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Relativistic instant-form approach to the structure of two-body composite systems
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An approach to the electroweak properties of two-particle composite systems is developed. The approach is
based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is
the method of construction of the matrix element of the electroweak current operator. The electroweak current
matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also
the conservation law automatically. The properties of the system as well as the approximations are formulated
in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in
such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current
conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in
the whole range of momentum transfers available for experiments at present time, as well as for the lepton
decay constant of pions.
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I. INTRODUCTION

The construction of correct quantitative methods of cal
lation for structure of composite particles is an important l
of investigation in particle physics. In nonrelativistic dynam
ics there exist different correct methods that use mode
phenomenological interaction potentials. However, in
case of high energy one needs to develop relativistic m
ods. It is worth noting that now the experiments on accele
tors, in particular, JLab, are performed with such an accur
that the treatment of traditionally ‘‘nonrelativistic’’ system
~e.g. the deuteron! requires one to take into account relati
istic effects. Relativistic effects are important also in t
treatment of composite systems of light quarks. However,
relativistic treatment of hadron composite systems is a ra
complicated problem. Let us note that the use of the meth
of the field theory in this case encounters serious difficult
For example, it is well known that perturbative QCD cann
be used in the case of quark bound states~see, e.g., Refs
@1,2#!.

In the present paper we will use the relativistic constitu
model that describes the hadron properties at the quark l
in terms of degrees of freedom of constituent quarks. T
constituent quarks are considered as extended objects
internal characteristics of which~mean square radius, anom
lous magnetic moments, form factors! are parameters of th
model. As a relativistic variant of the constituent model w
choose the method of relativistic Hamiltonian dynam
~RHD! ~see, e.g., Refs.@3–6# and references therein!.

The RHD method as a relativistic theory of compos
systems is based on the direct realization of the Poinc´
algebra on the set of dynamical observables on the Hil
space. The RHD theory of particles lies between local fi
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theoretic models and nonrelativistic quantum mechan
models.

Contrary to field theory, RHD deals with a finite numb
of degrees of freedom from the very beginning. This is c
tainly a kind of a model approach. The preservation of
Poincare´ algebra ensures the relativistic invariance. So,
covariance of the description in the frame of RHD is due
the existence of the unique unitary representation of the
homogeneous group SL(2,C) on the Hilbert space of com
posite system states with a finite number of degrees of f
dom @7#.

The mathematics of RHD is similar to that of nonrelati
istic quantum mechanics and permits one to assimilate
sophisticated methods of phenomenological potentials
can be generalized to describe three or more particles.
idea of this approach—RHD—was originated by Dirac.
Ref. @8# he considered different ways of describing the ev
lution of classical relativistic systems—different forms
dynamics. Dirac defined three main forms of dynamics: po
~PF!, instant ~IF!, and light–front~FF! dynamics. RHD is
based on the simultaneous action of two fundamental p
ciples, relativistic invariance and the Hamiltonian princip
and presents the most adequate tool to treat the systems
finite number of degrees of freedom.

Our aim is to construct a relativistic invariant approach
the electroweak structure of two-particle composite syste
The main problem here is the construction of the curr
operators@9–13#. It seems to us that RHD is the most a
equate method for our purpose. The use of RHD enables
to separate the main degrees of freedom and thus to cons
convenient models.

We use one of the forms of RHD, namely a version of t
IF. Our approach has a number of features that distinguis
from other forms of dynamics and other approaches in
frames of IF.

~a! The electroweak current matrix element satisfies au
matically the relativistic covariance conditions and in t
©2002 The American Physical Society01-1
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A. F. KRUTOV AND V. E. TROITSKY PHYSICAL REVIEW C65 045501
case of the electromagnetic current also the conservation
~b! We propose a modified impulse approximation~MIA !.

It is constructed in a relativistically invariant way. Th
means that our MIA does not depend on the choice of
coordinate frame, and this contrasts principally with t
‘‘frame-dependent’’ impulse approximation usually used
the instant form~IF! of dynamics.1

~c! Our approach provides the correct and natural non
ativistic limit ~‘‘the correspondence principle’’ is fulfilled!.

~d! For composite systems~including the spin-1 case! the
approach guarantees the uniqueness of the solution for
factors and does not use such concepts as ‘‘good’’ and ‘‘b
current components.

It is worth noticing that all known approaches@including
the perturbative quantum field theory~QFT!# encounter dif-
ficulties while constructing a composite-system current
erator satisfying Lorentz-covariance and conservation co
tions @9–13#.

Similar difficulties arise in the frame of the RHD ap
proach, which is widely used in the theory of electrowe
properties of composite quark and nucleon syste
@6,10,13–27#. At present time the FF dynamics is the mo
developed and most used for composite systems@10,13–
15,17,18#. However there are some difficulties in the F
RHD approach when the electroweak properties of comp
ite systems are considered. In particular, it was sho
@14,28# that the calculated electromagnetic form factors
the systems with the total angular momentumJ51 ~the deu-
teron, ther meson! vary significantly with the rotation of the
coordinate frame. This ambiguity is caused by the break
of the so-called angle condition@14,28#, that is, by the break-
ing of the rotation invariance of the theory. Some of t
difficulties of FF dynamics are discussed in Ref.@29#. A
possible way to solve the problem by adding some new~non-
physical! form factors to the electromagnetic current w
proposed earlier~see Ref.@30# and references therein!.

A different approach to the problem was proposed
cently in Ref.@13#, where a new method of construction
electromagnetic current operators in the frame of FF dyn
ics was given. The method of Ref.@13# gives unambiguous
deuteron form factors. However, as the authors of Ref.@13#
note themselves, their current operator and the one use
Ref. @10# are different, since both of them are obtained fro
the free one, but in different reference frames, related by
interaction dependent rotation.

Let us consider now the impulse approximation, which
widely used for the description of composite systems. In
IA a test particle interacts mainly with each component se
rately, that is, the electromagnetic current of the compo
system can be described in terms of one-particle current
fact, the composite-system current is approximated by

1It is known that correct impulse approximation~IA ! realization in
the frame of traditional version of IF dynamics encounters diffic
ties: the standard IA depends on the choice of the coordinate fra
We show below that IA can be formulated in an invariant way,
composite system form factors being defined by the one-par
currents alone.
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corresponding free-system current. This means that excha
currents are neglected, or, in other words, that there is
three-particle forces in the interaction of a test particle w
constituents. It is well known that the traditional IA brea
the Lorentz covariance of the composite-system current
the conservation law for the electromagnetic current~see,
e.g., Ref.@4# for details!.

To satisfy the conservation law in the frame of the Beth
Salpeter equation and quasipotential equations, for exam
it is necessary to go beyond IA: one has to add the so-ca
two-particle currents to the current operator. In the case
nucleon composite systems these currents are interprete
meson exchange currents@11#. In the case of a deuteron thi
means the simultaneous interaction of virtualg quanta with
proton and neutron. However, in Ref.@31# it is shown that
the current conservation law can be satisfied without s
processes, although they contribute to the deuteron form
tor. It seems that at the present time there is an intentio
formulate the IA with transformed conservation propert
without dynamical contribution of exchange curren
@13,25,30#.

In the framework of the point form dynamics the curre
operator was constructed in Ref.@6#. The current operator in
Ref. @6# is Lorentz covariant and the conservation law
fulfilled. The approach is based on the realization of t
Wigner-Eckart theorem for the Poincare´ group. The main
idea is to extract from the current matrix element the rela
istic invariant part—the reduced matrix element, i.e., t
form factor—and to separate the covariant part. The fo
factors contain all the dynamical information and the cov
riant part describes the relativistic transformation proper
of the matrix element.

Our approach is a generalization of the method@6# for the
case of the instant form dynamics. However, the scenario
the generalization of the Wigner-Eckart theorem is quite d
ferent.

The IF of relativistic dynamics, although not widely use
has some advantages. The calculations can be performed
natural straightforward way without special coordinates. T
IF method is particularly convenient for discussing the no
relativistic limit of relativistic results. This approach is obv
ously rotational invariant, so the IF approach is the m
suitable for spin problems.

We describe the dynamics of composite systems~the con-
stituent interaction! in the frame of general RHD axiomatics
However, our approach differs from the traditional RHD b
the way of construction of matrix elements of local ope
tors. In particular, our method of describing the electrom
netic structure of composite systems permits the construc
of current matrix elements satisfying the Lorentz-covarian
condition and the current conservation law.

To construct the current operator in the frame of IF RH
we use the general method of the relativistic invariant para
eterization of matrix elements of local operators proposed
long ago as 1963 by Cheshkov and Shirokov@32#.

