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There is a very large body of literature in which the Nambu—Jona-Lg$idb) model has been applied in
the study of mesons, baryons, and hadronic matter. One area of interest has been the calculation of corrections
of order 1N to various quantities calculated in the leadiitprtreg approximation. Of particular interest is
the work of Dmitragovic, Schulze, Tegen, and Lemmigknn. Phys.(N.Y.) 238 332(1995]. These authors
have considered the $B)-flavor NJL model and identified a set of diagrams, whose calculation yieMs 1/
corrections, while at the same time maintaining the relations, such as the Goldberger-Treiman relation, that
follow from the chiral symmetry of the theory. In the present work we extend the work of Dimiraé et al.
to the case of S(B)-flavor symmetry. In particular, we considemL/corrections to the quark vacuum con-
densates and to the “gap equation.” WhileN}/corrections to the pion decay constant are significant, the
corrections to the condensates are found to be quite small, as was the case ifZh#astr analysis. The
Pauli-Villars regularization procedure is thought to be particularly useful for such calculations, since that
procedure is known to maintain the symmetries of the theory. As part of our analysis we extend the Pauli-
Villars regularization procedure to the case in which a particular diagram contains quarks of different constitu-
ent mass. Such diagrams appear when we generalize tt®-Bavor analysis to S(B). We also show that, if
we use the “textbook” definition of the Pauli-Villars method, in which fictitious particles of large mass are
added to the theory, the resulting formalism may not be used in the case of the NJL model. What is done in
practice is that particular divergefeand nondivergeftintegrals are regulated in a fashion that yields results
that are quite similar to the results of the covariant regularization procedure that is used by many authors. For
constituent quark mass values of the magnitude usually used in the case of @)efl&kbdr NJL model, we
find that the 1N, corrections in the calculation of the pion decay constant play a role in obtaining satisfactory
values for the quark vacuum condensates and the strength of the 't Hooft interaction.
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I. INTRODUCTION on the right-hand side of Eq1.1) is the 't Hooft interaction.
Further, m°=diag (,m3,m)) is the quark(curren} mass
There have been a great number of applications of thenatrix.

Nambu—Jona-LasinioNJL) model [1], including recent Using Eqg.(1.1) we may identify the quark self-energy for
work that studies quark matter at the very high densitieshe SU3)-flavor analysis as in Fig. 1. There, the first two
appropriate for problems in astrophys[&. Useful reviews terms define the Hartree approximatidiThe Fock terms
of earlier work may be found in Ref§3—5]. One body of may be incorporated in an effective Hartree term after mak-
work of interest to us is the consideration oNl/corrections ing a Fierz transformatiofi8,9].) The third term of Fig. 1
to the simplest form of the theof$p—9]. Of particular inter-  was considered in Ref9]. The wavy line denotes pseudo-
est is the work of Ref9], since the authors have shown how scalar and scalar mesons. In the(8)flavor version of the
to calculate I, corrections while maintaining the relations NJL model these are just the and ¢ mesons. For S(3)-
that follow from the chiral symmetry of the theory. The flavor we consider ther, K, and 75 pseudoscalar mesons and
analysis of Ref[9] was made for the S@)-flavor version of  the o, K% , anda, scalar mesongNote that thes(547) has
the NJL model. One goal in this work is to extend the workbeen shown to be largely of flavor-octet struct[t8].) The
of Ref. [9] to the SU3)-flavor NJL model. To that end we |ast term of the self-energy shown in Fig. 1 represents the
consider the Lagrangian contribution of the 't Hooft interactiofi3—5].

