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Calculation of 1ÕNc corrections to the SU„3…-flavor Nambu–Jona-Lasino model
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There is a very large body of literature in which the Nambu–Jona-Lasino~NJL! model has been applied in
the study of mesons, baryons, and hadronic matter. One area of interest has been the calculation of corrections
of order 1/Nc to various quantities calculated in the leading~Hartree! approximation. Of particular interest is
the work of Dmitrasˇinović, Schulze, Tegen, and Lemmer@Ann. Phys.~N.Y.! 238, 332 ~1995!#. These authors
have considered the SU~2!-flavor NJL model and identified a set of diagrams, whose calculation yields 1/Nc

corrections, while at the same time maintaining the relations, such as the Goldberger-Treiman relation, that
follow from the chiral symmetry of the theory. In the present work we extend the work of Dmitrasˇinović et al.
to the case of SU~3!-flavor symmetry. In particular, we consider 1/Nc corrections to the quark vacuum con-
densates and to the ‘‘gap equation.’’ While 1/Nc corrections to the pion decay constant are significant, the
corrections to the condensates are found to be quite small, as was the case in the SU~2!-flavor analysis. The
Pauli-Villars regularization procedure is thought to be particularly useful for such calculations, since that
procedure is known to maintain the symmetries of the theory. As part of our analysis we extend the Pauli-
Villars regularization procedure to the case in which a particular diagram contains quarks of different constitu-
ent mass. Such diagrams appear when we generalize the SU~2!-flavor analysis to SU~3!. We also show that, if
we use the ‘‘textbook’’ definition of the Pauli-Villars method, in which fictitious particles of large mass are
added to the theory, the resulting formalism may not be used in the case of the NJL model. What is done in
practice is that particular divergent~and nondivergent! integrals are regulated in a fashion that yields results
that are quite similar to the results of the covariant regularization procedure that is used by many authors. For
constituent quark mass values of the magnitude usually used in the case of the SU~3!-flavor NJL model, we
find that the 1/Nc corrections in the calculation of the pion decay constant play a role in obtaining satisfactory
values for the quark vacuum condensates and the strength of the ’t Hooft interaction.

DOI: 10.1103/PhysRevC.65.045205 PACS number~s!: 12.39.Fe, 11.30.Rd, 11.30.Hv
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I. INTRODUCTION

There have been a great number of applications of
Nambu–Jona-Lasinio~NJL! model @1#, including recent
work that studies quark matter at the very high densi
appropriate for problems in astrophysics@2#. Useful reviews
of earlier work may be found in Refs.@3–5#. One body of
work of interest to us is the consideration of 1/Nc corrections
to the simplest form of the theory@6–9#. Of particular inter-
est is the work of Ref.@9#, since the authors have shown ho
to calculate 1/Nc corrections while maintaining the relation
that follow from the chiral symmetry of the theory. Th
analysis of Ref.@9# was made for the SU~2!-flavor version of
the NJL model. One goal in this work is to extend the wo
of Ref. @9# to the SU~3!-flavor NJL model. To that end we
consider the Lagrangian

L5q̄~ i ]2m0!q1
Gs

2 (
a50

8

@~ q̄laq!21~ q̄ig5laq!2#

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%. ~1.1!

Here thela are the Gell-Mann matrices withla5A2/3 1,
where1 is the unit matrix in the flavor space. The third ter
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on the right-hand side of Eq.~1.1! is the ’t Hooft interaction.
Further, m05diag (mu

0,md
0,ms

0) is the quark ~current! mass
matrix.

Using Eq.~1.1! we may identify the quark self-energy fo
the SU~3!-flavor analysis as in Fig. 1. There, the first tw
terms define the Hartree approximation.~The Fock terms
may be incorporated in an effective Hartree term after m
ing a Fierz transformation@8,9#.! The third term of Fig. 1
was considered in Ref.@9#. The wavy line denotes pseudo
scalar and scalar mesons. In the SU~2!-flavor version of the
NJL model these are just thep and s mesons. For SU~3!-
flavor we consider thep, K, andhs pseudoscalar mesons an
the s, K0* , anda0 scalar mesons.~Note that theh~547! has
been shown to be largely of flavor-octet structure@10#.! The
last term of the self-energy shown in Fig. 1 represents
contribution of the ’t Hooft interaction@3–5#.

