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Thermodynamics of the three-flavor Nambu–Jona-Lasinio model: Chiral symmetry breaking
and color superconductivity
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Employing an extended three flavor version of the Nambu–Jona-Lasinio model, we discuss in detail the
phase diagram of quark matter. The presence of quark as well as of diquark condensates gives rise to a rich
structure of the phase diagram. We study in detail the chiral phase transition and the color superconductivity as
well as color flavor locking as a function of the temperature and chemical potentials of the system.
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I. INTRODUCTION

At low temperatures and densities all quarks are confi
into hadrons. In this phase the chiral symmetry is sponta
ously broken by the quark condensates. Raising the temp
ture, one expects that the chiral symmetry becomes rest
and that the quarks are free. This state is called a quark g
plasma~QGP!. In the QGP all symmetries of the QCD La
grangian are restored. For QCD at low temperatures and
densities, one expects a phase where the quarks are
superconducting state@1–4#. All these different phases defin
the phase diagram of QCD@5# in the plane of the tempera
ture and density. This phase diagram is not directly acc
sible. QCD calculations are only possible on a lattice at z
baryon density. In order to explore the finite-temperat
and- density region, one has to rely on effective models. T
types of such effective models were advanced to study
high-density, low-temperature section. The first type
model includes weak-coupling QCD calculations, includi
the gluon propagators@6#. The second type includes insta
ton @4,7,8# as well as Nambu–Jona-Lasinio~NJL! models
@2,9#. These models show a color superconducting phas
high density and low temperature. In this phase the SUC(3)
color symmetry of QCD breaks down to an SUC(2) symme-
try. Including a third flavor, another phase occurs: the co
flavor-locked state of quark matter@9–11#.

The two-flavor results of the instanton approach are rep
duced by the model of NJL@12,13# if one includes an appro
priate interaction as shown by Schwarzet al. @14#. This
model was extended by Langfeld and Rho@15#, who in-
cluded all possible interaction channels and discovered
even richer phase structure of the QCD phase diagram
cluding a phase where Lorentz symmetry is spontaneo
broken.

The choice of the NJL model is motivated by the fact th
this model displays the same symmetries as QCD, and th
correctly describes the spontaneous breakdown of ch
symmetry in the vacuum and its restoration at high tempe
ture and density. In addition, the NJL model was successf
used to describe the meson spectra and thus is able to r
duce the low-temperature, low-density phenomena of Q
@16–18#. Thus this is a model which starts out in the dire
tion opposite to the instanton model, which is a high-dens
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approximation of QCD. Therefore, it is interesting to s
whether the NJL model is able to describe the other pha
the color superconducting phase, and the color flavor-lock
phase observed in the instanton approach. The shortcom
of the NJL model is the fact that it does not describe co
finement, or more generally any gauge dynamics at all. H
we will evaluate the thermodynamical properties of t
quarks in the NJL model at finite temperature and dens
and we will discuss the symmetries of the different phas
We present numerical results for the calculation of the d
ferent condensates. For our study of the phase diagram
use one specific set of parameters. We treat the three-fl
version of the model, including an interaction in the qua
antiquark channel, a t’Hooft interaction, and an interaction
the diquark channel. We restrict ourself to the scalar/ or ps
doscalar sector of these interactions.

The paper is organized as follows: In Sec. I we w
briefly review the NJL model and present the Lagrangian
will use. In chapter Sec. II we study the quark condens
and the restoration of chiral symmetry. In Sec. III we add
interaction in the diquark channel, and present the numer
results for the color superconducting sector. We will hav
complete evaluation of the phase diagram of the NJL mo
including a chiral and superconducting phase transition
finite temperature and~strange and light quark! density. In
Sec. IV we present our conclusions.

II. MODEL

The model we use is an extended version of the N
model, including an interaction in the diquark channel.
fact, the NJL model can be shown to be the simplest l
energy approximation of QCD. It describes the interact
between two quark currents as a pointlike exchange o
perturbative gluon@19,20#. Applying an appropriate Fierz
transformation to this interaction, the Lagrangian separa
into two pieces: a color singlet interaction between a qu
and an antiquark (L(q̄q)), and a color antitriplet interaction
between two quarks (L(qq)). The color singlet channel is
attractive in the scalar and pseudoscalar sector, and repu
in the vector and pseudovector channel. The Lagrangia
the diquark sector has two parts, both attractive: a fla
antisymmetric channel and a flavor symmetric channel. T
former includes Lorentz scalar and pseudoscalar and ve
©2002 The American Physical Society04-1
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interactions, the latter a pseudoscalar interaction only.
The coupling constants of these different channels are

lated to each other by the Fierz transformation. Due to
extreme simplification of the gluon propagator in this a
proximation, the resulting model cannot reproduce the c
finement which is described by the infrared behavior of
gluon propagator.