The method of Ref.@32# gives matrix elements of the
operators of arbitrary tensor dimension~Lorentz scalar, Lor-
entz vector, Lorentz tensor! in terms of a finite number of
relativistic invariant functions: form factors. The form fac
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RELATIVISTIC INSTANT-FORM APPROACH TO THE . . . PHYSICAL REVIEW C 65 045501
tors contain all the dynamical information on the transitio
defined by the operator.

In the review Ref.@4# two possible variants of such
representation of matrix elements in terms of form fact
are presented—the elementary-particle parametrization
the multipole parametrization. The variant of parametrizat
given in Ref. @32# is an alternative one. In Ref.@32# the
authors propose the construction of matrix elements in a
nonical basis so it can be called canonical parametrizat
This method was developed for the case of composite
tems in Refs.@33,34#. The composite-system form factors
this approach are generally the distributions~generalized
functions!; they are defined by continuous linear functiona
on a space of test functions. Thus, for example, the cur
matrix elements for composite systems are functionals, g
erated by some Lorentz-covariant distributions, and the fo
factors are functionals generated by regular Lorentz-invar
generalized functions. We demonstrate these facts below
Sec. III, using a simple model as an example.

It is worth noting that the statement that the form facto
of a composite system are generalized functions is not so
thing exotic. This feature also appears in the standard n
relativistic potential theory~see Sec. III E!.

Our formalism also gives, in fact, the description of t
covariance properties of the operators in terms of ma
particle as well as one-particle currents. However, the imp
tant feature of our formalism is the fact that form factors
reduced matrix elements describing the dynamics of tra
tions contain in the IA only the contributions of one-partic
currents.

So, our approach to the construction of the current ope
tor includes the following main points:

~1! We extract from the current matrix element of th
composite system the reduced matrix elements~form factors!
containing the dynamical information on the process. U
ally these form factors are generalized functions.

~2! Along with form factors we extract from the matri
element a part that defines the symmetry properties of
current: the transformation properties under Lorentz trans
mation, discrete symmetries, conservation laws, etc.

~3! The physical approximations that are used to calcu
the current are formulated not in terms of operators bu
terms of form factors.

In this paper we present the main points of our approa
To make it transparent we consider here only simple syst
with zero total angular momenta, so that technical details
not mask the essence of the method. We demonstrate
effectiveness of the approach by calculating the pion e
troweak properties. In this case the canonical parametriza
is very simple and can be realized without difficulties. T
case of more complicated systems requires rather soph
cated mathematics for canonical parametrization of local
erator matrix elements and will be considered elsewhere

The paper is organized as follows. In Sect. II we rem
the reader briefly of the basic statements of RHD, especi
of IF RHD. The IF wave functions of composite systems a
defined. In Sec. III our approach to relativistic theory of tw
particle composite systems and their electroweak prope
is presented. A simple model is considered in detail: t
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spinless particles in theSstate of relative motion, one of th
particles being uncharged. The electromagnetic form fac
of the system is derived. The standard conditions for
current operator are discussed. The modified impulse
proximation~MIA ! is proposed. The results of IA and MIA
are compared. The nonrelativistic limit is considered. In S
IV the developed formalism is used in the case of the sys
of two particles with spins 1/2. The pion electromagne
form factor and the lepton decay constant are derived.
model parameters are discussed and the comparison o
results with the experimental data is given. The results
calculations in IA and MIA are compared and are shown
differ significantly. In Sec. V the conclusion is given.

II. RELATIVISTIC HAMILTONIAN DYNAMICS

In this section some basic equations of RHD are brie
reviewed. We use the so-called instant-form dynamics~IF!.
In this form the kinematic subgroup contains the genera
of the group of rotations and translations in the thre
dimensional Euclidean space~interaction independing gen
erators!:

JŴ , PŴ . ~1!

The remaining generators are Hamiltonians~interaction
dependent!:

P̂0, NŴ . ~2!

The additive inclusion of interaction into the mass squ
operator~Bakamjian-Thomas procedure@35#, see, e.g., Ref.
@4# for details! presents one of the possible technical ways
include interaction in the algebra of the Poincare´ group:

M̂0
2→M̂ I

25M̂0
21Û. ~3!

HereM̂0 is the operator of invariant mass for the free syst
and M̂ I that for the system with interaction. The interactio
operator Û has to satisfy the following commutatio
relations:

@PŴ ,Û#5@JŴ ,Û#5@,W P ,Û#50. ~4!

These constraints~4! ensure that the algebraic relations
the Poincare´ group are fulfilled for an interacting system
The relations~4! mean that the interaction potential does n
depend on the total momentum of the system nor on
projection of the total angular momentum. This fact is w
established for a class of potentials, for example, for se
rable potentials@36#. Nevertheless, conditions~3! and~4! can
be considered as the model conditions. There exists ano
approach@37# in which a potential depends on the total m
mentum, but that approach is out of the scope of this pa

In RHD the wave function of the system of interactin
particles is the eigenfunction of a complete set of commut
operators. In IF this set is
1-3
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A. F. KRUTOV AND V. E. TROITSKY PHYSICAL REVIEW C65 045501
M̂ I
2 , Ĵ2, Ĵ3 , PŴ . ~5!

Ĵ2 is the operator of the square of the total angular mom

tum. In IF the operatorsĴ2,Ĵ3 ,PŴ coincide with those for the
free system. So, in system~5! only the operatorM̂ I

2 depends
on the interaction.

To find the eigenfunctions for the system~5! one has first
to construct the adequate basis in the state space of com
ite system. In the case of the two-particle system~for ex-
ample, the quark-antiquark systemqq̄) the Hilbert space in
RHD is the direct product of two one-particle Hilbert spac
Hqq̄[Hq^ Hq̄ .

As a basis inHqq̄ one can choose the following set o
two-particle state vectors:

upW 1 ,m1 ;pW 2 ,m2&5upW 1m1& ^ upW 1m2&,

^pW ,mupW 8m8&52p0d~pW 2pW 8!dmm8 . ~6!

Here pW 1 and pW 2 are three-momenta of particles,m1 andm2

are spin projections on the axisz, p05ApW 21M2, andM is
the constituent mass.

One can choose another basis where the motion of
two-particle center of mass is separated and where three
erators of the set~5! are diagonal:

uPW ,As,J,l ,S,mJ&,

^PW ,As,J,l ,S,mJuPW 8,As8,J8,l 8,S8,mJ8&5NCGd (3)~PW

2PW 8!d~As2As8!dJJ8d l l 8dSS8dmJmJ8
,

NCG5
~2P0!2

8kAs
, k5

1

2
As24M2. ~7!

Here Pm5(p11p2)m , Pm
2 5s, As is the invariant mass o

the two-particle system,l is the orbital angular momentum i
the center-of-mass frame~c.m.!, SW 25(SW 11SW 2)25S(S11),
S is the total spin in the c.m., andJ is the total angular
momentum with the projectionmJ .

The basis~7! is connected with the basis~6! through the
Clebsh-Gordan~CG! decomposition for the Poincare´ group
~see, e.g., Ref.@34#!:

uPW ,As,J,l ,S,mJ&5 (
m1m2

E dpW 1

2p10

dpW 2

2p20
upW 1 ,m1 ;pW 2 ,m2&

3^pW 1 ,m1 ;pW 2 ,m2uPW ,As,J,l ,S,mJ&.

~8!

Here
04550
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^pW 1 ,m1 ;pW 2 ,m2uPW ,As,J,l ,S,mJ&

5A2s@l~s,M2,M2!#21/22P0d~P2p12p2!

3 (
m̃1m̃2

^m1uD1/2~p1P!um̃1&^m2uD1/2~p2P!um̃2&

3 (
mlmS

^ 1
2

1
2 m̃1m̃2uSmS&Ylml

~q,w!^Slmsml uJmJ&.

Here l(a,b,c)5a21b21c222(ab1bc1ac), Ylml
is a

spherical harmonic,q andw are the spherical angles of th

vector pW 5(pW 12pW 2)/2 in the c.m., ^SmSu 1
2

1
2 m̃1m̃2& and

^JmJuSlmSml& are the CG coefficients for the group SU~2!,
and ^m̃uD1/2(P,p)um& is the three-dimensional spin rotatio
matrix to be used for correct relativistic invariant spin ad
tion.

It is on the vectors~7! and ~8! that the Poincare´-group
representation is realized in the vector state space of two
particles. The vector in representation is determined by
eigenvalues of the complete commuting set of operators

M̂0
25 P̂2,Ĵ2,Ĵ3 . ~9!

The parametersS and l play the role of invariant parameter
of degeneracy.

As in the basis~7! the operatorsĴ2,Ĵ3 ,PŴ in system~5! are
diagonal, one needs to diagonalize only the operatorM̂ I

2 in
system~5! in order to obtain the system wave function. Th
eigenvalue problem for the operatorM̂ I

2 in the basis~7! has
the form of nonrelativistic Schro¨dinger equation~see, e.g.,
Ref. @4#!.

