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Electromagnetic transition form factors of light mesons
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We study selected meson transition processes and associated form factors within a model of QCD based on
the Dyson-Schwinger equations truncated to the ladder-rainbow level. The infrared structure of the ladder-
rainbow kernel is described by two parameters, the ultraviolet behavior is fixed by the one-loop renormaliza-
tion group behavior of QCD. The work is restricted to thendd quark sector and allows a Poincarevariant
study of the radiative decays— 7y, w— my, andw°— yy. Particular attention is paid to the form factors for
the associated transitiong® 7°— vy, v* 7°—y*, y* m—p, and y* p— 7. The latter two processes are of
interest as contributors to meson electroproduction from hadronic targets away frerohbenel resonance
region. We use the present QCD model to explore limitations to the assumption that couplitgharael

virtual qqg correlation can be modeled as meson exchange.
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I. INTRODUCTION cesses, studies of deep inelastic scattering within the
Nambu-Jona-Lasinio modgb,7] have helped clarify some
At a soft scale, the electromagnetic content of hadron®f the issues confronting work within a quark field theory

reveals the distribution of current generated by the interactformat.
ing constituent dressed quarks. This useful insight into non- Here we summarize recent progress in the soft QCD mod-
perturbative hadron dynamics is expressed in terms of eleeiling of light meson electromagnetic transition form factors
tromagnetic form factors obtained from exclusive processepased on the set of Dyson-Schwinger equatiidSES of
such as elastic lepton scattering or leptonic transitions tgne theory[8,9]. The model we apply here has been previ-
specific hadronic states. At a hard scale, typified by presemdusly shown to give an efficient description of the masses
deep inelastic scattering experiments, much of the final statg,q electroweak decays of the light pseudoscalar and vector
nonperturbative dynamics is reflected in the initial diStribu'mesons[lo,lj]. Here we work in theu andd quark sector
tions of quark and gluon partons, which are probed pertury, 4 treat electromagnetic processes involvingp, and .

batively. The unraveling of this information from structure This covariant approach accommodates quark confinement

functions will require a connection with nonperturbative and implements the QCD one-loop renormalization grou
QCD calculations and models. Although some lattice QCD P P group

studies have begun to produce moments of structure funé)-eha\/i?r' The performance of this model for deep inelgstig
tions[1,2], the opportunities are very limited at present. Use-Scattering phenomena can be gauged from that of a simpli-

ful quantities for calibration of models of QCD are the elec-f1€d version that has recently produced excellent results for
tromagnetic elastic and transition form factors of hadrons. the pion valence quark distribution amplitufe?].

The most extensive hadronic models were designed to An issue that arises in studies of electromagnetlc interac-
study the mass spectrum and decays, and often contain efdons with hadrons is vector meson dominan@éviD).
ments that limit their use for developing electroweak formWithin a quark-gluon model that dynamically produces the
factors. Examples include nonrelativistic kinematics, a lackvector meson pole in the dressed photon-quark vertex, the
of manifest Poincareovariance, no quark sea, no dynamical validity and effectiveness of extrapolating such a mechanism
gluons, no QCD renormalization group behavior for evolu-to nearby momentum domains can be tested. The pion charge
tion of scale, and no confinement of quarks. Covariant relaradius and low@? charge form factor have recently been
tivistic field theory models that are simpler than QCD, butexplored from that perspectiyé3]. The empirical effective-
respect dynamical chiral symmetry breaking, have long beeness of the simple VMD assumption in that case is much
utilized for the modeling of soft physics such as the hadronigreater than its faithfulness to the underlying dynamics. A
mass spectrum. For example, such progress has been w#milar example is found here in the transitioif w°— 7.
viewed within the Nambu-Jona-Lasinio mod8] and the The vector meson resonance pole term extrapolated to the
global color mode[4,5]. In the case of the latter, soft elec- photon point produces an estimate of {headiative decay
tromagnetic form factors of mesons and meson transitionsoupling constang, ., in terms of thew decay coupling
have been considerelb]. For hard electromagnetic pro- constantg ., , which is accurate to within a few percent.

For a large range of spacelike momentum, we find the shape

of the form factor for this transition to be consistent with a
*Email address: pmaris@unity.ncsu.edu monopole with mass scal@, ; this is also consistent with
"Email address: tandy@cnr2.kent.edu analyses of the asymptotic behavior.
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When a process like the above involvesi@ correlation andK=—(P+Q)=q,—q, for the pseudoscalar vertex, all
with a spacelike invariant mass, there arises the question dfowing into the triangle diagram.
how accurately it can be modeled by meson exchange when The notationf ;= *d*q/(2)* stands for a translation-
the meson is a bound state defined at a unigineelike) ally invariant regularization of the integral, with being the
invariant mass. This question is here brought into sharpeiegularization mass scale. The regularization can be removed
focus by examination of form factors for transition processesit the end of all calculations, by taking the linfit—o°. It is
vy* MM’ that arise in meson exchange modéld]. HereM understood that the same regularization is applied to the cal-
is a virtual t-channelqq correlation such as might be pro- Culated dressed-quark propagat(g) and vertex functions
vided by a hadronic target anid’ is a produced physical I a@ppearing in Eq(1), and that the quark propagators are
meson. Our model of the underlying quark-gluon dynamicsrenorma_lllzed at a convenient spacelike momentum scale be-
is used to investigate the extent to which the virtualityvof ~ fore taking the limitA —oo. S _
influences they* MM’ form factor that should be employed ~ This generic PVV vertex can be specialized in an obvious
in meson exchange models, given that the employedVay to such processes as thé— yy decay, radiative de-
t-channel propagator foll is of the standard point meson C&y$ such agp—my, and transitions such ag* w—p. In
type. We consider the cases whevlecan be a vector or a 9eéneral, one has to add loop integrals corresponding to the
pseudoscalar. The domain of accuracy of the meson exifferent orderings of the vertices and the various flavor-
change assumption is explored. labeled components of neutral mesons, in order to get the

In Sec. Il we use the generic coupling of a pseudoscalayertex describing an actual physical process. _
bosonic object to a pair of vector bosons in the impulse Th_g form factor associated with the generic PVV vertex is
approximation to define our notation. There we introduce thddentified from the general form
required dressed-quark propagator from the QCD quark DSE
in the rainbow approximation, and the required vertex am-
plitudes from the Bethe-Salpeter equati®SE) in ladder
approximation. We also outline there the phenomenological
infrared content and parametrization of the model and sums g aiized in such a way th&ito,,= 1 for on-shell external

marize the resulting pseudoscalar and vector meson ProP&iomenta: the constal contains the coupling constant, to-

ties. We specialize to theyy process in Sec. ll, discussing gether with numerical factors such as isospin, symmetry fac-
both the coupling constant and two different transition form, .« t2ctors of# from the integration measure and so on.

