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Modeling the strangeness content of hadronic matter
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The strangeness content of hadronic matter is studied in a string-flip model that reproduces various aspects
of the QCD-inspired phenomenology, such as quark clustering at low density and color deconfinement at high
density, while avoiding long range van der Waals forces. Hadronic matter is modeled in terms of its quark
constituents by taking into account its internal flavard,s) and color(red, blue, greendegrees of freedom.
Variational Monte Carlo simulations in three spatial dimensions are performed for the ground-state energy of
the system. The onset of the transition to strange matter is found to be influenced by weak, yet not negligible,
clustering correlations. The phase diagram of the system displays an interesting structure containing both
continuous and discontinuous phase transitions. Strange matter is found to be absolutely stable in the model.
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[. INTRODUCTION In the present work we focus on the impact of strangeness
on the equation of stat&OS. One motivation for this study,
Strange matter, a deconfined state of quark matter consist addition to those mentioned earlier, is the observation that
ing of almost equal amounts of up, down, and strangeghe masses of about 20 neutron stars are remarkably close to
quarks, has been speculated to be the absolute ground stéte “canonical” value ofM =1.4M [9]. Yet conventional
of hadronic mattef1,2]. If true, nucleons and nuclei—and models of nuclear structure, with equation of states con-
thus most of the luminous matter in the universe—is in astrained from the bulk properties of nuclear matter, seem to
long-lived metastable state. Undoubtedly, the confirmation o&llow substantially larger massg3,10]. However, the exis-
such hypothesis would have far reaching consequences ontence of a quark-matter phase at the core of neutron stars
variety of fields, ranging from astronomy and cosmology all(NS) will soften considerably the equation of state leading to
the way to particle and nuclear physics. Stimulated by suclsmaller limiting masses. Thus a study of the strangeness con-
an exciting possibility, searches for strange matter are cuttent of hadronic matter, using a “QCD-inspired” model, is
rently being conducted at terrestrial laboratories as well as atesirable. For static and spherically symmetric neutron stars
space-based observatories. Indeed, a substantial effort habeying the Oppenheimer-Volkoff equations the only physi-
been devoted on experimental searches for strangeletsl ingredient that remains to be specified is the equation of
(“strange-matter nuggets”at both CERN and Brookhaven state. Yet an equation of state that is accurate over the whole
National Laboratory(BNL) and more are proposed in the range of densities present in a neutron star remains a formi-
future for the relativistic heavy-ion colliddRHIC) and the dable challenge. For example, such an equation of state
large-hadronic collidefLHC). These terrestrial experiments should be able to describe the hypothetical “hybrid stars:”
are being complemented by observational searches fareutron stars consisting of a quark-matter core below a
strange stars. What would be the signature for such exotiouclear-matter mantle. Unfortunately, traditional studies of
objects? Since strange stars are self-bound objects havingstrange matter has been conducted in two vastly different
mass-radius relation quite different than the gravitationallypictures [11-14. One picture uses a hadronic model—
bound neutron stars, they are allowed rotational periods corsimilar to ordinary nuclei—where the fundamental degrees
siderably shorter than those predicted for gravitationallyof freedom are mesons and baryons. The other picture uses a
bound stars. Consequently, if a pulsar with a period fallingguark model consisting of massless, noninteracting quarks
below the limit of gravitationally bound stars were discov- confined inside a bag. Presumably a description of strange
ered, the conclusion that the confined hadronic phase ahatter in terms of mesons and baryons is well motivated in
nucleons and nuclei is only metastable would be virtuallythe low-density regime where clustering correlations remain
inescapablé3]. important. At the same time, strange matter viewed as a rela-
Such a pulsar may have been recently discovédel.  tivistic Fermi gas of quark might be appropriate at the ex-
The pulsar SAX J1808.4-3658, with a rotation period of 2.5tremes of densities necessary for color deconfinement to oc-
ms, is the fastest spinning x-ray pulsar ever observed. Basemir. Yet this division seemsad hoc and arbitrary; for
on a study of its mass-radius relation it has been concludeexample, at what density should one switch from a nuclear-
that SAX J1808.4-3658 is a likely strange-star candiflale to quark-based description? Perhaps the most serious diffi-
although this interpretation remains controverfia8l. Still,  culty encountered in modeling the density dependence of
the discovery of such a fastly rotating pulsar appears to haveadronic matter and the resulting EOS is how to model a
made the detection of strange matter within observationasystem that has quarks confined inside color-neutral hadrons
reach. In turn, the confirmation of such an exotic state ofat low density but free quarks at high density. Much of the
matter will help settle the claim that at present our universgesponsibility for such complexity rests on the self-
is in a long-lived metastable state. interactions among the gluons which generate quark confine-
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ment in the low-density regime. On the other hand, the quarla variety of ground-state observables. Finally, we offer con-
substructure of the hadrons should become important as th@usions and perspectives for future work in Sec. IV.
density increases.