The corresponding composite-particle wave function h
the form

^PW 8,As8,J8,l 8,S8,mJ8upc&

5NCd~PW 82pW c!dJJ8dmJm
J8
w l 8S8

J8 ~k8!, ~10!

NC5A2pc0ANCG

4 k8
.

upc& is an eigenvector of the set~5!; J(J11) andmJ are the
eigenvalues ofĴ2 and Ĵ3, respectively@Eqs.~5! and ~9!#.

The two-particle wave function of relative motion fo
equal masses and total angular momentum and total
fixed is

w lS
J
„k~s!…5A4 sul~k!k, ~11!

and the normalization condition has the form

(
l
E ul

2~k!k2dk51. ~12!

Let us note that for composite quark systems one u
sometimes instead of Eq.~12! the following one:
1-4
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nc(
l
E ul

2~k!k2dk51. ~13!

Here nc is the number of colors. The wave function~11!
coincides with that obtained by ‘‘minimal relativization’’ in
Ref. @38#. The normalization factors in Eq.~11! in this case
correspond to the relativization obtained by the transform
tion to relativistic density of states

k2dk→ k2dk

2A~k21M2!
. ~14!

The formalism of this section is used in the next one
present the method of calculation of electroweak proper
of composite systems. Particularly, the method of constr
tion of electroweak current operators is described.

III. THE NEW RELATIVISTIC INSTANT-FORM
APPROACH TO THE ELECTROWEAK STRUCTURE

OF TWO-BODY COMPOSITE SYSTEMS

In this section we present our approach to electrow
properties of relativistic two-particle systems. To demo
strate how one describes the electromagnetic propertie
composite systems in our version of the RHD instant fo
we first use the following simple model. We consider t
system of two spinless particles in theS state of relative
motion, one particle having no charge. Let us note tha
similar model was used in Ref.@4# where the authors gav
the description of constituent interaction in the IF of RH
and obtained the mass spectrum. The application of
method in general case follows the scheme of this sect
The case of thep meson is investigated in Sec. IV and th
S51 case in Ref.@39#.

Electromagnetic properties of the system are determi
by the current operator matrix element. This matrix elem
is connected with the charge form factorFc(Q

2) as follows:

^pcu j m~0!upc8&5~pc1pc8!mFc~Q2!, ~15!

wherepc8 andpc are four-momenta of the composite syste
in initial and final states,Q252t,q25(pc2pc8)

25t, andq2

is the momentum-transfer squared. The form~15! is defined
by the Lorentz covariance and by the conservation law o
and does not depend on the model for the internal struc
of the system.

Equation~15! presents the simplest example of the extr
tion of a reduced matrix element, that is, the simplest re
ization of the Wigner-Eckart theorem on the Poincare´ group.
The four-vector (pc1pc8)m describes symmetry and transfo
mation properties of the matrix element. The reduced ma
element~the form factor! contains all the dynamical informa
tion on the process described by the current. The represe
tion of a matrix element in terms of form factors often
referred to as the parametrization of the matrix element.
scattering cross section for elastic scattering of electrons
composite system can be expressed in terms of charge
04550
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factor Fc(Q
2). So, the form factor can be obtained fro

experiment and it is interesting to calculate it in a theoreti
approach.

In this section we calculate the form factor of our simp
composite system using the version of RHD IF based on
approach of the Sec. II. Now let us list the conditions for t
operator of the conserved electromagnetic current to be
filled in relativistic case~see, e.g., Ref.@12#!:

~i! Lorentz covariance:

Û21~L! ĵ m~x!Û~L!5Ln
m ĵ n~L21x!. ~16!

Here L is the Lorentz-transformation matrix, andÛ(L) is
the operator of the unitary representation of the Lore
group.

~ii ! Invariance under translation:

Û21~a! ĵ m~x!Û~a!5 ĵ m~x2a!. ~17!

HereÛ(a) is the operator of the unitary representation of t
translation group.

~iii ! Current conservation law:

@ P̂n ĵ n~0!#50. ~18!

In terms of matrix elementŝĵ m(0)& the conservation law
can be written in the form

qm^ ĵ m~0!&50. ~19!

Hereqm is four-vector of the momentum transfer.
~iv! Current-operator transformations under space-tim

reflections:

ÛP„ ĵ
0~x0,xW !, jŴ~x0,xW !…ÛP

215„ ĵ 0~x0,2xW !,2 jŴ~x0,2xW !…,

ÛRĵ m~x!ÛR
215 ĵ m~2x!. ~20!

In Eq. ~20! ÛP is the unitary operator for the representati
of space reflections andÛR is the antiunitary operator of the
representation of space-time reflectionsR5PT.

~v! Cluster separability condition: If the interaction is
switched off, then the current operator becomes equal to
sum of the operators of one-particle currents.

~vi! The charge is not renormalized by the interactio:
The electric charge of the system with interaction is equa
the sum of the constituent electric charges.

In this paper the explicit equations for the form factors a
obtained taking into account all the listed conditions.

A. Electromagnetic properties of the system of free particles

Let us consider first the simple two-particle system d
scribed in the beginning of Sec. III. The electromagnetic c
rent j m

(0)(0) of the two-particle free system can be calculat
in the representation given by the basis~6! or in the repre-
sentation given by the basis~7!. In the first case the operato
has the formj m

(0)5 j 1m ^ I 2. Here j 1m is the electromagnetic
1-5
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current of the charged particle andI 2 is the unity operator in
the Hilbert space of states of the uncharged particle:

^pW 1 ;pW 2u j m
(0)~0!upW 18 ;pW 28&5^pW 2upW 28&^pW 1u j 1m~0!upW 18&. ~21!

The matrix element of the one spinless particle current in
free case contains only one form factor—the charge fo
factor of the charged particlef 1(Q2):

^pW 1u j 1m~0!upW 18&5~p11p18!m f 1~Q2!. ~22!

So, the electromagnetic properties~15! of the system of
two free particles are defined by the form factorf 1(Q2),
containing all the dynamical information on elastic proces
described by the matrix element~21! @4#. Particularly, the
charge of the system is defined by the value of this fo
factor atQ2→0:

lim
Q2→0

f 1~Q2!5 f 1~0!5ec . ~23!

ec is the system charge.
Now let us write the electromagnetic-current matrix e

ment for the two-particle free system in the basis~7! where
the center-of-mass motion is separated:

^PW ,As,u j m
(0)~0!uPW 8,As8&. ~24!

Here the variables which take zero values are omittedJ
5S5 l 50. One can consider the matrix element~24! as a
matrix element of an irreducible tensor operator on the Po
carégroup and one can use the Wigner-Eckart theorem,
the canonical parametrization@32–34# giving a technical re-
alization of this theorem. Thus, one can write the mat
element~24! in the form

^PW ,Asu j m
(0)~0!uPW 8,As8&5Am~s,Q2,s8!^Asuug0~Q2!uuAs8&

5Am~s,Q2,s8!g0~s,Q2,s8!. ~25!

It is easy to understand the motivation for the parametr
tion ~25! for our simple system. The four-vectorAm de-
scribes the transformation properties of the matrix elem
and the invariant functiong0(s,Q2,s8) contains the dynami-
cal information on the process. We will refer tog0(s,Q2,s8)
as to free two-particle form factor. For more complicat
systems the parametrization corresponding to the Wig
Eckart theorem for the Poincare´ group can be performed us
ing a special mathematical techniques as described in
papers@32,34,39#.

So Am(s,Q2,s8) is defined by the current transformatio
properties~the Lorentz covariance and the conservation la!:

Am5
1

Q2
@~s2s81Q2!Pm1~s82s1Q2!Pm8 #. ~26!

Thus, in the basis~7! the electromagnetic properties of th
free two-particle system are defined by the free two-part
form factorg0(s,Q2,s8). So, in both representations@defined
by the basis~6! as well as by the basis~7!# we pass from the
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description of the system in terms of matrix elements to t
in terms of Lorentz-invariant form factors.

One can see that Eqs.~21! and ~25! describe electromag
netic properties in terms of only one form factor. Both
these descriptions are, certainly, equivalent from the phys
point of view. Let us consider the difference between the
descriptions. As we will show below by direct calculation th
free two-particle form factorg0(s,Q2,s8) is not an ordinary
function but has to be considered in the sense of distributi
in variabless,s8, generated by a locally integrable functio
So, g0(s,Q2,s8) is a regular generalized function. All th
properties ofg0(s,Q2,s8) have to be considered as the pro
erties of a functional given by the integral over the variab
s,s8 of the functiong0(s,Q2,s8) multiplied by a test func-
tion. As test functions it is sufficient to take a large class
smooth functions that give the uniform convergence of
integral. In particular, the limit~23! giving the total charge of
the system through the two-particle form factor is now t
weak limit:

lim
Q2→0

^g0~s,Q2,s8!,f~s,s8!&. ~27!

