14
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TABLE V. Nuclear systematics found in light odd-proton nuclei: The second column shows the functional dependences of SM re
the direct anapole polarization sums, and the third column shows the forms for sums by closure approximation using the closu
^1/E&E1 which is derived from the 1/E-weightedE1 sum rule~also evaluated in the SM!. The same normalization has been applied to
second and third columns. By comparing these two columns, it is apparent that in order for the closure approximation to be co
anapole closure energies^1/E&AM(T50,1,2) should be different from̂ 1/E&E1. In columns 4–6 we expresŝ1/E&AM(T50,1,2)

21 in units of
^1/E&E1

21 : thus a value less than 1 means that the appropriate anapole average excitation energy is lower than the corresponding av
the photoexcitation peak. Note the closure result faithfully reproduces the correcthr

0-hv
0 combination. We omit the dependence onhr

1 andhv
1

because the net isovector contribution is almost entirely fromf p . In the case of19F, the lowest, nearly degenerate 1/22 state was removed
from all sums.

Nucleus Direct pol. sum Closure witĥ1/E&E1 ^1/E&AM(0)
21 ^1/E&AM(1)

21 ^1/E&AM(2)
21

7Li f p20.34(hr
010.58hv

0 )10.05hr
2 0.80f p20.20(hr

010.63hv
0 )10.05hr

2 0.59 0.80 1.0
11B f p20.53(hr

010.52hv
0 )10.05hr

2 0.89f p20.37(hr
010.52hv

0 )10.07hr
2 0.70 0.89 1.4

17F f p20.60(hr
010.48hv

0 )10.04hr
2 1.02f p20.40(hr

010.46hv
0 )10.05hr

2 0.66 1.02 1.2
19F f p20.33(hr

010.56hv
0 )10.02hr

2 0.90f p20.19(hr
010.59hv

0 )10.03hr
2 0.58 0.90 1.5

21F f p20.41(hr
010.55hv

0 )10.03hr
2 0.97f p20.24(hr

010.54hv
0 )10.04hr

2 0.60 0.97 1.3
21Na f p20.57(hr

010.51hv
0 )10.02hr

2 0.77f p20.31(hr
010.49hv

0 )10.03hr
2 0.54 0.77 1.5

23Na f p20.67(hr
010.53hv

0 )10.05hr
2 0.95f p20.38(hr

010.52hv
0 )10.07hr

2 0.57 0.95 1.4
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calar contribution to the anapole polarizability. The sm
variation in ^1/E&, once the isospin dependence is reco
nized, supports the notion that we can connected the clo
result to the true polarization sum~see Table V!.

Inspired by the nuclear systematics we found above,
estimateT50,1,2 closure energies from knownE1 distribu-
tions; that is, we fix the anapole closure energy as 0.6,
and 1.28 of theE1 closure energy evaluated from the expe
mental dipole distribution. For133Cs @44#, this gives 9.5,
14.1, and 20.2 MeV, respectively. The corresponding205Tl
values are 8.7, 12.9, and 18.5 MeV. The ground-state ex
tation values for the contracted two-body effective opera
$aV,HPNC

(2) % are then evaluated from the SM two-body de
sity matrices for Cs and Tl. The Miller-Spencer correlati
function is again included in the two-nucleon matrix e
ments ofHPNC

(2) . The resulting polarization contributions a
given in Table VI.

V. EXPERIMENTAL CONSTRAINTS, RESULTS,
AND UNCERTAINTIES

In this section we discuss atomic PNC experiments t
determined~or limited! the AMs of 133Cs and 205Tl, other
experimental tests of the PNC hadronic weak interaction,
the consistency of the AM results with these other tests.
also discuss nuclear structure uncertainties in the interpr
tion of the AM measurements.

A. Constraints from the nuclear anapole moments of133Cs
and 205Tl

A 30-year program to study atomic PNC@45# has yielded
in the past few years exquisitely precise~sub 1%! results.
The primary focus of these studies has been to obtain a
rate values of the strength of directZ0 exchange between
electrons and the nucleus. The PNC effects are dominate
the exchange involving an axialZ0 coupling to the electron
and a vector coupling to the nucleus. The nuclear couplin
thus coherent, proportional to the weak vector charge,QW
04550
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;Z(124 sin2uW)2N;2N and independent of the nuclea
spin direction. It is widely recognized that these atomic m
surements are important tests of the standard electrow
model and its possible extensions, complementing what
been learned at high-energy accelerators that directly pr
physics near theZ0 pole @46,47#.

In heavy atoms the weak electron-nucleus interaction w
induce a smallP-wave parity admixture in an atomicS or-
bital on the order of parts in 1011. This will produce, in a
transition that is normallyM1, a smallE1 component. The
PNC signal will be easier to detect if the parity-allowedM1
transition is hindered, as the observable depends on
E1/M1 ratio. The forbiddenM1 transitions of 6S1/2→7S1/2

in Cs and 6P1/2→7P1/2 in Tl are two examples of this sort
Moreover, the structure of these atoms is comparativ
simple, allowing theorists to extract the underlying we
couplings from the PNC observables.

One popular atomic technique exploits the linear St
response to an applied static electric field. A coordinate s
tem in the atom is established by mutually perpendicu
Stark, magnetic~for producing the Zeeman spectrum
states that can be populated by optical pumping!, and laser
~stimulating theE1 transition! fields. The ‘‘parity transfor-
mation’’ is accomplished by inverting these fields. The PN
signal is associated with any difference seen in the inter
ence between the Stark, PNCE1, and hinderedM1 ampli-
tudes after various reversals of the coordinate system.
elimination of spurious signals associated with imperf
field reversals and other sources of systematic error is a
dious task. A recent review of the Cs and Tl experiments
be found in@48#.

The dominant axial~electron!-vector~nucleus! atomic PNC
interaction is independent of the nuclear spin~see Fig. 7!.
There is also a tree-level contribution to atomic PNC tha
nuclear spin dependent, where theZ0 exchange is
vector~electron!-axial~nucleus!. This contribution is highly
suppressed because the vector electron weak couplin
small, gV

(e)52(124 sin2uW)'20.1, and the nuclear cou
2-15
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pling is no longer coherent. But given sufficiently accura
(&1%) measurements, this suppressed signal can be cle
extracted by studying the hyperfine~and thus nuclear spin!
dependence of the PNC measurements.

In Sec. II we noted that the nuclear AM will also genera
a nuclear-spin-dependent weak interaction between the e
tron and the nucleus, thus contributing in combination w
tree-levelV(electron)-A(nucleus)Z0 exchange. Furthermor
other O(GFa) radiative corrections also contribute to th
spin dependence, with the hyperfine interaction between
electron and nucleus~see Fig. 8! of particular importance
because of the coherentZ0 coupling. While the naive expec
tation is that radiative corrections will indeed be correctio
of strenth ;a relative to the tree-level contribution, th
small vector coupling of theZ0 to the electron combined
with the A2/3 growth of the anapole moment leads to a s
prise. The AM becomes the dominant source of nuclear-s
dependent atomic PNC forA*20 @3,9#. This guarantees no
only that the nuclear spin dependence is signifcant for he
atoms, but also that the AM contribution might be deduc
from the measurements.

The nuclear-spin-dependent~NSD! PNC electron-nucleus
contact interaction which generates the parity mixing can
expressed as

FIG. 7. Atomic parity mixing induced byZ0 exchange.