Although the evidence in support of QCD as the correct
theory of the strong interactions is overwhelming, at present
no rigorous solution of QCD exists in the regime of high- A. The many-quark potential
baryon density. Thus, one must resort to QCD-inspired phe- Th CD-inspired ph | ibes h ¢
nomenological models. Such models of hadronic matter us- & QCD-inspired p enomenology prescripes how 1o
ing quarks as the underlying degrees of freedom have beerl‘qOdel the many-quark potential. At very-low density the

developed to reproduce some properties of Q@B—19 quarks must be confined within color-singlet clusters that
The main feature of these models—generically known aghould interact weakly due to the short-range nature of the

sstring-flip” models [20]—is the existence of a many-body nucleqn—nucleon interaction. This §uggests a strong—indeed
confining—force between quarks in the same cluster but no

otential able to confine quarks within color-singlet clusters . : A
P N 9 urther interaction between quarks in different clusters. Thus,

without generating unphysical long-range van der Waal% o i )
) e - the force saturates within each color-singlet hadron. This
forces[21]. The many-body potential is evaluated by solving saturation is necessary in order for the hadrons to be able to

a difficult optimization problem; one must decide how to rate without aenerating unohvsical long-ranae for In
assign colored quarks into color-singlet clusterse below. igﬁf\r;te in thzuhigﬁ c?eﬁsit;g/ gor%aﬁ Zzyr%p?(;tﬁ: f%:ego(;ﬁsde
P bly, this “quark-assi t” problem i tt ’ I -

resumably, this quarkcassignment - probiem 15 mean Omands that the interaction between all quarks be weak. This

represent the optimal configuration of gluonic strings. While > ) .
the precise form of the potential is presently unknown, th ehavior is expected once the_ average |_nter-quark separation
' ecomes smaller than the typical confining scale. In this re-

many-quark problem is likely to require solving some com-". th i ant lati ks will b

plicated global optimization problem. Although string-flip g|£jne debont)r/] |m§or|§n c?rrgamn. amcl)ng qgatrhs Wi " €

models violate important symmetries of QCD, such as chirg|@uced by the Faull exciusion principie an € system
hould evolve into a Fermi gas of quarks.

symmetry and Lorentz invariance, they excel in places wherg A K potential that is th : ¢
most other models fail: the transition from nuclear to quark- fm?nyt'qt(‘jar gc;)erllla ad m?let? t%;g] :equwgn"lnen S
matter. In the string-flip model this transition is dynamical was Tirst introduced by Lenz and coflabora 0 moade

without the need to rely oad hocparameters. Hence, such meson-meson intgractions_. Soon after the potential was
models should shed light on the possibility of stable strang@dap(;?d by_Hor|0W|tz|, Momzitgtg? gegelel for the Stllj.d%/ of
matter. That the emergence of strange quarks at high-baryocwe' |n|1_ents_|0nahnuc ?ahr madG 1 e\&ehra rr;]orTI Ir_ea_tlsdlc
density is energetically favorable is easy to understand. Afenera |tza lons aa/e (I)tpwe[ N q’f ?h oug ?ﬂﬁfén:;’]et

the density of the system increases, the Pauli exclusion pri 0 nonstrangé matter. {t IS on oné or theseé mo a

ciple forces the chemical potential to increase from the Iight-We base our present generalization to strange matter. The

I . . model is constructed from quarks having flavap, down,
quark massn to Eg= ykg+m*, whereke is the Fermi mo- strangé and color(red, blue, greendegrees of freedom. The

mentum. What is not easy to understand are the details of t.rﬁ\any-quark potential is defined as the optimal clustering of

Fransition. For exampl_e, do clgstering correlations remalr‘huarks into color-singlet objects. For reasons that will be-
important at the transition density or has the system evapg

) ‘ come clear later, the implementation of this idea is carried
rated into the free quarks? Does the EOS predicted by th8}ut as follows. Consider all red and blue quarks in the sys-

model yield self-bound an(_j absolutely stable sirange starsgm irrespective of flavor in accordance to the *“flavor-
These are the sort of questions that we plan to address in thbsfinc,;l” nature of QCD. We define the “optimal pairing” of

Il. FORMALISM

paper.
An initial study of strange matter in the string-flip model red and blue quarks as
was carried out in Ref.22]. There, a highly simplified ver- A
sion of the model was used to simulate one-dimensional mat- Vrg=minY, v[rir,P(rig)], ()]
ter in terms of two-color, two-flavof“up” and “strange”) pi=1

constituent quarks. While it was found that clustering corre-
lations remain important in the transition region, strangewhereriR denotes the spatial coordinate of itk red quark
matter was found to be unbound. In this paper we extend the ; ' .

