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Relativistic instant-form approach to the structure of two-body composite systems
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An approach to the electroweak properties of two-particle composite systems is developed. The approach is
based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is
the method of construction of the matrix element of the electroweak current operator. The electroweak current
matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also
the conservation law automatically. The properties of the system as well as the approximations are formulated
in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in
such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current
conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in
the whole range of momentum transfers available for experiments at present time, as well as for the lepton
decay constant of pions.
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[. INTRODUCTION theoretic models and nonrelativistic quantum mechanical
models.

The construction of correct quantitative methods of calcu- Contrary to field theory, RHD deals with a finite number
lation for structure of composite particles is an important lineof degrees of freedom from the very beginning. This is cer-
of investigation in particle physics. In nonrelativistic dynam- tainly a kind of a model approach. The preservation of the
ics there exist different correct methods that use model oPoincarealgebra ensures the relativistic invariance. So, the
phenomenological interaction potentials. However, in thecovariance of the description in the frame of RHD is due to
case of high energy one needs to develop relativistic meththe existence of the unique unitary representation of the in-
ods. It is worth noting that now the experiments on accelerahomogeneous group SL() on the Hilbert space of com-
tors, in particular, JLab, are performed with such an accuracposite system states with a finite number of degrees of free-
that the treatment of traditionally “nonrelativistic” systems dom[7].

(e.g. the deutergrrequires one to take into account relativ-  The mathematics of RHD is similar to that of nonrelativ-
istic effects. Relativistic effects are important also in theistic quantum mechanics and permits one to assimilate the
treatment of composite systems of light quarks. However, theophisticated methods of phenomenological potentials and
relativistic treatment of hadron composite systems is a ratheran be generalized to describe three or more particles. The
complicated problem. Let us note that the use of the methodslea of this approach—RHD—was originated by Dirac. In
of the field theory in this case encounters serious difficultiesRef. [8] he considered different ways of describing the evo-
For example, it is well known that perturbative QCD cannotlution of classical relativistic systems—different forms of
be used in the case of quark bound staE=e, e.g., Refs. dynamics. Dirac defined three main forms of dynamics: point
[1,2]). (PP, instant(IF), and light—front(FF) dynamics. RHD is

In the present paper we will use the relativistic constituentbased on the simultaneous action of two fundamental prin-
model that describes the hadron properties at the quark levelples, relativistic invariance and the Hamiltonian principle,
in terms of degrees of freedom of constituent quarks. Theand presents the most adequate tool to treat the systems with
constituent quarks are considered as extended objects, tfiaite number of degrees of freedom.
internal characteristics of whigimean square radius, anoma-  Our aim is to construct a relativistic invariant approach to
lous magnetic moments, form factpiare parameters of the the electroweak structure of two-particle composite systems.
model. As a relativistic variant of the constituent model weThe main problem here is the construction of the current
choose the method of relativistic Hamiltonian dynamicsoperatorgd9-13]. It seems to us that RHD is the most ad-
(RHD) (see, e.g., Ref$3—6] and references thergin equate method for our purpose. The use of RHD enables one

The RHD method as a relativistic theory of compositeto separate the main degrees of freedom and thus to construct
systems is based on the direct realization of the Poincareonvenient models.
algebra on the set of dynamical observables on the Hilbert We use one of the forms of RHD, namely a version of the
space. The RHD theory of particles lies between local fieldF. Our approach has a number of features that distinguish it

from other forms of dynamics and other approaches in the

frames of IF.
*Electronic address: krutov@ssu.samara.ru (a) The electroweak current matrix element satisfies auto-
"Electronic address: troitsky@theory.sinp.msu.ru matically the relativistic covariance conditions and in the
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case of the electromagnetic current also the conservation laworresponding free-system current. This means that exchange
(b) We propose a modified impulse approximatidMA ). currents are neglected, or, in other words, that there is no
It is constructed in a relativistically invariant way. This three-particle forces in the interaction of a test particle with
means that our MIA does not depend on the choice of theonstituents. It is well known that the traditional IA breaks
coordinate frame, and this contrasts principally with thethe Lorentz covariance of the composite-system current and
“frame-dependent” impulse approximation usually used inthe conservation law for the electromagnetic curresge,

the instant form(IF) of dynamics: e.g., Ref[4] for details.
(c) Our approach provides the correct and natural nonrel- To satisfy the conservation law in the frame of the Bethe-
ativistic limit (“the correspondence principle” is fulfilled Salpeter equation and quasipotential equations, for example,

(d) For composite system@cluding the spin-1 cagehe it is necessary to go beyond IA: one has to add the so-called
approach guarantees the uniqueness of the solution for foriio-particle currents to the current operator. In the case of
factors and does not use such concepts as “good” and “badnucleon composite systems these currents are interpreted as
current components. meson exchange currentkl]. In the case of a deuteron this

It is worth noticing that all known approachfiscluding ~ means the simultaneous interaction of virtgatjuanta with
the perturbative quantum field theof@FT)] encounter dif-  Proton and neutron. However, in R¢B1] it is shown that
ficulties while constructing a composite-system current opihe current conservation law can be satisfied without such
erator satisfying Lorentz-covariance and conservation condiProcesses, although they contribute to the deuteron form fac-
tions[9-13. tor. It seems that at the present time there is an intention to

Similar difficulties arise in the frame of the RHD ap- formulate the IA with transformed conservation properties
proach, which is widely used in the theory of electroweakwithout dynamical contribution of exchange currents
properties of composite quark and nucleon system$13,25,30.

[6,10,13—27. At present time the FF dynamics is the most In the framework of the point form dynamics the current
developed and most used for composite systéhts13— operator was constructed in REB]. The current operator in
15,17,18. However there are some difficulties in the FF Ref. [6] is Lorentz covariant and the conservation law is
RHD approach when the electroweak properties of Compog‘ulfilled. The approach is based on ,the realization of the
ite systems are considered. In particular, it was shownVigner-Eckart theorem for the Poincaggoup. The main
[14,29 that the calculated electromagnetic form factors foridea is to extract from the current matrix element the relativ-
the systems with the total angular momentiim1 (the deu- istic invariant part—the reduced matrix element, i.e., the
teron, thep meson vary significantly with the rotation of the form factor—and to separate the covariant part. The form
coordinate frame. This ambiguity is caused by the breakindactors contain all the dynamical information and the cova-
of the so-called angle conditiqi 4,28, that is, by the break- riant part describes the relativistic transformation properties
ing of the rotation invariance of the theory. Some of theOf the matrix element.

difficulties of FF dynamics are discussed in REZ9]. A Our approach is a generalization of the meth@pfor the
possible way to solve the problem by adding some frem- ~ case of the instant form dynamics. However, the scenario of
physica) form factors to the electromagnetic current wasthe generalization of the Wigner-Eckart theorem is quite dif-
proposed earlie(see Ref[30] and references thergin ferent.

A different approach to the problem was proposed re- The IF of relativistic dynamics, although not widely used,
cently in Ref.[13], where a new method of construction of has some advantages. The calculations can be performed in a
electromagnetic current operators in the frame of FF dynamnatural straightforward way without special coordinates. The
ics was given. The method of Rdfl3] gives unambiguous IF method is particularly convenient for discussing the non-
deuteron form factors. However, as the authors of RS relativistic limit of relativistic results. This approach is obvi-
note themselves, their current operator and the one used fsly rotational invariant, so the IF approach is the most
Ref.[10] are different, since both of them are obtained fromsuitable for spin problems.
the free one, but in different reference frames, related by an We describe the dynamics of composite systéites con-
interaction dependent rotation. stituent interactiohin the frame of general RHD axiomatics.