FIG. 8. Radiative corrections in atomic parity mixing due to t
nuclear AM and hyperfine interactions.
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A2
k totaW • IWr~r !, ~66!

k tot5kZ01kh f1kAM , ~67!

where IW and r(r ) are the nuclear spin and density,aW the
usual Dirac matrix of the electron, andk a dimensionless
constant which characterizes the strength of the PNC.„Note
that our definition ofk is different from the one given by
Khriplovich and others by a factor (21)I 11/21 l(I
11/2)/@ I (I 11)#, wherel is a single-particle orbital angula
momentum. The Khriplovich definition thus assumes
single-particle picture, though there are examples of nu
where the dominant single-particle orbital is characterized
an l that is naively inconsistent with the many-bodyI, e.g.,
lÞI 61/2.… The k subscripts denote contributions fromZ0

exchange, the hyperfine interaction correction, and the A
From the 133Cs ~extracted by Flambaum and Murray@19#!
and 205Tl results@7,8#, one finds

k tot~
133Cs!50.11260.016,

k tot~
205Tl!50.2960.40 Seattle,

k tot~
205Tl!520.0860.40 Oxford. ~68!

Henceforth we will focus on the Seattle Tl result, as th
proves to be more restrictive than the Oxford result in
parameter space of PNC hadronic couplings favored by o
experiments.~The Oxford AM result is quoted with opposit
signs in different sections of@8# and the accuracy of the
spin-independent measurement is considerably less than
of the corresponding Seattle measurement. These obse
tions contributed to our decision to focus on the result
@7#.! We treat the Tl constraint as one on the principal isoto
205Tl ~70.5%!. The other stable isotope,203Tl ~29.5%!, dif-
fers in structure only by a pair of neutrons, and thus sho
have very similar properties.

The Z0 contribution is

kZ052
gA

2
~124 sin2uW!

^I uu(
i 51

A

s~ i !t3~ i !uuI &

^I uu Î uuI &
, ~69!

with the axial-vector couplinggA51.267 and sin2uW
50.2230. Hereuu denotes a matrix element reduced in ang
lar momentum. The reduced matrix element ofÎ is
AI (I 11)(2I 11). The Gamow-Teller matrix elements, take
from the SM studies, are22.305 (133Cs) and 2.282 (205Tl),
not too different from the corresponding single-particle~s.p.!
values of22.494 ~unpaired 1g7/2 proton! and 2.449 (3s1/2
proton!. This yields

kZ0~133Cs!50.0140, ~70!

kZ0~205Tl!520.127. ~71!
2-16
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TABLE VII. PNC observables and corresponding theoretical predictions, decomposed into the desi
weak-coupling combinations.

Observable Expt. (3107) f p20.12hr
120.18hv

1 hr
010.7hv

0 hr
1 hr

2 hv
0 hv

1

AL
pp(13.6) 20.9360.21 0.043 0.043 0.017 0.009 0.039

AL
pp(45) 21.5760.23 0.079 0.079 0.032 0.018 0.073

AL
pp(221) 0.8460.34 20.030 20.030 20.012 0.021

AL
pa(46) 23.3460.93 20.340 0.140 0.006 20.039 20.002

Pg(18F) 120063860 4385 34 244
Ag(19F) 27406190 294.2 34.1 21.1 24.5 20.1
^uuA1uu&/e, Cs 8006140 60.7 215.8 3.4 0.4 1.0 6.1
^uuA1uu&/e, Tl 3706390 218.0 3.8 21.8 20.3 0.1 22.0
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Note that the inclusion of one-loop standard-model el
troweak radiative corrections modify these results, reduc
the isovector contribution substantially and inducing a sm
isoscalar component.

For the hyperfine correction, from the measured nucl
weak charge and magnetic moment, Bouchiat and Pik
@11# find

kh f~
133Cs!50.0078, ~72!

kh f~
205Tl!50.044. ~73!

Note that the conversion of the notation of Ref.@11# to ours
is

kh f5cp
(2)~hf!

^I uuspuuI &s.p.

^I uu Î uuI &
. ~74!

By subtractingkZ0 and kh f from k tot we obtain the AM
contribution

kAM~133Cs!50.09060.016, ~75!

kAM~205Tl!50.37660.400. ~76!

These values are related to the nuclear AMs by

kAM5
4paA2

GFM2

^I uuâuuI &/e

^I uu Î uuI &
, ~77!

whereâ is the anapole operator. As our results for^I uuâuuI &/e
are expressed in terms of the PNC meson-nucleon coup
in Table VII, we have the needed AM coupling constraint

B. Constraints from nuclear PNC experiments

The nuclear experiments measuring an interference
tween PC and PNC amplitudes generally fall into four typ

~i! Measurement of the longitudinal asymmetryAL in a
scattering experiment~e.g.,pW p, pW d, or pW a).

~ii ! Measurement of the circular polarizationPg of pho-
tons emitted in a nuclear decay~e.g., 18F, 21Ne) or reaction
~e.g.,np→dg).

~iii ! Measurement of the asymmetryAg of photons emit-
ted in the decay of a polarized nucleus~e.g., 19F) or in a
04550
-
g
ll

r
ty

gs

e-
.

polarized nuclear reaction~e.g.,nW p→dg,nW d→tg).
~iv! Measurement of the degree of spin rotation for pol

ized neutrons through various targets~e.g.,p,d,4He).
It is unfortunate that only a singleNN PNC scattering

observable, the longitudinal analyzing powerAL for pW 1p,
has been successful@49–51#. ~Experiments have been don
at 13.6, 45, and 221 MeV.! These results have been supp
mented by a number of PNC measurements in nuclear
tems, where accidental degeneracies between pairs
opposite-parity states can produce, in some cases, large
hancements in the PNC signal. Unfortunately not all of the
results are readily interpretable because of nuclear struc
uncertainties. Those that can be analyzed with confidence@5#

include AL for pW 1a at 46 MeV @52#, the circular polariza-
tion Pg of the g ray emitted from the 1081 keV state in18F
@53#, andAg for the decay of the 110 keV state in polarize
19F @54#. These examples involve either few-body system
where quasiexact structure calculations can be done, or
cial nuclei in which the PNC mixing matrix elements can
calibrated from axial-chargeb decay @55#. An analysis of
these results, which have been in hand for some time, s
gests that the isoscalar PNCNN interaction—which is domi-
nated byr and v exchange—is comparable to or slight
stronger than the DDH ‘‘best value,’’ whereas the isovec
interaction—dominated byp exchange—is significantly
weaker (&1/3) @5#. Because one expects the isovector ch
nel to be governed by neutral currents and to receive po
tially significant light sea-quark contributions, there is co
siderable interest in testing this result. The Cs and Tl A
results provide one possible cross-check.

C. Results

The constraints on PNC meson-nucleon couplings
Table VII are displayed graphically in Fig. 9. Although the
are six independent couplings, two combinations of the
one isoscalar and one isovector, dominate the observa
f p20.12hr

120.18hv
1 and hr

010.7hv
0 . The decomposition of

Table VII thus uses these two degrees of freedom along w
hr

2 and the residual contributions inhr
1 ,hv

0 , andhv
1 . The 1s

error bands of Fig. 9 are generated from the experime
uncertainties, broadened somewhat by allowing uncorrela
variations in each of the four minor degrees of freedom~that
is, hr

2 and the residuals in inhr
1 , hv

0 , andhv
1 ) over the DDH
2-17
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broad ‘‘reasonable ranges.’’ Note that only a fraction of t
region allowed by the Seattle Tl constraint is shown: the to
width of the Tl band is an order of magnitude broader th
the width of the Cs allowed band, with most of the Tl a
lowed region lying outside the DDH ‘‘reasonable range
~i.e., in the region of negativef p20.12hr

120.18hv
1 and posi-

tive hr
010.7hv

0 ). That is, the bulk of the Seattle Tl ban
corresponds to an AM value opposite in sign to that expec
theoretically, given what we know experimentally abo
PNC meson-nucleon couplings. The corresponding Oxf
Tl band~not illustrated! includes almost all of the paramete
space in Fig. 9, as well as a substantial region outside
bounds of the figure, to the lower left.