FIG. 1. The figure depicts the model of the quark self-ene
considered in this work. The third diagram on the right-hand s
represents a 1/Nc correction calculated in Ref.@9# for the SU~2!,
flavor version of the NJL model. Here we calculate this diagram
the SU~3!-flavor model. The wavy line denotes the exchanged m
son of momentumq. The last term represents the ’t Hooft intera
tion that plays an important role in the SU~3!-flavor analysis.@3–5#.
©2002 The American Physical Society05-1
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We may write the ‘‘gap equations’’ whose solution yield
the constituent quark masses as,

mu5mu
022Gs^ūu&2GD^d̄d&^s̄s&, ~1.2!

md5md
022Gs^dd&2GD^ūu&^s̄s&, ~1.3!

mu5mu
022Gs^ s̄s&2GD^ūu&^d̄d&. ~1.4!

We defined ^ūu& to be the correction due to the third term
Fig. 1, etc. Therefore, we write

^ūu&5^ūu&01d^ūu&, ~1.5!

^d̄d&5^d̄d&01d^d̄d&, ~1.6!

and

^s̄s&5^s̄s&01d^s̄s&. ~1.7!

~Since we will usemu
05md

0, we have^ūu&5^d̄d&.! In Eqs.
~1.5!–~1.7! ^ūu&0 is of orderNc andd ^ūu& is of order 1, etc.
Therefore, sinceGS is of order 1/Nc , GSd^ūu& is a correc-
tion of order 1/Nc . Further,GD is of order (1/Nc)

3 @11#, so
that GD ^d̄d& ^s̄s& is of order 1/Nc . Note that d^ūu&,
d^d̄d&, and d^ s̄s& are quite small, so it does not matt
ns
on
la

04520
whether we writeGD ^d̄d&0 ^s̄s&0 or GD ^d̄d& ^ s̄s& in Eq.
~1.2!. ~The former choice is more consistent with 1/Nc count-
ing procedures, however.!

The organization of our work is as follows. In Sec. II w
describe the calculation ofd ^ūu&, d ^d̄d&, andd ^ s̄s&. The
regularization of the various diagrams we calculate is d
cussed in the Appendixes. Our discussion of the Pauli-Vill
regularization for the SU~3!-flavor case represents a gene
alization of the procedures introduced in Ref.@9# for the
SU~2!-flavor analysis. However, in Sec. III we show that th
Pauli-Villars procedure, as usually defined in quantum fi
theory, cannot be applied in a systematic fashion in the c
of the NJL model. We also explain why the authors of R
@9# were able to obtain reasonable results in their version
the Pauli-Villars regularization procedure. In Sec. IV w
make use of the method of Ref.@9# to implement the Pauli-
Villars procedure and also use the standard covariant re
larization procedure. We present some results of our num
cal calculations in Sec. IV. Section V contains some furth
discussion and conclusions.

II. CALCULATION OF VACUUM CONDENSATES
IN THE SU „3…-FLAVOR NJL MODEL

After passing to Euclidean space withqE
252q2 we ob-

tain the following result ford^ūu&:
d^ūu&52
3

4 S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP~mu ,mu ,qE!
iTPS~mu ,mu ,qE!

2
1

2 S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP~mu ,ms ,qE!
iTPS~ms ,mu ,qE!

2
1

12S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP
88~mu ,ms ,qE!

iTPS~mu ,mu ,qE!

1
3

4 S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJS~mu ,mu ,qE!
iTS~mu ,mu ,qE!

1
1

2 S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJS~mu ,mu ,qE!
iTS~ms ,mu ,qE!

1
1

4 S Nc

2p2D E
0

L̃
dqEqE

3 GE

12GSJS~mu ,mu ,qE!
iTS~mu ,mu ,qE!. ~2.1!
The contributions in Eq.~2.1! are for the sequence of meso
p, K, hs , a0 , K0* , ands. Note that the pseudoscalar mes
contribution enters with the opposite sign to that of the sca
mesons.@We may make contact with Ref.@9# by noting re-
lations of the form

GS

12GSJP~mu ,mu ,qE!
5

gp
2 ~qE

2 !

qE
21mp

2 . ~2.2!
r

The approximationgp
2 (qE

2)'gp
2 (0) is often used.#

In the calculation of Eq.~2.1! we have defined

TP~m1 ,m2 ,qE!5@m2I ~m2 ,m2,0!1~m22m1!I ~m1 ,m2 ,qE!