Heref(s,s8) is a function from the space of test function
The precise definition of the functional will be given below

At the first glance it seems that the description of t
two-particle free system in terms of the form fact
g0(s,Q2,s8) is too complicated. However, so is the reality,
we will see later in the Sec. III E. In fact, this kind of de
scription is used implicitly for a long time in nonrelativisti
theory of composite systems, without calling things by th
proper names. It is this kind of description that makes
possible to construct the electromagnetic current oper
with correct transformation properties for interacting sy
tems.

The locally integrable functiong0(s,Q2,s8) can be easily
obtained by use of CG decomposition~8! for the Poincare´
group. Using Eq.~8! we obtain for Eq.~25!:

^PW ,Asu j m
(0)~0!uPW 8,As8&

5E dpW 1

2 p10

dpW 2

2 p20

dpW 18

2 p108

dpW 28

2 p208
^PW ,As,upW 1 ;pW 2&

3^pW 1 ;pW 2u j m
(0)~0!upW 18 ;pW 28&^pW 18 ;pW 28uPW 8,As8&. ~28!

To calculate the free two-particle form factor one has to u
Eqs.~21!, ~22!, and~25! and the explicit form of CG coeffi-
cients ~8! for quantum numbers of the system. As the p
ticles of the system under consideration are spinless, now
~8! does not containD functions.

It is convenient to integrate in Eq.~28! using the coordi-
nate frame withPW 850W ,PW 5(0,0,P). As the result we obtain
the following relativistic invariant form for the function
g0(s,Q2,s8):
1-6



ic

-

e
f
e

a

o
iti

ee
t

id
e

our
e

rite

e

art

ering
me

r:

rent
he
am-

nt

ar-
he
tion

orm
de-
x

RELATIVISTIC INSTANT-FORM APPROACH TO THE . . . PHYSICAL REVIEW C 65 045501
g0~s,Q2,s8!5
~s1s81Q2!2Q2

2A~s24M2!~s824M2!

3
q~s,Q2,s8!

@l~s,2Q2,s8!#3/2
f 1~Q2!. ~29!

Hereq(s,Q2,s8)5u(s82s1)2u(s82s2), andu is the step
function. The result, naturally, does not depend on the cho
of the coordinate frame:

s1,252M21
1

2M2
~2M21Q2!~s22M2!

7
1

2M2
AQ2~Q214M2!s~s24M2!.

The functionss1,2(s,Q2) give the kinematically available re
gion in the plane (s,s8) ~see Ref.@33#!.

One can see that the free two-particle form factor~29!
g0(s,Q2,s8) has in fact to be interpreted in terms of th
distributions: The ordinary limit asQ2→ 0 is zero because o
the cuttingq functions and the static limit exists only as th
weak limit ~27!.

Let us calculate this limit. Let us define the function
giving regular generalized function as a functional inR2 as
follows:

^g0~s,Q2,s8!,f~s,s8!&5E dm~s,s8!g0~s,Q2,s8!f~s,s8!.

~30!

Here

dm~s,s8!516A4 ss8u~s24 M2!u~s824 M2!dm~s!dm~s8!,

dm~s!5
1

4
k dAs. ~31!

The u functions in these formula give the physical region
possible variations of the invariant mass squares in the in
and final states explicitly. The measure~31! is due to the
relativistic density of states~11! and~14!. f(s,s8) is a func-
tion from the test function space. So, for example, the lim
of g0(s,Q2,s8) asQ2→0 ~the static limit! has the meaning
only as the weak limit@compare with Eq.~23!#:

lim
Q2→0

^g0 ,f&5^ed„m~s8!2m~s!…,f&. ~32!

It is this weak limit that gives the electric charge of the fr
two-particle system. If the test functions are normalized
the relativistic density of states, then the right-hand s
~r.h.s.! of the Eq. ~32! is equal to the total charge of th
system.
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B. Electromagnetic structure of the system
of two interacting particles

Now let us consider the electromagnetic structure of
simple model~15! in the case of interacting particles. As w
have mentioned in Sec. II when constructing the bases~6!
and~7! in the frame of RHD the state vectorupc& belongs to
the direct product of two one-particle spaces. We can w
the decomposition of this vector withJ5 l 5S5mJ50 in the
basis~7!. Now Eq. ~15! has the form

E dPW dPW 8

NCGNCG8
dAs dAs8^pcuPW ,As&^PW ,Asu j m~0!uPW 8,As8&

3^PW 8,As8upc8&5~pc1pc8!mFc~Q2!. ~33!

Here ^PW 8,As8upc8& is the wave function in the sense of th
instant form of RHD~10!.

Using Eq.~10! we obtain for Eq.~33!:

E NcNc8

NCGNCG8
dAsdAs8w~s!w~s8!^pW c ,Asu j m~0!upW c8 ,As8&

5~pc1pc8!mFc~Q2!. ~34!

We have omitted in the wave function~11! the variables with
zero values:J5S5 l 50.

Let us discuss the possibility of using the Wigner-Eck
theorem~or the canonical parametrization! in the case of the
matrix element^pW c ,Asu j m(0)upW c8 ,As8& in Eq. ~34!. In the
previous cases the state vectors and the operators ent
matrix elements transformed following one and the sa
representation of the nonuniform group SL(2,C) @7#. Let us
perform the Lorentz transformation of the current operato

Û21~L! j m~0!Û~L!5 j̃ m~0!. ~35!

We obtain

^pu j̃ m~0!up8&5^puÛ21~L! j m~0!Û~L!up8&

5^Lpu j m~0!uLp8&. ~36!

This means that the transformation properties of the cur
four-vector~16! can be described using four-momenta of t
initial and final states, i.e., one can use the canonical par
etrization.

In the matrix element in the integrand of Eq.~34! the state
vectors and the operator transform following the differe
representations of the group SL(2,C). The current operator
describes the transitions in the system of two interacting p
ticles and transforms following the representation with t
generators of Lorentz boosts depending on the interac
~5!. The state vectors belong to the basis~7! and physically
describe the system of two free particles and so transf
following a representation with generators that do not
pend on the interaction~9!. So, if one considers the matri
element^pW c ,Asu j m(0)upW c8 ,As8& ~that is, the interaction cur-
1-7



o

e
in
s

-
in
m
tio
e

q.

to

th

t
p-
s a
nd
in

ny

al
q.

de-
t of

he
r a

he
of

-
nt

ions
is
nt
for
of

the
ple
l

di-

e
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rent between free states! per se, not in the context of the
decomposition~34!, one cannot use the Wigner-Eckart the
rem.

However, one must consider this matrix element as a g
eralized function, that is, as having meaning only as the
tegrand in Eq.~34!. Let us show that in this case one can u
the Wigner-Eckart theorem.

The set of the free two-particle statesuPW ,As& is complete:

Î 5E dPW

NCG
dAsuPW ,As&^PW ,Asu. ~37!

Using Eqs.~10! and ~37! we obtain

E NcNc8

NCGNCG8
dAsdAs8w~k!w~k8!

3^pW c ,AsuÛ21~L! j m~0!Û~L!upW c8 ,As8&

5^pcuÛ21~L! Î j m~0! Î Û~L!upc8&

5^Lpcu Î j m~0! Î uLpc8&

5E NcNc8

NCGNCG8
dAsdAs8w~k!w~k8!

3^LpW c ,Asu j m~0!uLpW c8 ,As8&. ~38!

So, we have an analog of Eq.~36! in the sense of distribu
tions and we can use the Wigner-Eckart theorem in the
tergrand. One can speak about the Wigner-Eckart theore
weak sense. Now the problem of canonical parametriza
of the matrix element~34! can be solved if one considers th
equality ~34! as the equality of two functionals.

Using Eqs.~11! and ~31! we can rewrite Eq.~34! in the
form of the functional inR2:

E dm~s,s8!u„k~s!…Jm~pW c ,As;pW c8 ,As8!u„k~s8!…

5~pc1pc8!mFc~Q2!,

Jm~pW c ,As;pW c8 ,As8!5
NcNc8

NCGNCG8
^pW c ,Asu j mupW c8 ,As8&.

~39!

The l.h.s. in Eq.~39! contains a functional inR2 generated
by the Lorentz-covariant function~current matrix element!.
Let us denote

c~s,s8!5u„k~s!…u„k8~s8!…. ~40!

The functional in the l.h.s. of Eq.~39! is given on the set of
test functionsc(s,s8) through an integral inR2 and defines a
Lorentz-covariant~regular! generalized function with the
values in the Minkowski space~see, e.g., Ref.@40#!. HereQ2

is a parameter. The test-function space can be~in general!
larger than Eq.~40!. However, the uniconvergence of E
~39! has to be guaranteed.