The weak-coupling ranges covered by Fig. 9 corresp
roughly to the DDH broad ‘‘reasonable ranges.’’ Thus t
anapole constraints are not inconsistent with the theore
‘‘ballpark’’ estimates. However, the detailed lack of cons
tency among the various measurements is disconcerting.
fore the anapole results are included, the indicated solutio
a small f p and an isoscalar coupling somewhat larger th
but consistent with, the DDH best value,2(hr

0

10.7hv
0 )b.v.

DDH;12.7. But the AM results agree poorly wit
this solution, as well as with each other. In particular, t
precise result for133Cs tests a combination of PNC coupling
quite similar to those measured inAg(19F) and inAL

pa , but
requires larger values for the weak couplings.

Despite substantial differences between our work and
of Flambaum and Murray@19#, the predicted AMs from
these two calculations are in relatively good agreement.
corresponding interpretations, however, are quite differe
Flambaum and Murray adopted the viewpoint that
Cs AM result could be accommodated by a valuef p;9.5,
about twice the DDH best value,f p b.v.

DDH ;4.6. ~The DDH
reasonable range is 0–11.4, in units of 1027.! The difficulty

FIG. 9. Constraints on the PNC meson couplings (3107) that
follow from the results in Table VII. The error bands are one st

dard deviation. ThepW p band is the union of 13.6, 45, and 221 Me
results.
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with this suggestion is its inconsistency withPg(18F), a mea-
surement that has been performed by five groups. The c
straint from this measurement is almost devoid of theoret
uncertainty:

20.6& f p20.11hr
120.19hv

1 &1.2. ~78!

If one allowshr
1 andhv

1 to vary throughout their DDH rea
sonable ranges, one finds21.0& f p&1.1, clearly ruling out
f p;9. There is also some tension between the Cs band
those forp1a andAg(19F).

Thus, unfortunately, the hint of a consistent pattern
weak meson-nucleon couplings that was emerging fr
nuclear tests of the weak hadronic current is disturbed w
the Cs and Tl results are added.

D. Operator renormalization
and other nuclear structure issues

It thus appears that the calculated value of the Cs A
using weak meson-nucleon couplings determined fromNN
and nuclear experiments, is significantly smaller than
measured value. While there are several questions that c
be raised about this conclusion, perhaps the most diffi
one is the quality of the nuclear structure calculations for
and Tl: what error bar should we assign because of the
herent uncertainties in such calculations?

Despite the rather extensive theoretical literature on AM
it would be fair to characterize the general quality of t
associated nuclear structure work as unsophisticated. M
of the previous work is based on extreme single-parti
models and employs effective one-body PNC potentials
choice that tends to obscure the discrepancies appare
Fig. 9. Only a few attempts have been made to estimate
effects of correlations, even in schematic ways. In@11#
quenching factors were introduced as a phenomenolog
correction to single-particle estimates. Solid motivation
this approach can be found in classic studies of magn
moments and Gamow-Teller transitions in nuclear phys
In @15# single-particle calculations were corrected for co
polarization effects, employing a realisticg-matrix interac-
tion but a very simple set of particle-hole excitations. D
spite the highly truncated model space, this may be the o
paper, other than our work here and in earlier papers@9,10#,
to use a realistic interaction in calculations of the Cs and
AMs. Finally, in Ref. @13# core polarization effects were
evaluated in the random phase approximation, but wit
schematic zero-range spin-spin residual interaction.

One factor limiting what can be done is the challenge
completing the polarization sum: apart from@9,10#, the work
referenced above performed this sum state by state. Su
summation technique rules out a sophisticated ground-s

TABLE VIII. Magnetic moments of133Cs and205Tl measured
in nuclear magnetons.

s.p. SM exp.

133Cs 1.72 1.65 2.58
205Tl 2.79 2.58 1.64

-

2-18
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wave function: the number of opposite-parity eigensta
connecting to the ground state by theE1 operator would be
enormous. The two attempts to move beyond direct sum
tion have come from our studies. In@9# summation to a com-
plete set of 1\v states for19F was carried out by a Lanczo
algorithm moments method. In this approach one recogn
that the quantity of interest is the distribution of the vec
aVuI & over the full set of 1\v eigenstates: if that distribution
is known, it can be weighted by 1/(Eg.s.2En) and dotted
with ^I uHPV

(2) to generate the polarization sum. Instead of
agonalizing a very large matrix of dimensionN, whereN is
the number 1\v eigenstates, to get the eigenvaluesEn and
eigenstates needed to do this sum state by state, the Lan
method maps the large matrix into a series of smaller ma
ces of dimensionN851,2,3, . . . , whereN8!N. This map-
ping extracts exact information from the original large m
trix, the 2N821 lowest moments of the vectoraVuI & over
the 1\v eigenspectrum. It is readily seen that the distrib
tion must be very well determined after a modest numbe
iterations,N8;50. There is a variation of this algorithm tha
uses the information in the Lanczos matrix to construct
effect of the Green’s function@9#: it is obvious physically
that one can obtain the Green’s function from the deta
moments construction.~The algorithm develops the Green
function acting on a vector as an expansion in the Lanc
vectors, with the the coefficients of the vectors updated w
each iteration@56#. The method is thus exact in a numeric
sense, allowing one to evaluate the convergence.! This was
the method used in the present study ofp- andsd-shell nu-
clei, to assess average excitation energies. We have ap
this method in cases whereN;106, and it is possible with
modern machines to tackle problems of dimension;108 in

TABLE IX. Comparison of calculated s.p. polarization anapo

momentŝ uuaW uu&/e in the 208Pb region with results for a fitted phe
nomenological effective operator.

Nucleus No s.o. With s.o.

Calc. Fit Calc. Fit

207Tl (3s1/2
21) 2578 2593 2542 2536

207Tl (2d3/2
21) 759 763 699 692

207Tl (2d5/2
21) 2780 2889 2691 2825

207Pb (3p1/2
21) 2131 2122 2132 2123

207Pb (3p3/2
21) 161 154 158 151

207Pb (2f 5/2
21) 2180 2190 2184 2194

209Bi (2 f 5/2) 970 924 881 830
209Bi (2 f 7/2) 2919 21012 2821 2949
209Bi (1h9/2) 1154 1198 990 1057
209Pb (2g9/2) 224 232 212 220
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this way. Unfortunately, given the complexity of our133Cs
ground-state wave function, the dimension of the negati
parity space required to saturate theE1 sum is substantially
larger than 108. Thus this technique, while exceedingly pow
erful, cannot be applied to a case like133Cs, at least at the
present time.