The resulting Lagrangian has a global axial symme
UA(1), and anextra termLA in the form of the t’Hooft
determinant is added in order to break explicitly this symm
try. The resulting Lagrangian then has the general form

L5L01L(q̄q)1L(qq)1LA , ~1!

whereL0 is the free kinetic part.
The interaction part of the Lagrangian has a global co

flavor, and chiral symmetry. The chiral symmetry is expl
itly broken by nonzero current quark masses, and the fla
symmetry by a mass difference between the flavors.

The different interaction channels of this Lagrangian g
rise to a very rich structure of the phase diagram, which w
completely evaluated in the two-flavor case by Langfeld a
Rho @15#. Here we will concentrate on the three-flavor ca
The evaluation of the complete phase structure in the th
flavor case is a quite difficult task, and we will concentra
here on the Lorentz scalar and pseudoscalar interaction
the mesonic channel this interaction is responsible for
appearance of a quark condensate and for the spontan
breakdown of the chiral symmetry. In the diquark channe
gives rise to a diquark condensate which can be identi
with a superconducting gap.

Describing the quark fields by the Dirac spinorsq, the
Lagrangian we will use here has the form

L5q̄~ i ]”2m0 f !q1GS(
a50

8

@~ q̄lF
aq!21~ q̄ig5lF

aq!2#

1GDIQ(
k51

3

(
g51

3

@~ q̄i ,ae i jkeabgqj ,b
C !

3~ q̄i 8,a8
C e i 8 j 8kea8b8gqj 8,b8!#

1GDIQ(
k51

3

(
g51

3

@~ q̄i ,aig5e i jkeabgqj ,b
C !

3~ q̄i 8,a
C ig5e i 8 j 8kea8b8gqj 8,b8!#

1GD@detq̄~12 ig5!q1detq̄~11 ig5!q#. ~2!

The first term is the free kinetic part, including the flavo
dependent current quark massesm0 f which explicitly break
the chiral symmetry of the Lagrangian. The second par
the scalar or pseudoscalar interaction in the mesonic chan
it is diagonal in color. The matriceslF act in the flavor
space. The third part describes the interaction in the scala
pseudoscalar diquark channel. The charge conjugated q
fields are denoted byqC5Cq̄T, and the color (a,b,g) and
flavor (i , j ,k) indices are displayed explicitly. We note th
due to the charge conjugation operation the productq̄ig5qC
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is a Lorentz scalar. This interaction is antisymmetric in flav
and color, expressed by the completely antisymmetric ten
e i jk . Finally, we add the six-point interaction in the form o
the t’Hooft determinant, which explicitly breaks theUA(1)
symmetry of the Lagrangian. The det runs over the fla
degrees of freedom, consequently the flavors become
nected.

The NJL model is nonrenormalizable; thus it is not d
fined until a regularization procedure has been specified
we are interested in the thermodynamical properties of
model, calculated with help of the thermodynamical pote
tial, we will use a three-dimensional cutoff in momentu
space. This cutoff limits the validity of the model to mo
menta well below the cutoff.

The model contains six parameters: the current mas
the light and strange quarks, the coupling constantsGD and
GS , and the momentum cutoffL. These are fixed by physi
cal observables: the pion and kaon mass; the pion de
constant; the mass difference betweenh and h8, once the
mass of the light quarks was fixed; as well as by the vacu
value of the condensatêqq̄&1/352230 MeV. The last pa-
rameter is the coupling constant in the diquark chan
GDIQ . For the mesonic sector we will use the parameters
Ref. @21#: a current light quark massm0q55.5 MeV, a cur-
rent strange quark massm0s5140.7 MeV, a three-
dimensional ultraviolet cutoffL5620 MeV, a scalar cou-
pling constantGS51.835/L2, and a determinant coupling
GD512.36/L5. We cannot fix the diquark sector indepe
dently, because we do not have enough informations ab
the baryon masses in the NJL model. Therefore, we use
relation between the coupling constants,GDIQ54GS/2,
given by the Fierz-transformation~see Appendix A!. This
parameter set results in effective vacuum quark masse
mq5367.6 MeV andms5549.5 MeV and the quark con
densates are Š^q̄q&‹5(2242 MeV)23 and Š^s̄s&‹5
(2258 MeV)23.