. : and P(r,g) is the coordinate of the mappeéth blue quark
results of Ref[22] by simulating three-flavofup, down, and [F.am>P(rs) =r:5]. Note that the minimization procedure is
strangg, three-color(“red,” “blue,” and “green” ) hadronic iB B/~ "B P

matter in three-dimensional space. A variety of ground—statg_‘Ver all poss!b!eA! permL_ltatl_ons of theA blue qua_rks f"md
observables are computed as a function of density with th at the confining potential is as;umed har_monlc with a
goal of characterizing the transition to strange matter and tgP"nY constant denoted ly(see Fig. ). That is,

establish the possibility of absolute stability. We have orga-

nized the paper as follows. Section Il introduces the general 1

ideas used to model a system of fermions focusing on the v(rir,lg) = Ek(riR_er)z- (2
structure of the wave function and the many-body potential.

We then consider both the low- and high-density limits to

establish closed-form baseline results. After describing th&he “blue-green” and “green-red” components of the many-
variational Monte Carlo procedure, results are presented fajuark potential are defined in direct analogy to EL.

045208-2



MODELING THE STRANGENESS CONTENT B. .. PHYSICAL REVIEW C 65 045208

R while the former induces a weak intermediate-range attrac-
tion between clusters, as with every quark exchafge
equivalently a “string flip”) the potential energy of the sys-
tem gets reduced. That this induced interaction gets gener-
ated in the model is already evident from the structure of the
(a) variational wave function which explicitly contains the
many-body potentialthus favoring quark exchangand a
R G product of Slater determinants.
As discussed early in this section, the strict demands im-
posed by QCD on phenomenological models justifies the in-
B B troduction of such a complex many-body potential. While its
exact functional form remains uncertain, the requirements of
G R quark confinement and cluster separability are likely to de-
(b) pend on solving some type of quark assignment problem. For
simulations involving a large number of quarks an efficient
FIG. 1. (a) Y-shaped(eft) and triangularright) arrangement of  ¢|ystering algorithm is of utmost importance. Indeed, finding
strings for a single three-quark cluster; for harmonic string the poype optimal clustering oN=3A quarks intoA color-singlet
tential is_ identical.(b) An example of a six-quark configuration objects requires searching amorfy (2 configurations. Even
allowed in the model. for a modest system containing onf=10 hadrons the
number of possible configurations already exceeds ten tril-

A
o lion. Clearly, a “brute-force” algorithm is impractical. More-
Vec= mplnizl vlrig,P(rig)], (33 over, “three-dimensional stable matching problems,” such as
the three-quark assignment problem, have been shown to be
A NP completd23]. The main consequence of a problem being
— i NP complete is that no efficierite., power-law algorithm
Vgr=Mmin re,.P(rig) 1. 3b . .
GR P ;1 vlfie Prir)] (30) exits. Hence, the three-quark assignment problem becomes,

for all practical purposes, intractalji24]. But for the version
In this manner the many-quark potential to be used in oupf the string-flip model adopted in this work—where the

simulations of strange matter becomes equal to clustering of quarks within color-singlet objects is done
pairwise—an efficient algorithm exists in the Hungarian
V=Vgg+Vec+Var, (4)  method for the weighted bipartite matching problem which

finds the optimal pairing in a time proportional £5° [25].
and thus, the Hamiltonian describing the systemNopar-  Note that while in this case the number of possible configu-
ticles each with massy; and momentunp; is given by rations grows “only” asAl, a brute-force algorithm remains
impractical. Thus, without such an efficient algorithm our

N . . ..
Pi2 simulations would be limited to a very small number of
H=> ——+V. (5) K
& 2m quarks.
Several comments are now in order. First, the constructed B. The variational wave function

potential is able to confine quarks within color-singlet clus-  \va are interested in describing the evolution of the sys-

ters. Yet the strong confining force saturates within eacqem with baryon density. For that purpose we use a varia-

color-singlet cluster allowing the clusters to separate withou{ional Monte Carlo approach based on a one-parameter wave
generating long-range van der Waals forces. Moreover, thﬁmction of the form

potential is symmetric under the exchange of identical

quarks. Second, the potential is truly many-body as moving P, (x)=e "D (), (6)

one single quark might cause many of the “strings” to flip;

