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Modeling the strangeness content of hadronic matter

G. Toledo Sa´nchez and J. Piekarewicz
Department of Physics, Florida State University, Tallahassee, Florida 32306-4350

~Received 6 September 2001; published 27 March 2002!

The strangeness content of hadronic matter is studied in a string-flip model that reproduces various aspects
of the QCD-inspired phenomenology, such as quark clustering at low density and color deconfinement at high
density, while avoiding long range van der Waals forces. Hadronic matter is modeled in terms of its quark
constituents by taking into account its internal flavor (u,d,s) and color~red, blue, green! degrees of freedom.
Variational Monte Carlo simulations in three spatial dimensions are performed for the ground-state energy of
the system. The onset of the transition to strange matter is found to be influenced by weak, yet not negligible,
clustering correlations. The phase diagram of the system displays an interesting structure containing both
continuous and discontinuous phase transitions. Strange matter is found to be absolutely stable in the model.
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I. INTRODUCTION

Strange matter, a deconfined state of quark matter con
ing of almost equal amounts of up, down, and stran
quarks, has been speculated to be the absolute ground
of hadronic matter@1,2#. If true, nucleons and nuclei—an
thus most of the luminous matter in the universe—is in
long-lived metastable state. Undoubtedly, the confirmation
such hypothesis would have far reaching consequences
variety of fields, ranging from astronomy and cosmology
the way to particle and nuclear physics. Stimulated by s
an exciting possibility, searches for strange matter are
rently being conducted at terrestrial laboratories as well a
space-based observatories. Indeed, a substantial effor
been devoted on experimental searches for strang
~‘‘strange-matter nuggets’’! at both CERN and Brookhave
National Laboratory~BNL! and more are proposed in th
future for the relativistic heavy-ion collider~RHIC! and the
large-hadronic collider~LHC!. These terrestrial experimen
are being complemented by observational searches
strange stars. What would be the signature for such ex
objects? Since strange stars are self-bound objects hav
mass-radius relation quite different than the gravitationa
bound neutron stars, they are allowed rotational periods c
siderably shorter than those predicted for gravitationa
bound stars. Consequently, if a pulsar with a period fall
below the limit of gravitationally bound stars were disco
ered, the conclusion that the confined hadronic phase
nucleons and nuclei is only metastable would be virtua
inescapable@3#.

Such a pulsar may have been recently discovered@4,5#.
The pulsar SAX J1808.4-3658, with a rotation period of 2
ms, is the fastest spinning x-ray pulsar ever observed. Ba
on a study of its mass-radius relation it has been conclu
that SAX J1808.4-3658 is a likely strange-star candidate@6#,
although this interpretation remains controversial@7,8#. Still,
the discovery of such a fastly rotating pulsar appears to h
made the detection of strange matter within observatio
reach. In turn, the confirmation of such an exotic state
matter will help settle the claim that at present our unive
is in a long-lived metastable state.
0556-2813/2002/65~4!/045208~10!/$20.00 65 0452
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In the present work we focus on the impact of strangen
on the equation of state~EOS!. One motivation for this study
in addition to those mentioned earlier, is the observation t
the masses of about 20 neutron stars are remarkably clo
the ‘‘canonical’’ value ofM51.4M ( @9#. Yet conventional
models of nuclear structure, with equation of states c
strained from the bulk properties of nuclear matter, seem
allow substantially larger masses@3,10#. However, the exis-
tence of a quark-matter phase at the core of neutron s
~NS! will soften considerably the equation of state leading
smaller limiting masses. Thus a study of the strangeness
tent of hadronic matter, using a ‘‘QCD-inspired’’ model,
desirable. For static and spherically symmetric neutron s
obeying the Oppenheimer-Volkoff equations the only phy
cal ingredient that remains to be specified is the equation
state. Yet an equation of state that is accurate over the w
range of densities present in a neutron star remains a fo
dable challenge. For example, such an equation of s
should be able to describe the hypothetical ‘‘hybrid star
neutron stars consisting of a quark-matter core below
nuclear-matter mantle. Unfortunately, traditional studies
strange matter has been conducted in two vastly differ
pictures @11–14#. One picture uses a hadronic model—
similar to ordinary nuclei—where the fundamental degre
of freedom are mesons and baryons. The other picture us
quark model consisting of massless, noninteracting qua
confined inside a bag. Presumably a description of stra
matter in terms of mesons and baryons is well motivated
the low-density regime where clustering correlations rem
important. At the same time, strange matter viewed as a r
tivistic Fermi gas of quark might be appropriate at the e
tremes of densities necessary for color deconfinement to
cur. Yet this division seemsad hoc and arbitrary; for
example, at what density should one switch from a nucle
to quark-based description? Perhaps the most serious
culty encountered in modeling the density dependence
hadronic matter and the resulting EOS is how to mode
system that has quarks confined inside color-neutral had
at low density but free quarks at high density. Much of t
responsibility for such complexity rests on the se
interactions among the gluons which generate quark confi
©2002 The American Physical Society08-1
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ment in the low-density regime. On the other hand, the qu
substructure of the hadrons should become important as
density increases.