factors and their asymptotic behavior. In Sec. IV #8y  This will be made clear for specific cases discussed later.
coupling is discussed from three different aspects: the COURjote that from the three external momeng ©,K), two of
pling constants and W'dti‘s for radiative decaypotndw, \yhich are independent, there are several choices for the in-
the form faftor for the;:c m—p transition, and the form  yenendent Lorentz scalar quantities that a form factor de-
factors fory*P—p andy*V—m, whereP andV are virtual  hends on. The choice of form factor variables will be dic-
qq objects having the quantum numbers of ground statéated by the process in question. The form in E8)
pseudoscalar and vector mesons, respectively. Here the cofacilitates a study of the dependence upon the momenta of
nection tot-channel meson exchange is explored. Asummaryhe vector objects. To study the dependence upon the mo-
can be found in Sec. V. mentumK = — (P+ Q) of the pseudoscalar object, we would
take advantage of the antisymmetry of théensor to use

APYM(P;Q)=CFpy[P+Q1%P%,Q%e€,,,.P,Q, (2)

Il. PSEUDOSCALAR-VECTOR-VECTOR PROCESSES
IN THE IMPULSE APPROXIMATION PVV, _ .
AL, (—[Q+K]Q)

Here we analyze pseudoscalar-vector-vector processes _ 2 2 2
(PVV) characterizyed bF))/ a generic PVV vertex, wﬁich, in = CRpn(KE K QI QY €1pa QKo (3
QCD in the impulse approximation, is described by the
quark loop integral For electromagnetic interactions, electromagnetic current
conservation is manifest if the approximations used for the
A — dressing of the quark propagators, meson Bethe-Salpeter am-
AL (PQ)= NCJ T S*(9a) T3°(Ga ,05) S°(0lb) plitudes(BSAs), and the quark-photon vertices are dynami-
a cally consistent with the approximation used for the photon-
be, c ca, hadron interaction. The ladder-rainbow truncation of the
X1 (0o, 4e) S ()T, (G, Ga) - (1) DSE and BSE, in combination with the impulse approxima-
_ tion for the photon-meson coupling, satisfies this consistency
Here I'2%(q,,qp) is the pseudoscalar vertex function for a requiremen{15].
pseudoscalar coupling to an outgoing quark with momentum
g, and flavora=u,d, and an incoming quark with momen-
tum q, and flavorb=u,d; similar definitions hold for the
two vector vertex function§’, andI'",. The external mo- The DSE for the renormalized quark propagator in Eu-

y2
menta areQ =q.— g, andP=q,— g, for the vector vertices clidean space is

A. Dyson-Schwinger equations
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S(p)—lzizzp+24mq(,u) that one must contract and average over the Lorentz indices
A of the (transverseBSAs to account for the three independent
A N At
2 A a polarizations.
+Zlfq 9D uu(K) 2 e CUNCHINC) We will later need the following exact expression for the

pion decay constarit, :

whereD ,, (k) is the dressed-gluon propagatbf(q,p) the N
dressed quark-gluon vertex, ake p—q. The most general — f _
solution of Eq.(4) has the formS(p) "=ipA(p?)+ B(p?) faPu=2ZaNe q 757, 3AT+(4-,4-)3(9-)]
and is renormalized at spacelik& according toA(u?)=1 (8)
and B(M2)=mq(u) with my(u«) being the current quark
mass. We use the Euclidean metric whése, ,y,}=246,,,
yL=7,. anda-b=3",a;b;.

Mesons can be studied by solving the homogeneous BS

\+D
for qaq bound states, F,u,(q+ 1q—) = YMV1+ quVZ—’— qMPV3+ ySEuavﬁyaqVPﬁV4

Since a massive vector meson bound state is transverse,
the BSA requires eight covariants for its representation. We
Ehoose the transverse projection of the form

— A — +q,Vs+o Veg+o,,PV
TE(p ,p7)=f K(p,q;P)®S*(q)T{(q. ,q-)S"(q-), BT e T
4 (5) +q,u,0-aﬁqapﬁv8' (9)
o This form is a variation of that used in Rdfl1], which is
wherea andb are flavor indicesp,=p+#P andp_=p  simpler and easier to use in many respects. The invariant
—(1—#)P are the outgoing and incoming quark momenta,amplitudesV; are Lorentz scalar functions @f and q- P
respectively, and. is defined similarly. The kernél is the  and again, for charge eigenstates, they are either odd or even
renormalized, amputategl) scattering kernel that is irreduc- in q-P. For the I~ p meson,V; andVg are odd, the other
ible with respect to a pair of|q lines. This equation has amplitudes are even.
solutions at discrete values &= —mﬁ , Wheremy, is the The quark-photon vertex §2=Qafa , whereQ? is the
meson mass. Together with the canonical normalization cora-quark electric charge and the amplituﬂg is normalized
dition for gq bound states, it completely determirigs, the  so that its bar¢UV) limit is y,,. The vector vertex'’, with
bound state BSA. The different types of mesons, such attal momentumQ=p, —p_ satisfies the inhomogeneous
pseudoscalar, vector, etc., are characterized by differeSE
Dirac structures. The most general decomposition for pseu- R
doscalar bound states[i%0] Fi(m D) =Zay,+ Jq K(p,q:Q)
Tes(dy,0-)=ys[iE(a%0-Pin)+ PF(a%q-P; ) S - 0
+KG (0% P; 7)+0,,P,. 0, H(G%0- Pi ), FSALLG, 0-ISA). (10
(6) where we ignore the possibility of flavor mixing in the ker-
nel. There are 12 invariant amplitudes needed to represent
where the invariant amplitudes, F, G, andH are Lorentz the quark-photon vertex. The four longitudinal ones can be
scalar functions ofj? andq- P. For charge eigenstates, these €xpressed directly in terms of the quark propagator ampli-
amplitudes are appropriately odd or even in the charge paritjdes via the vector Ward-Takahashi identityTl); the
odd quantityq. P. In the case of the '0+ pion, for examp|e, elght transverse amplitudes are defined by a decompOSitiOﬂ
the amplitudeG is odd ing- P, the others are even. Note also ©f the form of Eq.(9) and are obtained from solutions of Eq.
that these amplitudes explicitly depend on the momentuntl0) as discussed in Ref13]. For timelikeQ® near the po-
partitioning parameter. However, so long as Poincaie=  sition of a vector meson bound state with mas$, the
variance is respected, the resulting physical observables afgnsverse part of the quark-photon vertex has the resonance
independent of this parametgi5). pole behaviof13]

The meson BSA™® is normalized according to the ca-

nonical normalization condition a fvmy aaV
F#(p+,p,)—>Qsz\2/F# (Py,p-), (11
J A_—_ o Y~
_ s ba/ N/ a ab AY=
ZPM—NCaPMTrr fq I™a’,a)S%(a.+)1"(q,9")S%(a-) where fy is the electroweak decay constant of the vector
meson.
A_— _
+ [ X"k KK (k,0;P)x**(0.q’ 7
fk,qX ( JK(k.a:P)x*™(a.9") @ B. Model truncation

o y o~ ~, We employ the model that has been developed recently
atPe=Q°= K lNlth a=9+7Q.,q’=q—(1-%)Q, and  for an efficient description of the masses and decay constants
similarly for k andk’. For vector mesons, it is understood of the light pseudoscalar and vector mes¢h8,11. This
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consists of the rainbow truncation of the DSE for the quark TABLE I. Overview of the results of the model for the meson
propagator and the ladder truncation of the BSE for the memasses and decay constant, adapted from REds11).