2~2m2qE
22m2

31m1m2
2!K~m1 ,m2 ,qE!#,

~2.3!

so that
5-2
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TP~m,m,qE!5m@ I ~m,m,0!1qE
2K~m,m,qE

2 !#. ~2.4!

Also,

TS~m1 ,m2 ,qE!5@m2I ~m2 ,m2,0!1~m11m2!I ~m1 ,m2 ,qE!

1~m2
312m1m2

21m2m1
2

1m2qE
2 !K~m1 ,m2 ,qE!#, ~2.5!

and

TS~m,m,qE!5m@ I ~m,m,0!12I ~m,m,qE!

1~4m21qE
2 !K~m,m,qE

2 !#. ~2.6!
n
ic
a
um
k

e
w

th
io

a

at

04520
The evaluation of the functions JP(m1 ,m2 ,qE),
JS(m1 ,m2 ,qE), I (m1 ,m2 ,qE), and K(m1 ,m2 ,qE) is dis-
cussed in the Appendixes. In Eq.~2.1! we have used

Jp
ss~mu ,ms ,qE!5 1

6 @JP~mu ,mu ,qE!1JP~md ,md ,qE!

14JP~ms ,ms ,qE!# ~2.7!

5 1
3 @JP~mu ,mu ,qE!12JP~ms ,mz ,qE!#,

~2.8!

where a factor of12 is included to remove a factor of 2 in th
definition of JP that arises from the flavor trace.

The result ford^s̄s& is
d^s̄s&52S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP~mu ,ms ,qE!
iTPS~mu ,ms ,qE!

2
1

3 S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP
88~mu ,ms ,qE!

iTPS~ms ,ms ,qE!

1S Nc

2p2D E
0

L̃
dqEqE

3 GS

12GSJP~ms ,mu ,qE!
iTS~mu ,ms ,qE!. ~2.9!
us
ss
o
pro-
ted

s of

u-
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r

ion
Here, the sequence of contributions are those due toK, hs ,
andK0* mesons.

III. THE PAULI-VILLARS
REGULARIZATION PROCEDURE

In a quantum field theory the Pauli-Villars regularizatio
procedure introduces fictitious large mass particles, wh
may have real or imaginary coupling constants. The stand
discussion of this procedure in the case of QED vacu
polarization diagrams may be found in the textbook of Itz
son and Zuber@12#, for example. If we follow that procedur
for the vacuum polarization diagrams of the NJL model,
would have

JS
PV~m,m,qE

2 !5JS~m,m,qE
2 !1JS~M1 ,M1 ,qE

2 !

22JS~M2 ,M2 ,qE
2 !, ~3.1!

with M1
25m212L2 and M1

25m21L2. ~The unequal mass
case is discussed in the Appendixes.!

In Ref. @9# the value ofL is fixed by calculating the pion
decay constant. There is an additional parameterL̃ that regu-
lates the integral over the momentum of the meson in
third term of Fig. 1, and which also appears in the calculat
of f p . For definiteness let us considerL̃5L50.80 GeV,
and up and down quark masses of 364 MeV. We then h
M151.19 GeV andM250.879 GeV. Note thatM2 is not
much greater thanms52mu50.728 GeV. That suggests th
the approximation
h
rd

-

e

e
n

ve

GS

12GSJS~p2!
'

gs
2

p21ms
2 ~3.2!

is inadequate. Alternatively, we may argue that the fictitio
particles introduced in the Pauli-Villars procedure of ma
M1

25m212L2 and M2
25m21L2 have masses that are to

close to the mass values of the physical mesons for the
cedure to work well. To be more precise, we have calcula
JS

PV(m,m,qE
2) and JP

PV(m,m,qE
2) with m50.364 GeV and

L50.80 GeV. We find thatJS
PV(m,m,0) is greater than

JP
PV(m,m,0). That means that there are scalar bound state

negative energy, sinceGS
215JP

PV(m,m,0) in the chiral limit
(mp50). This problem may be avoided if we do not reg
late the vacuum polarization functions as in Eq.~3.1!, but
only regulate the functionsF(m2) and I (m,m,qE) that ap-
pear in our expressions forJg(m,m,qE

2) andJP(m,m,qE
2). In

a similar fashion, we also regulate the convergent integ
K(m,m,qE) @9#.