Although the evidence in support of QCD as the corr
theory of the strong interactions is overwhelming, at pres
no rigorous solution of QCD exists in the regime of hig
baryon density. Thus, one must resort to QCD-inspired p
nomenological models. Such models of hadronic matter
ing quarks as the underlying degrees of freedom have b
developed to reproduce some properties of QCD@15–19#.
The main feature of these models—generically known
‘‘string-flip’’ models @20#—is the existence of a many-bod
potential able to confine quarks within color-singlet clust
without generating unphysical long-range van der Wa
forces@21#. The many-body potential is evaluated by solvi
a difficult optimization problem; one must decide how
assign colored quarks into color-singlet clusters~see below!.
Presumably, this ‘‘quark-assignment’’ problem is meant
represent the optimal configuration of gluonic strings. Wh
the precise form of the potential is presently unknown,
many-quark problem is likely to require solving some co
plicated global optimization problem. Although string-fl
models violate important symmetries of QCD, such as ch
symmetry and Lorentz invariance, they excel in places wh
most other models fail: the transition from nuclear to qua
matter. In the string-flip model this transition is dynamic
without the need to rely onad hocparameters. Hence, suc
models should shed light on the possibility of stable stra
matter. That the emergence of strange quarks at high-ba
density is energetically favorable is easy to understand.
the density of the system increases, the Pauli exclusion p
ciple forces the chemical potential to increase from the lig
quark massm to EF5AkF

21m2, wherekF is the Fermi mo-
mentum. What is not easy to understand are the details o
transition. For example, do clustering correlations rem
important at the transition density or has the system eva
rated into the free quarks? Does the EOS predicted by
model yield self-bound and absolutely stable strange st
These are the sort of questions that we plan to address in
paper.

An initial study of strange matter in the string-flip mod
was carried out in Ref.@22#. There, a highly simplified ver-
sion of the model was used to simulate one-dimensional m
ter in terms of two-color, two-flavor~‘‘up’’ and ‘‘strange’’ !
constituent quarks. While it was found that clustering cor
lations remain important in the transition region, stran
matter was found to be unbound. In this paper we extend
results of Ref.@22# by simulating three-flavor~up, down, and
strange!, three-color~‘‘red,’’ ‘‘blue,’’ and ‘‘green’’ ! hadronic
matter in three-dimensional space. A variety of ground-s
observables are computed as a function of density with
goal of characterizing the transition to strange matter an
establish the possibility of absolute stability. We have or
nized the paper as follows. Section II introduces the gen
ideas used to model a system of fermions focusing on
structure of the wave function and the many-body potent
We then consider both the low- and high-density limits
establish closed-form baseline results. After describing
variational Monte Carlo procedure, results are presented
04520
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a variety of ground-state observables. Finally, we offer c
clusions and perspectives for future work in Sec. IV.

II. FORMALISM

A. The many-quark potential

The QCD-inspired phenomenology prescribes how
model the many-quark potential. At very-low density th
quarks must be confined within color-singlet clusters t
should interact weakly due to the short-range nature of
nucleon-nucleon interaction. This suggests a strong—ind
confining—force between quarks in the same cluster but
further interaction between quarks in different clusters. Th
the force saturates within each color-singlet hadron. T
saturation is necessary in order for the hadrons to be ab
separate without generating unphysical long-range forces
contrast, in the high-density domain asymptotic freedom
mands that the interaction between all quarks be weak. T
behavior is expected once the average inter-quark separ
becomes smaller than the typical confining scale. In this
gime the only important correlation among quarks will
induced by the Pauli exclusion principle and the syst
should evolve into a Fermi gas of quarks.