Because we felt it was important to use a realistic lar
scale SM wave function in describing the133Cs ground state,
another method was needed to evaluate the polarization s
We did this by closure, which was tractable in part beca
of an attractive property of the canonical133Cs SM space: no
nonzero matrix elements ofaV. In our view there are two
worrisome features of this calculation. The first is the re
ability of the average excitation energy estimate, which
defined as the ratio of the non-energy-weighted
1/En-weighted sums. We performed a large set of calcu
tions in lighter nuclei, using the exact Lanczos Green’s fu
tion method described above, to calibrate the method.
average excitation energies, normalized to the photoexc
tion E1 peak and evaluated for each isospin channel, pro
to be very stable. One cannot prove that the extrapolatio
heavy nuclei like Cs and Tl is valid, clearly: perhaps there
some systematic evolution with neutron excess. On the o
hand, the naive expectation is that the method should
prove with A, as theE1 profile tends to become more co
lective in heavier nuclei and as the spin-orbit force tends
removeE1 strength from low excitations: the closure a
proximation is clearly exact in the limit of an infinitely nar
row E1 resonance. Because the measured Cs AM is la
one would need a substantial amount of strength quite low
the Cs spectrum to enhance the 1/En sum and thus ‘‘fix’’ the
SM calculation: this is unexpected and, while theaV and
photoexcitationE1 operators are somewhat different, there
no evidence in the photoexcitation distribution for su
strength@44#.

The second question is the adequacy of our ground-s
wave function: though the Cs and Tl SM calculations a
serious efforts, numerical limitations forced restrictions
the proton and neutron occupation numbers. The unrestri
1g7/2-2d5/2-3s1/2-2d3/2-1h11/2 SM calculation was not at-
tempted. Furthermore, it is well known that even full-sh
calculations often must be renormalized phenomenologica
Two operators closely related to the AM, the Gamow-Tel
andM1 operators, are well-studied examples@57#. In Table
VIII our Cs and Tl SM magnetic moment values are co
pared to the experimental and s.p. values. The SM and
correlated s.p. values are not that different and both di
significantly from experiment. The conclusion is that pote
tial important physics is absent in our truncated SM calcu
tions.
TABLE X. The fitted parameters in208Pb region.

al
(0) al

(1) as
(0) as

(1) ap
(0) ap

(1)

No s.o. 0.990 1.458 295.838 2146.159 2243.094 2366.696
With s.o. 20.721 0.432 284.580 2134.308 2224.986 2348.570
2-19
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TABLE XI. The single-particle reduced matrix elements used for208Pb region fits.

lW t3 lW sW t3sW @Y2^ sW #1 t3@Y2^ sW #1

207Tl (3s1/2
21) 0.000 0.000 2.449 2.449 0.000 0.000

207Tl (2d3/2
21) 4.648 4.648 21.549 21.549 20.618 20.618

207Tl (2d5/2
21) 5.797 5.797 2.898 2.898 0.330 0.330

207Pb (3p1/2
21) 1.633 21.633 20.816 0.816 20.651 0.651

207Pb (3p3/2
21) 2.582 22.582 2.582 22.582 0.206 20.206

207Pb (2f 5/2
21) 8.281 28.281 22.070 2.070 20.661 0.661

209Bi (2 f 5/2) 8.281 8.281 22.070 22.070 20.661 20.661
209Bi (2 f 7/2) 9.621 9.621 3.207 3.207 0.426 0.426
209Bi (1h9/2) 17.162 17.162 22.860 22.860 20.761 20.761
209Pb (2g9/2) 13.984 213.984 3.496 23.496 0.507 20.507
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The deviations of magnetic moments from the Schm
line ~or s.p. values! around the Pb region have been exte
sively studied by Arimaet al. @57#. The deviations from the
s.p. predictions can be described as a set of corrections t
bare gyromagnetic factors

^I uumuuI &/mN5S 1

2
1dgl

(0)D ^uu lWuu&s.p.1S 1

2
1dgl

(1)D
3^uu lWt3uu&s.p.1~0.881dgs

(0)!^uusW uu&s.p.

1~4.701dgs
(1)!^uusW t3uu&s.p. ~79!

These factors represent the operator and wave function
malization corrections that would result from a faithful trea
ment of the omitted parts of the Hilbert space. Equivalen
~and perhaps more appropriately! one can quote this result i
terms of renormalized matrix elements

^I uumuuI &/mN5
1

2
^I uu lWuuI & ren1

1

2
^I uu lWt3uuI & ren

10.88̂ I uusW uuI & ren14.70̂ I uusW t3uuI & ren .

~80!

TABLE XII. Comparison of calculated s.p. polarization anapo

momentŝ uuaW uu&/e in the 132Sn region with results for a fitted phe
nomenological effective operator.

Nucleus No s.o. With s.o.

Calc. Fit Calc. Fit

131In(2p1/2
21) 433 422 409 429

131In(1f 5/2
21) 641 644 567 636

131In(2p3/2
21) 2484 2450 2440 2449

131Sn(3s1/2
21) 103 93 102 89

131Sn(2d3/2
21) 2124 2109 2125 2106

131Sn(2d5/2
21) 137 144 127 136

133Sb(1g7/2) 788 751 684 736
133Sb(2d5/2) 2610 2534 2549 2539
133Sn(2f 7/2) 169 168 158 157
133Sn(1h9/2) 2169 2159 2171 2160
04550
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The fit of @57# gives the following quenching for the spi
matrix elements near Pb:

^I uusW uuI & ren50.86̂ uusW uu&s.p. , ~81!

^I uusW t3uuI & ren50.54̂ uusW t3uu&s.p. . ~82!

Although there exists no such large body of data on
anapole moment operator, we now explore whether so
tentative conclusions can be drawn about effects of miss
correlations on that operator. We begin with the observat
that the effects of correlations on a many-body operator
expected to be quite similar to their effects on the one-bo
equivalent of that operator.~One specific illustration of this
is detailed in@55#.! Thus we start by looking for the one
body equivalent of the anapole polarization operator. T
most general spin-isospin form for a rank-1 operator is

aW pol
equiv5

e

^E&
~al

(0) lW1al
(1)t3 lW1as

(0)sW 1as
(1)t3sW

1a(0)_p@Y2^ sW #11ap
(1)t3@Y2^ sW #1!. ~83!

As the average excitation energy is measured in units of\v,
the bare couplingsa( l ,s,p)

(0,1) are dimensionless. We then eval
ate matrix elements of this one-body operator and of the
polarization sum ~chosing DDH ‘‘best-value’’ meson-
nucleon couplings! in a single-particle model for a variety o
nuclei in the Pb and Sn regions, fitting the coefficients of
one-body operator to reproduce the polarization results.
results for Tl ~Pb region! are presented in a series of thre
tables, Tables IX, X, and XI, giving, respectively, the com
parison of the calculated s.p. polarization results with th
generated by the effective operator, the best fit values fo
for the coefficients of the effective operator, and the mat
elements of the various terms in the effective one-body

TABLE XIII. The fitted parameters in132Sn region.

al
(0) al

(1) as
(0) as

(1) ap
(0) ap

(1)

No s.o. 3.284 2.327252.990 20.790 2182.832 2271.131
With s.o. 1.807 1.315244.608 280.981 2176.206 2260.346
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TABLE XIV. The single-particle reduced matrix elements used for132Sn region fits.

lW t3 lW sW t3sW @Y2^ sW #1 t3@Y2^ sW #1

131In(2p1/2
21) 1.633 1.633 20.817 20.817 20.652 20.652

131In(1f 5/2
21) 8.281 8.281 22.070 22.070 20.661 20.661

131In(2p3/2
21) 2.582 2.582 2.582 2.582 0.206 0.206

131Sn(3s1/2
21) 0.000 0.000 2.449 22.449 0.000 0.000

131Sn(2d3/2
21) 4.648 24.648 21.549 1.549 20.618 0.618

131Sn(2d5/2
21) 5.797 25.797 2.898 22.898 0.330 20.330

133Sb(1g7/2) 12.470 12.470 22.494 22.494 20.711 20.711
133Sb(2d5/2) 5.797 5.797 2.898 2.898 0.330 0.330
133Sn(2f 7/2) 9.621 29.621 3.207 23.207 0.427 20.427
133Sn(1h9/2) 17.160 217.160 22.860 2.860 20.761 0.761
,
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erator. The following three tables, Tables XII, XIII, and XIV
give the analogous results for Cs~Sn region!. Calculations
were done with no spin-orbit potential as well as with
spin-orbit potential of strength20.1\vsW • lW: the results
show little sensitivity to the spin-orbit contribution.