Let us consider now the impulse approximation, which isHowever, our approach differs from the traditional RHD by
widely used for the description of composite systems. In thdhe way of construction of matrix elements of local opera-
IA a test particle interacts mainly with each component sepators. In particular, our method of describing the electromag-
rately, that is, the electromagnetic current of the composité@etic structure of composite systems permits the construction
system can be described in terms of one-particle currents. I@f current matrix elements satisfying the Lorentz-covariance

fact, the composite-system current is approximated by th€ondition and the current conservation law.
To construct the current operator in the frame of IF RHD

we use the general method of the relativistic invariant param-
Yitis known that correct impulse approximatiéi) realization in  eterization of matrix elements of local operators proposed as
the frame of traditional version of IF dynamics encounters difficul-10Ng ago as 1963 by Cheshkov and Shirokag].
ties: the standard 1A depends on the choice of the coordinate frame. The method of Ref[32] gives matrix elements of the
We show below that IA can be formulated in an invariant way, theoperators of arbitrary tensor dimensi@rorentz scalar, Lor-
composite system form factors being defined by the one-particl€ntz vector, Lorentz tenspin terms of a finite number of
currents alone. relativistic invariant functions: form factors. The form fac-
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tors contain all the dynamical information on the transitionsspinless particles in thg state of relative motion, one of the
defined by the operator. particles being uncharged. The electromagnetic form factor
In the review Ref.[4] two possible variants of such a of the system is derived. The standard conditions for the
representation of matrix elements in terms of form factorscurrent operator are discussed. The modified impulse ap-
are presented—the elementary-particle parametrization arfoximation(MIA) is proposed. The results of IA and MIA
the multipole parametrization. The variant of parametrizatior2r® compared. The nonrelativistic limit is considered. In Sec.
given in Ref.[32] is an alternative one. In Ref32] the IV the deve!oped fqrmahsm is used in the case of the system
authors propose the construction of matrix elements in a c2f tWo particles with spins 1/2. The pion electromagnetic
nonical basis so it can be called canonical parametrizatiofo'™ factor and the lepton decay constant are derived. The
This method was developed for the case of composite sydl'odel parameters are discussed and the comparison of the
tems in Refs[33,34. The composite-system form factors in results ywth f[he experimental data is given. The results of
this approach are generally the distributiofgeneralized ~calculations in 1A and MIA are compared and are shown to
functions: they are defined by continuous linear functionalsdiffer significantly. In Sec. V the conclusion is given.
on a space of test functions. Thus, for example, the current
matrix elements for composite systems are functionals, gen-  Il. RELATIVISTIC HAMILTONIAN DYNAMICS
erated by some Lorentz-covariant distributions, and the form

factors are functionals generated by regular Lorentz-invariant I_n th'é SV?/C“O“ s;)hme bagﬁ ((aquattlontsfof R';D areIEbrlefIy
generalized functions. We demonstrate these facts below, pgviewed. Ve use the so-calied instant-torm ynarnties.
n this form the kinematic subgroup contains the generators

Sec. Ill, using a simple model as an example. . ! :
It is worth noting that the statement that the form factorsOf the group of rotations and translations in the three-

of a composite system are generalized functions is not Soméi_lmens.lonal Euclidean spadinteraction independing gen-
thing exotic. This feature also appears in the standard none_rator$.
relativistic potential theorysee Sec. Ill [ ~ A

Our formalism also gives, in fact, the description of the J, P. )
covariance properties of the operators in terms of many-
particle as well as one-particle currents. However, the imporThe remaining generators are Hamiltoniafisteraction
tant feature of our formalism is the fact that form factors ordependent
reduced matrix elements describing the dynamics of transi-
tions contain in the IA only the contributions of one-particle
currents.

So, our approach to the construction of the current opera-
tor includes the following main points:

PO K. )

The additive inclusion of interaction into the mass square
operator(Bakamjian-Thomas proceduf85], see, e.g., Ref.

(1) We extract from the current matrix element of the [4] for detail9 presents one of the possible technical ways to
composite system the reduced matrix elemefotsn factor include interaction in the algebra of the Poincgreup:

containing the dynamical information on the process. Usu-

ally these form factors are generalized functions. no an o
(2) Along with form factors we extract from the matrix Mo—Mi=Mg+U. ()

element a part that defines the symmetry properties of the .

current: the transformation properties under Lorentz transforHere M is the operator of invariant mass for the free system

mation, discrete symmetries, conservation laws, etc. and M, that for the system with interaction. The interaction
(3) The physical approximations that are used to CaICUIa.t%perator U has to satisfy the following commutation
the current are formulated not in terms of operators but Nelations:

terms of form factors.

In this paper we present the main points of our approach. A - L
To make it transparent we consider here only simple systems [P,U]=[J,U]=[Vp,U]=0. 4
with zero total angular momenta, so that technical details do
not mask the essence of the method. We demonstrate tfighese constraint$4) ensure that the algebraic relations of
effectiveness of the approach by calculating the pion electhe Poincaregroup are fulfilled for an interacting system.
troweak properties. In this case the canonical parametrizatiohhe relationg4) mean that the interaction potential does not
is very simple and can be realized without difficulties. Thedepend on the total momentum of the system nor on the
case of more complicated systems requires rather sophisfprojection of the total angular momentum. This fact is well
cated mathematics for canonical parametrization of local opestablished for a class of potentials, for example, for sepa-
erator matrix elements and will be considered elsewhere. rable potential$36]. Nevertheless, conditio{8) and(4) can

The paper is organized as follows. In Sect. Il we remindbe considered as the model conditions. There exists another
the reader briefly of the basic statements of RHD, especiallppproact 37] in which a potential depends on the total mo-
of IF RHD. The IF wave functions of composite systems arementum, but that approach is out of the scope of this paper.
defined. In Sec. Ill our approach to relativistic theory of two-  In RHD the wave function of the system of interacting
particle composite systems and their electroweak propertigsarticles is the eigenfunction of a complete set of commuting
is presented. A simple model is considered in detail: twooperators. In IF this set is
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M2, 32, 3, B. (5) (P1.My1;p2.My|P,\s,3,1,8,m;)

) = \J2s[\(5,M?,M?)]" 2P, 5(P—p1—p,)
J? is the operator of the square of the total angular momen-
tum. In IF the operatord?,J;,P coincide with those for the x >, (my|DY%(p;P)|my)(my|DYA(p,P)[my,)

free system. So, in syste(B) only the operatol\A/Il2 depends MM
on the interaction. 11~ ~
To find the eigenfunctions for the syst&&) one has first X 2 (33MMy|SM) Y m (9,@)(SImym | Jmy).
to construct the adequate basis in the state space of compos- mims
ite system. In the case of the two-particle systdor ex-  Here \(a,b,c)=a2+b2+c?—2(ab+bc+ac), Yim is @

ample, the quark-antiquark systeqa) the Hilbert space in gpnerical harmonicy and ¢ are the spherical angles of the
RHD is the direct product of two one-particle Hilbert spaces: S s o : 117~ ~
vector p=(p;—p,)/2 in the c.m., (Smy33m;m,) and

Heg=Hq®Hyg . -
qg\s aqbasi(; inHqq one can choose the following set of {J mJ|~SImSm,> are the CG coefficients for the group &
matrix to be used for correct relativistic invariant spin addi-
- - - - tion.
[P1,My;p2,M2)=|pimy)®[pimy), It is on the vectorg7) and (8) that the Poincargroup
representation is realized in the vector state space of two free
5.mp' M’y =2p08(p—p’) S 6 pgrtlcles. The vector in representatlo_n is determined by the
{p.m[p’m")=2pod(P=P") omm © eigenvalues of the complete commuting set of operators:
Herep, andp, are three-momenta of particles, andm, M2=P2,323;. (9)

are spin projections on the axis po=\p?+M?2, andM is
the constituent mass.

One can choose another basis where the motion of thaf degeneracy. )
two-particle center of mass is separated and where three op- As in the basig7) the operatoréz,jg,f’ in system(5) are
erators of the se5) are diagonal: diagonal, one needs to diagonalize only the oper&tdrin

system(5) in order to obtain the system wave function. The
|I5,\/§,J,I ,S,my), eigenvalue problem for the operaﬂl@h2 in the basiq7) has

the form of nonrelativistic Schabinger equation(see, e.g.,
Ref. [4]).

The corresponding composite-particle wave function has
the form

The parameterS and| play the role of invariant parameters

(P,\s5,3,1,Smy| P’ ,\/s",3"1",S",my ) =Ncgd®(P

—P")8(\s= ") 833 81+ Bs3 Omm,
(P'\Js',3',1",8",m}|pc)
(2Pg)? 1

Neo= s’ <~ SVs—AM?, (7) =Ncd(P' = Pe) 833 Smymi @115, (K), (10
Here P,=(p1+pP2),, Pizs, s is the invariant mass of Nc= ,/zpCO Nﬁf
the two-particle systent,is the orbital angular momentum in 4k

the center-of-mass framg.m), $?=(S,+S,)2=5(S+1),

S is the total spin in the c.m., and is the total angular [Pc) is an eigenvector of the séB); J(J+1) andm, are the

momentum with the projectiom, . eigenvalues o” andJ;, respectively Egs. (5) and(9)].