A many-quark potential that meets these requireme
was first introduced by Lenz and collaborators@20# to model
meson-meson interactions. Soon after the potential
adapted by Horowitz, Moniz, and Negele for the study
one-dimensional nuclear matter@15#. Several more realistic
generalizations have followed@16–19#, although all limited
to nonstrange matter. It is on one of these models@18# that
we base our present generalization to strange matter.
model is constructed from quarks having flavor~up, down,
strange! and color~red, blue, green! degrees of freedom. The
many-quark potential is defined as the optimal clustering
quarks into color-singlet objects. For reasons that will b
come clear later, the implementation of this idea is carr
out as follows. Consider all red and blue quarks in the s
tem, irrespective of flavor in accordance to the ‘‘flavo
blind’’ nature of QCD. We define the ‘‘optimal pairing’’ of
red and blue quarks as

VRB5min
P

(
i 51

A

v@r iR ,P~r iB!#, ~1!

wherer iR denotes the spatial coordinate of thei th red quark
and P(r iB) is the coordinate of the mappedi th blue quark
@r iB°P(r iB)[r jB#. Note that the minimization procedure
over all possibleA! permutations of theA blue quarks and
that the confining potentialv is assumed harmonic with
spring constant denoted byk ~see Fig. 1!. That is,

v~r iR ,r jB!5
1

2
k~r iR2r jB!2. ~2!

The ‘‘blue-green’’ and ‘‘green-red’’ components of the man
quark potential are defined in direct analogy to Eq.~1!
8-2
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MODELING THE STRANGENESS CONTENT OF . . . PHYSICAL REVIEW C 65 045208
VBG5min
P

(
i 51

A

v@r iB ,P~r iG!#, ~3a!

VGR5min
P

(
i 51

A

v@r iG ,P~r iR!#. ~3b!

In this manner the many-quark potential to be used in
simulations of strange matter becomes equal to

V5VRB1VBG1VGR , ~4!

and thus, the Hamiltonian describing the system ofN par-
ticles each with massmi and momentumpi is given by

H5(
i 51

N pi
2

2mi
1V. ~5!

Several comments are now in order. First, the construc
potential is able to confine quarks within color-singlet clu
ters. Yet the strong confining force saturates within ea
color-singlet cluster allowing the clusters to separate with
generating long-range van der Waals forces. Moreover,
potential is symmetric under the exchange of identi
quarks. Second, the potential is truly many-body as mov
one single quark might cause many of the ‘‘strings’’ to fli
note that even those strings that are not connected to
moving quark might flip. Third, although at very low densi
quarks will overwhelmingly belong to three-quark cluste
there is no guarantee that this will remain true at hig
densities; color-singlet clusters may also be formed fr
62, 92, . . . ,3A-quark configurations~see Fig. 1!. Finally,
we note that there is no ‘‘elementary’’ nucleon-nucleon p
tential in the model, as constituent quarks are the sole
grees of freedom in the Hamiltonian. Yet a dynamically
duced residual interaction between color-singlet clusters~i.e.,
nucleons! is generated through the following two effect
quark exchange and the Pauli exclusion principle betw
quarks. The latter generates a strong short-range repul

FIG. 1. ~a! Y-shaped~left! and triangular~right! arrangement of
strings for a single three-quark cluster; for harmonic string the
tential is identical.~b! An example of a six-quark configuratio
allowed in the model.
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while the former induces a weak intermediate-range attr
tion between clusters, as with every quark exchange~or
equivalently a ‘‘string flip’’! the potential energy of the sys
tem gets reduced. That this induced interaction gets ge
ated in the model is already evident from the structure of
variational wave function which explicitly contains th
many-body potential~thus favoring quark exchange! and a
product of Slater determinants.

As discussed early in this section, the strict demands
posed by QCD on phenomenological models justifies the
troduction of such a complex many-body potential. While
exact functional form remains uncertain, the requirements
quark confinement and cluster separability are likely to
pend on solving some type of quark assignment problem.
simulations involving a large number of quarks an efficie
clustering algorithm is of utmost importance. Indeed, findi
the optimal clustering ofN53A quarks intoA color-singlet
objects requires searching among (A!) 2 configurations. Even
for a modest system containing onlyA510 hadrons the
number of possible configurations already exceeds ten
lion. Clearly, a ‘‘brute-force’’ algorithm is impractical. More
over, ‘‘three-dimensional stable matching problems,’’ such
the three-quark assignment problem, have been shown t
NP complete@23#. The main consequence of a problem bei
NP complete is that no efficient~i.e., power-law! algorithm
exits. Hence, the three-quark assignment problem becom
for all practical purposes, intractable@24#. But for the version
of the string-flip model adopted in this work—where th
clustering of quarks within color-singlet objects is do
pairwise—an efficient algorithm exists in the Hungari
method for the weighted bipartite matching problem whi
finds the optimal pairing in a time proportional toA3 @25#.
Note that while in this case the number of possible confi
rations grows ‘‘only’’ asA!, a brute-force algorithm remain
impractical. Thus, without such an efficient algorithm o
simulations would be limited to a very small number
quarks.