note that even those strings that are not connected to thehere\ is the variational parametev,(x) is the many-body
moving quark might flip. Third, although at very low density potential defined in Eq(4), and ®gg(x) is the Fermi-gas
quarks will overwhelmingly belong to three-quark clusters,wave function. This choice is motivated by QCD which dic-
there is no guarantee that this will remain true at higheitates that at low density, when the average interquark sepa-
densities; color-singlet clusters may also be formed fronration is much larger than the confining scale, quarks should
6—, 9—, ...,3A-quark configurationgsee Fig. L Finally, cluster into three-quark color-singlet hadrons. Thus, in the
we note that there is no “elementary” nucleon-nucleon po-low-density regime the potential between quarks in the same
tential in the model, as constituent quarks are the sole déiadron is strong but, as the interaction saturates within each
grees of freedom in the Hamiltonian. Yet a dynamically in-cluster, the residual interaction between hadrons is very
duced residual interaction between color-singlet clusiess  weak. Hence, the system resembles a Fermi gas of weakly
nucleons is generated through the following two effects: interacting hadrons. It is the exponential term in the varia-
quark exchange and the Pauli exclusion principle betweetional wave function that becomes responsible for inducing
quarks. The latter generates a strong short-range repulsiothe clustering correlations. In contrast, in the high-density
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limit, characterized now by an average inter-quark separation TABLE I. Shell structure of a Fermi ga@Slatey determinant for
much smaller than the confining scale, asymptotic freedonfermions of massn occupying a three-dimensional box of siae
should take over. In this regime the interactions betweemvith antiperiodic boundary conditions. All energies are measured in
quarks are weak and the system “dissolves” into a freeunits of m?/2ma?.

Fermi gas of quarks. As will be shown below, the variational

parameter evolves from a largsolated-clustervalue atlow — Mx Y n; Energy Total occupancy
density all the way to zero at high density, as the only re-; 1 1 3 8]
maining correlations between quarks are those induced by
the Pauli exclusion principle. 1 1 3 11 [16]
1 3 1 11 [24]
1. Fermi-gas wave function 3 1 1 11 [32]
To describe a noninteracting system of quarks a Fermi-gag 3 1 19 [40]
wave function, given in the form of a Slater determinant, is5 1 3 19 [48]
used for each color-flavor combination of quarks. Each ofy 3 3 19 [56]
these Slater determinants is given by
3 3 3 27 [64]
én, (X1) b (X2) ... Pn (XN) 1 1 5 27 [72]
b (X)) o (X2) ... Bn(Xn) ! > 1 27 [80]
Dpg(x)= . . . ) , (M 3 1 1 27 (88]
d’nN(Xl) ¢nN(X2) PP d’nN(XN)

multiquark configurations, the probability that color-singlet

where . (x) represents a single-particle eigenstate for a fre&lusters with more than three quarks are formed is vanish-

g . . ingly small[18]. Finally, at these low densities the onset of
particle in a box with quantum numbens(see below. This strangeness is hindered by the large strange-quark mass
construction ensures that the wave function is totally anti'Thusgin this limit the variati)c/)nal wavg functiog isqexact as '
symmetric under the exchange of identical quarks. To deter\;\le né)w show '

mine the single-particle wave functions we consider a single Consider a nucleon as a nonrelativistic svstem of three
quark of massn confined to a three-dimensional box of side : ; ) stc sy .
guarks of massn interacting via a confining potential as-

a with antiperiodic boundary conditions. The energy of each ) .
' . . : . umed harmonic of spring constdat
single particle state is characterized by three integer quantu%

numbersn=(n,,ny,n,): p? 3 4
H=> —+ X —k(ri—r)2 (10)
m =12m =12
E.= S(ng+ng+ny)  (n=135...). (8 o ) ) o
2ma This is perhaps the simplest version of the surprisingly suc-

] o . cessful nonrelativistic quark modg26]. Introducing center-
Note that throughout this work we employ units in which ¢ 1ass and two relative coordinates

h=c=1. Each energy value, however, is at least eightfold
degenerate because there are even and odd solutions of the

Schralinger equation in each of the three spatial dimensions. Rem=3(fa+ratry), (113
Thus, a typical basis state is of the form
1
F4 = o0 —cod X N7 ein P27 &=—=(r1—ry), (11b
d)nwny'nz(x)—cm{ a x)cos( a y)sm( a z). 9 2

In this way the system develops a “shell structure” with each 1

shell holding, at least, eight quarks of each color-flavor com- fzzﬁ(fﬁ rp—2rs), (110
bination. Let us illustrate how the shells are filled as the

single-particle energy increases. Expressing the singl
particle energies in units af?/2ma?, the lowest shell has an

energy of 3 0,=n,=n,=1) and is exactly eightfold degen-

erate. The next shell, with an energy of 14,£n,=1n, P2 ( P2

€nables one to rewrite the above Hamiltonian as a system of
two uncoupled harmonic oscillators