The basig(7) is connected with the basi) through the The two-particle wave function of relative motion for _
Clebsh-Gordar{CG) decomposition for the Poincaggoup equal masses and total angular momentum and total spin
(see, e.g., Ref34]): fixed is

N ¢is(k(s)=Vsu(k)k, (11)
2 dp; dp; - -
P.Vs,d.1,8,my)= > 20, 2—|p1,m1,p2,m2> and the normalization condition has the form
mym, P10 2P20
X(P1,My;P2,My| P, \5,3,1,S,my). > f u?(k)k2dk=1. (12)
[
®)

Let us note that for composite quark systems one uses
Here sometimes instead of E¢L2) the following one:
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5 ) factor F¢(Q?). So, the form factor can be obtained from
n°2| J ui(k)k“dk=1. (13)  experiment and it is interesting to calculate it in a theoretical
approach.

In this section we calculate the form factor of our simple
composite system using the version of RHD IF based on the
approach of the Sec. Il. Now let us list the conditions for the
operator of the conserved electromagnetic current to be ful-
filled in relativistic casgsee, e.g., Ref12]):

(i) Lorentz covariance

Here n; is the number of colors. The wave functighl)
coincides with that obtained by “minimal relativization” in
Ref.[38]. The normalization factors in Eq1l) in this case
correspond to the relativization obtained by the transforma
tion to relativistic density of states

k2dk U~ HA)J*x)U(A)=A*]"(A2x). (16)

k2dk— ———— (14)
Here A is the Lorentz-transformation matrix, arh]ﬂ(A) is

2J(KZ+M?)’
The formalism of this section is used in the next one tothe operator of the unitary representation of the Lorentz

present the method of calculation of electroweak propertieQrOl.J_p'I . q lati
of composite systems. Particularly, the method of construc- (i) Invariance under translation

tion of electroweak current operators is described. A1 e N N
U (a@)j*“x)U(a)=j*(x—a). 17

. THE NEW RELATIVISTIC INSTANT-FORM
APPROACH TO THE ELECTROWEAK STRUCTURE
OF TWO-BODY COMPOSITE SYSTEMS

HereU(a) is the operator of the unitary representation of the
translation group.
(iii) Current conservation law

In this section we present our approach to electroweak ..
properties of relativistic two-particle systems. To demon- [P,j"(0)]=0. (18)
strate how one describes the electromagnetic properties of R
composite systems in our version of the RHD instant formin terms of matrix element§j*(0)) the conservation law
we first use the following simple model. We consider thecan be written in the form
system of two spinless particles in tfg&state of relative R
motion, one particle having no charge. Let us note that a q,(]*(0))=0. (19
similar model was used in Ref4] where the authors gave
the description of constituent interaction in the IF of RHD Hereq,, is four-vector of the momentum transfer.
and obtained the mass spectrum. The application of our (iv) Current-operator transformations under space-time
method in general case follows the scheme of this sectiorfeflections
The case of ther meson is investigated in Sec. IV and the R .
S=1casein Refl39l. e, J (0, x0)0p = (00, = %), = J(x%, = X)),
Electromagnetic properties of the system are determined
by the current operator matrix element. This matrix element ~n Y
is connected with the charge form facfeg(Q?) as follows: Url“()Ur"=1#(=X). (20

In Eq. (20) Up is the unitary operator for the representation

of space reflections arldy, is the antiunitary operator of the
h ' and ¢ ta of th it " representation of space-time reflectidts PT.
wherep, andp, are four-momenta of the composite system (v) Cluster separability conditionlf the interaction is

YA iRt 1 2_ 2 _ N2 __ 2
in initial and final statesQ“= —t,q"=(p.—pc)“=t, andq switched off, then the current operator becomes equal to the
is the momentum-transfer squared. The fdi8) is defined  gym of the operators of one-particle currents.

by the Lorentz covariance and by the conservation law only (yj) The charge is not renormalized by the interaction
and does not depend on the model for the internal structurgne glectric charge of the system with interaction is equal to
of the system. the sum of the constituent electric charges.

~ Equation(15) presents the simplest example of the extrac- |, this paper the explicit equations for the form factors are
tion of a reduced matrix element, that is, the simplest realyptained taking into account all the listed conditions.

ization of the Wigner-Eckart theorem on the Poincgrreup.
The four-vector p.+p.) .. describes symmetry and transfor-
mation properties of the matrix element. The reduced matrix
element(the form factoy contains all the dynamical informa- ~ Let us consider first the simple two-particle system de-
tion on the process described by the current. The representacribed in the beginning of Sec. Ill. The electromagnetic cur-
tion of a matrix element in terms of form factors often is rentji?)(O) of the two-particle free system can be calculated
referred to as the parametrization of the matrix element. Thén the representation given by the ba& or in the repre-
scattering cross section for elastic scattering of electrons by sentation given by the bas(g). In the first case the operator

composite system can be expressed in terms of charge forhas the formj L°)=j1ﬂ®lz. Herej,, is the electromagnetic

(Peli u(0)]Pe) = (Pet Pe) uF (@), (19

A. Electromagnetic properties of the system of free particles
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current of the charged particle ahgis the unity operator in  description of the system in terms of matrix elements to that
the Hilbert space of states of the uncharged particle: in terms of Lorentz-invariant form factors.
oL o oL . One can see that Eq&1) and (25) describe electromag-
(p1;P2l2(0)|p1 ;P2 =(PalP2){(P1li1.(0)|P1). (21)  netic properties in terms of only one form factor. Both of
these descriptions are, certainly, equivalent from the physical
The matrix element of the one spinless particle current in th¢yoint of view. Let us consider the difference between these
free case contains only one form factor—the charge formjescriptions. As we will show below by direct calculation the

factor of the charged particli (Q?): free two-particle form factogy(s,Q?,s’) is not an ordinary
_ . function but has to be considered in the sense of distributions
(P1lj1,(0)[p1)=(p1+ pi)Mfl(Qz). (220 in variabless,s’, generated by a locally integrable function.

S0, go(s,Q?%,s") is a regular generalized function. All the
So, the electromagnetic properti€kb) of the system of properties ofyy(s,Q?,s’) have to be considered as the prop-
two free particles are defined by the form facta(Q?), erties of a functional given by the integral over the variables
containing all the dynamical information on elastic processes, s’ of the functiongy(s,Q?,s’) multiplied by a test func-
described by the matrix elemef@1) [4]. Particularly, the tion. As test functions it is sufficient to take a large class of
charge of the system is defined by the value of this formsmooth functions that give the uniform convergence of the

factor atQ?—0: integral. In particular, the limi€23) giving the total charge of
) 5 the system through the two-particle form factor is now the
ngmo f1(Q%)=f1(0)=ec. (23 weak limit:

e. is the system charge.

Now let us write the electromagnetic-current matrix ele- lim (go(s,Q%s"),¢(s,s")). (27)
ment for the two-particle free system in the ba&lswhere Q*~0
the center-of-mass motion is separated:

- , .= Here ¢(s,s') is a function from the space of test functions.
<P"/g’|JELO)(O)|P ’\/S_>' (24 The precise definition of the functional will be given below.
At the first glance it seems that the description of the
two-particle free system in terms of the form factor
go(s,Q?,s") is too complicated. However, so is the reality, as
we will see later in the Sec. Il E. In fact, this kind of de-
scription is used implicitly for a long time in nonrelativistic
theory of composite systems, without calling things by their
proper names. It is this kind of description that makes it
possible to construct the electromagnetic current operator
- - with correct transformation properties for interacting sys-
(P\SO0)|F" Ty =A,(5,.Q%8) (VSllgo(@INT)  toms, ProP v
_ 2 o 2 o The locally integrable functiogy(s,Q?,s’) can be easily
Au(8,Q78)00(s,Q7%s"). (29 obtained by use of CG decompositi¢8) for the Poincare
It is easy to understand the motivation for the parametrizad"oup. Using Eq(8) we obtain for Eq(25):
tion (25 for our simple system. The four-vectdx, de-
scribes the transformation properties of the matrix element

Here the variables which take zero values are omittkd:
=S=|=0. One can consider the matrix elemé@t) as a
matrix element of an irreducible tensor operator on the Poin
caregroup and one can use the Wigner-Eckart theorem, i.e
the canonical parametrizati¢82—34 giving a technical re-
alization of this theorem. Thus, one can write the matrix
element(24) in the form

and the invariant functiogy(s,Q2s’) contains the dynami- (P.sj(0)|P",s")

cal information on the process. We will refergg(s,Q?,s’) . R R .

as to free two-particle form factor. For more complicated _ ( dp. dp, dpy dp; . NS
systems the parametrization corresponding to the Wigner- _f 2P102P202 P10 2 péo<P’ >/Puip2)

Eckart theorem for the Poincaggoup can be performed us-
ing a special mathematical techniques as described in the X(p1:P2li O0)|ps:pa)(PL sl P ST). (28
papers 32,34,39. .