B. The variational wave function

We are interested in describing the evolution of the s
tem with baryon density. For that purpose we use a va
tional Monte Carlo approach based on a one-parameter w
function of the form

Cl~x!5e2lV(x)FFG~x!, ~6!

wherel is the variational parameter,V(x) is the many-body
potential defined in Eq.~4!, and FFG(x) is the Fermi-gas
wave function. This choice is motivated by QCD which di
tates that at low density, when the average interquark se
ration is much larger than the confining scale, quarks sho
cluster into three-quark color-singlet hadrons. Thus, in
low-density regime the potential between quarks in the sa
hadron is strong but, as the interaction saturates within e
cluster, the residual interaction between hadrons is v
weak. Hence, the system resembles a Fermi gas of we
interacting hadrons. It is the exponential term in the var
tional wave function that becomes responsible for induc
the clustering correlations. In contrast, in the high-dens

-

8-3
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G. TOLEDO SÁNCHEZ AND J. PIEKAREWICZ PHYSICAL REVIEW C65 045208
limit, characterized now by an average inter-quark separa
much smaller than the confining scale, asymptotic freed
should take over. In this regime the interactions betwe
quarks are weak and the system ‘‘dissolves’’ into a fr
Fermi gas of quarks. As will be shown below, the variation
parameter evolves from a large~isolated-cluster! value at low
density all the way to zero at high density, as the only
maining correlations between quarks are those induced
the Pauli exclusion principle.

1. Fermi-gas wave function

To describe a noninteracting system of quarks a Fermi-
wave function, given in the form of a Slater determinant,
used for each color-flavor combination of quarks. Each
these Slater determinants is given by

FFG~x!5Ufn1
~x1! fn1

~x2! . . . fn1
~xN!

fn2
~x1! fn2

~x2! . . . fn2
~xN!

A A � A

fnN
~x1! fnN

~x2! . . . fnN
~xN!

U , ~7!

wherefn(x) represents a single-particle eigenstate for a f
particle in a box with quantum numbersn ~see below!. This
construction ensures that the wave function is totally a
symmetric under the exchange of identical quarks. To de
mine the single-particle wave functions we consider a sin
quark of massm confined to a three-dimensional box of sid
a with antiperiodic boundary conditions. The energy of ea
single particle state is characterized by three integer quan
numbersn[(nx ,ny ,nz):

En5
p2

2ma2
~nx

21ny
21nz

2! ~ni51,3,5, . . . !. ~8!

Note that throughout this work we employ units in whic
\5c51. Each energy value, however, is at least eightf
degenerate because there are even and odd solutions o
Schrödinger equation in each of the three spatial dimensio
Thus, a typical basis state is of the form

fnx ,ny ,nz

1,1,2 ~x!5cosS nxp

a
xD cosS nyp

a
yD sinS nzp

a
zD . ~9!

In this way the system develops a ‘‘shell structure’’ with ea
shell holding, at least, eight quarks of each color-flavor co
bination. Let us illustrate how the shells are filled as t
single-particle energy increases. Expressing the sin
particle energies in units ofp2/2ma2, the lowest shell has an
energy of 3 (nx5ny5nz51) and is exactly eightfold degen
erate. The next shell, with an energy of 11 (nx5ny51,nz
53 and permutations! holds 24 quarks, and so on~for more
details see Table I!.

2. Low-density limit

In the low-density regime quarks are confined with
weakly interacting color-singlet (red1blue1green5white)
clusters. Further, although the model allows the existenc
04520
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multiquark configurations, the probability that color-singl
clusters with more than three quarks are formed is van
ingly small @18#. Finally, at these low densities the onset
strangeness is hindered by the large strange-quark m
Thus, in this limit the variational wave function is exact,
we now show.

Consider a nucleon as a nonrelativistic system of th
quarks of massm interacting via a confining potential as
sumed harmonic of spring constantk

H5(
i 51

3 pi
2

2m
1 (

i , j 51

3
1

2
k~r i2r j !

2. ~10!

This is perhaps the simplest version of the surprisingly s
cessful nonrelativistic quark model@26#. Introducing center-
of-mass and two relative coordinates

Rc.m.5
1

3
~r11r21r3!, ~11a!

j15
1

A2
~r12r2!, ~11b!

j25
1

A6
~r11r222r3!, ~11c!

enables one to rewrite the above Hamiltonian as a system
two uncoupled harmonic oscillators

H5
Pc.m.

2

6m
1S P1

2

2m
1

3

2
kj1

2D 1S P2
2

2m
1

3

2
kj2

2D . ~12!

The ground-state properties for the system are now ea
inferred. For example, the energy per quark is given by

E0 /N2m5v5A3k

m
→A3'1.732, ~13!