The tables show that the orbital contributions to the eff
tive operator are neglible: the dominant terms are the s
and spin-tensor operators, with the former~folding the re-
sults of Tables X and XI and of Tables XIII and XIV! ac-
counting typically for about 70% of the AM strength. Fu
thermore, the spin isoscalar and spin isovector opera
contribute with the same relative sign, with the isovec
contribution larger. It follows for205Tl, where the single-
particle assignment is 3s1/2, eliminating both the spin-tenso
and orbital contributions, that the effective AM operator
very similar to the magnetic moment operator and th
should be renormalized in a very similar way. From Tab
VIII one concludes that our SM estimates are not sufficien
quenched, overestimating the Tl AM by about a factor 1
The consequence of this would be to broaden the allowe
band~only partially shown! in Fig. 9 proportionately.

The case of133Cs is more difficult in that the spin-tenso
operator now plays a significant role: the s.p. assignmen
1g7/2. This operator does not arise as a bare operato
Gamow-Teller,M1, or other familiar responses. Our a
proach is somewhat unsatisfactory, but perhaps of some h
In Table XV we compare s.p. and full 1p- and 2s1d-shell
SM calculations of magnetic moments with the experimen
values for a series of light nuclei. This seems to estab
that, in these nuclei, the bulk of the needed renormaliza
of s.p. estimates does come from the SM~sweeping under

TABLE XV. Magnetic moments of light odd-A nuclei.

s.p. SM exp.

11B 3.790 2.872 2.689
13N 20.263 20.307 20.322
27Al 4.790 4.207 3.642
29P 2.790 1.088 1.235
31P 2.790 1.252 1.132
33Cl 0.126 0.634 0.752
04550
-
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the rug issues like exchange currents, etc.!. In Table XVI we
make a similar comparison of s.p. and SM AM operator m
trix elements. The pattern of significant quenching of sp
matrix elements again emerges from this purely theoret
comparison. In the case of the spin-tensor operator,
renormalizations do not seem very large; nor do they app
to follow a simple pattern. While there are cases of mod
spin-tensor matrix element enhancement when the full-s
correlations are turned on, these enhancements are sm
than the quenching that occurs in the spin matrix eleme
The overall tendancy of the correlations is to suppress
AM prediction.

While these arguments are of a hand-waving nature, t
favor the conclusion that better SM calculations will produ
a somewhat smaller, not larger, predicted Cs AM. The do
nant missing physics appears to be insufficient quenchin
the spin matrix elements. This will clearly exacerbate t
discrepancies apparent in Fig. 9. As a full-shell calculat
for 133Cs will likely become feasible within the next few
years, there may soon be an opportunity to demonstrate
improved calculations will produce a smaller AM.

VI. CONCLUSIONS

Recent atomic PNC measurements in133Cs reached a new
level of precision that led, for the first time, to detection

TABLE XVI. The renormalization of single-particle matrix ele
ments in light odd-A nuclei.

lW t3 lW sW t3sW @Y2^ sW #1 t3@Y2^ sW #1

11B s.p. 2.582 2.582 1.291 1.291 0.206 0.206
SM 3.100 3.100 0.773 0.773 0.309 0.309

13N s.p 1.632 1.63220.408 20.408 20.651 20.651
SM 1.657 1.65720.432 20.432 20.598 20.598

27Al s.p. 5.787 5.787 1.449 1.449 0.330 0.330
SM 6.164 6.164 1.080 1.080 0.321 0.321

29P s.p 0.000 0.000 1.225 1.225 0.000 0.000
SM 0.910 0.910 0.314 0.314 0.246 0.246

31P s.p. 0.000 0.000 1.225 1.225 0.000 0.000
SM 0.822 0.822 0.402 0.402 0.190 0.190

33Cl s.p. 4.648 4.64820.775 20.775 20.618 20.618
SM 4.361 4.36120.488 20.488 20.695 20.695
2-21
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W. C. HAXTON, C.-P. LIU, AND M. J. RAMSEY-MUSOLF PHYSICAL REVIEW C65 045502
the hyperfine dependence of the signal. New measurem
in Tl have also imposed important constraints on nucle
spin-dependent atomic PNC. This progress has inspired
calculations reported here. In our work we employ a PN
nucleon-nucleon interaction derived from ap-, r-, and
v-meson-exchange model, providing sufficient degrees
freedom to describe fully the five independentS-P ampli-
tudes. The single-nucleon, exchange-current, and nuclea
larization AM contributions are then evaluated with th
choice of potential. The end result is an analysis of A
constraints that is fully consistent with the existing analy
of AL(pW 1p) and other hadronic tests of PNC.

Our results show that the weak meson-nucleon coupli
favored by nuclear experiments are not compatible with
large AM value extracted from the Cs measurement. The
AM limit also favors a sign disfavored by theory. Our qua
tative arguments about the effects of correlations miss
from the SM calculations suggest that improvements in
nuclear structure are likely to lead to smaller values for
predicted Cs AM, exacerbating the current discrepancy.

The nuclear constraints favor a small value forf p and
isoscalar PNC couplings near the DDH ‘‘best values.’’ Th
pattern is puzzling and suggests that strong interact
modify the isospin of weak meson-nucleon couplings in
nontrivial way. The Cs AM result now has produced a mo
confusing situation, one where no one solution satisfies
constraints. Hopefully new experiments will provide the r
dundancy needed to resolve the conflict. In the next f
years results are expected for the spin rotation of polari
slow neutrons in liquid helium@58# and the asymmetry in
polarized neutron capturenW 1p→d1g @59#.
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New AM measurements could also help clarify matters
more accurate Tl AM measurement could define the sign
this quantity: while the current band includes zero, it favor
sign opposite that predicted by theory. New AM measu
ments in odd-neutron nuclei would have great impact, de
ing a band in the weak meson-nucleon coupling pla
roughly perpendicular to the Cs and Tl bands. There are p
posals for AM measurements on Dy, Fr, and Ba1.

The accuracy of the Cs AM results sets it apart from a
other atomic PNC result: it has produced a constraint o
weak radiative correction that, when translated into mes
nucleon weak couplings, is as accurate as any direct prob
hadronic PNC. Thus the challenge of understanding this s
cial measurement should motivate more theoretical wo
Furthermore, the implications of this measurement are
necessarily limited to the issues discussed in this paper.
understanding ofV(e)-A(N) interactions also affects the in
terpretation of electron-nucleus scattering experiments
SAMPLE @60#, where a similar discrepancy between theo
and experiment exists and where theoretical predictions
depend on a proper treatment of the hadronic weak inte
tion. Unraveling the puzzles presented by these meas
ments constitutes an important challenge to both theory
experiment.
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APPENDIX A: TWO-BODY EXCHANGE-CHARGE AND -CURRENT OPERATORS IN MOMENTUM SPACE

The total Lagrangian density we are considering is

L5LFree1LPC1LPNC1LEM , ~A1!

with

Lf ree5N̄8~ i ]”2M !N1
1

2
~]mpW !•~]mpW !2

1

2
mp

2 pW 22
1

4
FW mn

(r)
•FW (r)mn1

1

2
mr

2rW m•rW m2
1

4
Fmn

(v)F (v)mn1
1

2
mv

2 vmvm, ~A2!