IV. RESULTS OF NUMERICAL CALCULATIONS

Here we consider the solutions of Eqs.~1.2!–~1.4!. We
chose values ofmu5md andms . We then chose a value fo
t such thatL̃25tL2, whereL̃ is the cutoff for the meson
momentum seen in Eqs.~2.1! and~2.9!. We then findL such
that the value of the pion decay constantf p50.0924 GeV.
~For this work we neglect the strangeness content of the p
and use the formula forf p given in Ref.@9#.! We then cal-
culate the condensates^ūu&05^d̄d&0 and ^s̄s&0 . We calcu-
5-3
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TABLE I. Results for the Pauli-Villars regularization procedure. Here we have determined the value ofL using the procedure of Ref.@9#

with L̃25tL2. We usemu5md50.364 GeV andmu50.522 GeV, and calculate2^ūu&0
1/3, 2^s̄s&0

1/3 and the corresponding values ofGS

andGD . We also present results for the corrected condensate values2^ūu&1/3 and2^s̄s&1/3 ~see Sec. II!.

t
L

@GeV#
L̃

@GeV#
f p

0

@GeV#
GS

@GeV22#
GD

@GeV25#
2^ūu&0

1/3

@GeV#
2^s̄s&0

1/3

@GeV#
2^ūu&1/3

@GeV#
2^s̄s&1/3

@GeV#

^s̄s&

^ūu&

1.0 0.816 0.816 0.109 7.650 2221.5 0.2621 0.2750 0.2652 0.2699 1.054
0.9 0.799 0.758 0.108 8.221 2234.1 0.2510 0.2690 0.2597 0.2648 1.061
0.8 0.781 0.699 0.106 8.864 2245.4 0.2526 0.2640 0.2541 0.2597 1.068
0.7 0.763 0.638 0.105 9.595 2254.4 0.2477 0.2584 0.2486 0.2546 1.074
0.6 0.745 0.577 0.103 10.43 2259.0 0.2428 0.2528 0.2431 0.2494 1.080
0.5 0.727 0.514 0.101 11.38 2256.4 0.2379 0.2471 0.2379 0.2449 1.085
0.4 0.710 0.449 0.0996 12.48 2242.4 0.2329 0.2414 0.2327 0.2394 1.089
0.3 0.692 0.379 0.0978 13.75 2210.7 0.2279 0.2357 0.2276 0.2344 1.091
0.2 0.675 0.302 0.0961 15.24 2152.2 0.2230 0.2300 0.2227 0.2293 1.092
0.1 0.658 0.208 0.0942 16.98 253.2 0.2181 0.2245 0.2179 0.2242 1.090
0.0 0.693 0.000 0.0924 19.06 106.6 0.2132 0.2189 0.2132 0.2189 1.0
e

e
t

e

ke

e-

r-

with

ant
wn
e

in,

for

ns
late GS and GD after putting mu
050.0055 GeV andmu

0

50.132 GeV. Once we obtainL, L̃, and GS we calculate
d^ūu&5d^d̄d& andd^ s̄s&. The values shown in Table I wer
calculated formu5md50.364 GeV andms50.522 GeV us-
ing the Pauli-Villars regularization as defined in Ref.@9#. The
values chosen formu andms are those used in the extensiv
calculations reported in Ref.@4#. From the table we see tha
^ūu&1/3 and ^s̄s&1/3 differ from ^ūu&0

1/3 and ^s̄s&0
1/3 by about

1–2%. There is about a 3–5% difference between^ūu&0 and
^ūu& or ^s̄s&0 and^ s̄s&. The value of the condensate is som
what uncertain with ^ūu&'2(0.25060.025 GeV)3. For
most values ofL andL̃ listed in Table I the condensates ta
on acceptable values, with the values fort50 and t50.1
being somewhat too small.