Let us write the matrix element in the form analogous
Eq. ~25!:
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Jm~pW c ,As;pW c8 ,As8!5Bm~s,Q2,s8!G~s,Q2,s8!. ~41!

The covariant part in Eq.~41! @as well as in Eq.~25!#, the
vector Bm(s,Q2,s8), is supposed to be an ordinary smoo
function and the invariant partG(s,Q2,s8) is generalized
function. In fact,G(s,Q2,s8) is the reduced matrix elemen
containing the information on the process. This kind of re
resentation of a Lorentz-covariant generalized function a
product of a Lorentz-covariant ordinary smooth function a
a Lorentz-invariant generalized function was described
Ref. @40#.

Using Eq.~41! we can rewrite Eq.~39! in the following
form:

E dm~s,s8!c~s,s8!Bm~s,Q2,s8!G~s,Q2,s8!

5~pc1pc8!mFc@c#~Q2!. ~42!

To obtain the vectorBm let us require Eq.~42! to be covari-
ant in the sense of distributions, that is, to be valid for a
test functionc(s,s8) in any fixed frame. The variation of the
test function in the functional~42! means in fact, following
Eq. ~40!, the variation of the wave function of the intern
motion. Under such a variation the vector in the r.h.s. of E
~42! is unchanged as it is constructed with four-vectors
scribing the motion of the system as a whole, independen
the internal constituent motion. As to the form factor in t
r.h.s. it varies under the test function variation. So, unde
variation of the test function the r.h.s. of Eq.~42! remains to
be collinear to the vector (pc1pc8)m . At the same time, un-
der arbitrary variation of the test function the vector in t
l.h.s. in general changes the direction. So, for the validity
the equality~42! with arbitrary test function it is sufficient to
require that the following equation

Bm~s,Q2,s8!5~pc1pc8!m ~43!

holds. This choice of the vectorBm in Eq. ~43! ensures that
the l.h.s. of Eq.~39! satisfies the condition of Lorentz cova
riance for the current as well as the condition of curre
conservation.

Let us discuss the physical meaning of the representat
~41! and~43! for the matrix element. As this representation
explicitly Lorentz covariant and also satisfies the curre
conservation law, then it means that the current operator
the composite system contains the contribution not only
one-particle currents but of two-particle currents, too~see,
e.g., Ref.@4#!:

j 5(
k

j (k)1 (
k,m

j (km). ~44!

Here the first term is the sum of one-particle currents and
second of two-particle currents. In the case of our sim
model each sum in Eq.~44! contains only one term. It is wel
known that if one approximatesj (x)'(kj (k)(x), then the
current operator in IF dynamics does not satisfy the con
tion of Lorentz covariance and the conservation law@4#. So,
from the physical point of view, the covariant part of th
1-8
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current matrix element~43!, which defines the transforma
tion properties of the current in Eq.~39! is given by Eq.~44!
and contains the contributions of one- and two-particle c
rents.

The invariant part of the decomposition~41! is the form
factor or the reduced matrix elementG(s,Q2,s8) and con-
tains the information on the dynamics of the scattering of
particle by each of the constituents@the first term in Eq.
~44!#, i.e., by the free two-particle system, as well as by t
constituent simultaneously~the second term!. So, the form
factor contains the contribution of the free system form f
tor ~29! and the contribution of some exchange curre
analogous to meson currents in nucleon systems@9#:

G~s,Q2,s8!5g0~s,Q2,s8!1Gc~s,Q2,s8!. ~45!

Here Gc is the reduced matrix element containing the co
tribution ~44! of two-particle currents.

Using Eqs.~11!, ~31!, ~40!, ~43! one can obtain from Eq
~42! the scalar equation of the following form:

E dAsdAs8w~s!G~s,Q2,s8!w~s8!5Fc~Q2!. ~46!

The representation~46! for the charge form factor of the
system is quite general.

Let us note that one can use the described formalism
the general case of composite systems with nonzero
angular momentumJ ~the detailed consideration is given
Ref. @39#!. In this case the current matrix element in t
decomposition like Eq.~34! is a matrix with matrix indices
being the total angular momentum projectionsmJ8 andmJ in
the initial and final states. We decompose this matrix elem
in the set of the linear independent matrices:

DJ~pc ,pc8!@Gm~pc8!pc
m#n, n50,1, . . . ,2J. ~47!

HereGm(pc8) is the spin four-vector defined with the use
the Pauli-Lubanski vector~see, e.g., Ref.@34#, and also Sec
IV A !.

The set of matrices~47! is the set of Lorentz scalars~sca-
lars and pseudoscalars!. The decomposition contains th
four-vectors analogous toBm @Eq. ~41!#.

We used the described approach to consider the sys
with J51 (r meson, deuteron! and obtained a good descrip
tion of the experimental data@39#. Now let us proceed with
the approximate calculation of the form factor~46!.

C. Modified impulse approximation

The problem of the calculation of the form facto
G(s,Q2,s8) @Eq. ~46!# including exchange currents is a ve
difficult problem. We propose an approximation that is
kind of analog of relativistic impulse approximation. We pr
pose to omit the contribution of the two-particle currents
the form factorG(s,Q2,s8).

However, we will not change the covariant partBm of the
current matrix element in Eq.~41!, so that this covariant par
will contain the contribution of the two-particle currents a
so that the transformation properties of the matrix elem
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will not be changed. So we approximately change the ge
alized functionG(s,Q2,s8) in Eqs. ~41! and ~45! for the
generalized functiong0(s,Q2,s8) @Eqs. ~25! and ~29!#,
which describes, as we have shown before, the electrom
netic properties of the free two-particle system. Neverthele
the matrix element~33! and~41! as a whole will contain the
contributions of two-particle currents, although not the f
contribution but one that ensures its correct transforma
properties.

Let us note that our approximation does not contrad
general statements~see Ref.@4#! that state that to obtain a
correct description of electromagnetic current of compos
system that satisfy the Lorentz-covariance condition and
current conservation law, one has to take into account ma
particle currents. Thus, in our approximation the sca
equality ~46! transforms into an approximate scalar equal
that corresponds, from the physical point of view, to the re
tivistic impulse approximation. In the developed mathema
cal formalism we have not broken the Lorentz covariance
the current nor the current conservation law. Let us point
that to calculate the form factor we do not use a spe
current component as it is done in other mathematical
mulations of RHD~see, e.g., Ref.@10#!. Let us remark that
from the physical point of view, the form factorg0(s,Q2,s8)
contains the contributions of one-particle currents only@see
Eqs.~25!, ~28!, and~29!# and in this sense our approximatio
corresponds to the known impulse approximation. In orde
emphasize that our approximation differs from the usual
we will refer to it as the modified impulse approximatio
~MIA !. The form factor of the composite system in MIA ha
the form

Fc~Q2!5E dAsdAs8w~s!g0~s,Q2,s8!w~s8!. ~48!

We do not discuss in this paper the problem of goi
beyond the limits of MIA and of obtaining corrections t
g0(s,Q2,s8) in Eqs. ~45! and ~48!. This means that if con-
sidering, for example, nucleon systems, we do not take
account the meson current.

Let us consider now the fulfilling of the conditions~i!–
~vi! for the electromagnetic current. The conditions~i!–~iii !
are satisfied by construction. For example, the fulfilling of~i!
and ~iii ! is ensured by the correct transformation propert
of the four-vectors in Eqs.~25!, ~41!, and~43!. Condition~iv!
is satisfied immediately as the form factorg0(s,Q2,s8) in
Eq. ~25! and the form factorG(s,Q2,s8) in Eq. ~41! are
scalars in our simple model.2

The condition of cluster separability~v! needs a more
detailed consideration. At large distances~or if the interac-
tion is switched off! the contribution of two-particle current
has to go to zero:Gc(s,Q2,s8)→0 in Eq. ~45!. This means
that in the form~45! the form factorG(s,Q2,s8) has to trans-

2The currents that do not conserve the parity also can be con
ered in our formalism. In that case one can separate not only
scalar part of the current matrix element but the pseudoscalar
too. This case is considered elsewhere.
1-9
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A. F. KRUTOV AND V. E. TROITSKY PHYSICAL REVIEW C65 045501
form into g0(s,Q2,s8). Let us remark that the condition o
cluster separability is fulfilled in MIA, too, as in this ap
proximation the use ofg0(s,Q2,s8) instead ofG(s,Q2,s8) is
assumed from the very beginning. When the interaction
switched off the generalized functiong0(s,Q2,s8) for the
free two-particle system acts on a larger space of test fu
tions than Eq.~40!. As g0(s,Q2,s8) contains only the one
particle current contributions~28! the condition~v! is satis-
fied and the composite-system current becomes the su
the one-particle currents. The condition on the charge to
nonrenormalizable also is fulfilled directly in MIA becaus
the weak limit~32! does exist on test functions~40!. So, our
prescription for the construction of the current in MIA sat
fies all the conditions for the current operator.