So AM(s,Qz,s’) is defined by the current transformation
propertiegthe Lorentz covariance and the conservationfaw 4 cgjculate the free two-particle form factor one has to use
Egs.(21), (22), and(25) and the explicit form of CG coeffi-
cients(8) for quantum numbers of the system. As the par-
ticles of the system under consideration are spinless, now Eq.
(8) does not contai functions.

Thus, in the basi€?) the electromagnetic properties of the It iS convenient to integrate in E¢28) using the coordi-
free two-particle system are defined by the free two-particlsate frame withP’=0,P=(0,0,P). As the result we obtain
form factorge(s,Q?,s'). So, in both representatiofidefined  the following relativistic invariant form for the function
by the basig6) as well as by the basig)] we pass from the gq(s,Q?,s'):

1
A#=§[(s—s’ +Q%)P,+(s'=s+Q)P,]. (26)
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(s+s' +Q2)2Q2 B. Electromagrletlc strlucture gf the system
go(s,Q%,8") = of two interacting particles
2 2 . .
2‘/(5_4M )(s"—4M") Now let us consider the electromagnetic structure of our

simple model(15) in the case of interacting particles. As we
£,(Q?) (29) have mentioned in Sec. Il when constructing the badsgs
' and(7) in the frame of RHD the state vectfy.) belongs to
the direct product of two one-particle spaces. We can write

ere 0(5,0" ) 055 o), and st sep 1 SeCOMBoAon e vectr | 25 ~0 i he
function. The result, naturally, does not depend on the choice ' '

9(s,Q%s)
X
[)\(S,—QZ,S’)]3/2

of the coordinate frame: dPdp’
| S dVs VS (pP B (PASlL0)]F)
1 CG'NcG
S ,=2M?+ —— (2M?+ Q?)(s—2M? > , ,
1.2 o2 ZMTFQO(sm2MY) X (B’ S |pLy= (Pet L), Fo( Q2. (33

Here (P’,\s'|p.) is the wave function in the sense of the
instant form of RHD(10).
Using Eq.(10) we obtain for Eq.(33):

Iﬁ\/QZ(Q2+4M2)s(S—4M2).

The function$1,2(s,Q2) give the kinematically available re- NN
gion in the plane ¢,s’) (see Ref[33)). cVe 7 N2 . > 7
One can see that the free two-particle form fad®®) f Nco éGd\/Ed\/s—qa(s)cp(s )<p°"/§““(o)|p°’\/s—>
go(s,Q?,s') has in fact to be interpreted in terms of the
distributions: The ordinary limit a®?— 0 is zero because of =(PetPe) uFe(Q%). (34)
the cuttingd functions and the static limit exists only as the
weak limit (27). We have omitted in the wave functighl) the variables with
Let us calculate this limit. Let us define the functional zero valuesJd=S=1=0.
giving regular generalized function as a functionalfif as Let us discuss the possibility of using the Wigner-Eckart
follows: theorem(or the canonical parametrizatipim the case of the
matrix element(p.,\s|j,(0)|ps,\s') in Eqg. (34). In the
s b , » , previous cases the state vectors and the operators entering
(9o(s.Q%8"), ¢(s,s )>_J du(s,s")go(s,Q%8") h(s,s"). matrix elements transformed following one and the same
(30 representation of the nonuniform group SIG2,[7]. Let us
perform the Lorentz transformation of the current operator:

Here R R _
U~H(A)j“(0)U(A)=]*(0). (39
du(s,s’)=16%ss 6(s—4 M2)o(s’' =4 M?)du(s)du(s’), We obtain
dM(s):%k dys. (31 (p[1“(0)[p"y=(p|0~1(A)j*(0)T(A)[p")
=(Aplj*(0)[Ap"). (36)

The 6 functions in these formula give the physical region of
possible variations of the invariant mass squares in the initia
and final states explicitly. The measu(&l) is due to the
relativistic density of state€ll) and(14). ¢(s,s’) is a func-
tion from the test function space. So, for example, the limit€t
of go(s,Q?,s") asQ?—0 (the static limi} has the meaning
only as the weak limifcompare with Eq(23)]:

his means that the transformation properties of the current
our-vector(16) can be described using four-momenta of the
initial and final states, i.e., one can use the canonical param-
ization.
In the matrix element in the integrand of E84) the state
vectors and the operator transform following the different
representations of the group SL(J, The current operator
) , describes the transitions in the system of two interacting par-
CJ%TO<90’¢>:<E5(“(S )= u(9), ). (32 ticles and transforms following the representation with the
generators of Lorentz boosts depending on the interaction
It is this weak limit that gives the electric charge of the free(5). The state vectors belong to the ba&is and physically
two-particle system. If the test functions are normalized todescribe the system of two free particles and so transform
the relativistic density of states, then the right-hand siddollowing a representation with generators that do not de-
(rh.s) of the Eq.(32) is equal to the total charge of the pend on the interactiof®). So, if one considers the matrix
system. element(p.,\s|j ,(0)|ps,Vs) (that is, the interaction cur-
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rent between free stateper se, not in the context of the 3B JsB. VS )=B (s.025)G 2 o 41
decompositior{34), one cannot use the Wigner-Eckart theo- "(pc'\/_’ e \S) w($Q%8)G(5,Q%s). (4D
rem. The covariant part in Eq41) [as well as in Eq(25)], the

However, one must consider this matrix element as a genyector B (s,Q2,s'), is supposed to be an ordinary smooth
eralized _functlon, that is, as havmg_mee_mlng only as the '”Tunctionﬂand the invariant paG(s,Q2,s') is generalized
tegrand in Eq(34). Let us show that in this case one can US€fnction. In fact,G(s,Q2,s') is the reduced matrix element

the Wigner-Eckart theorem. ) - i ~containing the information on the process. This kind of rep-
The set of the free two-particle staff% \'s) is complete:  esentation of a Lorentz-covariant generalized function as a

dp product of a Lorentz-covariant ordinary smooth function and
i:f_dfs“s,@(,s,@_ (37) @ Lorentz-invariant generalized function was described in
Nce Ref. [40].
Using Egs.(10) and (37) we obtain forrl:rsing Eq.(41) we can rewrite Eq(39) in the following
NoN¢
dysdys’ o(k)e(k’ , , , ,
f NeaNGe VsdVS" e ¢(K) f du(s,s)#(s,5')B,(5,Q%5)G(5,Q%s)
X (P, VS| UH(A)] . (0)U(A)pg 5" =(pe+ Pe) uFl ¥1(Q7). (42)
=(p] U~ M)Tj,(OTU(A)|pL) To obtain the vectoB,, let us require Eq(42) to be covari-
R R ant in the sense of distributions, that is, to be valid for any
=(A pC|IjM(0)I [Ape) test functiony(s,s’) in any fixed frame. The variation of the
test function in the functionald2) means in fact, following
NcN¢ - , Eq. (40), the variation of the wave function of the internal
ZJ —d\sdys e(k) (k') motion. Under such a variation the vector in the r.h.s. of Eq.

celNce (42) is unchanged as it is constructed with four-vectors de-

X(APe, \/§|ju(0)|/\5é NS'). (38)  scribing the motion of the system as a whole, independent of
the internal constituent motion. As to the form factor in the

So, we have an analog of E(B6) in the sense of distribu- r.h.s. it varies under the test function variation. So, under a
tions and we can use the Wigner-Eckart theorem in the invariation of the test function the r.h.s. of E42) remains to
tergrand. One can speak about the Wigner-Eckart theorem ife collinear to the vector(+ p¢), . At the same time, un-
weak sense. Now the problem of canonical parametrizatioger arbitrary variation of the test function the vector in the
of the matrix element34) can be solved if one considers the | h.s. in general changes the direction. So, for the validity of
equality (34) as the equality of two functionals. the equality(42) with arbitrary test function it is sufficient to