3|<2 P2 3k2 12
om T oKeL | | 5 T 5ke . (12

=3 and permutationsholds 24 quarks, and so dfor more H +

details see Table).l

~ 6m

The ground-state properties for the system are now easily

2. Low-density limit inferred. For example, the energy per quark is given by
In the low-density regime quarks are confined within K
weakly interacting color-singlet (reeblue+ green=white) e 2K -
clusters. Further, although the model allows the existence of Eo/N-m=w m_)\/§ 1.732, (13
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where the arrow in the above expression is meant to repre- Let us proceed to evaluate the equation of state and the
sent the value of the energy in units in whikkm=1; this  strangeness-to-baryon ratio as a function of density. First,
system of units is adopted henceforth. Further, up to an ovefiowever, we introduce the following definitions:

all normalization factor, the ground-state wave function is

also easily computed; it is given b k2 N N
y comp g y p=— and o= WS=1—2WU. (18)
ar
a+6 v(é1,6) _ _
Vo(é1,é)=exp — 0z | AT T I In terms of these relations the Fermi momenta become
(14 ki=(1-0)%%e and ki=(20)%e. (19)

where the oscillator-length parametes (3km) ~¥—3~%  \oreover, the total energy per particle of the system—at
has been introduced. Note that we have used the fact that thiged density p) and strangeness per quark)(—may now
above exponent is proportional to the potential energy of thée easily computed. We obtain

baryon[see Eq(12)] to write the second expression for the )

ground-state wave function. This expression suggests that in Tra(p,0) =
imi : ot : ———=(1-o)m+oM+ —(1-0)%®

the limit of very low density the variational wave function N 10m

defined in Eq.(6) becomes exact provided that )
3kg

5/3
11 + oo (297 (20)
= 5~ =~0.577. (15
3kb V3 The strangeness-per-quark is now determined by demanding

) o ) that the total energy of the system be minimized at fixed
Note that in the low-density limit the Fermi-gas componentgensity. That is,

of the wave function is not important, as the average separa-
tion between quarks of the same color-flavor combination is ( aTFG/N)

kg 2
much larger than the “Pauli hole.” 9o | | MF W(ZU)ZIS} -

k
M 5 (1~ 0)2’3} =0.
(21)

3. High-density limit
This equation reflects the condition for chemical equilibrium:
the chemical potential for both species of quaflight and
eavy must be equal. In particular, at=0, which corre-
ponds to the onset of the transition to strange-quark matter,
ne recovers the critical density computed in Ep).
Another useful observable to characterize the transition to
qguark matter is the two-body correlation functif2v]

The variational wave function is also exact in the limit of
very high density. In this asymptotically free regime the in-
teraction between quarks is negligible so the only remainin
correlations among them are those generated by the Pau
exclusion principle. Thus, the system is described by &L
Fermi-gas wave function which represents xhe 0 limit of
the variational wave function given in E).

A Fermi-gas description is useful in establishing a base- . R R R
line against which more sophisticated models may be com- pa(1) =2 (Wl YL IHO) (0 P, (1) We), (22
pared. In addition, all observables that will be presented here @B
can be computed analytically in the Fermi-gas limit. Hencevvherea
let us start by computing the transition density to strangg | nu
matter. This critical density is obtained by requiring that theIation
chemical potential for the lightuandd) quarks be identical
to the strange-quark masM{. That is,

(and B) denotes the collection of all internal quan-
mbers, such as color and flavor. The two-body corre-
function measures the probability that two given
quarks be separated by a distamcén the Fermi-gas limit,
where the ground-state wave function may be written as a
) Slater determinant, the two-body correlation function may be

k . .
Mt =S =M or ke,=y2m(M—m)—1.095. (16) readily evaluated. We obtain

2m
=P2(r)_1_£ 3ja(ker)\? 23

Note that we have adopted a value Mffm=1.6 for the 92(r)= p2 a 3 Ker ! (23
heavy-to-light mass ratio. Adopting a constituent light-quark
mass ofm=300 MeV, the transition density in physical where the spherical Bessel function is given by
units correspondéwith N,=N) to

o 100=| =22 —— . (24)

kec=328.634 MeV orp,=——=0.468 fm 3. (17) X
T Note thatg, has been normalized to one at large distances.

Moreover, the correlation function between two quarks of the
Note that spin degrees of freedom, or spin-dependent intesame flavor develops a “hole” at the origin as a consequence
actions, have yet to be included in the model. of the Pauli exclusion principle. Yet the Pauli suppression is
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not completd g,(0)# 0] because in our model quarks of the 5

same flavor carry an additional color quantum number.
B - - B Potential energy
A—a Kinetic energy

4. Variational Monte Carlo simulations 4 ®&—@EN-m
—— Fit Ax+B/x
The variational nature of the simulation suggests that the

expectation value of the Hamiltonian, E§), will have to be 5

minimized with respect to the variational parameteintro- 83
duced in Eq(6). That is, 2
)