We perform our calculations in the mean-field approa
for an operator product

r̂1r̂2'r̂1Š^r2&‹1Š^r1&‹r̂22Š^r1&‹Š^r2&‹, ~3!

whereŠ^r&‹ is the thermodynamical average of the operat
and the fluctuations around this mean value are suppose
be small. We will apply this approximation to the products
quark fields appearing in the interaction part of the Lagra
ian.

III. CHIRAL PHASE TRANSITION

We start our study with an investigation of the quar
antiquark sector and the chiral phase transition. The diqu
sector is subject of Sec. IV.

The NJL model displays the right features of the chi
symmetry breaking. On the one hand, we have an explic
broken chiral symmetry by the inclusion of a small curre
quark mass. On the other hand, the model correctly descr
the spontaneous breakdown of chiral symmetry: the e
tence of a quark condensate, responsible for a high effec
quark mass and the existence of massless~or very light, if the
4-2
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THERMODYNAMICS OF THE THREE-FLAVOR . . . PHYSICAL REVIEW C 65 045204
chiral symmetry is explicitly broken! Nambu-Goldstone
bosons. Lattice QCD calculations show that at a tempera
of '170 MeV the chiral symmetry is restored~the quark
condensates melt at increasing temperature!, a result which is
reproduced by the NJL model@16,17,22#. As the region of
finite density is not accessible to lattice QCD calculatio
the chiral phase transition at high density is a subject
speculation. The point and the order of the chiral phase t
sition in the temperature-density plane define the phase
gram. Here we will present such a phase diagram for
three-flavor NJL model and a specified set of paramet
This phase diagram can be viewed as an approximatio
the QCD phase diagram, but we have to take into acco
that the NJL model does not describe confinement~we al-
ways have a gas of quarks and not a gas of hadrons! and that
the degrees of freedom are not the same as in QCD~the
model contains no gluons!. Here we will focus on the ther
modynamical properties of the quarks described in the c
singlet channel of the Lagrangian@Eq. ~2!#; this means the
thermodynamical properties of the quark condensates
masses.

For the study of the thermodynamical properties of
quark-antiquark sector we will evaluate the thermodynam
potential in the mean-field approximation. We start out fro
the Lagrangian in the mean-field approximation,

L MF5q̄~ i ]”2M !q22GS~a21b21g2!14GDabg,
~4!

whereM f is the effective quark mass~defined via the quark
condensatesŠ^q̄q&‹)

M f5m0 f24GSŠ^q̄fqf&‹12GDŠ^q̄f 1
qf 1

&‹Š^q̄f 2
qf 2

&‹

5m0 f1dmf , with f Þ f 1Þ f 2 ~5!

and the quark condensates are written in a shorthand not

a5Š^ūu&‹ b5Š^d̄d&‹ g5Š^s̄s&‹. ~6!

The mean-field Hamiltonian

HMF5Ed3x (
f5$u,d,s%

@q̄f ig0]0qf12GS~a21b21g2!24GDabg#

~7!

is transformed into an operatorĤ in second quantization
using

q̂f~x!5 (
s56

E d3p

~2p!3

3@ âpW ,s, fuf ~p,s!e2 ipx1b̂pW ,s, f
† v f ~p,s!eipx#. ~8!

At the moment, the quark condensates are unknown qua
ties. In order to evaluate them, we calculate the gra
canonical potential
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V52
1

b
Tr @e2b(Ĥ2mN̂)#, ~9!

with m being the chemical potential,b the inverse tempera
ture andN̂ the particle number operator:

N̂5n̂~pW ,s, f ,c!2 n̂̄~pW ,s, f ,c!, ~10!

where n̂(pW ,s, f ,c), n̂̄(pW ,s, f ,c) are the number operator
for particles and antiparticles with momentumpW , spin s,
flavor f, and color c. These operators are define
via the creation and annihilation operators for partic

n̂(pW ,s, f ,c)5âpW ,s, f ,c
†

âpW ,s, f ,c and antiparticles n̂̄(pW ,s, f ,c)

5b̂pW ,s, f ,c
†

b̂pW ,s, f ,c . We consider the condensates as parame
with respect to which the potential has to be minimized. T
appearance of the quark condensates spontaneously b
the chiral symmetry of the original Lagrangian.