S vt 0.0
L=q(io—m°)q+ 7320 [(G\%q)?+(qi ysh*a)?] @ = —o—+ + +%
m

Gp _ _
+—-{defq(1+ys)al+defq(l-ys)ql}. (1.1
FIG. 1. The figure depicts the model of the quark self-energy

N . _ considered in this work. The third diagram on the right-hand side
Here the\® are the Gell-Mann matrices with®=2/31, represents a IV, correction calculated in Ref9] for the SU?2),

wherel is the unit matrix in the flavor space. The third term fjayor version of the NJL model. Here we calculate this diagram for
the SUJ)-flavor model. The wavy line denotes the exchanged me-
son of momentung. The last term represents the 't Hooft interac-
*Email address: cashc@cunyvm.cuny.edu tion that plays an important role in the &)-flavor analysis[3—-5].
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We may write the “gap equations” whose solution yields whether we writeGp (dd), (Ss), or Gp (dd) (ss) in Eq.

the constituent quark masses as,

m,=m§ — 2G(Uu) — Gp(dd)(ss), (1.2
mg=mJ— 2G«(dd)— Gp(Uu)(ss), (1.3
m,=m0—2G(ss) — Gp(uu)(dd). (1.4)

We defines (uu) to be the correction due to the third term in
Fig. 1, etc. Therefore, we write

(uu)=(uu)y+ &(uu), (1.5

(dd)=(dd)o+ &(dd), (1.6
and

(ss)=(ss)o+ &(sS). (1.7)

(Since we will usem(=m, we have(uu)=(dd).) In Egs.
(1.5—(1.7) (uu), is of orderN; and § (uu) is of order 1, etc.
Therefore, sinc&g is of order 1N, Ggé(uu) is a correc-
tion of order 1N.. Further,Gp, is of order (1N.)® [11], so

that Gp (dd) (ss) is of order 1N.. Note that &uUu),

(1.2). (The former choice is more consistent withiN1/count-
ing procedures, however.

The organization of our work is as follows. In Sec. Il we
describe the calculation of (uu), & (dd), andé (ss). The
regularization of the various diagrams we calculate is dis-
cussed in the Appendixes. Our discussion of the Pauli-Villars
regularization for the S(3)-flavor case represents a gener-
alization of the procedures introduced in RE®] for the
SU(2)-flavor analysis. However, in Sec. Il we show that the
Pauli-Villars procedure, as usually defined in quantum field
theory, cannot be applied in a systematic fashion in the case
of the NJL model. We also explain why the authors of Ref.
[9] were able to obtain reasonable results in their version of
the Pauli-Villars regularization procedure. In Sec. IV we
make use of the method of R¢B] to implement the Pauli-
Villars procedure and also use the standard covariant regu-
larization procedure. We present some results of our numeri-
cal calculations in Sec. IV. Section V contains some further
discussion and conclusions.

II. CALCULATION OF VACUUM CONDENSATES
IN THE SU (3)-FLAVOR NJL MODEL

After passing to Euclidean space Wmﬁ —q? we ob-

&dd), and &ss) are quite small, so it does not matter tain the following result foruu):

Gs

5<Uu>=—§(

f ququ GS\J (mu’mu,qE)lTPS(mU!mUYqE)
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J doec
2/ Jo qEqu_GS‘JS(muamu’qE)

iTS(muvaqu)- (2-1)

The contributions in E¢(2.1) are for the sequence of mesons The approximatiorg?(q2)~g2(0) is often used.

m, K, 7s, a9, K§ , ando. Note that the pseudoscalar meson

In the calculation of Eq(2.1) we have defined

contribution enters with the opposite sign to that of the scalar

mesons[We may make contact with Reff9] by noting re-
lations of the form

92(q)
gg+m2’

Gg B
1_GSJP(mu My aqE)

(2.2

Te(my,my,qg) =Myl (My,my,0)+(M,—mgy)I(my,m,,qe)
— (= myQE—m3+mm3)K(mg,my,qe) ],
(2.3

so that
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Tp(m,m,qE)=m[I(m,m,O)+qéK(m,m,q§)]. (2.4 The evaluaton of the functions Jp(ml,m_z,qE_),
Js(my,my,qg), 1(my,my,qg), and K(my,m,,qg) is dis-