LPC5 igpNNN̄8g5tW•pW N2grNNN̄8S gm2 i
mv

2M
smnqnD tW•rW mN2gvNNN̄8S gm2 i

ms

2M
smnqnDvmN, ~A3!

LPNC52
f p

A2
N̄8~tW3pW !3N1N̄8S hr

0tW•rW m1hr
1r3

m1
hr

2

2A6
~3t3r3

m2tW•rW m!D gmg5N1N̄8~hv
0 vm1hv

1 t3vm!gmg5N1O~hr
18!,

~A4!

LEM52eN̄8FgmS F1
(S) 1

2
1F1

(V) t3

2 D2 i
1

2M
smnknS F2

(S) 1

2
1F2

(V) t3

2 D GNAm2e~pW 3]mpW !3Am

2e~rW n3FW nm
(r)!3Am2e

grpg

2M
eabgdF (g)ab~rW g

•]dpW !2e
gvpg

2M
eabgdF (g)ab~vg]dp3!. ~A5!

Note that we use the Bjorken-Drell@61# metric exclusively and the DDH definition of weak couplings. In these expressionpW ,
rW m, vm, andAm denote the pion, rho meson, omega meson, and photon fields;Fmn

(r,v,g) is the field tensor for the designate
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field; andqm andkm are the four-momenta carried by the outgoing meson and photon.F1,2
(S,V) denotes the isoscalar or isovect

EM form factors, withF1
(S)(0)5F1

(V)51, F2
(S)(0)5ms520.12, andF2

(V)(0)5mv53.70.
After applying the procedure described in Sec. V, we obtain the following results.

1. Pair currents

Pair current diagrams are generated byp, r, or v exchange, and the nucleon coupling to the photon has either a PC or
meson-nucleon coupling. Thus there are six cases. For charge densities toO(1/M2) we obtain

rg-PC
p pair5

2 iegpNNf p

4A2M2
~11ms!~tW~1!3tW~2!!3sW ~1!•kW

~2p!3d (3)~••• !

~pW 28 2pW 2!21mp
2

1~1↔2!, ~A6a!

rg-PNC
p pair50, ~A6b!

rg-PC
r pair5

iegrNN

4M2 H F ~11ms!S hr
0tW~1!•tW~2!1hr

1t3~1!1
hr

2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!# D

1~11mv!S hr
0t3~2!1hr

11
hr

2

A6
t3~2!D GF kW•sW ~1!3sW ~2!1

sW ~2!•~pW 28 2pW 2!

mr
2

kW•sW ~1!3~pW 28 2pW 2!G
1~11mv!S hr

02
hr

2

2A6
D @tW~1!3tW~2!#3F kW•sW ~2!1

sW ~2!•~pW 28 2pW 2!

mr
2

kW•~pW 28 2pW 2!G J ~2p!3d (3)~••• !

~pW 28 2pW 2!21mr
2

1~1↔2!,

~A6c!

rg-PNC
r pair5

2 iegrNN

4M2
~11mv!S hr

02
hr

2

2A6
D @tW~1!3tW~2!#3sW ~1!•kW

~2p!3d (3)~••• !

~pW 28 2pW 2!21mr
2

1~1↔2!, ~A6d!

rg-PC
v pair5

iegvNN

4M2
@hv

0 1hv
1 t3~2!#@~11ms!1~11mv!t3~1!#

3F kW•sW ~1!3sW ~2!1
sW ~2!•~pW 28 2pW 2!

mv
2

kW•sW ~1!3~pW 28 2pW 2!G ~2p!3d (3)~••• !

~pW 28 2pW 2!21mv
2

1~1↔2!, ~A6e!

rg-PNC
v pair50. ~A6f!

For current densities toO(1/M2) we obtain

jWg-PC
p pair5

2egpNNf p

2A2M
@tW~1!•tW~2!2t3~1!t3~2!#sW ~1!

~2p!3d (3)~••• !

~pW 28 2pW 2!21mp
2

1~1↔2!, ~A7a!

jWg-PNC
p pair50, ~A7b!

jWg-PC
r pair5

egrNN

2M H Fhr
0@tW~1!•tW~2!1t3~2!#1hr

1@11t3~1!#1
hr

2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!12t3~2!#G

3FsW ~2!1
sW ~2!•~pW 28 2pW 2!

mr
2 ~pW 28 2pW 2!G2S hr

02
hr

2

2A6
D @tW~1!3tW~2!#3

3FsW ~1!3sW ~2!1
sW ~2!•~pW 28 2pW 2!

mr
2

sW ~1!3~pW 28 2pW 2!G J ~2p!3d (3)~••• !

~pW 28 2pW 2!21mr
2

1~1↔2!, ~A7c!
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jWg-PNC
r pair5

2egrNN

2M Fhr
0@tW~1!•tW~2!1t3~2!#1hr

1@t3~2!1t3~1!t3~2!#

1
hr

2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!12t3~2!#GsW ~1!

~2p!3d (3)~••• !

~pW 28 2pW 2!21mr
2

1~1↔2!, ~A7d!

jWg-PC
v pair5

egvNN

2M
@hv

0 1hv
1 t3~2!#@11t3~1!#FsW ~2!1

sW ~2!•~pW 28 2pW 2!

mv
2 ~pW 28 2pW 2!G ~2p!3d (3)~••• !

~pW 28 2pW 2!21mv
2

1~1↔2!, ~A7e!

jWg-PNC
v pair5

2egvNN

2M
~hv

0 1hv
1 !@11t3~1!#sW ~1!

~2p!3d (3)~••• !

~pW 28 2pW 2!21mv
2

1~1↔2!. ~A7f!

2. Transition currents

The transition currents can have appg, rrg, rpg, or vpg vertex. In the last two cases, the heavier mesonsr andv can
have either a PC or PNC coupling. Thus there are six possibilities. For charge densities toO(1/M2) we obtain

rppg5
egpNNf p

2A2M
@t3~1!t3~2!2tW~1!•tW~2!#@E282E22~E182E1!#sW ~1!•~pW 18 2pW 1!

3
~2p!3d (3)~••• !

@~pW 18 1pW 1!21mp
2 #@~pW 28 2pW 2!21mp

2 #
1~1↔2!, ~A8a!

rrrg5 iegrNNS hr
02

hr
2

2A6
D @tW~1!3tW~2!#3FsW ~2!•~pW 18 2pW 1!1

sW ~2!•~pW 28 2pW 2!

mr
2 ~pW 28 2pW 2!•~pW 18 2pW 1!G

3
~2p!3d (3)~••• !

@~pW 18 2pW 1!21mr
2#@~pW 28 2pW 2!21mr

2#
1~1↔2!, ~A8b!

rr-PC
rpg 5

egrNNf pgrpg

2A2Mmr

@tW~1!3tW~2!#3$~pW 18 2pW 1!•~pW 28 2pW 2!3~pW 18 1pW 1!1 i ~11mv!@sW ~1!•~pW 18 2pW 1!~pW 28 2pW 2!•~pW 18 2pW 1!

2sW ~1!•~pW 28 2pW 2!~pW 18 2pW 1!2#%
~2p!3d (3)~••• !