Let us note that Eq.~48! for the composite-system form
factor is analogous to the equations obtained in the fra
work of the dispersion approach@33,41–43# ~see also Ref.
@44,45#! based on the analytic properties of the scatter
amplitudes, matrix elements, and form factors in the co
plex energy plane.

As the dispersion approach is rather correctly derived
the frame of QFT@46#, this fact can be considered as a po
sible link between QFT and RHD. The establishment of su
a link is one of the unsolved problems of RHD@4#.

Let us note that an immediate application of the appro
to quark systems is difficult to realize because of the fac
quark confinement. However, there are some investigat
based on similar ideas where the form factors of hadron
constituent-quark bound states are considered in the fram
the dispersion technique of the integral over compos
particle mass@45#.

D. MIA versus IA

Let us compare the approximation MIA with the we
known IA. To do this let us first calculate the form factor
IF RHD not using the canonical parametrization. In partic
lar, let us formulate the IA in terms of operators as it
formulated usually~not in terms of form factors!. Let us
decompose the matrix element~15! through the complete se
of states~6!:

^pcu j m~0!upc8&5E dpW 1dpW 2

2p102p20

dpW 18dpW 28

2p108 2p208
^pcupW 1 ;pW 2&

3^pW 1 ;pW 2u j mupW 18 ;pW 28&^pW 18 ;pW 28upc8&. ~49!

Here^pW 1 ;pW 2upc& is wave function of constituents in compo
ite system. If the current matrix element in Eq.~49! is taken
in the IA approximation~44! and contains one-particle cu
rents only, then Eq.~49! is self-contradictory@4#.

To write the form factor in terms of wave functions~10!
one has to perform the CG decomposition of the basis~6! in
terms of the basis~7! in the wave functions~49! and to use
the explicit form for CG coefficients~8! for the quantum
numbers of the system:

^pW 1 ;pW 2upc&5A2

p
^PW ,As,J,l ,S,mJupc&. ~50!
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The current matrix element in Eq.~49! has the form~21!.
The one-particle currents are expressed through the form
tors ~22!.

Equation~49! is an equality for two four-vectors. Taking
different components of this equality and exploiting thed
functions in integrals, one can calculate the form factor
the composite system. The result of the calculation of
form factor in this way is not unambiguous. In particular,
depends on the actual choice of the component of the cur
~49! to be used in the calculation. Moreover, the result d
pends on the coordinate frame chosen to perform the inte
tion in Eq. ~49!. This is the general feature of the IA in th
usual formulation of the IF RHD~see, e.g., Ref.@4#!.

Let us write the final result of the calculation of the for
factor from the equation for the null component of the cu
rent and perform the integration in the coordinate fra
where pW c850W ,pW c5(0,0,p). If now we write the integral in
terms of the invariant variabless,s8, the obtained form factor
has the form:

Fc~Q2!5
Mc

4

A2~2 Mc
21Q2!

4 Mc
21Q2 EA s

s8

3
dAsdAs8

A~s24 M2!~s824 M2!

3
~s1s81Q2!4Q2

@l~s,2Q2,s8!#3/2

1

~s s8!1/4

3
u~s,Q2,s8!

As8~s1Q2!
w~s!w~s8! f 1~Q2!. ~51!

Equation~51! differs from Eq.~48!, obtained with the use o
the two-particle free form factor. In the case of wave fun
tions satisfying the conditions~11! and~12!, the form factor
~51! satisfies the normalization:Fc(0)5ec . Let us note that
the form factor obtained in this way from the third curre
component in Eq.~49! does not satisfy this condition.

Let us compare IA and MIA results and note once ag
that in MIA we separate~by use of the scheme of canonic
parametrization! the covariant part of the current matrix ele
ment in Eq.~42! prior to performing any calculations. Thi
covariant part ensures the correct transformation prope
of the corresponding decompositions in terms of free-part
states. The difference between Eqs.~48! and ~51! is

DFc~Q2!5E dAsdAs8w~s!w~s8!g0~s,Q2,s8!

3@12R~s,Q2,s8!#, ~52!

R~s,Q2,s8!5
Mc

2

A2~2 Mc
21Q2!

4 Mc
21Q2

A s

s8

3
~s1s81Q2!2

~s s8!1/4

1

As8~s1Q2!
. ~53!
1-10
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The valueR(s,Q2,s8) presents an additional factor t
one-particle currents that is in reality a two-particle curre
contribution. This term ensures the Lorentz covariance of
electromagnetic current matrix element and the current c
servation law in Eq.~39!. Let us note that this additiona
term contains no dynamical information on the interaction
the test particle with two constituents simultaneously. It do
not depend, for example, on the interaction constants
such a process.

So, to summarize, we can write the following schema
equations:

~ IA !BreitÞ~ IA ! lab,

~MIA !Breit5~MIA ! lab.

It is well known that the standard IA depends strongly on
coordinate frame used for the calculation. The MIA resu
do not depend on it at all. So, the differences between IA
MIA results for different IA coordinate frames can be rath
significant.

Notice that IA and MIA coincide in the nonrelativisti
limit. As this takes place, the nonrelativistic limits of form
factors, which were obtained from the different current co
ponents, are identical. Hence the difference between the
and MIA is really connected with the breaking of relativist
covariance conditions. We give the quantitative compari
of the form factors obtained in the IA and MIA in the Se
IV, where the realistic calculation of the pion electroma
netic structure is given.

E. The nonrelativistic limit

The description of composite-system form factors
terms of distributions is not a specific feature of our relat
istic approach. A similar formalism is widely used in th
nonrelativistic theory of composite systems@47# in depth~al-
though not referring to the mathematics of distributions!. In
the nonrelativistic limit our approach gives the formalis
developed in Ref.@47#.

In the nonrelativistic limit the relativistic charge form fac
tor ~48! has the following form:

FNR~Q2!5E k2dk k8 2dk8u~k!g0NR~k,Q2,k8!u~k8!,

~54!

g0NR~k,Q2,k8!5
f 1~Q2!

k k8Q
u~k,Q2,k8!, ~55!

u~k,Q2,k8!5qS k82Uk2
Q

2U D2qS k82k2
Q

2 D .

Here g0NR(k,Q2,k8) is the free relativistic form factor ob
tained from Eq.~29! in the nonrelativistic limit.f 1(Q2) is the
charged-particle form factor. The obtained result coincid
with that derived in standard nonrelativistic calculatio
@47#.

Rigorously speaking, Eq.~54! has to be interpreted as
functional in the sense of distributions generated by the fu
04550
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tion g0NR(k,Q2,k8) and defined on test functionsu(k)u(k8).
The ordinary function~55! generates a regular generalize
function defined generally on the larger class of test fu
tions c(k,k8) in R2, providing the uniform convergence o
the integral. One needs the uniform convergence to take
its in the integrands.

Let us define the functional inR2 by the following regular
distribution @compare with Eqs.~30!–~31!#:

^g0NR~k,Q2,k8!,c~k,k8!&

5E dm~k,k8!g0NR~k,Q2,k8!c~k,k8!, ~56!

dm~k,k8!5u~k!u~k8!dm~k!dm~k8!, dm~k!5k2dk.

The functiong0NR(k,Q2,k8), which appears in Ref.@47#
quite formally, here has a definite physical meaning and
scribes the electromagnetic properties of a nonrelativi
free system of two spinless particles in theS state, one of a
particle having no charge@compare withg0(s,Q2,s8) in Eqs.
~25!, ~29!, and ~30!#. The statical limit
lim

Q2→0
g0NR(k,Q2,k8) giving the system charge exists on

in the weak sense as the limit of the functional~56!:

lim
Q2→0

^g0NR~k,Q2,k8!,c~k,k8!&

5^ecd„m~k8!2m~k!…,c~k,k8!&. ~57!

On the test functionsc(k,k8)5u(k)u(k8) @with u(k) the
normalized bound state wave function#, the functional~56!
defines the bound state form factor in the nonrelativistic
~54!. The weak limit~57! is equal to the system charge:

lim
Q2→0

^g0NR~k,Q2,k8!,c~k,k8!&5ecE
0

`

k2dk u2~k!5ec .

~58!

To go beyond the nonrelativistic IA one has to add so
terms tog0NR(k,Q2,k8). For example, such terms cause t
meson exchange currents in two-nucleon systems. So
standard nonrelativistic theory the dynamical treatment
exchange currents is performed in the same way as in
relativistic approach~45!.

To conclude, one can consider our approach to the IA
be a relativistic generalization of nonrelativistic IA, and o
equations for form factors in this approximation to be a re
tivistic generalization of the equations of Ref.@47#. Let us
remark that in more complicated systems~e.g., forr mesons
and deuterons!, our relativistic form factors also have corre
nonrelativistic limits that coincide with Ref.@47#.