TABLE I. Shell structure of a Fermi gas~Slater! determinant for
fermions of massm occupying a three-dimensional box of sizea
with antiperiodic boundary conditions. All energies are measure
units of p2/2ma2.

nx ny nz Energy Total occupancy

1 1 1 3 @8#

1 1 3 11 @16#

1 3 1 11 @24#

3 1 1 11 @32#

3 3 1 19 @40#

3 1 3 19 @48#

1 3 3 19 @56#

3 3 3 27 @64#

1 1 5 27 @72#

1 5 1 27 @80#

5 1 1 27 @88#
8-4
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MODELING THE STRANGENESS CONTENT OF . . . PHYSICAL REVIEW C 65 045208
where the arrow in the above expression is meant to re
sent the value of the energy in units in whichk5m51; this
system of units is adopted henceforth. Further, up to an o
all normalization factor, the ground-state wave function
also easily computed; it is given by

C0~j1 ,j2!5expS 2
j1

21j2
2

2b2 D 5expS 2
v~j1 ,j2!

3kb2 D ,

~14!

where the oscillator-length parameterb[(3km)21/4→321/4

has been introduced. Note that we have used the fact tha
above exponent is proportional to the potential energy of
baryon@see Eq.~12!# to write the second expression for th
ground-state wave function. This expression suggests th
the limit of very low density the variational wave functio
defined in Eq.~6! becomes exact provided that

l5
1

3kb2
→ 1

A3
'0.577. ~15!

Note that in the low-density limit the Fermi-gas compone
of the wave function is not important, as the average sep
tion between quarks of the same color-flavor combination
much larger than the ‘‘Pauli hole.’’

3. High-density limit

The variational wave function is also exact in the limit
very high density. In this asymptotically free regime the
teraction between quarks is negligible so the only remain
correlations among them are those generated by the P
exclusion principle. Thus, the system is described by
Fermi-gas wave function which represents thel→0 limit of
the variational wave function given in Eq.~6!.

A Fermi-gas description is useful in establishing a ba
line against which more sophisticated models may be c
pared. In addition, all observables that will be presented h
can be computed analytically in the Fermi-gas limit. Hen
let us start by computing the transition density to stran
matter. This critical density is obtained by requiring that t
chemical potential for the light (u andd) quarks be identica
to the strange-quark mass (M ). That is,

m1
kFc

2

2m
5M or kFc5A2m~M2m!→1.095. ~16!

Note that we have adopted a value ofM /m51.6 for the
heavy-to-light mass ratio. Adopting a constituent light-qua
mass ofm5300 MeV, the transition density in physica
units corresponds~with Nu[Nd) to

kFc5328.634 MeV or rc5
kFc

3

p2
50.468 fm23. ~17!

Note that spin degrees of freedom, or spin-dependent in
actions, have yet to be included in the model.
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Let us proceed to evaluate the equation of state and
strangeness-to-baryon ratio as a function of density. F
however, we introduce the following definitions:

r5
kF

3

p2
and s5

Ns

N
5122

Nu

N
. ~18!

In terms of these relations the Fermi momenta become

kF
u5~12s!1/3kF and kF

s 5~2s!1/3kF . ~19!

Moreover, the total energy per particle of the system—
fixed density (r) and strangeness per quark (s)—may now
be easily computed. We obtain

TFG~r,s!

N
5~12s!m1sM1

3kF
2

10m
~12s!5/3

1
3kF

2

20M
~2s!5/3. ~20!

The strangeness-per-quark is now determined by deman
that the total energy of the system be minimized at fix
density. That is,

S ]TFG/N

]s D5FM1
kF

2

2M
~2s!2/3G2Fm1

kF
2

2m
~12s!2/3G50.

~21!

This equation reflects the condition for chemical equilibriu
the chemical potential for both species of quarks~light and
heavy! must be equal. In particular, ats[0, which corre-
sponds to the onset of the transition to strange-quark ma
one recovers the critical density computed in Eq.~16!.

Another useful observable to characterize the transition
quark matter is the two-body correlation function@27#

r2~r !5(
ab

^C0uĉa
†~r !ĉb

†~0!ĉb~0!ĉa~r !uC0&, ~22!

wherea ~andb) denotes the collection of all internal quan
tum numbers, such as color and flavor. The two-body co
lation function measures the probability that two giv
quarks be separated by a distancer . In the Fermi-gas limit,
where the ground-state wave function may be written a
Slater determinant, the two-body correlation function may
readily evaluated. We obtain

g2~r ![
r2~r !

r2
512

1

3 S 3 j 1~kFr !

kFr D 2

, ~23!

where the spherical Bessel function is given by

j 1~x!5S sinx

x2
2

cosx
x

D ——→
x→0

x
3

. ~24!