Using Egs.(11) and (31) we can rewrite Eq(34) in the  require that the following equation
form of the functional inR?:

BM(S,QZ,S’):(DC+ p(,:),u (43)
f du(s.s )u(k(s))JM(pc,\/g; Pe ,\/s—)u(k(s ) holds. This choice of the vectd,, in Eq. (43) ensures that
_ , 2 the L.h.s. of Eq(39) satisfies the condition of Lorentz cova-
=(PetPc)uFe(QY), riance for the current as well as the condition of current
NN conservation.
e g N___ ¢c%¢c /> CR 7 Let us discuss the physical meaning of the representations
J ) l ) - 1 l . . n . .
w(Pe \/5 Pe \/S_) NCGN’CG<p° \/§|J“|p° \/S_> (41) and(43) for the matrix element. As this representation is

(39 explicitly Lorentz covariant and also satisfies the current
) ] ) - conservation law, then it means that the current operator for
The I.h.s. in Eq(39) contains a functional it~ generated  he composite system contains the contribution not only of

by the Lorentz-covariant functiofcurrent matrix elemeint one-particle currents but of two-particle currents, tsee,
Let us denote e.g., Ref[4]):

P(s,s")=u(k(s))u(k'(s")). (40)
j=2 00+ > jkm, (44)

The functional in the L.h.s. of Eq39) is given on the set of X Eh

test functiongy(s,s’) through an integral ilR? and defines a

Lorentz-covariant(regula) generalized function with the Here the first term is the sum of one-particle currents and the
values in the Minkowski spadeee, e.g., Ref40]). HereQ?  second of two-particle currents. In the case of our simple
is a parameter. The test-function space car(ibegeneral  model each sum in E¢44) contains only one term. It is well
larger than Eq(40). However, the uniconvergence of Eq. known that if one approximateg(x)~3,j®(x), then the

(39) has to be guaranteed. current operator in IF dynamics does not satisfy the condi-
Let us write the matrix element in the form analogous totion of Lorentz covariance and the conservation [dlv So,
Eqg. (25): from the physical point of view, the covariant part of the
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current matrix elemen(43), which defines the transforma- will not be changed. So we approximately change the gener-
tion properties of the current in E39) is given by Eq.(44) alized functionG(s,Q?,s’) in Egs. (41) and (45) for the
and contains the contributions of one- and two-particle curgeneralized functiongy(s,Q?s’) [Egs. (25 and (29)],
rents. which describes, as we have shown before, the electromag-
The invariant part of the decompositigdl) is the form  netic properties of the free two-particle system. Nevertheless,
factor or the reduced matrix eleme®{s,Q? s’) and con- the matrix elemen33) and(41) as a whole will contain the
tains the information on the dynamics of the scattering of testontributions of two-particle currents, although not the full
particle by each of the constituenfthe first term in Eq. contribution but one that ensures its correct transformation
(44)], i.e., by the free two-particle system, as well as by twoproperties.
constituent simultaneouslfthe second terjn So, the form Let us note that our approximation does not contradict
factor contains the contribution of the free system form fac-general statementsee Ref[4]) that state that to obtain a
tor (29 and the contribution of some exchange currentscorrect description of electromagnetic current of composite

analogous to meson currents in nucleon systgdts system that satisfy the Lorentz-covariance condition and the
) 5 5 current conservation law, one has to take into account many-
G(s,Q%8")=0o(s,Q%,s") + G(s,Q%,8'). (45  particle currents. Thus, in our approximation the scalar

_ _ o equality (46) transforms into an approximate scalar equality
Here G, is the reduced matrix element containing the con-yhat corresponds, from the physical point of view, to the rela-

tribution (44) of two-particle currents. . tivistic impulse approximation. In the developed mathemati-
Using Eqgs.(11), (31), (40), (43) one can obtain from Eq. 3| formalism we have not broken the Lorentz covariance of
(42) the scalar equation of the following form: the current nor the current conservation law. Let us point out

that to calculate the form factor we do not use a special
d\/sdys o(s)G(s,Q2,s" ) e(s')=F.(Q?). (46)  current component as it is done in other mathematical for-
f ¢ mulations of RHD(see, e.g., Ref.10]). Let us remark that
. from the physical point of view, the form factgg(s,Q2,s’)
The representatioi46) for the charge form factor of the contains the contributions of one-patrticle currents diske

system is quite general. E Lo v
. . .EQs.(25), (28), and(29)] and in this sense our approximation
Let us note that one can use the described formalism Ir<1:|orresponds to the known impulse approximation. In order to

the general case of composite systems W'.th nonzero .tOt%mphasize that our approximation differs from the usual IA
angular momentund (the detailed consideration is given in we will refer to it as the modified impulse approximation

Ref. [39)]). In this case the current matrix element in the . .
decomposition like Eq(34) is a matrix with matrix indices 'Er':/g'?g}r:he form factor of the composite system in MIA has

being the total angular momentum projectianf andm; in
the initial and final states. We decompose this matrix element 5 , ,
in the set of the linear independent matrices: Fe(Q )Zf dVsdys' o(s)go(s,Q?s")e(s').  (48)

J ! ! mn —

B(Pe.pollLu(po)pel, n=01,.... 2, “n We do not discuss in this paper the problem of going
HereT",(p;) is the spin four-vector defined with the use of beyond the limits of MIA and of obtaining corrections to
the Pauli-Lubanski vectdisee, e.g., Ref34], and also Sec. 90(S,Q%,s") in Egs. (45) and (48). This means that if con-
IVA). sidering, for example, nucleon systems, we do not take into

The set of matrice&47) is the set of Lorentz scalatsca- ~ account the meson current. o
lars and pseudoscalarsThe decomposition contains the Let us consider now the fulfilling of the conditioris—
four-vectors analogous 8, [Eq. (41)]. (vi) for the electromagnetic current. The conditidiis-iii )
with J=1 (p meson, deuterdrand obtained a good descrip- @nd (iii) is ensured by the correct transformation properties
tion of the experimental daf89]. Now let us proceed with ~Of the four-vectors in Eq425), (41), and(43). Condition(iv)
the approximate calculation of the form facid6). is satisfied immediately as the form factgs(s,Q",s’) in
Eq. (25 and the form factorG(s,Q?,s’) in Eq. (41) are
scalars in our simple mod@l.

The condition of cluster separabilitfy) needs a more

The problem of the calculation of the form factor detailed consideration. At large distandes if the interac-
G(s,Q?,s’) [Eq. (46)] including exchange currents is a very tion is switched off the contribution of two-particle currents
difficult problem. We propose an approximation that is ahas to go to zeroG.(s,Q?s')—0 in Eq. (45). This means
kind of analog of relativistic impulse approximation. We pro- that in the form(45) the form factorG(s,Q?,s’) has to trans-
pose to omit the contribution of the two-particle currents to
the form factorG(s,Q?,s’). —_—

However, we will not change the covariant pBrf of the 2The currents that do not conserve the parity also can be consid-
current matrix element in E@¢41), so that this covariant part ered in our formalism. In that case one can separate not only the
will contain the contribution of the two-particle currents and scalar part of the current matrix element but the pseudoscalar part,
so that the transformation properties of the matrix elementoo. This case is considered elsewhere.