IV. THE ELECTROWEAK STRUCTURE OF PIONS

Now we apply the method of previous sections to t
calculation of the electroweak structure of pions. There e
many experimental data on pions, so the effectiveness of
method can be checked by the comparison with the data~see,
e.g., Ref.@15# and references therein!.
1-11
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A. The electromagnetic form factor of pions

The pion is spinless, so the electromagnetic current ma
element has the form~15! with pc→pp ,Fc(Q

2)→Fp(Q2).
In the frame of the composite-quark model, the pion is c
sidered as the bound state ofu andd̄ quarks. We assume tha
quark masses are equal:mu5md5M .

To calculate in MIA the composite-system form fact
one needs to construct first the free two-particle form fac
~25!, ~29!, and ~48!. Contrary to the simple model of th
preceding section now we consider the system of t
charged particles with spins12 . This gives the following com-
plications. First, Eq.~21! for the current operator of the fre
system is now transformed to the form

j m
(0)~0!5 j 1m ^ I 2% j 2m ^ I 1 . ~59!

Here j (1,2)m is the electromagnetic current of particles a
I (1,2) is the unity operator in the one-particle state Hilb
spaces. Equation~59! can be rewritten in terms of matri
elements:

^pW 1 ,m1 ;pW 2 ,m2u j m
(0)~0!upW 18 ,m18 ;pW 28 ,m28&

5^pW 2 ,m2upW 28 ,m28&^pW 1 ,m1u j 1mupW 18 ,m18&1~1↔2!.

~60!

Second, the matrix element of one-particle current c
tains now, contrary to Eq.~22!, the magnetic form factors o
quarks as well as the charge ones. Now the parametriza
~the elementary-particle one following Ref.@4#! is of the
form:

^pW ,mu j m~0!upW 8,m8&5ūpW mgmupW 8m8F1~Q2!

2ūpW msmnqnupW 8m8F2~Q2!. ~61!

WhereupW m is the Dirac bispinor andgm the Dirac matrix,

smn5
1

2
~gmgn2gngm!, qn5~p2p8!n .

Using multipole parametrization we can write the on
particle current matrix element in terms of Sachs fo
factors:

GE~Q2!5F̃1~Q2!1
kQ2

4M2
F̃2~Q2!,

GM~Q2!5F̃1~Q2!1kF̃2~Q2!,

F1~Q2!5eF̃1~Q2!, F2~ t !5
k

2M
F̃2~Q2!. ~62!

HereGE,M are the Sachs electric and magnetic form facto
respectively,e is the particle charge, andk is the anomalous
magnetic moment.

It is convenient to use the canonical parametrization
matrix elements@32#:
04550
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^pW ,mu j m~0!upW 8,m8&5(
m9

^muD j~p,p8!um9&^m9u f 1~Q2!Km8

1 i f 2~Q2!Rmum8&,

Km8 5~p1p8!m , Rm5emnlrpnp8 lGr~p8!. ~63!

G(p) is four-vector of spin:

GW ~p!5M jW1
pW ~pW • jW !

p01M
, G0~p!5~pW • jW !.

The form factorsf 1(Q2) and f 2(Q2) are the electric and
magnetic form factors of particles. They are connected w
Sachs form factors@48#:

f 1~Q2!5
2M

A4M21Q2
GE~Q2!,

~64!

f 2~Q2!52
4

MA4M21Q2
GM~Q2!.

Third, now the CG coefficients are of more complicat
form. They are given by Eq.~8! with J5S5 l 50. Contrary
to the previous simple case, now the CG coefficients con
the Wigner rotation matrices.

Finally, the free two-particle form factor for the system
two particles with spin1

2 and quantum numbersJ5S5 l
50 is of the form~see also Ref.@19#!:

g0
qq̄~s,Q2,s8!5nc

~s1s81Q2!Q2

2A~s24M2!~s824M2!

3
u~s,Q2,s8!

@l~s,2Q2,s8!#3/2

1

A11Q2/4M2

3H ~s1s81Q2!@GE
u~Q2!1GE

d̄~Q2!#

3cos~v11v2!1
1

M
j~s,Q2,s8!~GM

u ~Q2!

1GM
d̄ ~Q2!!sin~v11v2!J . ~65!

Here

j~s,Q2,s8!5Ass8Q22M2l~s,2Q2,s8!,

nc is the number of quark colors, andv1 and v2 are the
Wigner rotation parameters:

v15arctan
j~s,Q2,s8!

M @~As1As8!21Q2#1Ass8~As1As8!
,

1-12
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v25arctan
a~s,s8!j~s,Q2,s8!

M ~s1s81Q2!a~s,s8!1Ass8~4M21Q2!
,

~66!

with a(s,s8)52M1As1As8, and GE,M
u,d̄ (Q2) are Sachs

form factors for quarks. Theu function in Eq. ~65! is the
same as that in Eq.~29!.

An interesting effect follows from Eq.~65!: due to the
relativistic Wigner spin rotation effect the pion charge for
factor contains the contribution of quark magnetic form fa
tors. The pion charge form factor can be calculated using
~48!, with Eq. ~65! for the free two-particle form factor:

Fp~Q2!5E dAsdAs8w~s!g0
qq̄~s,Q2,s8!w~s8!. ~67!

B. The lepton decay constant of pions

The lepton decay constantf p is defined by the electro
weak-current matrix element@15#:

^0u j m~0!upp&5 i f pppm

1

~2p!3/2
. ~68!

pp is the four-momentum of the meson. Let us decomp
the l.h.s. of Eq.~68! in the basis~7!. Using the explicit form
of the meson wave function~10! one can obtain for Eq.~68!

E Nc

NCG
dAs^0u j m~0!upW p ,As&w~s!5 i f pppm

1

~2p!3/2
.

~69!

As in Sec. II@Eq. ~41!# one can divide the integrand in Eq
~69! into two parts: the covariant part~smooth ordinary func-
tion! and the invariant part:

Nc

NCG
^0u j m~0!upW p ,As&5 iG~s!Bm~s!

1

~2p!3/2
. ~70!

The invariant form factorG(s) is a generalized function
In the same way as in calculating Eq.~46! of the preceding
section, we now obtain the lepton decay constant of pion
the form

E dAsG~s!w~s!5 f p . ~71!

In general, the form factorG(s) can be calculated in the
frame of the standard model for electroweak interactio
However, in this paper we limit ourselves to a four-fermi
interaction. We take forG(s) the form factor that param
etrizes the decay of free two-quark system:

^0u j m
(0)~0!uPW ,As&5 iG0~s!Pm

1

~2p!3/2
. ~72!

The explicit form~72! is written by analogy to Eq.~25!, not
taking into account the current conservation law. The fo
04550
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~72! is quite similar to Eq.~68! but instead of the constantf p

the form factor depending on invariant variables is writte
To calculateG0(s) let us decompose Eq.~72! in the one-
particle basis~6!. Now we obtain for Eq.~72!:

iG0~s!Pm

1

~2p!3/2
5 (

m1 ,m2 ,i c
E dpW 1

2p10

dpW 2

2p20

3^0u j m i c
(0) upW 1 ,m1 ;pW 2 ,m2&

3^pW 1 ,m1 ;pW 2 ,m2uPW ,As&. ~73!

Where i c51,2,3 and the sum overi c is the sum over the
colors. The CG coefficients are known@Eq. ~8!#. The current
matrix element in the basis~6! can be written in the standar
way in terms of the lepton decay current matrix eleme
@15#:

^0u j m
(0)upW 1 ,m1 ;pW 2 ,m2&

5
1

~2p!3
v̄~pW 2 ,m2!gm~11g5!u~pW 1 ,m1!. ~74!

We integrate in Eq.~73! in the coordinate frame withPW 50W .
Finally, we obtain

G0~s!5
nc

2A2pP0

~p01M !F12
k2

~p01M !2G , ~75!

p05Ak21M2.

Substituting Eq.~75! in Eq. ~71! we obtain the result,
which has the following form if written in invarian
variables:

f p5
2M nc

2A2p
E dAs

1

As
w~s!. ~76!

Let us notice that Eq.~76! coincides with that obtained in
the frame of light-front dynamics@15#. However, although
all forms of RHD are unitary equivalent@12#, nevertheless
after the physical approximations are made in more com
cated cases the results, e.g., for form factors, can be diffe
This is possibly due to the fact that the unitary operat
connecting different forms of RHD are interaction depend
@12# and so the RHD forms realize one and the same
proximation in different ways. Let us note that the nonre
tivistic limit of Eq. ~76! gives the standard form in terms o
coordinate space wave function at zero value.