2 -
E(N) &

Y =0, where E(N)=(W,|H|¥)). (25

Note that the expectation value of the energy as a function of
N\ will have to be computed for all densities and for a variety
of strangeness-to-baryon ratios. The computational demand o 03 o5 07
imposed on such a calculation are formidable, indeed. Yet, A

the structure of the variational wave function entails some _ ) o )
simplifications. For example, the expectation value of the FIG. 2. Low-density behavior of the kinetic, potential, and total

kinetic-energy operator may be simplified through an inte-8n€rgy per quark as a function of the variational parameter. The
gration by parts. That is diamond indicates the energy/quark and variational parameter for

an isolated nucleon. The density of the system/is,=4x 103,

o

(W\|TIW, ) =Tea+ 20%(W), (26) (\V)=(¥,|V|T,)
whereTgg is the kinetic energy of aN=0) free Fermi gas :f V(Xqg, ... ,xN)\Pf(xl, co X)X, L dXy
and (W), reflects the increase in the kinetic energy of the
system relative to the Fermi-gas estimate due to clustering (29

correlations. It is given by
Although in writing this expression we have assumed a nor-

N malized wave function, it is not necessary for the wave func-

W—z i(x —y)? 27 tion to be normalized when implementing the Metropolis
CEm, " Yn)® algorithm. Note that for a system &f=120 quarks, as we

have used in some of our simulation, computing the above

] ) expectation value requires the evaluation of a 360-

where the sum is over all quarks in the system gndepre-  gimensional integral. The Metropolis algorithm ensures that
sents the average position of the two quarks connected to thge desired probability distributionlff in our case, is ap-

Ny quark. Note that in the limit that only three-quark clustersyroached asymptotically. The main idea of the method is not

are formed andn, =1, such as in the low-density limit, then {4 eyajuate the integrand at every one of the quadrature

W=3V/2. Now using Eq.(26) we obtain the following  points, an impossible task indeed, but rather at only a rela-
simple form for the expectation value of the total energy ofjyely small representative samplifig9). That is, the expec-

the system: tation value of the potential energy becomes

M
E(N)=Trat 205 W), +(V), . (28) <V>”=N||im 1 SvxdEm L x(my, (30)
=% M m=1

This form is particularly simple because the two functionswhere the sequence ® configurations are distributed ac-
that remain to be evaluated (andW) are local; thus, their  cording tollff.
expectation values may be easily computed via Monte Carlo

methods. To do so we use the well-known Metropolis

method[28].

The Metropolis algorithm is based on a Markov process As a test of the formalism and to illustrate how the varia-
that generates evenfsr configurations stochastically. The tional approach becomes exact in the low- and high-density
Markov chain is created sequentially from knowledge oflimits, we display in Figs. 2 and 3 the ground-state energy of
only the current configuration. That is, thea{- 1), configu-  the system and its two-body correlation function, respec-
ration in the chain is generated stochastically using only théively. All simulations performed in this work were done
my, configuration; no information about then-1),, event  using 120 quarks. At very-low density the system resembles
is required at all. We illustrate briefly the method with the a noninteracting gas of nucleons with an energy-per-nucleon
evaluation of the expectation value of the potential energy and variational parameter identical to the single-nucleon val-

IIl. RESULTS
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FIG. 4. Energy per quark as a function of the variational param-

i i ) ) eter for three values of the strangeness-to-quark ratio. The number
FI(_;. 3. Two-body correlation function between |dent|cal_quarI§s.0f quarks in the simulation isl=120 and the density of the system
The circles represent the results from the Monte Carlo simulationg ¢ atplp.=2.18
c=2.18.

while the solid line is the theoretical prediction. The density of the
system isp/p.=45.

rr,

In order to generate the remaining curves in the figure one
must change the strangeness-to-quark ratio while maintain-
ues given in Sec. Il B 2. That this is indeed the case is showing the baryon density fixed. Once a minimum in the energy
in Fig. 2. Here the kinetic, potential, and total energy of theis identified, the energy-per-quark, strangeness-to-quark ra-
system are plotted as a function of the variational parameteio, and variational parameter for that particular value of the
for a density ofp/p.=4x10 3. (Note that the light-quark baryon density are determined. Figure 4 shows the outcome
rest mass has been subtracted).ols in the case of an of this lengthy procedure for the particular case @dp.
isolated nucleon, the plot reflects the competition between=2.18. This procedure must then be repeated for all quark
the kinetic energy, which tends to diffuse the wave functiondensities.
away from the origin(favors a small value o) and the The density dependence of the variational parametisr
potential energy, which attempts to concentrate the waveéisplayed in Fig. 5. The behavior of this quantity with den-
function at the origin(favors a large value of). A compro-  sity is interesting as\ 2 may be regarded as the length
mise is reached, in accordance to the virial theorem, at thecale for quark confinement. At very low densities there is a
point at which the kinetic and potential energies are equaldrop in the value ofA indicating that the length scale for
that is, at\ =\,=1/y3. quark confinement has increased in the medium; this is remi-
In the opposite high-density limit the system is expected
to evolve into a collection of noninteracting quarks. Thus, it ' ' ' ' '