In these calculations the value off p50.0924 GeV is
fixed. The value listed asf p

(0) is the value calculated forf p in
leading order, without the 1/Nc correction. Fort51 we see
about an 18% correction arising from the 1/Nc correction
term calculated forf p .
04520
-

The value ofGD used in Ref.@4# is 2239.1 GeV25 and
that used in Ref.@3# is 2185 GeV25. In our work on the
properties of theh mesons we found that2180 GeV25

,GD,2220 GeV25 gave good values for the masses, d
cay constants, and mixing angles of these mesons@10#. That
suggests that the range 0.80<t<1.00 leads to the best ove
all agreement with the values off p , GD , and the quark
vacuum condensates in the case we choose to work
mu50.364 GeV andms50.522 GeV.

In Table II we present the results for the case of covari
regularization. We make use of the fact that it was sho
in Ref. @9# that quite similar results are obtained for th
covariant regularization scheme ifLCOV

2 52 ln 2LPV
2 , where

LCOV is the regulator for the covariant scheme. Aga

we define t such that L̃COV5AtLCOV. In this manner
we obtain the results shown in Table II. The results
0.4<t<1.0 are satisfactory, given the range ofGD that pro-
vides good results for the properties of light meso
@3–5,10#.
91
78
TABLE II. Results for the covariant regularization procedure calculated withLCOV
2 52 ln 2LPV

2 @9#. See the caption to Table I.~The value
of LCOV50.90 GeV was used in Ref.@4#.!

t
L

@GeV#
L̃

@GeV#
f p

0

@GeV#
GS

@GeV22#
GD

@GeV25#
2^ūu&0

1/3

@GeV#
2^s̄s&0

1/3

@GeV#
2^ūu&1/3

@GeV#
2^s̄s&1/3

@GeV#

^s̄s&

^ūu&

1.0 0.816 0.816 0.109 7.752 2216.4 0.2618 0.2744 0.2413 0.2593 1.241
0.9 0.799 0.758 0.108 8.335 2227.3 0.2571 0.2690 0.2404 0.2568 1.218
0.8 0.781 0.699 0.106 8.998 2236.6 0.2523 0.2634 0.2389 0.2538 1.198
0.7 0.763 0.638 0.105 9.753 2242.5 0.2474 0.2578 0.2369 0.2507 1.180
0.6 0.745 0.577 0.103 10.62 2243.1 0.2425 0.2522 0.2344 0.2466 1.163
0.5 0.727 0.514 0.101 11.61 2234.7 0.2376 0.2465 0.2316 0.2425 1.148
0.4 0.710 0.449 0.0996 12.76 2212.6 0.2326 0.2408 0.2285 0.2382 1.133
0.3 0.692 0.379 0.0978 14.10 2169.2 0.2276 0.2351 0.2250 0.2336 1.119
0.2 0.675 0.302 0.0961 15.67 293.73 0.2227 0.2294 0.2212 0.2287 1.105
0.1 0.658 0.208 0.0942 17.54 30.48 0.2177 0.2238 0.2172 0.2236 1.0
0.0 0.693 0.000 0.0924 19.46 226.2 0.2129 0.2183 0.2128 0.2183 1.0
5-4



th
tr

g
in

n
e

lts
he

.

a

ul
is
he
-

-

sis

sed

CALCULATION OF 1/Nc CORRECTIONS TO THE . . . PHYSICAL REVIEW C 65 045205
V. DISCUSSION

The advantage of the formalism presented in Ref.@9# is
that the summed diagrams represent an approximation
preserves the relations that follow from the chiral symme
of the Lagrangian. One of the goals of our work has been
extend the calculations of Ref.@9# to the case of SU~3!-flavor
symmetry. We have found that the small values ofd^ūu&
found in that work are also found in our analysis.