@~pW 18 2pW 1!21mr
2#@~pW 28 2pW 2!21mp

2 #
1~1↔2!, ~A8c!

rr-PNC
rpg 5

iegrNNgrpg

2Mmr
S hr

0tW~1!•tW~2!1hr
1t3~2!1

hr
2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!# D sW ~2!•~pW 28 2pW 2!sW ~1!•~pW 18 2pW 1!

3~pW 28 2pW 2!
~2p!3d (3)~••• !

@~pW 18 2pW 1!21mr
2#@~pW 28 2pW 2!22mp

2 #
1~1↔2!, ~A8d!

rv-PC
vpg 50, ~A8e!

rv-PNC
vpg 5

iegvNNgvpg

2Mmv
@hv

0 t3~2!1hv
1 t3~1!t3~2!#sW ~2!•~pW 28 2pW 2!sW ~1!•~pW 18 2pW 1!~pW 28 2pW 2!

3
~2p!3d (3)~••• !

@~pW 18 2pW 1!21mv
2 #@~pW 28 2pW 2!21mp

2 #
1~1↔2!. ~A8f!

For current densities toO(1/M2) we obtain
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jWppg5
egpNNf p
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APPENDIX B: TWO-BODY EXCHANGE-CURRENT OPERATORS IN POSITION SPACE TO ORDER OF 1 ÕM

Only the three-current operators are needed for the AM calculation. We keep terms toO(1/M ). The following results follow
from Fourier transformations of selected terms in Appendix A:
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p pair5

2egpNNf p
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1
hr

2

2A6
@3t3~1!t3~2!2tW~1!•tW~2!12t3~2!#GsW ~1!d (3)~xW2xW1!

e2mrr

r
1~1↔2!, ~B3!

jWg-PC
v pair5

egvNN

12pM
@hv

0 1hv
1 t3~2!#@11t3~1!#

3FsW ~2!1A2pS 11
3

mvr
1

3

~mvr !2D @Y2~V r ! ^ sW ~2!#1Gd (3)~xW2xW1!
e2mvr

r
1~1↔2!, ~B4!

jWg-PNC
v pair5

2egvNN

4pM
~hv

0 1hv
1 !@11t3~1!#sW ~1!d (3)~xW2xW1!

e2mvr

r
1~1↔2!, ~B5!

jWppg5
2egpNNf p

16A2pM
@tW~1!•tW~2!2t3~1!t3~2!#sW ~1!•¹W1~¹W12¹W2!E d3k

~2p!3
eikW•(xW2RW )E

21/2

1/2

daeiakW•rW
e2Lpr

Lp
1~1↔2!, ~B6!

jWrrg5
iegrNN

16pM S hr
02

hr
2

2A6
D @tW~1!3tW~2!#3F S sW ~2!2

sW ~2!•¹W2

mr
2

¹W2D •@¹
⇔

12¹
⇔

21 i ~11mv!sW ~1!3¹W1#~¹W12¹W2!

2¹W1•S sW ~2!2
sW ~2!•¹W2

mr
2

¹W2D @¹
⇔

11 i ~11mv!sW ~1!3¹W1#1¹W2•@¹
⇔

12¹
⇔

21 i ~11mv!sW ~1!3¹W1#

3S sW ~2!2
sW ~2!•¹W2

mr
2

¹W2D G E d3k

~2p!3
eikW•(xW2RW )E

21/2

1/2

daeiakW•rW
e2Lrr

Lr
1~1↔2!, ~B7!

jWr-PC
rpg 5

2 iegrNNf pgrpg

8A2pmr

@tW~1!3tW~2!#3~¹W13¹W2!E d3k

~2p!3
eikW•(xW2RW )E

21/2

1/2

daeiakW•rW
e2Lrpr

Lrp
1~1↔2!, ~B8!

where RW 5(xW11xW2)/2, rW5xW12xW2 , r 5urWu, Lp(r)5@mp(r)
2 1kW2( 1

4 2a2)#1/2, Lrp5@(mr
21mp

2 )/21a(mr
22mp

2 )

1kW2( 1
4 2a2)#1/2, and the operation of¹

⇔
should be understood as¹

⇔
F(•••)5F(•••)¹W 2¹Q F(•••). For transition currents, the

full Fourier transformation is not easily evaluated in the general case, so we leave the integration undone.
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APPENDIX C:
AN EXAMPLE OF FERMI GAS ONE-BODY AVERAGES

Here we describe how effective operators are obtaine
the Fermi gas model by one-body averages. Most of the
cussion is general, though we use the simplep pair current
when specific examples are needed.

An effective one-body operator is obtained by performi
a mean-field-like sum over the direct and exchange term

^auO(1)ub&[(
g

^aguO(2)ubg&2^aguO(2)ugb&,

~C1!

where the sum extends over occupied core states. In the
relativistic Fermi gas each s.p. state is a direct produc
space, spin, and isospin components:
04550
in
s-

n-
f

ua&5upW ~a!& ^ u 1
2 ms~a!& ^ u 1

2 mt~a!&, ~C2!

thus the wave function factors, allowing the space, spin,
isospin sum to be performed independently.

The spin and isospin averages for common operators
easily done. The results are displayed in Tables XVII a
XVIII.

TABLE XVII. One-body averaged spin operators.

Two-body One-body direct One-body exchang

1 2 1

sW (1)1sW (2) 2sW 2sW

sW (1)2sW (2) 2sW 0

sW (1)3sW (2) 0 2isW
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TABLE XVIII. One-body averaged isospin operators.

Two-body One-body direct One-body exchange

1 (up1un)
(up1un) 1

2 1(up2un)
t3

2
tW (1)•tW (2) (up2un)t3 (up1un) 3

2 2(up2un)
t3

2
t3(1)t3(2) (up2un)t3 (up1un) 1

2 1(up2un)
t3

2
t3(1)1t3(2) (up2un)1(up1un)t3 (up2un)1(up1un)t3

t3(1)2t3(2) 2(up2un)1(up1un)t3 0

@tW (1)3tW (2)#3
0 2 i (up2un)1 i (up1un)t3

3t3(1)t3(2)2tW (1)•tW (2) 2(up2un)t3 2(up2un)t3
ur
t

to

e

Turning to spatial averages, we first consider pair c
rents. The spatial parts of these operators take one of
generic forms~i! f (r )d (3)(xW2xW1) or ~ii ! f (r )d (3)(xW2xW2),
where f (r ) is a function ofr[urWu5uxW12xW2u. Therefore, the
direct average is

(
pW g

^pW a ,pW gu f ~r !d (3)~xW2xW1!upW b ,pW g&

5e2 i (pW a2pW b)•xW(
pW g

E d3r f ~r !, ~C3!

(
pW g

^pW a ,pW gu f ~r !d (3)~xW2xW2!upW b ,pW g&

5e2 i (pW a2pW b)•xW(
pW g

E d3re2 i (pW a2pW b)•rW f ~r !,

~C4!

and the exchange average

(
pW g

^pW a ,pW gu f ~r !d (3)~xW2xW2!upW g ,pW b&

5e2 i (pW a2pW b)•xW(
pW g

E d3re2 i (pW b2pW g)•rW f ~r !,

~C5!

(
pW g

^pW a ,pW gu f ~r !d (3)~xW2xW2!upW g ,pW a&

5e2 i (pW a2pW b)•xW(
pW g

E d3re2 i (pW a2pW g)•rW f ~r !.

~C6!