should display no correlations other than those generated b
¥ Without strangeness|

the Pauli exclusion principle. A simple way to test this asser-
tion is by computing the two-body correlation function be- 12
tween identical quarks. If the system has indeed evolved intc
a Fermi gas of quarks, the two-body correlation function 1T
should become identical to the one given in E2Q), with TyY
the “color prefactor” of 1/3 set up to one. This analytic o8
expression is plotted in Fig. Golid line) for a the very large <
density ofp/p.=45; the agreement with the numerical simu- o6}
lations (filled circles is excellent indeed.

The determination of the variational parameter is a non- o4}
trivial computational task. First, one must select the quark

density of the systerp. For that particular density one then
fixes the strangeness-to-quark ratio Having fixed these
two quantities one then proceeds to compute the energy o
the system as a function of the variational parameter usinc
the Monte Carlo methods described earlier in the text. The
outcome of such a calculation is one of the three curves

variational parameter of an isolated nucléeee Sec. Il B 2

02|

X x
TR

2 3 4 5 6
PP,

e or : ) FIG. 5. Variational parametex as a function of density for
shown in Fig. 4. Note that in this plot, and throughout thesystems with(up triangle$ and without(down triangle$ strange-
remainder of the papeE, and\q represent the energy and ness. The sharp drop signals the transition from three-quark to mul-
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FIG. 6. Energy per quark as a function of density for one-, two-,  F|G, 7. Strangeness-to-quark ratio as a function of density for
and three-flavor systems as a function of density. The Hartree-Fodie variational calculatiorfilled squares and a simple Fermi-gas

(A=0) energy is also shown to illustrate the effect of clusteringestimate (solid line). Note the discontinuity of the transition at
correlations. In this model three-flavor strange-quark matter is abp/, ~2 2.

solutely bound.

finite size effects were observed for simulations using 90
niscent of the “nucleon swelling” first observed in the deep- quarks.
inelastic scattering by the EMC Collaboration. Yet, this is In Fig. 7 the strange-quark content of hadronic matter is
followed by a relative steep increase in the valuenafug-  plotted as a function of the quark density. The solid line
gesting that the system is favoring the formation of highlyrepresents the ana!ytic result obtaine'd for a free Fermi gas of
tight nucleons. This unexpected behavior was reported ifuarks with a ratio of strange-to-light quark masses of
Ref. [18] for the one-flavor model. Eventually the system M/mM=1.6. The results of the Monte Carlo simulations are
must make the transition into the Fermi-gas domain ( displayed with the filled squares. Note that the transition to

—0); this is accomplished through an abrupt drop at a quarﬁtran.g? matter is slightly delayed relati\{e to the Fermi-gag
density of aboup/p, = 0.82. This density represents the tran- predictions; this represents a small quantitative change that is

sition from three-quark clusters into multiquark configura-in agreement with the one-dimensional predictions of Ref.
tions[18]. Figure 5 also indicates that while the presence 0{22]' A much more interesting change happens at a density of

S . . Ipc.~2.2: a second minimum develops well inside the
strange quarks has a minimal effect in the density deperfrz Pe P
dence ofA, clustering correlation remain non-negligible well

into the strange-matter domain. .
In Fig. 6 we show the energy per quark as a function of -5 1

the density obtained with the variational Monte Carlo ap- p=2.03 p,

proach. Various calculations are displayed in the figure. The %/"”" ''''''' B

one-flavor calculation of Refl18] is reproduced with the ol i

filled circles. While the equation of state displays a minimum ;

in the quark matter domain, the minimum is local so the 2
system becomes unstable against the break-up into isolateu
three-quark nucleons. However, flavor degeneracy stabilize: [ ~
the strange-matter phase in these models. Indeed, in both t}‘g
two- (diamond$ and three-flavo(triangles cases quark mat-

ter is absolutely stable. Note that at the point at which the _g
variational parameter drops discontinuou&ge Fig. 5 the

energy per quark reaches its maximum value and then drop
rapidly with density, although in a continuous manner. This
density (/p.=0.82) represents the transition from three- ®0 0.1 02 0.3 0.4
quark to multiqguark configurations. At the higher density of o