sons. The required effecti\@_qaq interaction has a phenomeno-

logical infrared behavior and reduces to the perturbative Experiment 23] Calculated
QCD running coupling in the ultraviolet regidi.0,11. In (estimates
particular, the rainbow truncation of the quark DSE, Ej, mf;(i cov 5-10 MeV 5.5 MeV
IS M1 v 100-300 MeV 125 MeV
, \ —(Aa)=1 cev (0236 GeVy (0.247)°
Z,9°D,.,(KT(q.p)— (KD Ky, 5, (12 m, 0.1385 GeV 0.138
f. 0.131 GeV 0.131
where DZeVe(k:p—q) is the free gluon propagator in the M« 0.496 GeV 0.497
Landau gauge. The consistent ladder truncation of the BSHk 0.160 GeV 0.155
Eq.(5), is m, 0.770 GeV 0.742
i : f, 0.216 GeV 0.207
: free |\ N My 0.892 GeV 0.936
K(p’q’P)_)_g(kz)Dﬂe“e(k)E Yu® g v (B 0.225 GeV 0.241
_ . oomy 1.020 GeV 1.072
wherek=p—q. These two truncations are consistent in the¢ 0.236 GeV 0.259

sense that the combination produces vector and axial-vectof

vertices satisfying the respective WTIs. In the axial case, thiéFitted values.

ensures that in the chiral limit the ground state pseudoscalar

mesons are the massless Goldstone bosons associated wititive behavior, due to chiral symmetry breaking. Recent

chiral symmetry breaking10,16. In the vector case, this comparison$19,20 of results from this rainbow DSE model

ensures electromagnetic current conservation if the impulst lattice QCD simulation$21,22 provide semiquantitative

approximation is used to describe the meson electromagnetaonfirmation of the behavior generated by the present DSE

current or charge form fact¢d5]. Furthermore, this trunca- model: a significant enhancement Bf(p?) and a modest

tion was found to be particularly suitable for the flavor octetenhancement of&(p?) below 1 Ge\.

pseudoscalar and vector mesons, since the next-order contri- The vector meson masses and electroweak decay con-

butions in a quark-gluon skeleton graph expansion have atants produced by this model are in good agreement with

significant amount of cancellation between repulsive and atexperiment§11], as can be seen from Table |. Without any

tractive correction$17]. readjustment of the parameters, this model agrees remark-
The model is completely specified once a form is choserably well with the most recent Jlab dafa4] for the pion

for the “effective coupling” G(k?). We employ the ansatz charge form factoF _(Q?). Also the kaon charge radii and

[11] electromagnetic form factors are well descrit)g8,25. The
strong decays of the vector mesons into a pair of pseudo-
G(k?) _4W2Dkze,kz,wz+ 4y F(K?) scalar mesons are also well described within this model
k? ® Lin[ 7+ (1+KASep)?] [26,27.
(14

Il. THE TRANSITION
with yn=12/(33-2N;) and F(s)=[1—exp(-4m2)]/s. ™y

The ultraviolet behavior is chosen to be that of the QCD The symmetrized invariant amplitude for the coupling of
running couplinga(k?); the ladder-rainbow truncation then a pion with momentunk = —(Q;+ Q,) to a pair of photons
generates the correct perturbative QCD structure of the DSEwith helicities\; and\, and moment&),; and Q, has the
BSE system of equations. The first term implements thdorm MWz:e"lAszei‘f, whereelﬁ is a photon polariza-
strong infrared enhancement in the regionk?<1 GeV®  tion vector. With consideration of the two flavor-labeled
phenomenologically required18] to produce a realistic components of the neutral pion and the two orderings of
value for the chiral condensate. We use=0.5 GeV, 7 photons, the vertex can be decomposed as

=e?—1, N;=4, Aqcp=0.234 GeV, and a renormalization

scaleu=19 GeV, which is well into the perturbative do- 5

main [10,11. The remaining parametere,=0.4 GeV and yy— Zr(OU2AU — (AI2Ad

D=0.93 Ge\f along with the quark masses, are fitted to N \/5[(Q VA= QA (15
give a good description of the chiral condensate,, and

fr ~a .
Within this model, the quark propagator reduces to thewger.eQ 's the electnc_cha_rge of tl'mfla_vored qua_rk. Here
v IS the vertex contribution from a given ordering of the

one-loop perturbative QCD propagator in the ultraviolet re—A — 0

gion. In the infrared region both the wave function renormal-Photons and from the flavor componeaa of the 7. The
ization Z(p?)=1/A(p?) and the dynamical mass function factor of \2 in the denominator comes from the flavor
M (p?)=B(p?)/A(p?) deviate significantly from the pertur- weights in ther° state, (u—dd)/\/2, and the factor of 2 in
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the numerator comes from a summation over the two order- 10.0r , T ' T , T ' T

ings of the photon vertices. Isospin symmetry giwlegy e CLEO
=AS,, thus we haveA/’I(,),Wz V2A},/3. The impulse ap- - o CELLO
imati It for the verter! is [ ~ DSE caleulation | 4
proximation resu v — UMD p monopole| |
NN BL monopole
sz(Ql;Qz):echfk Tr[S(g2)I'"(d2,d1) S(q1) 1'0;_
: . G I
xIFM(qlik)S(k)ll—‘v(kqu)]a (16) (g

with q;=k+Q; and q,=k—Q,. The result is independent
of the choice of integration variable, and this provides a use-
ful check on numerical methods.

The form factor that we associate with this process is 53535 30 40— S0

defined from[28] Q% [GeVA]

o FIG. 1. Our results for the* w— y form factor, together with a

AZVW(QLQz):?Aiy(Ql ,Q2) simple VMD monopole with mass scahaﬁ:O.SQ GeVf, a mono-
pole based on the Lepage-Brodsky asymptotic form 0.€¥2/(
21 ang +0.674), and data from CLE(B2] and CELLO[31].

= #6 v, O'Ql QZO'F’)T (Qian),
wf . e . 7 available dat&.The corresponding interaction radius, defined
a7 by r?=—6F’(0),isr%, =0.39 fnf. This is in much better
agreement with the experimental estimd&l] of rf,w

wheref,_=f_/2=92 MeV and the fine structure constant =0.42+0.04 fif than an earlier theoretical resuﬂ?S]

iS ae=€%/41r. The Lorentz scala®; - Q, does not occur as Within the present DSE framework that had a considerably
a third argument of the form factor since the pion mass-she@@reater reliance upon phenomenological elements.
constraint fixes it in terms of those shown. The form factor Our numerical results indicate that this form factor is an
so defined has the normalizatién, ,,(0,0)=1 so thatg,,,, ~ &lmost perfect monopgle, and can be simulated very well by
is the coupling constant. For on-shell photo@§=Q3=0, @ VMD formula F(Q%)=m,/(Q"+m) with a p-meson

this vertex describes the neutral pion decay and the assodPass scalen;=0.59 GeVf over the entire momentum range
ated width is shown. With use of perturbative QCD and factorization on

the lightfront, Lepage and Brodsky84] showed that this

9%, m2 form factor behaves likeQ?F(Q?)—87f2=0.674 GeV
0 1en T (18 in the asymptotic spacelike regio®{>0 herd. Our results
HARE indicate a slightly lower asymptotic mass scale, see Fig. 1.