Note thatg2 has been normalized to one at large distanc
Moreover, the correlation function between two quarks of
same flavor develops a ‘‘hole’’ at the origin as a conseque
of the Pauli exclusion principle. Yet the Pauli suppression
8-5
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G. TOLEDO SÁNCHEZ AND J. PIEKAREWICZ PHYSICAL REVIEW C65 045208
not complete@g2(0)Þ0# because in our model quarks of th
same flavor carry an additional color quantum number.

4. Variational Monte Carlo simulations

The variational nature of the simulation suggests that
expectation value of the Hamiltonian, Eq.~5!, will have to be
minimized with respect to the variational parameterl intro-
duced in Eq.~6!. That is,

]E~l!

]l
50, where E~l!5^CluHuCl&. ~25!

Note that the expectation value of the energy as a functio
l will have to be computed for all densities and for a varie
of strangeness-to-baryon ratios. The computational dema
imposed on such a calculation are formidable, indeed.
the structure of the variational wave function entails so
simplifications. For example, the expectation value of
kinetic-energy operator may be simplified through an in
gration by parts. That is,

^CluTuCl&5TFG12l2^W&l , ~26!

whereTFG is the kinetic energy of a (l50) free Fermi gas
and ^W&l reflects the increase in the kinetic energy of t
system relative to the Fermi-gas estimate due to cluste
correlations. It is given by

W5 (
n51

N
1

mn
~xn2yn!2, ~27!

where the sum is over all quarks in the system andyn repre-
sents the average position of the two quarks connected to
nth quark. Note that in the limit that only three-quark cluste
are formed andmn51, such as in the low-density limit, the
W53V/2. Now using Eq.~26! we obtain the following
simple form for the expectation value of the total energy
the system:

E~l!5TFG12l2^W&l1^V&l . ~28!

This form is particularly simple because the two functio
that remain to be evaluated (V andW) are local; thus, their
expectation values may be easily computed via Monte C
methods. To do so we use the well-known Metropo
method@28#.

The Metropolis algorithm is based on a Markov proce
that generates events~or configurations! stochastically. The
Markov chain is created sequentially from knowledge
only the current configuration. That is, the (m11)th configu-
ration in the chain is generated stochastically using only
mth configuration; no information about the (m21)th event
is required at all. We illustrate briefly the method with th
evaluation of the expectation value of the potential energ
04520
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^V&l5^CluVuCl&

5E V~x1 , . . . ,xN!Cl
2~x1 , . . . ,xN!dx1 , . . . ,dxN .

~29!

Although in writing this expression we have assumed a n
malized wave function, it is not necessary for the wave fu
tion to be normalized when implementing the Metropo
algorithm. Note that for a system ofN5120 quarks, as we
have used in some of our simulation, computing the ab
expectation value requires the evaluation of a 36
dimensional integral. The Metropolis algorithm ensures t
the desired probability distribution,Cl

2 in our case, is ap-
proached asymptotically. The main idea of the method is
to evaluate the integrand at every one of the quadra
points, an impossible task indeed, but rather at only a r
tively small representative sampling@29#. That is, the expec-
tation value of the potential energy becomes

^V&l5 lim
M→`

1

M
(

m51

M

V~x1
(m) , . . . ,xN

(m)!, ~30!

where the sequence ofM configurations are distributed ac
cording toCl

2 .

III. RESULTS

As a test of the formalism and to illustrate how the var
tional approach becomes exact in the low- and high-den
limits, we display in Figs. 2 and 3 the ground-state energy
the system and its two-body correlation function, resp
tively. All simulations performed in this work were don
using 120 quarks. At very-low density the system resemb
a noninteracting gas of nucleons with an energy-per-nucl
and variational parameter identical to the single-nucleon v

FIG. 2. Low-density behavior of the kinetic, potential, and to
energy per quark as a function of the variational parameter.
diamond indicates the energy/quark and variational parameter
an isolated nucleon. The density of the system isr/rc.431023.
8-6
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ues given in Sec. II B 2. That this is indeed the case is sho
in Fig. 2. Here the kinetic, potential, and total energy of t
system are plotted as a function of the variational param
for a density ofr/rc.431023. ~Note that the light-quark
rest mass has been subtracted out!. As in the case of an
isolated nucleon, the plot reflects the competition betw
the kinetic energy, which tends to diffuse the wave funct
away from the origin~favors a small value ofl) and the
potential energy, which attempts to concentrate the w
function at the origin~favors a large value ofl). A compro-
mise is reached, in accordance to the virial theorem, at
point at which the kinetic and potential energies are eq
that is, atl.l051/A3.

In the opposite high-density limit the system is expec
to evolve into a collection of noninteracting quarks. Thus
should display no correlations other than those generate
the Pauli exclusion principle. A simple way to test this ass
tion is by computing the two-body correlation function b
tween identical quarks. If the system has indeed evolved
a Fermi gas of quarks, the two-body correlation functi
should become identical to the one given in Eq.~23!, with
the ‘‘color prefactor’’ of 1/3 set up to one. This analyt
expression is plotted in Fig. 3~solid line! for a the very large
density ofr/rc.45; the agreement with the numerical sim
lations ~filled circles! is excellent indeed.