The analysis of the SU~3! model may be made usin
different procedures. We were interested in investigat
the effect of changing the value oft for the valuesmu
5md50.364 GeV andms50.522 GeV that were used i
Ref. @4#. In that work the covariant regularization schem
was used withLCOV50.90 GeV, GS59.80 GeV22, GD

52239.1 GeV25, mu
050.0055 GeV, andms

050.132 GeV.
In the covariant analysis we have

@ f p
~0!#25

3

4p2 mu
2F ln~11x!2

x

11xG , ~5.1!

where x5LCOV
2 /mu

2. Using the parameters of Ref.@4# we
obtain f p

(0)50.105 GeV which is consistent with the resu
given in Tables I and II. Therefore, we conclude that t
results of Ref.@4#, calculated witht50, would be improved
if the 1/Nc correction to f p were included in the analysis
Use oft50.7 or 0.8 would improve the value obtained forf p

and only give rise to small corrections to the condens
values of ^ūu&05^d̄d&052(0.248 GeV)3 and ^ s̄s&0
52(0.258 GeV)3 obtained in Ref.@4#.

APPENDIX A

In this appendix we discuss the application of the Pa
Villars procedure to regulate divergent integrals. As d
cussed in Ref.@9#, convergent integrals are regulated by t
same procedure. In Ref.@9# the following integrals are de
fined:

I ~m2,q!5E d4p

~2p!4

1

@p22m2#@~p1q!22m2#
, ~A1!

K~m2,q!5E d4p

~2p!4

1

@p22m2#2@~p1q!22m2#
, ~A2!

F~m2!5~4p!2i E d4p

~2p!4

1

p22m2 . ~A3!

The regulated integrals are formed by writing@9#

I PV~q!5I ~m2,q!1I ~M1
2,q!22I ~M2

2,q! ~A4!

and

KPV~q!5K~m2,q!1K~M1
2,q!22K~M2

2,q!, ~A5!

with M1
25m212L2 andM2

25m21L2.
Similarly, we define

FPV~m2!5F~m2!1F~M1
2!22F~M2

2!. ~A6!
04520
at
y
to

g

te

i-
-

One obtains

FPV~m2!5m2@~112x!ln~112x!2~11x!ln~11x!#,
~A7!

wherex5L2/m2. We also have

I ~m2,q!5
i

~4p!2 @2 ln~11x!2 ln~112x!1$D~y!%PV#

~A8!

and

q2K~m2,q!5
i

~4p!2 H y

y11
@22D~y!#J PV

~A9!

with

D~y!52~12A111/y ln@Ay1A11y# ! ~A10!

and y52q2/4m2.0. The regularization procedure is de
fined by the relation@9#

$ f ~y!%PV5 f ~y!1 f S y

112xD22 f S y

11xD . ~A11!

We now turn to the integrals needed for our SU~3!-flavor
analysis. Consider the vacuum polarization integral (q2

,0),

JS~m1 ,m2 ,q2!522Nci TrE d4k

~2p!4

i

q”1k”2m1

i

k”2m2
.

~A12!

We define the regulated function in a field theoretic analy
to be

$JE~m1 ,m2 ,q2!%PV5JE~m1 ,m2 ,q2!1JS~M1 ,M1 ,q2!

22JE~M2 ,M2 ,q2! ~A13!

where, in this case,

M1
25m1m212L2 ~A14!

and

M2
25

m1
21m2

2

2
1L2. ~A15!

A regulated form of

JP~m1,m2,q2!522Nci TrE d4k

~2p!4 Fg5

1

q”1k”2m1
g5

1

k”2m2
G

~A16!

is defined in analogy to the definition given in Eqs.~A13!–
~A15!.

As described in the text, Eq.~A13! cannot be used for the
NJL model. As discussed previously, the regulated form u
here is
5-5
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JS
PV~m1 ,m2 ,qE

2 !

54nCFFPV~m1
2!

~4p!2 1
FPV~m2

2!

~4p!2

1~qE
21m1

21m2
212m1m2!i I PV~m1 ,m2 ,qE!G ,

~A17!

with a similar definition ofJP
PV(m1 ,m2 ,qE

2).
We next turn to the regularization ofTs(m1 ,m2 ,q) of Eq.