C. Modified impulse approximation
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form into go(s,Q?,s’). Let us remark that the condition of The current matrix element in E¢49) has the form(21).
cluster separability is fulfilled in MIA, too, as in this ap- The one-particle currents are expressed through the form fac-
proximation the use afy(s,Q?,s’) instead 0fG(s,Q?s') is  tors(22).
assumed from the very beginning. When the interaction is Equation(49) is an equality for two four-vectors. Taking
switched off the generalized functiogy(s,Q?,s’) for the  different components of this equality and exploiting the
free two-particle system acts on a larger space of test fundunctions in integrals, one can calculate the form factor of
tions than Eq(40). As go(s,Q?,s’) contains only the one- the composite system. The result of the calculation of the
particle current contribution&8) the condition(v) is satis-  form factor in this way is not unambiguous. In particular, it
fied and the composite-system current becomes the sum depends on the actual choice of the component of the current
the one-particle currents. The condition on the charge to bé&9) to be used in the calculation. Moreover, the result de-
nonrenormalizable also is fulfilled directly in MIA because pends on the coordinate frame chosen to perform the integra-
the weak limit(32) does exist on test functiontd0). So, our  tion in Eq.(49). This is the general feature of the IA in the
prescription for the construction of the current in MIA satis- usual formulation of the IF RHDsee, e.g., Ref4)).
fies all the conditions for the current operator. Let us write the final result of the calculation of the form
Let us note that Eq(48) for the composite-system form factor from the equation for the null component of the cur-
factor is analogous to the equations obtained in the framerent and perform the integration in the coordinate frame

work of the dispersion approadi33,41-43 (see also Ref. where p.=0,p.=(0,0p). If now we write the integral in

[44,49)) based on the analytic properties of the scatteringerms of the invariant variabless', the obtained form factor
amplitudes, matrix elements, and form factors in the comhgs the form:

plex energy plane.

As the dispersion approach is rather correctly derived in M \/m S
the frame of QFT46], this fact can be considered as a pos- F(Q)=—S"—""_°¢ <~ J \ﬁ
sible link between QFT and RHD. The establishment of such 4 4M3+Q? s’
a link is one of the unsolved problems of RHB).

Let us note that an immediate application of the approach dy/sdys”
to quark systems is difficult to realize because of the fact of X J(s—4M?)(s' — 4 M?)
guark confinement. However, there are some investigations
based on similar ideas where the form factors of hadrons as (s+s'+Q?%Q% 1
constituent-quark bound states are considered in the frame of X > 3 14
the dispersion technique of the integral over composite- [A(s,— Q%87 (s §)
particle mas$45]. 0(s.0%.5')
X=——-e(s)e(s)1(Q?).  (51)

2
D. MIA versus |A \/?(5+Q )

Let us compare the approximation MIA with the well
known IA. To do this let us first calculate the form factor in
IF RHD not using the canonical parametrization. In particu-
lar, let us formulate the IA in terms of operators as it is
formulated usually(not in terms of form factops Let us
decompose the matrix elemgi) through the complete set
of states(6):

Equation(51) differs from Eq.(48), obtained with the use of
the two-particle free form factor. In the case of wave func-
tions satisfying the conditiond1) and(12), the form factor
(51) satisfies the normalizatiof;(0)=e.. Let us note that
the form factor obtained in this way from the third current
component in Eq(49) does not satisfy this condition.
Let us compare IA and MIA results and note once again
T >, o, that in MIA we separatéby use of the scheme of canonical
dp,dp, dp;dp, - ot h : ~
(pe|P1:P2) param_etnzatlohthe_ covariant part of the current maitrix el_e
2P102P20 2p},2p5o ment in Eq.(42) prior to performing any calculations. This
. oL L covariant part ensures the correct transformation properties
X(P1;P2l] u|P1:P2)(P1;P2 |Pe)- (49  of the corresponding decompositions in terms of free-particle
o states. The difference between E¢#8) and(51) is
Here(p1;p,|pc) is wave function of constituents in compos-

(peli (OIp0)= |

ite system. If the current matrix element in E49) is taken 5 y , b
in the IA approximation(44) and contains one-particle cur- AF(Q ):f dVsdy's o(s)e(s')go(s,Q2,s")
rents only, then Eq(49) is self-contradictory4].

To write the form factor in terms of wave functiofi$0) X[1-R(s,Q%s")], (52
one has to perform the CG decomposition of the b&&isn
terms of the basis$7) in the wave functiong49) and to use M m s
the explicit form for CG coefficient¢8) for the quantum R(s,Q%8 )=— —————— [ —
numbers of the system: 2 AaMi+Q? s’

. 2 (s+s'+Q?%?
(pl;p2|pc)=\[;(P,\/E,J,I,S,mﬂpC). (50) x (Ssr)1/4 \/?(S+Q2). (53)
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The valueR(s,Q?,s') presents an additional factor to tion gonr(k,Q%,k’) and defined on test functiongk) u(k’).
one-particle currents that is in reality a two-particle currentThe ordinary function(55) generates a regular generalized
contribution. This term ensures the Lorentz covariance of th¢unction defined generally on the larger class of test func-
electromagnetic current matrix element and the current contions (k,k’) in R2, providing the uniform convergence of

servation law in Eq(39). Let us note that this additional the integral. One needs the uniform convergence to take lim-
term contains no dynamical information on the interaction ofits in the integrands.

the test particle with two constituents simultaneously. It does | et us define the functional ii? by the following regular
not depend, for example, on the interaction constants fogistribution[compare with Eqs(30)—(31)]:
such a process.
So, to summarize, we can write the following schematic (gonr(k, Q%K') t(k,k"))
equations:

(lA)Breiti(lA)lab! :J dlu’(kyk,)QONR(leZ!k,)l/l(kvk,)v (56)

(MIA)grei= (MIA) ab- dus(k,k')= 00k (K dpe(K) da(k'),  dpu(k)=K2dk.

It is well known that the standard IA depends strongly on the

coordinate frame used for the calculation. The MIA results The functiongong(k,Q% k"), which appears in Ref47]

do not depend on it at all. So, the differences between IA anguite formally, here has a definite physical meaning and de-
MIA results for different IA coordinate frames can be ratherscribes the electromagnetic properties of a nonrelativistic

significant. free system of two spinless particles in tBatate, one of a
Notice that IA and MIA coincide in the nonrelativistic particle having no chargeompare Withgo(s,QZ_,s’) in Egs.
limit. As this takes place, the nonrelativistic limits of form (25, (29, and (30)]. The  statical  limit

factors, which were obtained from the different current com-|iszH090NR(k,Q2,k’) giving the system charge exists only
ponents, are identical. Hence the difference between the If the weak sense as the limit of the functioa®):
and MIA is really connected with the breaking of relativistic

covariance conditions. We give the quantitative comparison lim (gonr(k,Q2,K"),t(k,k"))
of the form factors obtained in the IA and MIA in the Sec. Q0
IV, where the realistic calculation of the pion electromag- =(ec0(u(k")— u(k)), w(k,k")). (57

netic structure is given.
On the test functiong/(k,k") =u(k)u(k’) [with u(k) the
E. The nonrelativistic limit normalized bound state wave functjpithe functional(56)
defines the bound state form factor in the nonrelativistic 1A

The description of composite-system form factors in(54). The weak limit(57) is equal to the system charge:

terms of distributions is not a specific feature of our relativ-
istic approach. A similar formalism is widely used in the

nonrelativistic theory of composite systefdd] in depth(al- lim (gonr(k,Q%K), zp(k,k’)):ecf k?dk U?(k)=e;.

though not referring to the mathematics of distributjoris Q™0 0 (59)

the nonrelativistic limit our approach gives the formalism

developed in Refl47]. o To go beyond the nonrelativistic IA one has to add some
In the nonrelativistic limit the relativistic charge form fac- tgrms togonr(K, Q2 k’). For example, such terms cause the

tor (48) has the following form: meson exchange currents in two-nucleon systems. So, in

standard nonrelativistic theory the dynamical treatment of

FNR(QZ)ZJ k?dk k' 2dk’u(k)gonr(k,Q% k" Ju(k’), exchange currents is performed in the same way as in our

relativistic approacti45).
To conclude, one can consider our approach to the IA to
2 be a relativistic generalization of nonrelativistic IA, and our
Jonr(k, Q2K ) = f1(Q%) 0(k,Q2,k"), (55) eq_uqtions for f<_)rm_ factors in this approximation to be a rela-
! tivistic generalization of the equations of R¢#7]. Let us
remark that in more complicated systefesy., forp mesons
and deuteronsour relativistic form factors also have correct
: nonrelativistic limits that coincide with Ref47].