Also, cussed in the Appendixes. In E®.1) we have used
Ts(My, My, ge) =[Myl (My,My,0) + (Mg +my)1 (Mg, My, ge) J;S(mu,ms,qE)=%[Jp(mu,mu,qE)+Jp(md,md,qE)
+(m3+2m;m3 +mmj +43p(Mmg,mq,qe)] 2.7
+myq2)K(my,my,qe)], (2.5
AR Mz ) = 1[3p(my My .Ge)+ 23p(mq.m, Ge)],
and (2.8
Ts(m,m,qg)=m[1(m,m,0)+21(m,m,gg) where a factor of is included to remove a factor of 2 in the
y 2 ) definition of Jp that arises from the flavor trace.
+(4m°+gg)K(mm,gg)]. (2.6 The result for&(ss) is
|
5(s8)= ( Ne J d Cs T
<§S>_ ﬁ qEqu GS‘JP(muam31qE) i PS(mUlmS'qE)
1/ N¢ d Gg T
3 gz qEqu GIE pe—— ps(Ms,Ms,ge)
N¢ ) A Gs .
+ doeqd iTs(my,Ms,ge). 2.9
ﬁ 0 qEqu_GS‘]P(msamuaqE) S( u s qE) ( )
|
Here, the sequence of contributions are those dug, tg,, Gs gi
andK§ mesons. 1-Gdpd) 02+ m2 (3.2
lll. THE PAULI-VILLARS is inadequate. Alternatively, we may argue that the fictitious
REGULARIZATION PROCEDURE particles introduced in the Pauli-Villars procedure of mass

2__ 2 2 2_ A2 2
In a quantum field theory the Pauli-Villars regularization M1= M +2A% andM3=m"+ A" have masses that are 100

procedure introduces fictitious large mass particles, whictlose to the mass values of the physical mesons for the pro-
reedure to work well. To be more precise, we have calculated
PV
discussion of this procedure in the case of QED vacuums'(mm,gg) and J5¥(m,m qE) with m=0.364 GeV and
polarization diagrams may be found in the textbook of Itzk- APVO .80 GeV. We f|nd thatJg¥(m,m,0) is greater than
son and Zubef12], for example. If we follow that procedure Jp'(m,m,0). That means that there are scalar bound states of

for the vacuum polarization diagrams of the NJL model, wenegative energy, slnc@S = (m m,0) in the chiral limit
would have (m,=0). This problem may be avoided if we do not regu-
late the vacuum polarization functions as in E8.1), but
£V(m,m,q2)=Js(m,m,q2)+Js(M1,M1,02) only regulate the fqnctionE(mz) a2r1d|(m,m,qE) thg\t ap-
5 pear in our expressions fdg(m,m,qg) andJp(m,m,qgg). In
—2J5(M3,M3,qg), (3.)  a similar fashion, we also regulate the convergent integral

K(mrquE) [9]
with M2=m?+2A? andM3=m?+ A?. (The unequal mass

case is discussed in the Appendijes. _ _ IV. RESULTS OF NUMERICAL CALCULATIONS
In Ref.[9] the value ofA is fixed by calculating the pion
decay constant. There is an additional param&térat regu- Here we consider the solutions of Eq4.2)—(1.4). We

lates the integral over the momentum of the meson in th&hose values ofn,=mg andms. We then chose a value for
third term of Fig. 1, and which also appears in the calculatiort such thatA2=tA2, whereA is the cutoff for the meson

of f,.. For definiteness let us considdr=A=0.80 Gey, Momentum seen in Eq&2.1) and(2.9). We then findA such
and up and down quark masses of 364 MeV. We then havéhat the value of the pion decay constdpt=0.0924 GeV.
M;=1.19 GeV andM,=0.879 GeV. Note thaM, is not (For this work we neglect the strangeness content of the pion
much greater tham,=2m,=0.728 GeV. That suggests that and use the formula fof ; given in Ref.[9].) We then cal-

the approximation culate the condensatésu),=(dd), and (ss),. We calcu-
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TABLE I. Results for the Pauli-Villars regularization procedure. Here we have determined the valuesofg the procedure of ReP]

with A2=tA2. We usem,=my=0.364 GeV andn,=0.522 GeV, and calculate (Uu)$®, —(ss)¥® and the corresponding values Gf;
andGp . We also present results for the corrected condensate val(ies)’® and — (ss)° (see Sec. )l