~2.5!. For the moment, we work in Minkowski space whe
q252qE

2. Rather than work with Eq.~2.5!, it is best to re-
turn to the integral that appears when evaluating the th
diagram in Fig. 1. We consider

TE~m1 ,m2 ,q!5TrE d4p

~2p!4

1

@p”1q”2m1#

1

@p”2m2#2

~A18!

and define the field-theoretic regularization

$TS~m1 ,m2 ,q!%PV5TrE d4p

~2p!4 F 1

p”1q”2m1

1

@p”2m2#2

1a
1

p”1q”2M̂1

1

@p”2M̂1#2

1b
1

p”1q”2M̂2

1

@p”2M̂2#2G , ~A19!

with a51 andb522. We also find that we may choose

M̂15S 2m21m1

3 D12L̂ ~A20!

and

M̂25S 2m21m1

3 D1L̂, ~A21!

so that we may regulateTP(m1 ,m2 ,qE) by writing

$TP~m1 ,m2 ,qE!%PV5TP~m1 ,m2 ,qE!1TP~M̂1 ,M̂1 ,qE!

22TP~M̂2 ,M̂2 ,qE!. ~A22!

There is a similar relation for$TS(m1 ,m2 ,qE)%PV.
We would like to have a relation betweenL̂ of Eqs. ~A20!
and ~A21! and the parameterL defined in Eqs.~A14! and
~A15!. We may write
04520
d

M2
25

m1
21m2

2

2
1L2 ~A23!

5M̂2
2 ~A24!

5F S 2m21m1

3 D1L̂G2

, ~A25!

or useM1
25M̂1

2. The two values ofL̂ obtained in this fash-
ion are rather close.

As discussed previously, the field-theoretic definition
the Pauli-Villars procedure is not applicable. Therefo
rather than use Eq.~A22!, we use the results given in Eq
~2.3! and ~2.5! and write

TP
PV~m1 ,m2 ,qE!

5@m2I PV~m1 ,m2,0!1~m22m1!I PV~m1 ,m2 ,qE!

1~m2qE
21m2

32m1m2
2!KPV~m1 ,m2 ,qE!#, ~A26!

with a similar definition of TS
PV (m1 ,m2 ,qE). @See Eq.

~2.5!.#
In Appendix B we provide the expressions we have o

tained for JP(m1 ,m2 ,qE), JS(m1 ,m2 ,qE), I (m1 ,m2 ,qE),
andK(m1 ,m2 ,qE).

APPENDIX B

We define

JS~m1 ,m2 ,q2!522Nci TrE d4k

~2p!4

i

q”1k”2m11 i«

3
i

k”2m21 i«
~B1!

and find, withpE
252p2,

JS~m1 ,m2 ,qE
2 !54nCFF~m1

2!

~4p!2 1
F~m2

2!

~4p!2 1~pE
21m1

21m2
2

12m1m2!i I ~m1 ,m2 ,qE!G . ~B2!

We also define

JP~m1 ,m2 ,q2!522Nci TrE d4k

~2p!4 ig5S i

q”1k”2m11 i« D
3 ig5S i

k”2m21 i« D ~B3!

and obtain
5-6
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JP~m1 ,m2 ,qE
2 !54NcFF~m1

2!

~4p!2 1
F~m2

2!

~4p!2 1~qE
21m1

21m2
2

22m1m2!i I ~m1 ,m2 ,qE!G . ~B4!

We define

K~m1
2,m2

2,qE!5E d4p

~2p!4

1

@~p1q!22m1
2#

1

@p22m2
2#2

~B5!

and find

K~m1
2,m2

2,qE!5
2 i

~4p!2 H qE
21m2

22m1
2

qE
2

1

AA224m1
2m2

2

3 lnUA21AA424m1
2m2

2

2m1m2
U1 1

qE
2 lnS m1

m2
D J ,

~B6!

with A25qE
21m1

21m2
2. For m15m2 , we have

K~m,m,qE!5
i

~4p!2 S 2
1

2D 1

m2Ay~11y!
lnuAy1A11yu,

~B7!

with y5qE
2/4m2.