We will discuss the asymptotic behavior further in Sec. 11l C
This decay is governed by the axial anomaly, which leads Qelow. ymp

g?TW= 1/2 in the chiral limit. For example, the corresponding
decay width produced by E@18) is I'=7.7 eV, while the
experimental value i§=7.8 eV.

A consistent ladder-rainbow truncation of the DSE-BSE  Next, we consider ther®y* y* form factor, correspond-
system of equations preserves the symmetry constraints thétd to an on-shell pion, and two off-shell photons that have
dictate this anomalyj29,30. Our approach indeed repro- equal spacelike virtualitieQz. Although experimental data
duces the correct neutral pion decay width. The difference i@re not available for this equally virtual configuration, it is
the coupling constant produced by the finite sizemof is  interesting from a theoretical point of view.
less than 2%, which is our estimate of our numerical accu- At low Q? this y* 7— y* form factor is reasonably well
racy. Since the decay width is very sensitivenig, we use represented by a dipole, in contrast to thew— y case,
the experimentatin,, to convert the experimental width to the Which is an almost perfect monopole, see Fig. 2. This dipole
coupling constangixyp;=0.501t 0.018; our theoretical result behavior is consistent with VMD; in the symmetric case
is g, =0.502.

B. Equal photon momenta

“The present numerical procedures are an improvement over those
used to obtain the first results fdﬁfmy(Qz) within this model,

For one on-shell photon, we can define a transition formreported for lowQ? only in Ref.[33]. In particular the present
factor FY*WY(Q2)= F,TW(QZ,O) for the processy* m— v, result is about 15% higher near 1 Gelue to the inclusion of all
which has been measured by the CELLO and CLEO Col42 Dirac covariants of the quark-photon vertices and sufficient
laborationg31,32. Our numerical results for this form fac- terms in the Chebyshev polynomial expandibg] of theq- Q (and
tor are presented in Fig. 1, and agree very well with theg-P) dependence of each vertex function.

A. ¥* @y transition form factor
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RN F(QQ>4WT2[J(w)+OaS : )]
N 2 N DSE result 1 1,2 > 5 — 5 (-
4 _VMDrdei;léé ] Qi +Q3 T (Qi+Q%)?
151 vy e bare vertices | (19
5 - F 2’ )
______ V(,\?D?T)]onopole : Here o is the photon asymmetryQ5—Q3)/(Q3+Q3). In
5 | ] light front QCD J(w) is related to the leading twist pion
‘“g"1-0_— distribution amplitudeg _(x) by
L
' It (20
w)=5| ———d(X).
o5 3Jo1—-w?(2x—1)
I The normalization of¢(x) immediately givesl(0)=4/3
05—

for the case of equal photon virtuality. Since a corresponding

Q? [GeV?] ' ' result does not exist fow=1, one expects more model de-
pendence for that asymmetric case.

FIG. 2. Our DSE results for the symmetrig" 7— y* form Within the present DSE-based approach, it is straightfor-

factor at low 2momentum together with a simple VMD dipole with ward to analyze the asymptotic behavior for equal virtuality

mass scalen?=0.59 GeV. For comparison, the/* 7— y form From Eq.(16) with photon momenta),=P—K/2 andQ,

factor F(Q?2,0) and the corresponding VMD monopole from Fig. 1 = — P—K/2 and pion momenturi, we have
are also shown.

A

u . _ 2 T
VMD leads to dipole behavior since both photons behave Au(QuiQ2)=—e NCL TMS(a)T(a.a-)S(a-)
like 1/(Q2+m) near thep pole. However, for spacelike
momenta of abouQZ>0 5 GeV, the influence of the vec-
tor meson resonance has weakened considerably and the be-

havior becomes increasingly a monopole form. This can bavhereq..
seen more clearly in Fig. 3.

XT,(q-, ST (a,9:)], (21)

=q=*K/2 andq=q-+ P. The pion mass-shell con-
dition coupled withm_ being negligible compared to the
other scales leads to the asymptotic domain being character-
ized by Q?=Q3=P?>K?. In this perturbative domain, we

As pointed out recently35], it is convenient to discuss have

the asymptotic behavior of this form factor with reference to

I, (q—K/r2g+P)S(q+P)I' (g+P,q+K/2
the following form produced by the light-cone operator prod- wd at+P)Sta+P(q a )
uct expansiori34,36]:

C. Asymptotic behavior

~237,8%a+P)y,
— i 2
S ——r — T __Izzeuvaﬁ75yapﬁlp +v (22)
0 \\ — . . . . .
W | DSE results | 3 whereZ, is the renormalization constant appearing in &.
____________ VMD d'p‘?'e ] for the dressed-quark propagator, and the terms not shown
""""" bare V‘Z”z'cesz . make only subleading contributions to the final result. Thus
10'E - @RI /QY 4 the asymptotic behavior of the impulse approximation vertex
in Eq. (21) is
o 2L - i . B
A Al Q1 Q) =1€°ZoNce g 3
L ‘\\\ A
ok S x| “Tis@or7a. 8@ s
\,\ 3 q
\\ 1 (23
4 N
10 N Ny g N Noting that the integral produces the pion decay condtant
102 107 10° 10! 102 10° via Eq. (8), we find from Eq.(17) the asymptotic result
Q% [GeVA
) o 16772?37
FIG. 3. Our DSE results for the symmetrig" m#— y* form F(Q1,Q5)— ————-, (24)
factor, compared to the derived asymptoti@4behavior. Note that

3(Qi+Q3)
or in other wordsJ(0)=4/3.

f.=131 MeV. The naive VMD model suggests a dipole behavior,
which is correct only in the infrared.
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TABLE Il. The asymptotic behavior summarized in terms of the ~ TABLE Ill. Coupling constants and partial widths for radiative
coefficientJ(1) for the y* 7y form factor, andJ(0) for the sym-  decays ofp and w, compared to experimental ddt23].
metric y* wy* form factor, as defined in Eq19).

Calc.g/m Expt.g/m  Calc.I' Expt.T"

J(1) light-cone pQCDO34,3 2

JE]-; A?\ikin ot ar([g35]q g 18 poﬂ 71'0)/ 0.68 GeV'?! 0.9+0.2 52 keV 10225

J(1) earlier DSE analysig37—-39 4/3 P 0.68 0.7420.05 52 687

J(1) current DSE model numerical estimate 1.7 @77y 2.07 2.31-0.08 479 7143

J(1) experimental estimate 1.6

J(0) Anikin et al. [35] 4/3 replacing one of the vector vertices in the generic PVV tri-
J(0) DSE analysis _ 413 angle diagram, see Edl), by the vector meson bound state
J(0) current DSE model numerical result 13 BSA, and the other by the dressed quark-photon vertex. The

only difference between these three radiative decays is in the
flavor dependent factors.