A A f Gs Go  —(wg® - -t - &
t [GeV] [GeV] [GeV] [GeV?]  [GeV 7] [GeV] [GeV] [GeV] [GeV] (uu)
1.0 0816 0.816  0.109 7.650 —221.5 0.2621 0.2750 0.2652 0.2699 1.054
09  0.799 0.758  0.108 8.221  —234.1 0.2510 0.2690 0.2597 0.2648 1.061
08 0781 0.699  0.106 8.864 —245.4 0.2526 0.2640 0.2541 0.2597 1.068
07 0763 0.638  0.105 9.595  —254.4 0.2477 0.2584 0.2486 0.2546 1.074
06  0.745 0.577  0.103 1043  -259.0 0.2428 0.2528 0.2431 0.2494 1.080
05 0727 0.514  0.101 11.38  -256.4 0.2379 0.2471 0.2379 0.2449 1.085
04  0.710 0.449  0.0996 12.48  —242.4 0.2329 0.2414 0.2327 0.2394 1.089
03  0.692 0.379  0.0978 13.75  —210.7 0.2279 0.2357 0.2276 0.2344 1.091
02 0675 0.302  0.0961 1524  —152.2 0.2230 0.2300 0.2227 0.2293 1.092
01  0.658 0.208  0.0942 16.98 —53.2 0.2181 0.2245 0.2179 0.2242 1.090
00  0.693 0.000  0.0924 19.06 106.6 0.2132 0.2189 0.2132 0.2189 1.083

late Gs and G after putting m2=0.0055 GeV andm]? The value ofGp used in Ref[4] is —239.1 GeV° and

that used in Ref[3] is —185 GeV>. In our work on the
properties of thez mesons we found that 180 GeV °
<Gp< —220 GeV ®° gave good values for the masses, de-
cay constants, and mixing angles of these me§b@k That

values chosen fam, andmg are those used in the extensive suggests that the range 0:80<1.00 leads to the best over-

calculations reported in Ref4]. From the table we see that @l agreement with the values df,, Gp, and the quark
(Uu)l’s and <§5>1/3 differ from (Uu)é’e’ and (§s>$’3 by about vacuum condensates in the case we choose to work with

1-29%. There is about a 3—5% difference betw@gm, and ~ Mu=0-364 GeV andn,=0.522 GeV.

(Tu) or (ss), and(ss). The value of the condensate is some- In Table 1l we present the results for the case of covariant
what unce?tain with.<Uu>%—(0.250t 0.025 GeV§. For regularization. We make use of the fact that it was shown

in Ref. [9] that quite similar results are obtained for the

=0.132 GeV. Once we obtai, A, and Gs we calculate
S&(uu)= 5(dd) and &(ss). The values shown in Table | were
calculated form,=my=0.364 GeV andns=0.522 GeV us-
ing the Pauli-Villars regularization as defined in R&f. The

most values ofs andA listed in Table | the condensates take : L > 2
on acceptable values, with the values for0 andt=0.1 covanant regularization scheme Aico,=2 In2Ap,, where
being somewhat too small. Acoy is the regulator for the covariant scheme. Again,

In these calculations the value df,=—0.0924 GeV is we definet such thatAcoy=tAcoy. In this manner
fixed. The value listed a&”) is the value calculated fdr, in ~ we obtain the results shown in Table Il. The results for
leading order, without the I, correction. Fort=1 we see 0.4<t=<1.0 are satisfactory, given the range@j that pro-
about an 18% correction arising from theNl/correction vides good results for the properties of light mesons
term calculated foff . [3-5,10.

TABLE . Results for the covariant regularization procedure calculated with, =2 In 2A2,, [9]. See the caption to Table(The value
of Acoy=0.90 GeV was used in Reff4].)