We now write

KPV~m1
2,m2

2,qE!5K~m1
2,m2

2,qE!1K~m1
212L2,m2

2

12L2,qE!22K~m1
21L2,m2

21L2,qE!,

~B8!

which is a generalization of the method used in Ref.@9# to
regulateK(m2,qE). @See Eqs.~A5! and ~A9!.#

The regulated form ofI (m1 ,m2,0) for m1Þm2 is

I PV~m1 ,m2,0!5
i

~4p!2 H 1

2 F2 ln
~m1

212l2!~m2
212L2!

m1
2m2

2

12 ln
~m1

21L2!~m2
21L2!

m1
2m2

2 G2@ f ~m1
2,m2

2!

1 f ~m1
212L2,m2

212L2!

22 f ~m1
21L2,m2

21L2!#J , ~B9!

where

f ~m1
2,m2

2!5
m1

21m2
2

2 H 1

um1
22m2

2u
lnFm1

21m2
22um1

22m2
2u

m1
21m2

21um1
22m2

2uG J ,

~B10!

We also have
04520
I ~m1 ,m2 ,qE!52
i

~4p!2 E
0

1

dx$ ln@b~m1
2,m2

2,qE!#

1 ln@b~m1
212L2,m2

212L2,qE!#

22 ln@b~m1
21L2,m2

21L2,qE!#%,

~B11!

where

b~m1
2,m2

2,qE!5qE
2x~12x!1m2

2x1m1
2~12x!. ~B12!

Completion of the integral yields

I ~m1 ,m2 ,qE!52
i

~4p!2 H qE
21m1

22m2
2

2qE
2 ln m2

222

1
qE

21m2
22m1

2

2qE
2 lnm1

2

1
AA224m1

2m2
2

2qE
2 lnFA21AA224m1

2m2
2

A22AA424m1
2m2

2G J ,

~B13!

whereA25qE
21m1

21m2
2.

In Eq. ~B13! we may replace lnm1
2 and lnm2

2 by ln(m1
2/M2)

and ln(m2
2/M2) whereM is an arbitrary constant of the dimen

sion of a mass. The result forI PV (m1 ,m2 ,qE) does not
depend upon the value ofM.

The regularization procedure used in Ref.@9# requires
only a regularization of the integralsF(m2), I (m1 ,m2 ,qE)
andK(m1 ,m2 ,qE) using the ‘‘Pauli-Villars method.’’ For ex-
ample,

$F~m2!%PV5F~m2!1F~m212L2!22F~m21L2!,
~B14!

etc. The essential point is to avoid the use of our Eq.~A13!,
since that leads to the problems discussed in the text.

APPENDIX C

In this appendix we provide expressions f
I (m1 ,m2 ,qE), K(m1 ,m2 ,qE), andF(m) using the covariant
regularization procedure, which is based upon the introd
tion of the factoru(LCOV

2 2pE
2) in the Euclidean-space inte

grals over the values ofpE . @See Eqs.~A1!–~A3!.# @The
Feymann method for combining the energy denominator
Eqs.~A1!–~A3! is used.# We find

I ~m1 ,m2 ,q!5
1

16p2 i E
0

1

dxF b~q2,x!

b~q2,x!1LCOV
2

212 lnS b~q2,x!

b~q2,x!1LCOV
2 D G ~C1!

with
5-7
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b~q2,x!5q2~12x!x1m2
2x1m1

2~12x!. ~C2!

Further,

K~m1 ,m2 ,q!52
1

16p2 i E
0

1

dx
LCOV

4 x

b~q2,x!@b~q2,x!1LCOV
2 #2 .

~C3!

We also note that@9#

FCOV~m2!5m2@x2 ln~12x!#, ~C4!

wherex5LCOV
2 /m2. In the equal mass case (m15m25m),

one finds
04520
I ~m,m,0!5
1

~4p!2 i F ln~x11!2
x

x11G , ~C5!

while, for m1Þm2 ,

I ~m1 ,m2,0!5
i

~4p!2 H 1

2
lnF S m1

21LCOV
2

m1
2 D S m2

21LCOV
2

m2
2 D G

2
m1

21m2
2

2~m1
22m2

2!
lnF S m2

21LCOV
2

m2
2 D

3S m1
2

m1
21LCOV

2 D G J . ~C6!
r,
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