plpc~1.2 two- and three-flavor matter separate in the plot g, 8. Energy per quark as a function of strangeness-to-quark
indicating the transition into quark matter. Finally, we haveratio for three values of the quark density. In all three cases the
included a Hartree-Fock\(=0) calculation to illustrate the variational parameter has been fixed at its optimal value. Note the
importance of clustering correlations, even in the strangecompetition between the two minima, particularly in thép,
quark domain. It is worth mentioning that nonappreciable~2.26 case.
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strange-matter phase. The evolution with density of this seosf an additional discontinuous phase transition well into the
ond minimum is illustrated in Fig. 8. While the competing strange-matter domain. This phase transition was character-
(largeo) minimum is shallow at the the lowest density ized by the competition between two ground states; one with
shown in the figure, it becomes the absolute ground state @ low and one with a high strange-quark content. We should
the system at the highest density. The change from shallowoint out that the effect of clustering correlations remained
to deep is accompanied by a discontinuous phase transitiormportant even at the highest transition density. Also inter-
At higher densities the variational and theoretical resultesting was the behavior of the equation of state as a function
match as expected. While the development of competingf the flavor-content of hadronic matter. For a simplified one-
minima in the strange-quark phase is interesting—and ndiavor model strange matter saturates but is unstable against
unigque to hadronic systeni80]—the origin of this effect the break-up into isolated nucleons. Yet as the flavor content
may be an artifact of the non-relativistic approximation usedof the model was increased, strange matter became abso-
in this work. Indeed, a preliminary analysis using a relativ-lutely stable.
istic kinetic energy for the quarks reveals no evidence for It is too early to predict how far we will be able to push
competing minima. this model. Ultimately, one would hope to compute a realis-
tic equation of state that could be used as input in the com-
IV. CONCLUSIONS putation of masses and radii of neutron stars. Unfortunately,
o ) and in spite of the considerable effort devoted to this en-
Because of its intrinsic interest as the possible groun@jeavor, several crucial refinements remain to be added. Per-
state of hadronic matter as well as its relevance to the dynhaps the most important one is related to the lack of binding
namics of neutron stars, strange-quark matter has been mogkthe low-density nuclear phase. In the most pristine form of
eled directly in terms of its quark constituents. A three-flavor,the model quark exchange is the unique sourcenaifd)
three-color string-flip model that confines quarks within in- gttraction. Clearly, this is insufficient to bind nuclear matter.
dividual color-neutral clusters, yet allows the clusters toTnys, the introduction of an effective force between nucleons
separate without generating unphysical long-range forcesyay be unavoidable. Perhaps adding the missing physics as-
was used to compute strange-matter observables. Perhaps tiated with the long-range pionic tail, in the form oba
greatest virtue of the model is that the transition from nucleagegon, might solve the problem. Or perhaps a simple modi-
matter—where quarks are confined within color-singletfication of the underlying confining interaction, through the
hadrons—to quark matter—where quarks are free to roanhroduction of density-dependent spring constant and quark
through the simulation volume—is dynamical; there is NOmasses, might improve the description of the low-density
need to introduced hocparameters to characterize the tran-gquation of state. Further, while the present version of the
sition. Inde_ed, at very low densities the qgarks cluster dYmodel incorporated flavor and color degrees of freedom for
namically into (three-quark nucleons having properties e first time, spin and spin-dependent interactions remain to
identical to those in free space. As the density increases thga included. Incorporating this extra degree of freedom in
clusters dissolve, again dynamically, into a uniform Fermine cajculations, while avoiding an over-proliferation of
gas of quarks. This is in contrast to most of the modelsyaryonic states, remains a difficult challenge. Finally, it is
available today that use either nucleon and hyperons, even ghrealistic to expect that a non-relativistic description will
very high densities, or quarks in a bag as the fundamentabmain valid in the high-density domain. This problem can
degrees of freedom. _ be solved, at least in part, by using a relativistic form for the
After testing our variational Monte Carlo approach in the kinetic energy of a free Fermi gas. In spite of all these chal-
low- and high-density limits, where the approach becomegenges we believe that the string-flip model used here repre-
exact, we proceeded to compute the variational parametegents a sound starting point for the description of this com-
the equation of state, anq the_ strangeness content of strangfcated many-body system. In particular, we are convinced
matter. We were able to identify two phase transitions in thgpt ultimately some form of quark-assignment problem will

model. The first one, previously reported in the one-flavoraye to be solved in order to account simultaneously for
simulations of Ref[ 18], is characterized by a transition from quark confinement and cluster separability.

three-quark to multiquark cluster configurations. The varia-
tional parameter, which is directly related to the length scale
for quark confinement, jumps discontinuously at the transi-
tion. A transition to strange matter was also identified at a This work was supported in part by the United State De-
higher density. The onset for the transition was delayegartment of Energy under Contract No. DE-FGO05-
slightly relative to the predictions of a free Fermi-gas esti-92ER40750. G.T.S. thanks CONACYT, Meo for financial
mate. Much more interesting, however, was the developmergupport.
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