A A & Gs Go —Eug® —E® @t - &
t [GeV] [GeV] [GeV] [GeV?]  [GeV °] [GeV] [GeV] [GeV] [GeV] (uu)
1.0 0816 0.816  0.109 7.752 —216.4 0.2618 0.2744 0.2413 0.2593 1.241
09  0.799 0.758  0.108 8.335 —227.3 0.2571 0.2690 0.2404 0.2568 1.218
08  0.781 0.699  0.106 8.998 —236.6 0.2523 0.2634 0.2389 0.2538 1.198
07  0.763 0.638  0.105 9.753 —242.5 0.2474 0.2578 0.2369 0.2507 1.180
06  0.745 0577  0.103 10.62  —243.1 0.2425 0.2522 0.2344 0.2466 1.163
05  0.727 0514  0.101 1161  —234.7 0.2376 0.2465 0.2316 0.2425 1.148
04 0710 0.449  0.0996 12.76  —2126 0.2326 0.2408 0.2285 0.2382 1.133
03  0.692 0.379  0.0978 1410  —169.2 0.2276 0.2351 0.2250 0.2336 1.119
02  0.675 0.302  0.0961 15.67 -93.73 0.2227 0.2294 0.2212 0.2287 1.105
01  0.658 0.208  0.0942 17.54 30.48 0.2177 0.2238 0.2172 0.2236 1.091
00  0.693 0.000  0.0924 19.46 226.2 0.2129 0.2183 0.2128 0.2183 1.078
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V. DISCUSSION One obtains
The advantage of the formalism presented in R@f.is FPVY(m2) =m2[(1+2X)In(1+2%) — (1+X)IN(1+X)]
that the summed diagrams represent an approximation that (’A7)

preserves the relations that follow from the chiral symmetry

of the Lagrangian. One of the goals of our work has been tavherex=A%/m2. We also have

extend the calculations of R¢B] to the case of S(B)-flavor

symmetry. We have found that the small values&tiu i

fgund in ¥hat work are also found in our analysis.&? > H(m?,q)= (477)2[2 IN(1+x) =In(1+2x) +{A(y)}™]
The analysis of the S@3) model may be made using (A8)

different procedures. We were interested in investigating

the effect of changing the value df for the valuesm, and

=my=0.364 GeV andmy=0.522 GeV that were used in

Ref. [4]. In that work the covariant regularization scheme

was used withAggy=0.90 GeV, Gs=9.80 GeV ?, Gp

=—239.1 GeV®°, mJ=0.0055 GeV, andn?=0.132 GeV.

y
2 2 _

PV
[Z—A(Y)]] (A9)

In the covariant analysis we have with
. 3, X A(y)=2(1—\1+1lIn[\y+1+y])  (A10)
[fﬁ)]émmu In(1+x)— 72 | (5.1)

and y=—q%/4m?>0. The regularization procedure is de-
where x=AZ,/mZ. Using the parameters of Ref4] we  fined by the relatiori9]
obtain f{¥)=0.105 GeV which is consistent with the results

given in Tables | and Il. Therefore, we conclude that the {fyPV=f(y)+f
results of Ref[4], calculated witht =0, would be improved

B;geofill\lg gog:%cgovcoﬁgﬁmvvi:)?/(lantﬂg?:lju:anotgteair?gg?s's. We now turn to the integrals needed for our(S)lavor
o i P o analysis. Consider the vacuum polarization integrgf (

and only give rise to small corrections to the condensate

y
1+2x

y

—2f Trx)"

(A11)

i <0),
values of (Uu)o=(dd),=—(0.248 GeV} and (sS), )
=—(0.258 GeVY obtained in Ref[4]. , . dk i i
Jg(my,my,q%)=—2Ni Tr 2 g+ k=m, k=m,’
APPENDIX A (A12)

In this appendix we discuss the applicqtion of the Pal_J”We define the regulated function in a field theoretic analysis
Villars procedure to regulate divergent integrals. As dis- pa

cussed in Refl9], convergent integrals are regulated by the

same procedure. In Reff9] the following integrals are de- {Ie(my,m,,g9)}PV=Jg(m;,m,,q?) +Js(M1,M1,07)
fined:
—2Je(M,M5,0%) (A13)
I(m? —f a’p ! Al in thi
(m°,q)= 2m) =P (pr =]’ (A1) where, in this case,
K(m2,q) f d*p 1 A2) MZ=mym,+2A2 (A14)
m<,q)= ;
(M= ] @y =P+ 0= ] and
dp 1 2, 2
2\ 2 mi+m
F(m?)=(4m) |f—(277)4 Pa— (A3) M2= 12 24 A2, (A15)