The determination of the variational parameter is a n
trivial computational task. First, one must select the qu
density of the systemr. For that particular density one the
fixes the strangeness-to-quark ratios. Having fixed these
two quantities one then proceeds to compute the energ
the system as a function of the variational parameter us
the Monte Carlo methods described earlier in the text. T
outcome of such a calculation is one of the three cur
shown in Fig. 4. Note that in this plot, and throughout t
remainder of the paper,E0 andl0 represent the energy an
variational parameter of an isolated nucleon~see Sec. II B 2!.

FIG. 3. Two-body correlation function between identical quar
The circles represent the results from the Monte Carlo simula
while the solid line is the theoretical prediction. The density of t
system isr/rc.45.
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In order to generate the remaining curves in the figure
must change the strangeness-to-quark ratio while maint
ing the baryon density fixed. Once a minimum in the ene
is identified, the energy-per-quark, strangeness-to-quark
tio, and variational parameter for that particular value of t
baryon density are determined. Figure 4 shows the outco
of this lengthy procedure for the particular case ofr/rc
52.18. This procedure must then be repeated for all qu
densities.

The density dependence of the variational parameterl is
displayed in Fig. 5. The behavior of this quantity with de
sity is interesting asl21/2 may be regarded as the leng
scale for quark confinement. At very low densities there i
drop in the value ofl indicating that the length scale fo
quark confinement has increased in the medium; this is re

.
n

FIG. 4. Energy per quark as a function of the variational para
eter for three values of the strangeness-to-quark ratio. The num
of quarks in the simulation isN5120 and the density of the system
is fixed atr/rc52.18.

FIG. 5. Variational parameterl as a function of density for
systems with~up triangles! and without~down triangles! strange-
ness. The sharp drop signals the transition from three-quark to m
tiquark configurations.
8-7
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niscent of the ‘‘nucleon swelling’’ first observed in the dee
inelastic scattering by the EMC Collaboration. Yet, this
followed by a relative steep increase in the value ofl sug-
gesting that the system is favoring the formation of high
tight nucleons. This unexpected behavior was reported
Ref. @18# for the one-flavor model. Eventually the syste
must make the transition into the Fermi-gas domainl
→0); this is accomplished through an abrupt drop at a qu
density of aboutr/rc50.82. This density represents the tra
sition from three-quark clusters into multiquark configur
tions @18#. Figure 5 also indicates that while the presence
strange quarks has a minimal effect in the density dep
dence ofl, clustering correlation remain non-negligible we
into the strange-matter domain.

In Fig. 6 we show the energy per quark as a function
the density obtained with the variational Monte Carlo a
proach. Various calculations are displayed in the figure. T
one-flavor calculation of Ref.@18# is reproduced with the
filled circles. While the equation of state displays a minimu
in the quark matter domain, the minimum is local so t
system becomes unstable against the break-up into iso
three-quark nucleons. However, flavor degeneracy stabil
the strange-matter phase in these models. Indeed, in bot
two- ~diamonds! and three-flavor~triangles! cases quark mat
ter is absolutely stable. Note that at the point at which
variational parameter drops discontinuously~see Fig. 5! the
energy per quark reaches its maximum value and then d
rapidly with density, although in a continuous manner. T
density (r/rc50.82) represents the transition from thre
quark to multiquark configurations. At the higher density
r/rc'1.2 two- and three-flavor matter separate in the p
indicating the transition into quark matter. Finally, we ha
included a Hartree-Fock (l50) calculation to illustrate the
importance of clustering correlations, even in the stran
quark domain. It is worth mentioning that nonapprecia

FIG. 6. Energy per quark as a function of density for one-, tw
and three-flavor systems as a function of density. The Hartree-F
(l50) energy is also shown to illustrate the effect of cluster
correlations. In this model three-flavor strange-quark matter is
solutely bound.
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finite size effects were observed for simulations using
quarks.

In Fig. 7 the strange-quark content of hadronic matte
plotted as a function of the quark density. The solid li
represents the analytic result obtained for a free Fermi ga
quarks with a ratio of strange-to-light quark masses
M /m51.6. The results of the Monte Carlo simulations a
displayed with the filled squares. Note that the transition
strange matter is slightly delayed relative to the Fermi-g
predictions; this represents a small quantitative change th
in agreement with the one-dimensional predictions of R
@22#. A much more interesting change happens at a densit
r/rc'2.2: a second minimum develops well inside t

,
ck

b-

FIG. 7. Strangeness-to-quark ratio as a function of density
the variational calculation~filled squares! and a simple Fermi-gas
estimate~solid line!. Note the discontinuity of the transition a
r/rc'2.2.