In second quantization the exponent of the chemical
tential reads as

~ĤMF2mN̂!/V5 (
s, f ,c

E
0

Lp2dp

2p2

3@EpW , f2~EpW , f2m f !n̂~pW ,s, f ,c!

2~EpW , f1m f ! n̂̄~pW ,s, f ,c!#

1@2GS~a21b21g2!24GDabg#,

~11!

where V denotes the volume we have integrated out. T

energyEpW , f5AM f
21pW 2 depends on the flavor of the quark

and their momentum, but is independent of the color or sp
The evaluation of the grand canonical potential in the me
field approximation gives the result

VMF

V
52GS~a21b21g2!

24GDabg2
Nc

p2 (
f 5$u,d,s%

3E
0

L

p2dpH EpW , f1
1

b
ln@11e2b(EpW , f2m f )#

1
1

b
ln@11e2b(EpW , f1m f )#J . ~12!

It has to be minimized with respect to the qua
condensates:

]VMF

]Š^q̄fqf&‹
50. ~13!

We obtain three equations, one for each quark condensa
4-3
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Š^q̄fqf&‹52M f

NC

p2E0

L

dp
p2

EpW

3@12 f ~EpW , f1m f !2 f ~EpW , f2m f !#, ~14!

where we defined the Fermi functionf (x)5„11exp
(2bx)…21. The equations for the quark condensates
coupled@see Eq.~5!#. For three flavors we thus have thre
coupled gap equations which have to be solved s
consistently. Their solution, displayed in Appendix B, e
ables us to calculate the quark condensates and quark m
at finite temperature and chemical potential~density!.

We have to take care about the limits of the theory: T
regularization cutoff of the theory implies that the chemic
potential always has to be smaller than this cutoff, and t
the temperature must not be too elevated: The Fermi func
will be smoothly extended to high momenta, and we have
take into account that all states above the cutoff are igno
by the model.

The condensate is responsible for the spontaneous br
down of chiral symmetry at low densities and temperatur
At high temperature and density the quark condensate d
~it becomes very small, or zero in the case of zero curr
quark masses!, and consequently chiral symmetry is restor
~up to the current quark masses!. Hence the quark condensa
is the order parameter of the chiral phase transition. T
phase transitions we are dealing with are—depending on
parameters and of the density respective temperature
first or second order, or of the so-called crossover type,
we can classify the phase transition by means of this o
parameter. The first-order phase transition is specified b
discontinuity in the order parameter. For the second-or
phase transition the order parameter is continuous but
analytical at the point of the phase transition. The third ty
the crossover, is not a phase transition in the proper se
Here the order parameter does not display a nonanaly
point, but shows a smooth behavior.

In a first step we will consider the chiral phase transiti
as a function of temperature and chemical potential of
light quarks, the strange quark density is supposed to
zero. In Fig 1, left-hand side, we plot the mass of the lig
and strange quarks as a function of temperature at
baryon density for the parameters presented above.

At zero density we observe a smooth crossover of
chiral phase transition as a function of temperature: at
temperature the chiral symmetry is spontaneously brok

FIG. 1. The mass of strange and light quarks as a function of
temperature~left-hand side! and as a function of the light quar
chemical potential~right-hand side!.
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with rising temperature the quark condensate melts away
the quark masses approach the current mass, at least fo
light quarks. For the strange quarks we observe a m
smoother transition, and at the highest temperature we
treat in the framework of the NJL model~approximately
230 MeV) their mass is still higher than their current ma
We observe this smooth crossover only for the special c
of three nonzero current quark masses.

At zero temperature, for our parameter set we observ
first order phase transition. As a function of the chemi
potential the light quark mass drops suddenly to a va
close to the current quark mass. The strange quarks ch
their mass slightly due to the coupling between the flavo
For higher values of the chemical potential the strange qu
mass is stable. The light quark condensate is too small f
change of the strange quark mass. Only a rise of the chem
potential of the strange quarks can drop the strange qu
mass further, as will be discussed in the last part of t
section, where we present the extension to strange q
matter.