Now e2 i (pW a2pW b)•xW gives ad (3)(xW2xW i) for a first-quantized
operator in position space, i.e.,̂ pW aud (3)(xW2xW i)upW b&
5e2 i (pW a2pW b)•xW. We specialize the remaining integration
the p pair current wheref (r ) has the Yukawa forme2mp/r ,
04550
-
he E d3r

e2mp

r
5

4p

mp
2

, ~C7!

E d3re2 ipW •rW
e2mp

r
5

4p

pW 21mp
2

. ~C8!

After performing the sum over the proton~or neutron! Fermi
sphere by using the quasicontinuum limit,(pW g

→*0
pFdpg*0

4pdV(pg), we find

(
pW g

(p)
15

pF
3

6p2
5

rZ

2
, ~C9!

(
pW g

(p)

1

~pW a(b)2pW g!21mp
2

5
rZ

2mp
2

W8~ p̃a(b) ,m̃p!, ~C10!

where theW8 function represents the full result after th
volume integration,

FIG. 10. The smoothness ofW8(p) as a function ofp̃a .
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W8~ p̃a ,m̃p!5
3mp

2

4pF
2 H 222m̃pFarctanS 11 p̃a

m̃p
D

1arctanS 12 p̃a

m̃p
D G1

1

2p̃a

@12 p̃a
2

1m̃p
2 # lnF ~11 p̃a!21m̃p

2

~12 p̃a!21m̃p
2 G J , ~C11!

with all the tilded quantities normalized by the Fermi m
mentum, i.e.,X̃[X/pF . As shown in Fig. 10, theW8 func-
tion varies very slowly asp̃a runs from 0 to 1. Therefore, i
is reasonable to replace this quantity by its average va
^W8(p)&.

Combining the spatial result with the spin and isosp
factors from the tables the yields thep pair current one-body
averaged form
04550
e

j g-PC
p pair5

egpNNf p

8A2pM
@~up1un!2~up2un!t3#

3sW
2pr

mp
2 ^W8(p)&d (3)~xW2xW i !1~1↔2!

~C12!

5
egpNNf p

2A2pMmp
2 @~un1un!1~un2up!t3#

3r^W8(p)&sW d (3)~xW2xW i !, ~C13!

where up(n) is the projection operator of proton~neutron!,
andr denotes the nuclear density.

Other currents are similar, though generally more tedio
APPENDIX D: ONE-BODY FERMI GAS AVERAGED CURRENT OPERATORS

We list the relevant one-body Fermi gas averaged operators in momentum space:

jWg-PC
p pair5

egpNNf p

2A2Mmp
2 @~un1up!1~un2up!t3#r^W8(p)&sW , ~D1!

jWg-PC
r pair5

2egrNN

3Mmr
2 Fhr

11S hr
01

hr
2

2A6
D t3GuprH sW 1A15

4

1

mr
2 @@kW ^ kW #2^ sW #1J

2
grNN

6Mmr
2 S H F S hr

11
3hr

2

2A6
D 1S 2hr

01hr
11

hr
2

2A6
D t3Gup23S hr

02
hr

2

2A6
D ~11t3!unJ 2r^W8(r)&sW

1F ~3hr
01hr

1!2S hr
02hr

12
2hr

2

A6
D t3GunrA15

4
^W9(r)&

1

pF
2 @@KW ^ KW #2^ sW #1D , ~D2!

jWg-PNC
r pair5

egrNN

2Mmr
2 S hr

01hr
11

hr
2

2A6
D ~11t3!~un2up!rsW 1

egrNN

2Mmr
2

3H F2hr
01hr

11
hr

2

2A6
1S hr

11
3hr

2

2A6
D t3Gup1S hr

02
hr

2

2A6
D ~11t3!unJ r^W8(r)&sW , ~D3!

jWg-PC
v pair5

2egvNN

3Mmv
2 ~hv

0 1hv
1 t3!uprH sW 1A15

4

1

mv
2 @@kW ^ kW #2^ sW #1J

2
egvNN

6Mmv
2 ~hv

0 1hv
1 !~11t3!uprH 2^W8(v)&sW 2A15

4
^W9(v)&

1

pF
2 @@KW ^ KW #2^ sW #1J , ~D4!

jWg-PNC
v pair5

2egvNN

2Mmv
2 ~hv

0 1hv
1 !~11t3!@~un1up!rsW 2upr^W8(v)&sW #, ~D5!

jWppg5
2egpNNf p

A2Mmp
4 @~un1up!1~un2up!t3#r$^Y1&~sW •kW !kW1^Y2&~sW •KW !KW 1^Y3&~pF

2 !sW %, ~D6!
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jWrrg5
2egrNN

2A2Mmr
4 S hr

02
hr

2

2A6
D @~un2up!1~un1up!t3#rH ^I 1&~kW2!sW 1^I 2&~pF

2 !sW 1^I 3&~sW •kW !kW1^I 4&~sW •KW !KW 2 i ^I 5&kW3KW

1
1

mr
2 @^J1&~kW4!sW 1^J2&~kW•KW !2sW 1^J3&~pF

2kW2!sW 1^J4&~pF
4 !sW 1^J5&~sW •kW !~kW2!kW1^J6&~sW •KW !~kW•KW !kW1^J7&~pF

2 !

3~sW •kW !kW1^J8&~sW •KW !~kW2!KW 1^J9&~pF
2 !~sW •KW !KW 1^J10&~sW •kW !~kW•KW !KW 2 i ^J11&~kW2!kW3KW 2 i ^J12&~pF

2 !kW3KW #J , ~D7!

jWr-PC
rpg 5

2 i2A2egrNNf pgrpg

mr~mr
21mp

2 !2
@~un2up!1~un1up!t3#r ^Z&kW3KW , ~D8!

TABLE XIX. Average weighting functions.~Note that the first number refers to the proton part and the
the second the neutron part.!

^W8(p)& ^W8(r,v)& ^W9(p)& ^W9(r,v)& ^Y1& ^Y2& ^Y3&
0.30/0.26 0.90/0.88 0.99/1.02 0.19/0.23 0.0039/0.0033 0.0173/0.0111 0.0144/0.0103

^I 1& ^I 2& ^I 3& ^I 4& ^I 5& ^J1& ^J2&
2.25/2.18 10.09/9.58 21.53/21.46 21.30/19.61 10.18/9.56 0.42/0.39 1.10/1.02

^J3& ^J4& ^J5& ^J6& ^J7& ^J8& ^J9&
4.11/3.91 1.43/1.32 20.83/20.77 22.68/22.48 2.57/2.40 4.25/3.89 28.21/27.56

^J10& ^J11& ^J12& ^Z&
2.53/2.32 3.26/3.03 211.16/210.42 1.43/1.15
d
-

g

where rho denotes the nuclear~i.e., the sum of proton and
neutron! densities.

up(n) is a projection operator: whenup(n) acts on $r
~nuclear density!, pF ~Fermi momentum!, ^X& ~averaged
weighting function such aŝW8(p)&)%, the results should rea
$rp(n) , pF

p(n) , ^Xp(n)&%. The conversion rules from momen
tum space to position space are simple,

1→d (3)~xW2xW i !, ~D9!
-

L

to

in

04550
kW5pW b2pW a→2 i @¹W ,d (3)~xW2xWi !#, ~D10!

KW 5
pW b1pW a

2
→2 i $¹Wi ,d (3)~xW2xW i !%sym. ~D11!

For 133Cs, pF
p(n);260(300) MeV. The average weightin

factors are given in Table XIX. For205Tl, these numbers are
almost the same. We do not distinguish between ther andv
masses in evaluating the weighting functions.
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