Our numerical calculation reproducd$0)=4/3 within For the radiative decay™ — 7" v, the photon can radiate
numerical accuracy as can be seen from the dashed curve m)m either theu quark or theaquark giving

Fig. 3, whereQ?=Q3=Q?2. In this figure we also show that,
in the asymptotic region, results employing the dressed- AP Ty @ Aua,u_*_”fAuE,E 25
quark-photon vertices obtained from the solution of the lad- e Quit ™+ Qalyy™ @9

der BSE approach rapidly the results obtained with bare VerﬁvhereA;‘Eq is the vertex having the indicated quark flavor

tices. This confirms the key approximation used to obtain quabeling and containing no charge or flavor weights associ-

\(iitsr)]i;otrhg]eDgga;ﬁ;o?gLacuon of the asymptotic behaworated with external bosons. With both th& and #° given by

Now we return to the experimentally accessible asymmet(”“_dd)/\/z' the radiative decay®—m’y can be ex-
fic case where only one photon is on-shell, and the other on@€ssed as
virtual: w=1. Perturbative QCD on the light front, in com-
bination with factorization, suggesi$1)= 2 [34]. However,

a monopole fit to the experimental data, f@” up to where the radiative contributions from both the

R . . quark and the
10 Ge_\F, pro_ducesJ(l)—1.6[35]. Th's value agrees quite antiquark of the same flavor have been combined. In the
well with estimates based on a chiral quark model with a o

H H H [ uU,u_ dd,d_ uE,u
phenomenological interactidi85] and with a fit to numeri- 1SOSPIn_symmetric limit, we haveA,,"=A"=A,,

APTTT= G, AU+ QA e (26)

uv

cal results of the DSE model of the present work. Table I1= —A;‘ﬁ'd, and thusp™ and p°® have identicalry radiative
provides a summary of these results. decays at this level.

The asymptotic behavior of the form factor for the asym-  The radiative decaw— 7%y is given by

metric case ¢=1) was analyzed in earlier DSE-based R — _
works [37—39, through an argument that is the counterpart ALTY=QuANSY = QgA LS, (27)
of what we have presented in EqR3) and (24) for the _
symmetric case. A complicating aspect of the asymmetri¢vhere, compared to Eq26), the change in phase of the
case in the Euclidean metric is that, because of the massecond term here comes from the phase ofitthteomponent
shell constraint imposed by one photon being real, the twaf the w. Again, with isospin symmetry, we hava ;7"
photon-quark vertices and the quark propagator linking them. p uuu g4 hence\ ©77=3AP™Y

.. . . y7a% nv Mmoot
have momentum arguments containing imaginary parts that |4 impulse approximation, the physical vertex is given by
grow with the asymptotic scale, but are subdominant to the ;

. he quark loop integral

real parts. The earlier analyses made the reasonable assump-

tion that the leading asymptotic behavior is produced by con- Ng (A

sidering only the real argumentand thus the known UV Aﬁzy(P;QFe?j Tr{S(a2)I""(d2,91)S(q1)
limit) of the propagator and vertices; the result obtained is K

J(1)=4/3. In the symmetric case, the scale of the imaginary XTI (01, K)S(K)IT(K,02)], (28)

parts is dictated only byn_, and knowledge of the UV
behavior ofl" ,SI",, is needed only along the real spacelike whereP is the p momentum, the photon momentum @
momentum axis to produce the result given by ). We  and the pion momentum iK=—(P+Q). We have used
consider this situation to be more reliable; it is confirmed byq,=k+P and q,=k—Q. This is completely analogous to
the comparison in Fig. 3 between results with and withoutEq. (16) for the yy vertex if the quark-photon vertexX",
dressing of the photon-quark vertices. is replaced by the BSA. In fact, if that photon momenta is
continued into the timelike region, use of EGl) to extract
the p° pole contribution to theryy vertex will identify Eq.
(28) as thepmy vertex.

An impulse approximation description of the®7%y, The pmy* transition form factor is identified from the
p= 7"y, and 0’7y transitions can be obtained simply by pwy vertex according to

IV. THE pwmy AND @y TRANSITIONS
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T a result from an earlier study1] that implemented phenom-
—— DSE calculation _ enology at the level of the dressed-quark propagator and the
----- VMD & monopole | plo BSA. For reference we also display the simple VMD
""" - Mitchel-Tandy 1995 monopole having mass scaie, .

* IHEP data Note that in the timelike region, the three different curves
and the experimental data are all very close to each other:
they are dominated by the resonance pole atpthe mass.
However, the three curves differ significantly in the spacelike
region where a monopole clearly does not represent the be-
havior obtained from modeling at quark-gluon level. Our re-
sults can be represented, in the manner of a Rgubeoxi-
mant, by the formula

TT

'

1

'

'
.
1
1

1
1
\
[
[}
A}

] ) 1.0+ Q?

Fon(Q9)= 5 7 5
| o Tl ] 1.0+ 3.04Q2+2.420%+ 0.36Q
0.0 1.0 2.0 3.0 4.0 5.0
Q? [GeVY

(31)

FIG. 4. Our DSE resultsolid line) for the wmy* (andpmy*) whlch_|s a_lmost mtzjlstmgms\;able f_rom our form factor in the
form factor, together with a simple VMD monopole with mass scaledomaIn . 0'5<Q_<5 Ge. - This SUQ_QEStS that the
m2=0.61 Ge\ (dashed lingand the more phenomenological re- asymptotic behavior of this form factor isQ?. Although
sult from Ref.[41]. The data in the timelike region are from Ref. there are no experimental data available for ghey* pro-
[40]. cess at spacelike photon momenta, indirect information
about this form factor can be obtained from analyses of elec-
€0ymy ) tron scattering from hadronjc targets: e.g., it contributes as a
APT(P;Q)= m €uvapPaQpFp»(Q°) (29  meson exchange current tied to boson exchange models of
s the nuclear interaction. In this case thg# current” is vir-
at P2= _mg_ At the photon point we hav&(0)=1, and tual and the relation_ship to processes involving true quark-
9, IS the conventional coupling constant associated witfgluon bound states is not entirely clear.

the radiative decay width ~ Thus thepmy* form factor plays a role in the interpreta-
tion of electron scattering data from light nuclei, because the
2 m2\ 2 isoscalar meson-exchange current contributes significantly to
aeﬁgpwy T . .
Fpny=——,— M| 1-— (30 these processes. In particular, our understanding of the deu-
24 m2 : H 2
P teron electromagnetic structure functions foQ