A first-order phase transition is characterized by the ex
tence of metastable phases, the equivalent of, for exam
oversaturated vapor. These metastable phases are a so
of the gap equation, but their thermodynamical potentia
larger than for the stable phase. We show this in detail in F
2. On the top we display the quark mass~light and strange!,
and on the bottom the density of light quarks and the th
modynamical potential. The stable phases which minim
the thermodynamical potential are shown as dark lines,
the metastable phases as light lines.

For the mass of the light quarks we observe the transi
from the stable phase at high chemical potential to a s
whose mass is larger than its chemical potential; this me
to zero density. Increasing the chemical potential yield
first-order phase transition, i.e., the mass of the quarks d

e

FIG. 2. Detailed representation of the first-order phase transi
as a function of the light quark potential at zero temperature. On
top: the light ~left-hand side! and strange~right-hand side! quark
masses. Bottom: the density~left-hand side! and the thermodynami-
cal potential~right-hand side!. The light lines represent the meta
stable region, the dark lines the stable region~minimization of the
thermodynamical potential!.
4-4
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suddenly. This abrupt change in the quark masses gives
to a jump in the density—for a constant chemical poten
suddenly many more states become accessible. This im
at the same time that certain densities do not exist. In
case the normal nuclear matter density is just in this reg
and there are good explanations for this fact@23,3#. For the
interpretation one has to remember that we are discussi
quark gas without confinement. Here, for nuclear matte
normal density, one has to consider a phase which cont
dense droplets of quarks in which chiral symmetry is
stored, surrounded by the vacuum or a very diluted quark
~which should be confined in QCD!. The size of these drop
lets is not given by the theory, but it is not farfetched
identify these objects with the nucleons.

This for our set of parameters we observe thus a fi
order phase transition as a function of the chemical poten
at zero temperature, and a crossover as a function of t
perature at zero density. Extrapolating now to the plane
finite temperature and chemical potential, there must b
point where both kinds of phase transitions join; the
called tricritical point. In Fig. 3 we show this phase diagra
at finite temperatures and chemical potentials~on the left-
hand side! on the right-hand side they are shown as a fu
tion of the density!. Dark lines display the transition by from
the stable state~or the transition line for the crossover!, and
light lines the metastable phases. The tricritical point is
cated at a temperatureT566 MeV and a chemical potentia
of mq5321 MeV which corresponds to a density ofrq
51.88r0.

The location of the tricritical point depends strongly o
the choice of the cutoff and the coupling constant@24#.

In Fig. 4 we plot the quark masses@light, ~left-hand side!,
and strange~right-hand side!# as a function of the chemica
potential of light and strange quarks at zero temperature.
can see the influence of the coupling between the flavors
already discussed for the light quark chemical potential. T
strange quark mass drops suddenly at high chemical po
tials of the strange quarksms and low chemical potentials fo
the light quarksmq . Once the chiral phase transition for th
light quarks has taken place~at high values ofmq!, the
strange quark mass shows a crossover transition for highms .
For high values ofmq and ms , both quark masses have
value close to their current quark mass. With increasing te

FIG. 3. Phase diagram for the mass of the light quarks~chiral
phase transition! as a function of temperature and the light qua
chemical potential~left-hand side! and density~right-hand side!.
The dark lines represent the transition, the light lines the limits
the metastable phases in case of a first order phase transition.
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perature, phase transitions will take place at lower values
the chemical potentials. This is very pronounced for the lig
quarks~see Fig. 1!, and less so for the strange quarks whi
change their mass quite slowly with temperature due to
high current quark mass~compare Fig. 1!.

IV. COLOR SUPERCONDUCTIVITY

In this section we will study the diquark channel. We w
see that quarks which have opposite spins and momenta
dense in the scalar channel into diquarks. This resem
superconductivity@25,26#. Here we have, in addition, a com
plex structure in color and flavor space. In classical sup
conductivity the condensation occurs close to the Fermi s
face. In our case we have to take into account that qua
with different flavors may have different Fermi surfaces. B
cause the coupling between the quarks is quite small,
condensation will only occur if the Fermi momenta of th
two quarks are quite close to each other.