(59

9(k-Q2.k’)=ﬁ( k’—k—% )—ﬂ(k’—k—%

Here gonr(k,Q? k') is the free relativistic form factor ob- IV. THE ELECTROWEAK STRUCTURE OF PIONS
tained from Eq(29) in the nonrelativistic limitf,(Q?) is the

charged-particle form factor. The obtained result coincides Now we apply the method of previous sections to the
with that derived in standard nonrelativistic calculationscalculation of the electroweak structure of pions. There exist
[47]. many experimental data on pions, so the effectiveness of the

Rigorously speaking, Eq54) has to be interpreted as a method can be checked by the comparison with the Gata,
functional in the sense of distributions generated by the funce.g., Ref.[15] and references thergin
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A. The electromagnetic form factor of pions

g : = I\ — i ' " " 2 '
The pion is spinless, so the electromagnetic current matrix<p’m|1"(0)Ip m’) % (m|D(p,p")m"){m"[f1(Q K,

element has the forrfl5) with p.—p.,,F.(Q3)—F .(Q2).

In the frame of the composite—qu_ark model, the pion is con- +i fz(Qz)R#|m’>,
sidered as the bound statewéndd quarks. We assume that
quark masses are equat,=my=M. K,=(P+P" )., Ru=€,n,p"p' T?(p'). (63

To calculate in MIA the composite-system form factor
one needs to construct first the free two-particle form factod”(p) is four-vector of spin:
(25), (29), and (48). Contrary to the simple model of the
preceding section now we consider the system of two ) ) 5(5_1-*) L
charged particles with spiris This gives the following com- F'p)=Mj+———, To(p)=(p-j).
plications. First, Eq(21) for the current operator of the free Po+M

system is now transformed to the form 5 5 )
The form factorsf,(Q“) and f,(Q“) are the electric and

j;o)(0)=jlu®|2@izﬂ®|1- (590  magnetic form factors of particles. They are connected with
Sachs form factorf48]:
Here j 17, is the electromagnetic current of particles and
l (1,2 is the unity operator in the one-particle state Hilbert

2M
spaces. Equatiof59) can be rewritten in terms of matrix £1(Q%) = ———=G¢(Q?),
eFements: q (5 ) l(Q ) \/m E(Q )
(64)
<p1,m1;p2,mg|jﬁf)(0)|p1,mi;pé,mé>
- .- -, fz(Qz):—WGM(QZ).
=(P2,My| P2, My)(P1,Myj1,[p1, M)+ (1-2). +Q

(60) Third, now the CG coefficients are of more complicated

form. They are given by Eg8) with J=S=1=0. Contrary
to the previous simple case, now the CG coefficients contain
Otne Wigner rotation matrices.

Finally, the free two-particle form factor for the system of
two particles with spin3 and quantum numberd=S=|
=0 is of the form(see also Ref19)):

Second, the matrix element of one-particle current con
tains now, contrary to Eq22), the magnetic form factors of
qguarks as well as the charge ones. Now the parametrizati
(the elementary-particle one following Rd#]) is of the
form:

(p,m[j#(0)|p’, M’ = Upm¥*Uprm F1(Q?)

_ — ) (s+s'+Q?)Q?
~Upm0™ QU F2(Q)). (61 93'(s.Q%s)=n

“2\(s—aM?)(s' —4M?)

Whereug, is the Dirac bispinor andg* the Dirac matrix, 0(s,Q2s') 1

“InGs.—Q2s) P V1T QUaM?

x| (s+s'+Q)[GL(Q?) +GL(Q?)]

1
0’”=§(7“7”— Yy, q,=(p—p),.

Using multipole parametrization we can write the one-
particle current matrix element in terms of Sachs form

factors: X CO8 w3+ wy) + $§(S,Q2,S’)(GR‘A(Q2)
2N_T (A2 KQ% 2 -
Ge(Q%)=F4(Q)+ WFZ(Q ), +GY(Q?)sin(wy+ wy) | (65)
Gm(Q) =F1(Q?) +«F5(Q?), Here
FLQY=eFL(Q), Fal)=iFa(QD). (62 £(5:Q%8)=\SSQ =M A5, ~Q"s"),

n. is the number of quark colors, and; and w, are the
HereGg v are the Sachs electric and magnetic form factorsyyigner rotation parameters:
respectivelyg is the particle charge, and is the anomalous
magnetic moment. 2
It is convenient to use the canonical parametrization of  ,, —arctan £(s,Q%s7)

matrix element$32]: M[(Vs+ Vs')2+ Q2]+ /sS (Vs+s')
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a(s,s')£(s,Q2,8") (72) is quite similar to Eq(68) bgt ins?ead of t.he con_stam.,
w,=arctan the form factor depending on invariant variables is written.
M(s+s'+Q%)a(s,s)+ 55 (4M?+Q?)’ To calculateGy(s) let us decompose Eq72) in the one-
(66) particle basig6). Now we obtain for Eq(72):
with a(s,s')=2M+\s+/s’, and G£%,(Q?) are Sachs 1 dp, dp
form factors for quarks. Th& function in Eq.(65) is the iIGo(s)P, = _ fz_lz_z
same as that in Eq29). 2m)7 mymic J £P10 £P20
An interesting effect follows from Eq(65): due to the (0)2 -
relativistic Wigner spin rotation effect the pion charge form ><(0|jmclp1,m1,p2,m2>
factor contains the contribution of quark magnetic form fac- - - -
tors. The pion charge form factor can be calculated using Eq. X(P1,My;p2,MlP,S). (73

(48), with Eqg. (65) for the free two-particle form factor: Wherei,=1,2,3 and the sum oveg is the sum over the

colors. The CG coefficients are knowgq. (8)]. The current
2)‘f d\/gd\/—go(s)g 5,Q%s)¢(s’). (67  matrix element in the basi$) can be written in the standard
way in terms of the lepton decay current matrix element

. [15]:
B. The lepton decay constant of pions
The lepton decay constaifit. is defined by the electro- (O|J(°)|p1,m1;52,m2>
weak-current matrix elemefpd5]:
= ——0(P2.M) yu(1+y))u(pr.my). (74
(01, (0)]p)=if P, (68) (2m)

;:.(271.)3/2'
We integrate in Eq(73) in the coordinate frame witk=0.

p. is the four-momentum of the meson. Let us decompos¢:|na||y, we obtain

the L.h.s. of Eq(68) in the basiq7). Using the explicit form

of the meson wave functiof10) one can obtain for Eq68) 2

M)| 1 . (75

Ne
» 2w, T (g2
| u(0)[P VS e(8)=if .p, ——

32°
(2) 69) pPo= \/W

Substituting Eq.(75) in Eq. (71) we obtain the result,
which has the following form if written in invariant

As in Sec. II[Eq. (41)] one can divide the integrand in Eq.
(69) into two parts: the covariant paigmooth ordinary func-

tion) and the invariant part: variables:
N, . 1 2M n¢ J \/_ (
——(0|] =i — fr= 76)
Mg Ol u(0)IP7 /) =iG(9)B,(9) R 2 V2m
The invariant form factoG(s) is a generalized function. ~ Let us notice that Eq76) coincides with that obtained in

In the same way as in calculating E@6) of the preceding the frame of light-front dynamic§l5]. However, although

section, we now obtain the lepton decay constant of pion irdll forms of RHD are unitary equivaleri2], nevertheless
the form after the physical approximations are made in more compli-

cated cases the results, e.g., for form factors, can be different.
This is possibly due to the fact that the unitary operators
f dVsG(s)g(s)= fr. (71) connecting different forms of RHD are interaction dependent
[12] and so the RHD forms realize one and the same ap-
In general, the form factoG(s) can be calculated in the proximation in different ways. Let us note that the nonrela-
frame of the standard model for electroweak interactionstivistic limit of Eq. (76) gives the standard form in terms of
However, in this paper we limit ourselves to a four-fermion coordinate space wave function at zero value.
interaction. We take foiG(s) the form factor that param-
etrizes the decay of free two-quark system: C. The results of calculations

To calculate the electroweak structure of pions using Egs.
(72) (67), (65), (76), and(11) the following meson wave func-
tions were utilized:
(1) A Gaussian or harmonic oscillat@O) wave function

PO B =iColsIP,

The explicit form(72) is written by analogy to Eg25), not
taking into account the current conservation law. The form u(k) =Npoexp —k?/2b?). (77)
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(2) A power-law (PL) wave function L N e B
u(k)=Np (k¥b?+1)"", n=2, 3. (78)

(3) The wave function with linear confinement from Ref.
[49]:

2
u(r)=Nqexp( —ar®?-gr), a= 5\/M a, — t ]
Cosf + .

B=b, 79 =

wherea andb are parameters of linear and Coulomb parts of
the potential, respectively.