) ) ~2-6 GeV requires knowledge of this form fact42].
;’he cBrgrgspondmg formulas hold for the— my decay with - iitial exploratory study[41] of the pmy* vertex within
wmy = dpmy . . the present framework, but employing phenomenology to a
As Eq.(29) shows, it 1SG, 7, /M, that is the _na_tural out- much greater extent, produced a very soft result for the form
come of the calculations of the vector radiative decaysfactor and this is shown in Fia. 4 the Mitchell-Tand
therefore, it is this combination that we report in Table Il 9. ~ as the Mitchell-1andy
We also give the corresponding decay widths. Except for th&Urve. I was_;ou_nq[42] th(;it(;he resultmgdrgeson e_xchapghe
difference between the decay of the neutral and chargeﬁ:me.nt gontn ut|on| provide ayery; goof escrlpztlon Odt €
states of thep, which evidently is beyond the reach of the € aStZ'C. euteron e ectromag%r}enc orm factaxéQ") an
isospin symmetric impulse approximation, the agreement beE}(Q ) In the range 2-6 Gey where such effects are im-
tween theory and experiment is within 10%. This is consis-portant' : o
tent with the otherr and p observables obtained from the The model under consideration in the present work, based
same model. Note that part of the difference between th&" the DSEs of QCB has no frge parameters other than the
experimental decay width and our calculated decay widtfWo set byf, and(qq) as described earlier; the amount of
comes from the phase space factor because our calcyated®?enomenology is significantly less than the earlier Mitchell-
and w masses are about 5% too low. Tandy resulf41]. The present wc_)rk. produces a form factor
that is much softer than what is inferred from VMD but
obviously harder than the Mitchell-Tandy resfAtl], as can
be seen in Fig. 4. We expect the present impulse approxima-
In Fig. 4 we show our DSE result for thewy* transition  tion results for the form factor to be as reliable as the pion
form factor as a function of the photon moment@?A. The  and kaon charge form factors from this modéb]. The
pmy* form factor is identical to this. Our result compares present form factor is harder than what is required to fit
reasonably well with available experimental data for theelectron scattering from the deuteron if the standard analysis
wmy* form factor in the timelike regioi40]; we are not is employed43]. What is required for progress is some es-
aware of data in the spacelike region. Also shown in Fig. 4 idimation of the likely effect from the virtuality of ther and

A. Transition form factor

045211-8



ELECTROMAGNETIC TRANSITION FORM FACTORS ©. .. PHYSICAL REVIEW C 65 045211

pqq correlations relevant to the meson exchange currentounts for the transition strengd), ., in terms ofg,.,., and
mechanism. An investigation of a related aspect of this issuthe other more fundamental quantities. The relation
is to be found below.
Omyy fpgpm
_ — T TE (35
B. Virtual vector qq correlations and VMD v \/Emp
In Sec. Il Awe have seen thgt the — 7y form factor is is borne out to the extent that substitution of the separately
an aImoEt. perfect mor;}opo:]e with, as the mass scale, sele calculated values of these quantities gives 0.138 for the left-
Fig. 1. T Is suggests that the vector meson resonance pole {} 14 side and 0.134 for the right-hand side.

the dressech*q vertex dominates to the extent that the In the ’y*—>7T‘}’ process, we can view thﬁ'y transition

following VMD mechanism is very effective: there isyap -

transition, ap propagation, then a-7r-vy transition. Implicit

in this three-step mechanism are the assumptions that ev
; " . .

for spacelike momentum of the*, the first and third steps ,5qeled by meson exchange. In the case of a vector

are described by coupling constants defined atth®ass  { channel mechanism, the nucleon current is required to pro-
shell, and the momentum dependence is carried totally by the

propagator of a point particle having thenass. However, at vide a spacelike vectayq correlation to the?’”_ transition
the quark-gluon level, one cannot defing-aneson bound ~current. If we model the vectayq vertex provided by the

state at spacelike momentum; only a veaqey correlation ~ nucleon —current  as a(p-)7.9vnn(P?a(p-), where

with the same quantum numbers pfcan be discussed. 9vnn(P?) is the phenomenological coupling constant and

Hence the issue is the domain of applicability and the accuform factor corresponding to thechannel momentun®,

racy of those assumptions. We wish to explore this for e&hen we have a pointjq correlation that can interact and

variety of PVV processes; we will begin with the connectionpropagate to the/s transition current. The object with mo-

between they* 7wy process and thpmy process. mentumP=p, —p_ that describes this satisfies the inhomo-
We begin with Eq(16) for the quark loop integral, which geneous BSE

0 . .
produces the verteX7,”” via Eq. (17), use the notation

current as coupling to a vectqn correlation initiated by the
%;. In the procesg* N— 7N away from thes-channel reso-
nce region, one often considers gethannel mechanisms

A
changeQ;— P and Q,—Q, and consider the domaiR? NNp, ,p_)=227MQVNN(P2)+f K(p.,q;P)
~— mi. The quark-photon vertek ,(q,,k) in Eq. (16) then q

behaves like

®S(q)T)"Na..q-)S(q-).  (36)

f,m This is i 2y i
LT IR is is justgynn(P?) times the dressed vertex seeded by
I'u(a1.k) P2+mgrl’~(q1'k)' (32 Vs 1€, gynn(P?) times the photon vertek', . Sincel’,
has the vector meson pole, see Bf), the meson exchange

Use of only this resonance contribution gives mechanism, including the “meson” propagation, is embed-
ded in this vertex.

A more exact treatment would be to calculate a distributed
TS(9,)T™(95,9;) vector qq vertex q(p;)V,.(p+,p-)d(p-) from a quark-

AP Q)~

f,m, V2eN, fA

P2+ mﬁ 3 k gluon model of the nucleon. In the absence of a reliable
e ) calculation of such a distributed vertex, we here explore the
X S(q)il' (a1, k) S(K)IT,(k,q2)] consequences of the above modeling of the nucleon current
ie\/ifpmp asa pointllike curreng(p-.) y#gv.NN(PZ)q(p,). For ;implic-
= ﬁAZ’Ly(P;Q), (33 ity, we omit the phenomenological nucleon coupling strength
P+ my gynn(P?) in the calculations below, which can be easily ap-

pended for subsequent applications suchyasl— 7N pro-
where the last equality follows from identifying the quark cesses. Thus, for thé* wy* vertex we are led to the im-
loop integral for thep 7y vertex via Eq.(28). We substitute  pulse approximation
the general forms of both vertices from E¢%7) and (29)

and cancel common factors. This yields - N. (A
’ AT (PiQ)=e— fk Tr{S(02) 1 7(05,01)S(d)

9x fpGp .
4t 7 P e gy P (@) XA stk a], 37

(34 where Q is the photon momentum, the vector current mo-
mentum isP, and the pion momentum k= —(P+ Q). We
When the nonresonant photon is real, Fig. 1 shows thatave usedj;=k+P andg,=k—Q in complete analogy to
Fy*m(PZ,Q2=O) is very accurately described by this Eq. (28) for the pmy vertex but withl"\,f replacing thep
monopole shape even for spacelike momentum as large &SA. In analogy with Eq.(29), the general form may be
P?=5 GeV®=10m>. At P?=0, Eq. (34) accurately ac- expressed as
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egpﬂ_y VT ——

AVTHPIQ) = 2 e P QuAys e (PEQ2), 2 B
3% ( Q) mp unvaf QB V* gy ( Q : + -0_2GeV2
(38) : * 0.2GeV?
o . _ x 0.8 GeV?
thereby defining an amplitud&s ... Due to Eq.(32), this o 9 3.0 GeV |
amplitude has the physical vector meson resonance pole Yo | Foed@) fym, / (P m )|
the mass shellP?= — mf). We thus may write for any mo- o, S
mentum e foe !
e
¢ m R S SN R e |
Ayx *(PZ,QZ): PP G * o *(PZyQZ)y (39 ; o R xx x L # S J
y P24 mi p* Ty g n R x % :
L e » o S
and this serves to define a generalized form faGgs I S

for the “process”y* p* — . At the p mass shell, this form 102
factor G« ., reduces to the previously defined form factor
Fpm*(QZ). Note that this form factor is not unique in the
sense that we have chosen one particular description of th .|

vector qq correlation. A different choice for the inhomoge-
neous term in Eq(36) would lead to a different amplitude 5
Ay -+ and thus to a different form fact@ ,« .« ; only for o
on-shellp and 7 mesons can one uniquely define a form ~;
factorF . o*