The regulated integrals are formed by writif@) A regulated form of

IPY(@)=1(m?,q)+1(M{,q)—21(M3,0)  (A4)

J 2)=—2N 'Tf d'k ! !
and P(m1!m2iq )__ o Ir (277)4 75q+k_m175k_m2
(Al16)

KPY(a)=K(m*,q)+K(M{,q)—2K(M3,q),  (A5)
is defined in analogy to the definition given in E¢A13)—

with M2=m?+2A2% andM3=m?+ A2, (A15).
Similarly, we define As described in the text, EGA13) cannot be used for the
) ) NJL model. As discussed previously, the regulated form used
FPY(m?) =F(m?) +F(M?)—2F(M3). (AB)  here is
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ng(ml My ,qé)
FPV( mi)

. va(mg)
=4anc (477)2

(4m)°

2 2 2 1PV
+(gg+mi+ms+2mm,)il ~Y(my,my,qg) |,

(A17)

with a similar definition ofJ5Y(m;,m,,q2).

We next turn to the regularization @f(m,,m,,q) of Eq.
(2.5). For the moment, we work in Minkowski space where
g?=—qZ. Rather than work with Eq2.5), it is best to re-
turn to the integral that appears when evaluating the thir
diagram in Fig. 1. We consider

d*p 1 1

TeMuMe D=1 ) (g d—my] [b—m, T’
(A18)

and define the field-theoretic regularization

d*p 1 1
PV_
{Ts(ms,m;, )} Trf (2m)*| p+d—m, [p—m,)?
1 1
+ « n N
p+d—My [p—M,]?
1
+B - —, (A19)
p+d—M;, [p—M,]?

with =1 andB= —2. We also find that we may choose

. 2m,+my -

My=| —5—|+ 2A (A20)
and

. 2my+my| .

Mo=|—73— : (A21)

so that we may regulat€s(m;,m,,qg) by writing

{Tp(my,my,qe)}PV=Tp(my,m;,qe) + Tp(M1,My,qg)

—2Tp(M3, My, qe). (A22)
There is a similar relation fofTg(m,,m,,qg)}PV.

We would like to have a relation between of Egs. (A20)
and (A21) and the parametek defined in Eqs(Al14) and
(A15). We may write

PHYSICAL REVIEW C65 045205

2 2
m1+m2
=— ? (A23)
=M3 (A24)
2m,+m 2
2 1 ~
=[(T)+A} , (A25)

or useM2=M?2. The two values ofA obtained in this fash-
ion are rather close.

As discussed previously, the field-theoretic definition of
the Pauli-Villars procedure is not applicable. Therefore,
dather than use EqA22), we use the results given in Egs.
(2.3) and(2.5) and write

TEV( my,m,,dg)
=[myl PY(my,my,0)+ (my—my) I PY(my,my,qe)

+(myg2+mi—mm3a)KPV(my,m,,qe)],  (A26)

with a similar definition of TSY (m;,m,,qe). [See Eq.
(2.5.]

In Appendix B we provide the expressions we have ob-
tained for Jp(my,m;,qg), Js(My,My,qe), (Mg, m;,qg),
andK(m¢,m,,qg).

APPENDIX B
We define

S
JS(mllmZ!q )__ NCI Trf (27T)4q+k_

m1+i8
i
“K—mytis (B1)
and find, withp2= —p?,
F(md) F(md)
2\ 2 2 2
Js(my,my,0g) =4nc (4m)2 + (472 +(pg+mi+m;
+2m1m2)il(m1,m2,qE)}. (B2)
We also define
, [ d% i
Jp(Mmy,m;,q°%) = —2N,i Trf (277)4'75 q+k—m;+ie
) i
Ve g, e (B3

and obtain
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(ml) F(mz)
Jp(my,my,q8) =4N, (4—)2+W+( qg+mi+mj