In Ref. [19] in the calculation of pion electromagnetic
structure we assumed the quarks to be pointlike. The result:
of Ref.[19] can be considered as preliminary results. How-
ever, one has to take into account the structure of constituen
quarks[50], in particular, the anomalous magnetic moment. QE(G eV? )

As anomalous magnetic moments are connected with the fi-

nite size of quark, one has to take into account the explicit FIG. 1. The square of the pion form factor at small values of
form of quark form factors entering E@65) and the pion momentum transfers for different models.

charge form factof67). As in Ref.[18], let us use the fol-

0.00 0.04 0.08 0.12

lowing forms for quark form factors: corrections to relation(81). To agree with this QCD-
4y 2y ) corrected asymptotics we can, for example, choose the fol-
Ge(Q7)=64f(Q7), lowing form for f(Q?):
(80)
Gl(Q?) =(eqt kg)F(Q?).
Here e, is the quark charge and, the quark anomalous f(Q%)= : (84)

. i : i o 1+In(1+(r3)Q%6
magnetic momentin natural unit$. To obtain the explicit (1 q>Q )

form of the functionf (Q?) let us consider the asymptotics of -~ . ]

pion charge form factor a@?—o,M —0. Here(rg) is the MSR of the constituent quark, which can be
To obtain the asymptotic behavior let us first make theCOﬂSIderEd as the model parameter. Let us fiad in Ref.

asymptotic estimation of the integrals in E§7) in the point  [18]) to be(rg)=0.3M2.

like quark approximation[f(Q?)=1,k=0 in Eq. (80)]. For the constltuent guark mass in pions we use the value
Omitting the details of calculatiofgiven in Ref.[51]) we that is usually used in the calculations in RHDM
write the final result for the asymptotics in the form: =0.25 GeV. The quark anomalous magnetic moments can
be taken from Ref[50]: x,=0.029x4= —0.059.
FA(Q)~Q 2 (81 We choose the parametdsén Egs.(77) and(78) anda in

Eq. (79 in such a way as to fit the pion MSRr?)
=(0.432+0.016) fnt [53]. We choose this way to fix the
model parameters because the pion MSR is defined by the

form factor at small values of?, that is, the range where

The asymptotics does not depend on the actual form of the
wave function and coincides with that obtained in QCD. The _
actual form we obtain, e.g., for E¢77) is

[T(%)]2 bz potential models work well.
F.(Q)~32y2 (82) The fit of the pion MSR gives the following parameters of
\/— the wave functions: in the moddl7/7) b=0.2784 GeV,

. . ) model (78) at n=2, b=0.3394 GeV; mode(78) at n=3,
It is worth to compare the forn82) with the detailed QCD = 5150 GeV; model79) b=(4/3)as, a.=0.59 at the
result[52]; light meson mass scale=0.0567 GeV. The results of the
) calculation are presented on Figs. 1 and 2.
F (Q%)= 8masfy 83) The square of the pion form factor at small values of
g Q2 momentum transfers for different mod€lg7)—(79) is pre-
sented on Fig. 1. Results of calculation in the modgI8,
If ag/7m~0.1, then Eqs(82) and(83) coincide atb~0.1. So  (78) atn=3 and(79) coincide very closely.
the asymptotic$81) is quite realistic. The calculations of produd®?F_(Q?) at high momen-
In the case of non-point-like quarks we obtain anothertum transfers for different mode(37)—(79) are presented on
asymptotics because the form factor depends upon the mé-ig. 2. The legend is following: 1, harmonic oscillator wave
mentum transfer. It is known that QCD gives logarithmic function (77); 2, power-law wave functiori78) atn=2; 3,
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Q)] < *
Nv
e - —2_
S T
— 0.2 1
= B
0.0 | | 1 1 1 1 1
0 2 4 6 8
2 2 2 2
Q (GeV ) Q (GeV )
FIG. 2. Electromagnetic form facto®?F .(Q?), at high mo- FIG. 3. Q%F(Q?) for MIA (1) and for IA (2). Results of the
mentum transfers. calculation with the wave functio(v7).Parameters are the same as

in Fig. 1.
power-law wave function78) at n=3 and wave function
from model with linear confinemert79) (these curves coin-

cide very closely. . Mz V2(2 M2+Q?) Ne
4

All the models for the interactiof?7), (78), and(79) give FAQ%)=

a good description of the existing experimental dafzhe 4 M2+Q2 V1+Q%/aM?
dependence of the results on the actual model is much less
pronounced that in the case of pointlike quafks]. d\/;d\/—

The lepton decay constants calculated following &) f \/(s AM2)(s' —4 M2)

with different wave functions have the following valuds;

=0.1210 GeV in the mode(77); f,.=0.1327 GeV in the NP 312 1 1
model (78) with n=2; f ,=0.1282 GeV in the modg[78) (S '+Q°°Q
with n=3; andf,=0.1290 GeV in the model79). Let us [ N(s,— Q%832 (s )M 5" (s+Q?)

emphasize that we have used no fitting parameters to calcu-
late the lepton decay constant. Nevertheless, the obtained ,
values are very close to the experimental valfig:epy Xe(s)e(s')
=0.1317£0.0002 GeV[54].

Now let us compare the numerical results for the pion — 1
form factor obtained in MIA67) with that of the traditional +GL(Q?)]cos g+ wy) + Mf(S,QZ,S')
IA. Let us choose for the comparison, for example, the null
component of the current. _

To obtain the pion form factor in IA we proceed in the X[GH(QY)+GH(Q)]siN(wi+ wy) . (85
same way as while obtaining E¢p1) of the preceding sec-
tion. Now, however,

(1) the decompositiori15) of the IA matrix current ele-

(s+s' +QH)[GE(Q?)

ment over the state séb) is realized following Eq(60), HereM ,=139.568-0.001 MeV[54]is the mass of a pion.
(2) the parametrization of the one-particle matrix elementThe normalization conditior,(0)=1 is satisfied for the

is given by Eqs(63) and(64) [instead of Eq(22)], form factor(85) if the wave functiong11) satisfy Eq.(13).
(3) the CG coefficient8) in Eq. (50) is for pion quantum To compare the numerical results given by E@) and

numbers. (65) with that given by Eq(85) let us calculate the pion form

Acting in the same way as Eq51) was obtained and factor using the wave functiof77) with the parameters of
using the null component of the current matrix element, wethe calculations presented in Figs. 1 and 2. The results are
can write the pion form factor in IA in the following form: shown in Fig. 3. The results obtained with the use of the

parametrizatior{48) and (65) differ essentially from that ob-
tained without such a parametrizati@®5). The form factor
3The JLab new resultfs5] are discussed in connection with our calculated in our approach describes the existing experimen-
approach in Ref[56]. tal data adequately.
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Let us emphasize once again that the form factor obtaineth terms of form factors, which in general have to be consid-
in MIA does not depend on the choice of coordinate frameered as generalized functions.

This is an important advantage of our relativistic MIA. (4) The approach makes it possible to formulate relativis-
tic impulse approximatiofimodified impulse approximation
V. CONCLUSION (MIA)] in such a way that the Lorentz covariance of the
] current is ensured. In the electromagnetic case the current
Let us summarize the results. conservation law is ensured, too.

(1) A new approach to the electromagnetic properties of () The results of the calculations are unambiguous: they
two-particle composite systems is developed. The approaclo not depend on the choice of the coordinate frame and on
is based on IF RHD. _ . the choice of “good” components of the current as it takes

(2) The main feature of this approach is the new methodgyjace in the standard form of light-front dynamics.
of construction of the matrix element of the electroweak cur- (6) The effectiveness of the approach is demonstrated by
rent operator. The electroweak current matrix element satishe calculation of the electroweak structure of the pion. Our
fies the relativistic covariance conditions and in the case Oépproach gives good results for the pion electromagnetic

the electromagnetic current also satisfies the conservatiogrm factor in the whole range of momentum transfers avail-

law automatically. _ able for experiments at present time.
(3) The method of the construction of the current operator

matrix element consists of the extraction of the invariant
part—the reduced matrix element on the Lorentz group
(form factop—and the covariant part defining the transfor-  The authors thank V. V. Andreev and D. |. Melikhov for
mation properties of the current. The form factors contain alhelpful discussions. This work was supported in part by the
the dynamical information about transition. The properties ofProgram “Russian Universities—Basic Researchéstant

the system as well as the approximations used are formulatédio. 02.01.28.
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