In order to calculate the properties of the NJL model
the superconducting sector, we will apply the generaliz
thermodynamical approach of the Hartree-Bogolyub
theory to quark matter~see, for example, Ref.@27#! described
by Lagrangian~2!.

Lagrangian~2! in the mean-field approximation, includin
the diquark sector, reads as follows:

L MF5( q̄~ i ]”2M !q22GS~a21b21g2!

14GDabg1q̄ia

D̃kg

2
qj b

C

1q̄ia
C D̃kg†

2
qj b2(

k,g

uDkgu2

4GDIQ
. ~15!

Greek indices denote the colors, latin indices the flavors
The diquark condensate is defined by

D̃kg52GDIQig5eabge i jk
Š^q̄i 8a8ig5e i 8 j 8kea8b8gqj 8b8

C &‹

5 ig5eabge i jkDkg. ~16!

This diquark condensate occurs for all three colors simu
neously. We note that as in classical superconductivity
baryon~or particle! number is not conserved. Hence the ele
tromagneticUem(1) symmetry is spontaneously broken, a

f

FIG. 4. Light ~left-hand side! and strange~right-hand side!
quark masses as a function of the chemical potential of light (mq)
and strange (ms) quarks at zero temperature.
4-5
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Goldstone bosons appear in the form of Cooper pairs.
diquark condensate carries a color and a flavor index. F
given flavor and color the condensate is completely antis
metric in the other two flavors and colors. The condens
Dsr is created, for example, by green and blue up and do
quarks.

The diquark condensate is completely antisymmetric
the color degrees of freedom, a property which is only sha
by three of the eight Gell Mann matrices which generate
SUC(3). Hence a finite diquark condensate breaks down
SUC(3) color symmetry to a SUC(2) symmetry if the mass
of the strange quark is heavy. The same is true for the fla
sector if the three flavors are degenerated in mass. For
flavors only the Lagrangian is invariant with respect to
chiral transformation. If the diquark condensates coexist
all three flavors, the chiral symmetry is spontaneously b
ken.

Due to the product of two antisymmetric tensors, the sy
metry is even more reduced if all three quark flavors form
diquark condensate. In order to see this, we first assume
all three colors~for one flavor! are equivalent. Than we ca
assume without loss of generality thatk5g in Eq. ~16!, and
write the tensor product as

e i j I eabI5 (
i , j ,a,b

~d i ,ad j ,b2d i ,bd j ,a!. ~17!

We see that in this case the rotations in color and fla
space are no longer independent but locked. Hence
quarks are in a color-flavor locked phase if all three qu
flavors participate at the formation of the diquark conde
sates.d i ,a is the unit matrix of SU(3)C3F in which the ma-
trices contain the three flavors as columns and the three
ors as rows. The Lagrangian is therefore invariant unde
SU(3)C3F transformation, and consequently the SU(
color and flavor symmetries are reduced to an SU(3)C3F
symmetry. For more consequences of the appearance o
condensate for the symmetries, we refer to the literature@11#.
Here we will focus on a numerical evaluation of the size
the condensates and the phase transitions at finite tem
ture and density.

A. Thermodynamics

As before in the case of the chiral phase transition,
will evaluate all condensates and the phase diagram by
evaluation of the thermodynamical potential. We start
writing the Lagrangian in a more symmetric form, followin
Nambu, who developed this formalism for the classical
perconductivity@28#. For this purpose we rewrite the La
grangian as a sum of the original Lagrangian and its cha
conjugate:

LNambu5L1L C. ~18!

Then the Lagrangian can be presented as a matrix,
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L Nambu
MF 5F 1

A2
q̄

1

A2
q̄CG

3F i ]”2M f D̃kg†

D̃kg 2 i ]”T2M f
GF 1

A2
q

1

A2
qCG1Lcond,

~19!

where we suppressed the indices for convenience and de
the term

Lcond522GS~a21b21g2!14GDabg
uDkgu2

4GDIQ
. ~20!

In order to calculate the thermodynamical potential in t
notation,

V52bTr@ ln exp„2b~ĤNambu2mN̂2mN̂C!…#

we need the particle number operator and its charge co
gate,

N̂5 (
pW ,s, f ,c

@ âpW ,s
†

âpW ,s2b̂pW ,s
†

b̂pW ,s#,

N̂C52 (
pW ,s, f ,c

@ âpW ,sâpW ,s
†

2b̂pW ,sb̂pW ,s
†

# ~21!

where we suppressed the explicit dependence of the op
tors on flavor and color degrees of freedom.