FIG. 8. Energy per quark as a function of strangeness-to-qu
ratio for three values of the quark density. In all three cases
variational parameter has been fixed at its optimal value. Note
competition between the two minima, particularly in ther/rc

'2.26 case.
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strange-matter phase. The evolution with density of this s
ond minimum is illustrated in Fig. 8. While the competin
~large-s) minimum is shallow at the the lowest densi
shown in the figure, it becomes the absolute ground stat
the system at the highest density. The change from sha
to deep is accompanied by a discontinuous phase transi
At higher densities the variational and theoretical resu
match as expected. While the development of compe
minima in the strange-quark phase is interesting—and
unique to hadronic systems@30#—the origin of this effect
may be an artifact of the non-relativistic approximation us
in this work. Indeed, a preliminary analysis using a relat
istic kinetic energy for the quarks reveals no evidence
competing minima.

IV. CONCLUSIONS

Because of its intrinsic interest as the possible grou
state of hadronic matter as well as its relevance to the
namics of neutron stars, strange-quark matter has been m
eled directly in terms of its quark constituents. A three-flav
three-color string-flip model that confines quarks within
dividual color-neutral clusters, yet allows the clusters
separate without generating unphysical long-range for
was used to compute strange-matter observables. Perhap
greatest virtue of the model is that the transition from nucl
matter—where quarks are confined within color-sing
hadrons—to quark matter—where quarks are free to ro
through the simulation volume—is dynamical; there is
need to introducead hocparameters to characterize the tra
sition. Indeed, at very low densities the quarks cluster
namically into ~three-quark! nucleons having propertie
identical to those in free space. As the density increases
clusters dissolve, again dynamically, into a uniform Fer
gas of quarks. This is in contrast to most of the mod
available today that use either nucleon and hyperons, eve
very high densities, or quarks in a bag as the fundame
degrees of freedom.

After testing our variational Monte Carlo approach in t
low- and high-density limits, where the approach becom
exact, we proceeded to compute the variational param
the equation of state, and the strangeness content of str
matter. We were able to identify two phase transitions in
model. The first one, previously reported in the one-fla
simulations of Ref.@18#, is characterized by a transition from
three-quark to multiquark cluster configurations. The var
tional parameter, which is directly related to the length sc
for quark confinement, jumps discontinuously at the tran
tion. A transition to strange matter was also identified a
higher density. The onset for the transition was delay
slightly relative to the predictions of a free Fermi-gas es
mate. Much more interesting, however, was the developm
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of an additional discontinuous phase transition well into
strange-matter domain. This phase transition was chara
ized by the competition between two ground states; one w
a low and one with a high strange-quark content. We sho
point out that the effect of clustering correlations remain
important even at the highest transition density. Also int
esting was the behavior of the equation of state as a func
of the flavor-content of hadronic matter. For a simplified on
flavor model strange matter saturates but is unstable ag
the break-up into isolated nucleons. Yet as the flavor con
of the model was increased, strange matter became a
lutely stable.

It is too early to predict how far we will be able to pus
this model. Ultimately, one would hope to compute a rea
tic equation of state that could be used as input in the co
putation of masses and radii of neutron stars. Unfortunat
and in spite of the considerable effort devoted to this
deavor, several crucial refinements remain to be added.
haps the most important one is related to the lack of bind
in the low-density nuclear phase. In the most pristine form
the model quark exchange is the unique source of~mild!
attraction. Clearly, this is insufficient to bind nuclear matt
Thus, the introduction of an effective force between nucleo
may be unavoidable. Perhaps adding the missing physics
sociated with the long-range pionic tail, in the form of as
meson, might solve the problem. Or perhaps a simple m
fication of the underlying confining interaction, through th
introduction of density-dependent spring constant and qu
masses, might improve the description of the low-dens
equation of state. Further, while the present version of
model incorporated flavor and color degrees of freedom
the first time, spin and spin-dependent interactions remai
be included. Incorporating this extra degree of freedom
the calculations, while avoiding an over-proliferation
baryonic states, remains a difficult challenge. Finally, it
unrealistic to expect that a non-relativistic description w
remain valid in the high-density domain. This problem c
be solved, at least in part, by using a relativistic form for t
kinetic energy of a free Fermi gas. In spite of all these ch
lenges we believe that the string-flip model used here re
sents a sound starting point for the description of this co
plicated many-body system. In particular, we are convinc
that ultimately some form of quark-assignment problem w
have to be solved in order to account simultaneously
quark confinement and cluster separability.
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