—2mymy)il (my,m;,,qe) |- (B4)
We define
d*p 1 1
2 2\
M(MLM29)= | G [(p+ a7 ] [p7- M3
(B5)
and find
: 2, .2 2
=i | gg+tm;—mj 1
K(m?,m2,qg) =
(m3,m3,qe) (477)2[ qs VAZ—4m2ms3
A2+ JA*—4mim3| 1 [my
XIn +—In| —|,
2mym, e \my
(B6)
with A?=g2Z+m3+m3. Form,;=m,, we have
K _ i 1 1 | \/_ \/1_
(myquE)_W _E \/(].Tm + + |
(B7)

with y= qZ/4m?.
We now write
KPV(m2,m3,qg) = K(mZ,m3,qe) + K(m2+ 2A2,m3
+2A%,0g) — 2K(mi+ A% m5+ A%, qg),
(BY)

which is a generalization of the method used in Réf.to
regulateK (m?,qg). [See Eqs(A5) and (A9).]
The regulated form of(m;,m,,0) for m;#m, is
(m2+2)\2)(m3+2A?)
mim3

i 1
1PY(my,my,0)= W[E

(m1+ A?)(m3+A?)
s

+f(mi+2A2%,m3+2A2)

—[f(mf,m3)

—2f(m§+A2,m§+A2)]], (B9)
where
2 2 2 2 2 2
() = m?+ ms 1 . ms -+ m2—|m1—m2|H
1.02) 2 2 2 2 2 2
2 [mi—m3| | m{+m;+[mi—my|

(B10)

We also have
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i 1
(.00 =~ 7z | (I, md )]

+In[b(m?+2A2%,m3+2A2,q¢)]
—21In[b(m2+A2,m3+A%,qe)]},
(B11)
where
b(mf,m3,0e) =dgx(1—x)+ mpx+mi(1-x). (B12)

Completion of the integral yields

|(m1,m2,QE):_(47T)2 22 Inm;—2
E

i [qé+mi—m§ )
Ggrme-m
20 '

JA? 4m1m2| A2+ \JA?—4mim}
+ :
29¢ A%2—\A*—4mim3
(B13)

whereA?= g2+ m?2+ms.

In Eq. (B13) we may replace Imé and Inms by In(mé/M?)
and In(n%/Mz) whereM is an arbitrary constant of the dimen-
sion of a mass. The result fdfY (m;,m,,qg) does not
depend upon the value ®4.

The regularization procedure used in RE3] requires
only a regularization of the integraB(m?), I(my,m,,qg)
andK(m;,m,,qgg) using the “Pauli-Villars method.” For ex-
ample,

{F(M)}PV=F(m?)+F(m?*+2A%) - 2F(m?+A?),
(B14)

etc. The essential point is to avoid the use of our &d.3),
since that leads to the problems discussed in the text.

APPENDIX C

In this appendix we provide expressions for
I(my,m,,qe), K(my,m,,qg), andF(m) using the covariant
regularization procedure which is based upon the introduc-
tion of the factore(Acov pE) in the Euclidean-space inte-
grals over the values opg. [See Egs.(Al)—(A3).] [The
Feymann method for combining the energy denominators in
Egs.(A1)—(A3) is used} We find

| 1 _fld b(q?,x)
(ml,mz.CI)—leTZ' 0 Xm

(CY

—In( b(a%x)
b(g?,x) +A&oy

with
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b(g2,x)=q2(1— X)X+ max+m2(1—x). Cc2 1 X
(@%x)=0q%(1=x) 2 1(17x%) €2 I(m,m,0)=—z(4ﬂ_) i{In(x+1)= ==/, (C5
Further,
while, for my#m,,
K ! 'fld Aéovx 1 ’ 2 2 2 2
(ml’mz’q)__wl 0 Xb(qz,X)[b(qz-X)"'A%ov]z' [(mg,m o)z—l Eln My + Aov| [ Mzt Acov
(C3) LT (4m)? | 2 m3 m5
We also note thafo] mi+mj n[ m§+Aéov)
- 2 2 2
Foodm?)=m?[x—In(1-x)], () 2(mg—mp) m
2
wher(_ex=AéOV/m2. In the equal mass casen{=m,=m), Zm—lz) ] (Co)
one finds mi+ACov
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