C. The results of calculations

To calculate the electroweak structure of pions using E
~67!, ~65!, ~76!, and ~11! the following meson wave func
tions were utilized:

~1! A Gaussian or harmonic oscillator~HO! wave function

u~k!5NHOexp~2k2/2b2!. ~77!
1-13
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~2! A power-law ~PL! wave function

u~k!5NPL~k2/b211!2n, n52, 3. ~78!

~3! The wave function with linear confinement from Re
@49#:

u~r !5NTexp~2ar 3/22br !, a5
2

3
AM a,

b5
M

2
b, ~79!

wherea andb are parameters of linear and Coulomb parts
the potential, respectively.

In Ref. @19# in the calculation of pion electromagnet
structure we assumed the quarks to be pointlike. The res
of Ref. @19# can be considered as preliminary results. Ho
ever, one has to take into account the structure of constit
quarks@50#, in particular, the anomalous magnetic mome
As anomalous magnetic moments are connected with th
nite size of quark, one has to take into account the exp
form of quark form factors entering Eq.~65! and the pion
charge form factor~67!. As in Ref. @18#, let us use the fol-
lowing forms for quark form factors:

GE
q~Q2!5eqf ~Q2!,

~80!
GM

q ~Q2!5~eq1kq! f ~Q2!.

Here eq is the quark charge andkq the quark anomalous
magnetic moment~in natural units!. To obtain the explicit
form of the functionf (Q2) let us consider the asymptotics o
pion charge form factor asQ2→`,M→0.

To obtain the asymptotic behavior let us first make
asymptotic estimation of the integrals in Eq.~67! in the point
like quark approximation@ f (Q2)51,k50 in Eq. ~80!#.
Omitting the details of calculation~given in Ref. @51#! we
write the final result for the asymptotics in the form:

Fp~Q2!;Q22. ~81!

The asymptotics does not depend on the actual form of
wave function and coincides with that obtained in QCD. T
actual form we obtain, e.g., for Eq.~77! is

Fp~Q2!;32A2
@G~ 5

4 !#2

Ap

b2

Q2
. ~82!

It is worth to compare the form~82! with the detailed QCD
result @52#:

Fp~Q2!5
8pasf p

2

Q2
. ~83!

If as /p;0.1, then Eqs.~82! and~83! coincide atb;0.1. So
the asymptotics~81! is quite realistic.

In the case of non-point-like quarks we obtain anoth
asymptotics because the form factor depends upon the
mentum transfer. It is known that QCD gives logarithm
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corrections to relation~81!. To agree with this QCD-
corrected asymptotics we can, for example, choose the
lowing form for f (Q2):

f ~Q2!5
1

11 ln~11^r q
2&Q2/6!

. ~84!

Here^r q
2& is the MSR of the constituent quark, which can

considered as the model parameter. Let us fix it~as in Ref.
@18#! to be ^r q

2&.0.3/M2.
For the constituent quark mass in pions we use the va

that is usually used in the calculations in RHD:M
50.25 GeV. The quark anomalous magnetic moments
be taken from Ref.@50#: ku50.029,kd520.059.

We choose the parametersb in Eqs.~77! and~78! anda in
Eq. ~79! in such a way as to fit the pion MSR:̂r p

2 &
5(0.43260.016) fm2 @53#. We choose this way to fix the
model parameters because the pion MSR is defined by
form factor at small values ofQ2, that is, the range where
potential models work well.

The fit of the pion MSR gives the following parameters
the wave functions: in the model~77! b50.2784 GeV;
model ~78! at n52, b50.3394 GeV; model~78! at n53,
b50.5150 GeV; model~79! b5(4/3)as , as50.59 at the
light meson mass scale,a50.0567 GeV2. The results of the
calculation are presented on Figs. 1 and 2.

The square of the pion form factor at small values
momentum transfers for different models~77!–~79! is pre-
sented on Fig. 1. Results of calculation in the models~77!,
~78! at n53 and~79! coincide very closely.

The calculations of productQ2Fp(Q2) at high momen-
tum transfers for different models~77!–~79! are presented on
Fig. 2. The legend is following: 1, harmonic oscillator wav
function ~77!; 2, power-law wave function~78! at n52; 3,

FIG. 1. The square of the pion form factor at small values
momentum transfers for different models.
1-14
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power-law wave function~78! at n53 and wave function
from model with linear confinement~79! ~these curves coin
cide very closely!.

All the models for the interaction~77!, ~78!, and~79! give
a good description of the existing experimental data.3 The
dependence of the results on the actual model is much
pronounced that in the case of pointlike quarks@19#.

The lepton decay constants calculated following Eq.~76!
with different wave functions have the following values:f p

50.1210 GeV in the model~77!; f p50.1327 GeV in the
model ~78! with n52; f p50.1282 GeV in the model~78!
with n53; and f p50.1290 GeV in the model~79!. Let us
emphasize that we have used no fitting parameters to ca
late the lepton decay constant. Nevertheless, the obta
values are very close to the experimental value:f p expt
50.131760.0002 GeV@54#.

Now let us compare the numerical results for the p
form factor obtained in MIA~67! with that of the traditional
IA. Let us choose for the comparison, for example, the n
component of the current.

To obtain the pion form factor in IA we proceed in th
same way as while obtaining Eq.~51! of the preceding sec
tion. Now, however,

~1! the decomposition~15! of the IA matrix current ele-
ment over the state set~6! is realized following Eq.~60!,

~2! the parametrization of the one-particle matrix elem
is given by Eqs.~63! and ~64! @instead of Eq.~22!#,

~3! the CG coefficient~8! in Eq. ~50! is for pion quantum
numbers.

Acting in the same way as Eq.~51! was obtained and
using the null component of the current matrix element,
can write the pion form factor in IA in the following form:

3The JLab new results@55# are discussed in connection with ou
approach in Ref.@56#.

FIG. 2. Electromagnetic form factor,Q2Fp(Q2), at high mo-
mentum transfers.
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Fp~Q2!5
Mp

4

A2~2 Mp
2 1Q2!

4 Mp
2 1Q2

nc

A11Q2/4M2

3EA s

s8

dAsdAs8

A~s24 M2!~s824 M2!

3
~s1s81Q2!3Q2

@l~s,2Q2,s8!#3/2

1

~s s8!1/4

1

As8~s1Q2!

3w~s!w~s8!H ~s1s81Q2!@GE
u~Q2!

1GE
d̄~Q2!#cos~v11v2!1

1

M
j~s,Q2,s8!

3@GM
u ~Q2!1GM

d̄ ~Q2!#sin~v11v2!J . ~85!

HereMp5139.56860.001 MeV@54# is the mass of a pion
The normalization conditionFp(0)51 is satisfied for the
form factor ~85! if the wave functions~11! satisfy Eq.~13!.

To compare the numerical results given by Eqs.~67! and
~65! with that given by Eq.~85! let us calculate the pion form
factor using the wave function~77! with the parameters o
the calculations presented in Figs. 1 and 2. The results
shown in Fig. 3. The results obtained with the use of
parametrization~48! and~65! differ essentially from that ob-
tained without such a parametrization~85!. The form factor
calculated in our approach describes the existing experim
tal data adequately.

FIG. 3. Q2F(Q2) for MIA ~1! and for IA ~2!. Results of the
calculation with the wave function~77!.Parameters are the same
in Fig. 1.
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Let us emphasize once again that the form factor obtai
in MIA does not depend on the choice of coordinate fram
This is an important advantage of our relativistic MIA.

V. CONCLUSION

Let us summarize the results.
~1! A new approach to the electromagnetic properties

two-particle composite systems is developed. The appro
is based on IF RHD.

~2! The main feature of this approach is the new meth
of construction of the matrix element of the electroweak c
rent operator. The electroweak current matrix element sa
fies the relativistic covariance conditions and in the case
the electromagnetic current also satisfies the conserva
law automatically.

~3! The method of the construction of the current opera
matrix element consists of the extraction of the invaria
part—the reduced matrix element on the Lorentz gro
~form factor!—and the covariant part defining the transfo
mation properties of the current. The form factors contain
the dynamical information about transition. The properties
the system as well as the approximations used are formul
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in terms of form factors, which in general have to be cons
ered as generalized functions.

~4! The approach makes it possible to formulate relativ
tic impulse approximation@modified impulse approximation
~MIA !# in such a way that the Lorentz covariance of t
current is ensured. In the electromagnetic case the cur
conservation law is ensured, too.

~5! The results of the calculations are unambiguous: th
do not depend on the choice of the coordinate frame and
the choice of ‘‘good’’ components of the current as it tak
place in the standard form of light-front dynamics.

~6! The effectiveness of the approach is demonstrated
the calculation of the electroweak structure of the pion. O
approach gives good results for the pion electromagn
form factor in the whole range of momentum transfers av
able for experiments at present time.
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