Our choice for the inhomogeneous term leads to a mo-
mentum dependence of the amplitudgs .+ that is the
same as that of the* 7y* form factor, apart from the over-
all scale. Hence the earlier observations associated with Fig
1 indicate that forQ?~0, the monopole shape iR? with
mass scale m, dominates. Thus the form factor
G, x p(P?%,Q?=0) in Eq. (39) has very little P? depen-

1.0

L 4 v 4 P T SR T NN TN SR T TR NN SR ST SR NN SO T N
dence and the meson exchange picture is thus very effectiv *105 0 05, , 15 2
there. In other words, the strict VMD approximation Q° [GeV]
to Eq.(39),

FIG. 5. Top: The virtual vector momentui®® dependence of
the amplitudeAyx .« from the DSE calculation for several values
Ay *(Pz Q2)~ fpmp F *(Qz) (40) of the photon momentur®? is shown by the discrete points. The
ks ' P24+m? P ' meson exchange approximation is shown by the curves. Bottom:
P The Q? dependence of the generalized form facgg ..« (P%,Q?)
is valid for Q?=0 and for the complete range of spacelike for several values of the virtual vector momentih is shown by
p2 investigated here<5 Ge\/z). the discrete points. The curve is the on-erqJLy*(Qz).
The question arises: what is the more general domain of
Q? and P? for the applicability of the meson exchange pic- the VMD approximation. This means that the R+ mi)
ture? Certainly whei®? andP? are both large, we can con- behavior of thep-meson propagator increasingly overesti-
clude from Fig. 3 that the amplitud@y« . (P?,Q? with  mates the falloff with the momentum of the virtual vector
Q?=P? falls off like 1/P?, whereas a meson dominance object; the meson exchange picture is showing its limita-
model would predict B* Thus, the form factor tions. As a consequence, the momentum dependence of the
G+ yx (P?,P?) becomes a constant for lar§é, in contrast  generalized form facto® ,« .+ (P2,Q?) becomes more evi-
to pr*(Pz), which seems to fall off as B, as can be dent; compared to the on-shell form facﬁ),;m*(Qz) it be-
seen from Fig. 4 and our fit, E431). comes progressively harder @2 for increasing(spacelike
In the top panel of Fig. 5 we display as discrete dataP?. This can be seen more clearly in the bottom panel of Fig.
points our results for thé? dependence of the amplitude 5.
Ayx .« (P?,Q?) for several values of the photon momentum  If Q2 andP? are both more spacelike than about 1 &gV
Q?, and compare it with the naive VMD formula, E@0).  the point meson propagator in the VMD or meson exchange
For photon moment®? near thep pole, the behavior of the approximation represented by E@0) can overestimate the
amplitude A as a function ofP? is softer than one would falloff by 50% or more. We anticipate this inadequacy of the
expect from VMD. This is no surprise, since we have alreadypoint meson propagator to apply generally to meson ex-
seen in the preceding section that the on-shgll « is softer  change models. No standard phenomenological form factors
than VMD. For Q>~0, the VMD prediction works quite for the coupling of virtual “mesons” to hadronic currents
well. For increasing spacelik®?, the amplitudeAyx .+ is  [such aggynn(P?)] can compensate for the propagator fall-
progressively harder iR? (i.e., falls off slowey compared to  ing off too fast. In the present specific case, we have a space-

045211-10



ELECTROMAGNETIC TRANSITION FORM FACTORS ©. .. PHYSICAL REVIEW C 65 045211

like ayﬂq correlation, not a “virtual bound state meson.”

This qv,q correlation falls off slower than a point meson

propagator; in the UV region it does not vanish, but goes to , .
a bare vertexy, . Our modeling of theyy,q correlation by X100, k) S(K)IT(k,g2)], (45
a ladder BSE with a point inhomogeneous term is in agree- . o .
ment with perturbativg QCD Wher(geas the notion of a hi%hlyand. note that this Is renprmallzatlpn—pomt dependent. We can
virtual p-meson “bound state” does not make any sense iniefl?e*(K?Qz)ri?grmal|zat|on—p0|nt-dependent amplitude
the perturbative region. PPy ’

PPy pD- - & A
AZ(PIQ)=e | THSa: To(az. a0 St

9pn
I:}]_py e,u.vaBPaQﬁ’ApP* y*(KerZ)y

As an extension of these observations, we also calculate (46)

the corresponding amplitude associated withdRé v* ver- B .
tex, whereP stands for the pointlike pseudoscalar currentWhereK_ (P+Q) is the pseudoscalar momentum &Qd

— ) , ) , _is the photon momentum, both incoming to the diagram. This
gysqg. The interaction and propagation of this correlatlonamp"tude A o« has a physical pion resonance pole
generates the pion pole. The quantity thus made available © the masspshyelkzz —m?. We thus may write for any
us is relevant to they* N—pN process viat-channel ex- ' ”'

change of a pseudoscalgqg correlation. Of course, in a

more realistic calculation, one should use a distributed vertex )

a(p.)P(p.,p-)a(p-) from a quark-gluon model of the Aypx +(K2,Q%) = K2t 2 Gy e (K2,Q%),  (47)
nucleon, rather than a pointlike pseudoscalar vertex. Corre- ™

sponding to Eq(36) fgr the vector case, our approximation and this serves to define a generalized form fa@gg«

for the pseudoscalaq correlation[with the phenomeno- for the “process”y* P* — p. This dimensionless form factor
logical gpnn(K?) removed is the inhomogeneous BSE for s renormalization-point independent, and reduces to the on-

— PYP-O) =
C. Virtual pseudoscalar qq correlations AZVY(P’Q)—e

momentum

the vertex shell form factor F,,.«(Q? at the pion mass shell,
A K?= —mf,. With G, .« ,» replaced by its value at the pion
Is(py ,p_):Z4y5+f K(p,q;Q) mass shell, Eq(47) yields the meson exchange approxima-
q tion
®S(q.)l's(q4,0-)S(g-), (41 o)
A pr 4 (K200~ —22F . (Q2). 48
where the total momentum i=p, —p_. Note that this ppe o+ (K5,Q7) KZ2+m2 77 (@) 49

dressed vertex is renormalization-podependenthowever,
the combinatiomg(u)I's, wheremg(u) is the current quark The directly calculated amplitud®,p+ .+ is shown in the
mass, is renormalization-point independent. Near the piompper panel of Fig. 6 by the discrete points as a function of

pole, this dressed vertdxs behaves like K? for several values o®?2. The continuous curves illustrate
the meson exchange approximation, E48). The degree of
ro(w) agreement indicates the domain where the pseudoscalar me-
Is(ps,p-)~———=T7(p+.p-), (420 son exchange picture is effective. The pion pole dominates
Ko+ m3 the behavior at low momentum of the pseudoscalar correla-

. o . _ tion. For on-shell photons, the meson exchange approxima-
whererp(u) is the renormalization-point-dependent residuetion s quite accurate for spacelike momenta up to about

in the pseudoscalar channel and is given b§| K2=1 Ge\2~50m2 . However with increasin®?, one ob-
N serves that the pion pole alone falls off witt? faster than
. - . 2 2 - .
rP(M):Z4NCf T vsS(q.)T™(q. ,q-)S(q.)]. what is required to degcrlbepp* »#(K%,Q%). Similar to the
q vector case, for spacelike photon momenta, the falloff of the

(43 amplitudeA with K2 is slowerthan that of a pseudoscalar
meson dominance model; the meson exchange picture thus
The axial-vector WTI dictates that this pseudoscalar residu@as a very limited domain of applicability.

is related to the pion mass and decay constant throLigh In the bottom panel of Fig. 6 we display the generalized
form factorG,, .« .« (K?,Q?) as a function of the photon mo-
2my(u)rp(p)="f,mz, (44  mentumQ? for several values of the virtual pseudosca&r

The physical form factor at the pseudoscalar meson mass
where the renormalization-point dependence of the curremheII,Fy*M(Qz), is shown by the continuous curve. The rise
guark mass and that of the residue is such that the combinat timelike photon momentum is due to the vector pole in the

tion is renormalization-point independent. photon-quark vertex. This figure illustrates that the form fac-
In a way that is completely parallel to E@7), we model tor as a function of)? becomes harder as the momenti{f
the pP* v* vertex through the impulse approximation of the spacelike pseudoscalar correlation is increased. For

045211-11



PIETER MARIS AND PETER C. TANDY PHYSICAL REVIEW 5 045211

' ' ' ' ' ' ' Within the u andd quark sector we have obtained the cou-

1025_2 . oi:o . 3 pling constants for the radiative decays-my, w— 7y,
il T Q =06GeV ] and7%— yvy. We have studied the form factors for the asso-
x Q°=1.5GeV

ciated transitionsy* 7°—vy, y*w’—y*, y*7—p, and

v* p—r. The latter two processes are of interest as contribu-
tors to meson electroproduction from hadronic targets away
e ] from the s-channel resonance region.

o Q?=3.0GeV?
2, 2 2
----- F (@) /(K% m %)

T S We have exploited the fact that since a quark-gluon model
e LR — can dynamically produce the vector meson pole in the
<>>< ,,,,,, x ++ ,,,,,,, E dressed photon-quark vertex, the validity and effectiveness

. .0"" : ......................... o : ,,,,,,,,,,,,, of using a meson exchange picture in nearby momentum
e & S domains can be tested. We find that for the transitiénr°
) | | | | | | _____________ — — v, the vector meson resonance pole term extrapolated to
10 0.2 04 0.6 0.8 the photon point produces an estimate of pheadiative de-
K? [GeV?]

cay coupling constarg, ., in terms of ther decay coupling
constang ., that is accurate to within a few percent. How-
ever at the photon point and more generally for spacelike

2 _
— For{@) ]

* k- 0.01GeV
+ k2= 0.1 GeV*
x K?=0.3GeV

momentum, there is no vector meson bound state; the object
that occurs in such dynamics is a vectgr correlation de-
scribed by the dressegly,q vertex. This particular meson-

° K =0.8GeV?

gq duality cannot survive when the momentum of the vector
object becomes sufficiently large and spacelike because the

dressedqy,q vertex eventually becomes bare or perturba-

tive, it does not fall off with large spacelike momentum, that

is, it cannot provide a falloff like a point meson propagator.

Nevertheless, for a large range of spacelike momentum, we
find the shape of the form factor for the transitigfi 7°

— vy to be quite accurately described by a monopole with

mass scalen,, which is also consistent with analyses of the

asymptotic behavior. This is an example of the empirical

effectiveness of the simple VMD assumption being much

greater than its faithfulness to the underlying dynamics or

I R R R
1.5 2 2.5 3

? 1GeV?

1
3
Q

FIG. 6. Top: The dependence of the amplitu8ig« ,» on the
pseudoscalar momentuk? for several values of the photon mo- . -
mentumQ? is given by the discrete points from the DSE calcula- physical picture. . L. L
tion. The meson exchange approximation is given by the curves. We have exam_lr_1ed this issue further by considering form
Bottom: The DSE results for th®? dependence of the generalized factors for transition processeg*P—p and y*V—,
form factorG,, .« ,« (K?,Q?) for several values of the pseudoscalar where P and V are virtualqq objects having the quantum
momentumK# are the discrete points. The on-shgl),.«(Q?) is  numbers of ground state pseudoscalar and vector mesons,
given by the curve. respectively. Such processes often arise in meson exchange

models of electroproduction of mesons from hadronic tar-
spacelike K?<0.1 Ge\/2~5m,2T the meson exchange ap- gets. Our model of the underlying quark-gluon dynamics is
proximation is quite good up t@?~3 Ge\?, but with the us_ed to investigate the extent to which the virtualityvcdind
larger virtuality, K2>0.8=40m?, the error in the meson P influences the corresponding form factors that should be
dominance assumption has grown to almost a factor of 2 &Mployed in meson exchange models, given that the em-
Q2~3 Ge\2. No standard phenomenological form factor ployedt-channel propagator is of the standard point meson

for the meson-nucleon couplingpyn(K?2), can compensate. type.

This observation is evidently due to the fact that thgq Here we mngI the hadronic coupling or P as gener
correlation does not continue to fall off with increasing &€d by & pointqy,q or qysq vertex accompanied by a
spacelike total momentum, but goes to a constant. standard phenomenological meson-hadron form factor. The

physics of interaction and propagation\vor P towards the
v* 1 or y* p transition currents is implemented by the solu-
tion of the ladder BSE for the corresponding dressed ver-

We have studied selected meson transition processes aswns of theqy,q or qysq vertices. We contrast the results
associated form factors within a model of QCD based on thebtained this way with those from the meson exchange pic-
Dyson-Schwinger equations truncated to the ladder-rainbowure in which they* #—p and y* p— & form factors are
level. The infrared structure of the ladder-rainbow kernel ispaired with the corresponding point meson propagator. In
described by two parameters; the ultraviolet behavior is fixedhis way we obtain some insight into the domain of applica-
by the one-loop renormalization group behavior of QCD.bility of the meson exchange mechanism for these processes.

V. SUMMARY
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We find that near the photon point, the dependence of thenore exact treatment would require a quark-gluon descrip-
amplitude fory*V— & upon the spacelike virtuality of is  tion of the nucleon transition current. It is a difficult task to
well described by the meson exchange picture out to at leasombine such a description with the meson transition form
5 Ge\?, which is the limit of our examination. As we have factors considered here. Some progress in the development
pointed out, there is indirect information that the agreemenbf the required techniques within a DSE approach can be
will extend to asymptotic spacelike momenta. Howeverfound in Ref.[44].
when bothy* andV are more spacelike than about 1 GeV
the point meson propagator f& overestimates the falloff
with virtuality of V by at least 50% and the discrepancy
increases with the virtuality. This means that teV 7 form
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