When calculating the Hamiltonian in the mean field a
proximation, one can see—neglecting a small contribution
terms likeâ†b̂ in the case of different quark masses—tha
is possible to separateĤ2mN̂ into two parts, one for the
quarks~operatorsâ and â†) and another for the antiquark
~operatorsb̂ et b̂†):

Ĥ2mN̂5~Ĥ2mN̂! â1~Ĥ2mN̂! b̂ . ~22!

These two parts yield the explicit expressions

~Ĥ2mN̂! â5 (
pW ,s, f ,c

@ âpW ,s
†

â2pW ,2s#

3F EpW , f2m f 2D̃kg†N~p!

D̃kgN~p! 2EpW , f1m f
GF âpW ,s

â
2pW ,2s
† G1Hcond

~23!

and
4-6
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~Ĥ2mN̂! b̂5 (
pW ,s, f ,c

@ b̂pW ,s
†

b̂2pW ,2s#

3F EpW , f1m f 2D̃kg†N~p!

D̃kgN~p! 2EpW , f2m f
GF b̂pW ,s

b̂
2pW ,2s
† G1Hcond.

~24!

We denoted the expression2V* Lcond by Hcond, and used
here the discrete summation over the momenta. The exp
sions have a defined structure in flavor and color, the dia
nal terms are diagonal in flavor and color, the off-diago
terms (D̃) are antisymmetric in color and flavor and

N~p! f 1 , f 2
5S 11

p2

~Ef 1
1mf 1

!~Ef 2
1mf 2

! D
3A~Ef 1

1mf 1
!~Ef 2

1mf 2
!

4mf 1
mf 2

Amf 1
mf 2

Ef 1
Ef 2

.

~25!

This normalization factor is due to the fact that we deal w
products of spinors for different species in the off-diago
terms, of courseN(p)51, whenf 15 f 2. The explicit form of
this matrix including all flavor and color indices is displaye
in Appendix C.

In order to calculate the thermodynamical potential,
have to diagonalize these expressions. This has to be don
means of a Bogolyubov transformation, which determin
the energies of the quasiparticles and the correspon
quasi-particle operators. From the discussion of the sym
try of the diquark condensate, we expect two quarks of
ferent flavor and color to form a diquark condensate wher
one quark of the third flavor is not involved in forming th
condensate. This has to be seen in the quasiparticle en
and is confirmed if we explicitly evaluate the quasipartic
energies as the eigenvalues of the matrices. The diagona
operators corresponding to (Ĥ2mN̂) â can be expressed i
the form

~Ĥ2mN̂! âD
5(

i 51

5

gi~Ea,i âD,i
† âD,i1Ea,i8 âD,i âD,i

† !,

where i runs over the flavors anda over the colors.âD ia

andâD ia
† are annihilation and creation operators for the qu

particles:

i Ea ,i gi

1 6ADqq
2 1E22 3

2 6
1
2 (Z1E22Es

2) 2
3 6

1
2 (Z2E21Es

2) 2
4 AY2X 1
5 AY1X 1

where

E25E2m, ~26!
04520
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l

e
by
s
ng
e-
f-
s

gy,
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i

Es
25Es2ms , ~27!

Z5A4Dqs
2 N2~p!1~E21Es

2!2, ~28!

Y5 1
2 ~Dqq

2 14Dqs
2 N2~p!1E221Es

22!, ~29!

X25 1
4 @Dqq

4 1„8Dqs
2 N2~p!1~E21Es

2!2
…~E22Es

2!2

12Dqq
2
„4Dqs

2 N2~p!1~E21Es
2!~E22Es

2!…#, ~30!

andgi is the degeneracy. For the calculation of the therm
dynamical potential it is not necessary to know the ex
form of the Bogolyubov transformation which relates t
quasiparticle operatorsâD with the original quark operators
â. The quasiparticles are still fermions, and that is all info
mation we need in order to evaluate the sum over the oc
pied states. It is just only necessary to assign the right e
gies to the operators. We evaluate the thermodynam
potential for the case of two degenerated light quarks:

V

V
5

V0

V
2

2

bE0

L dpW

~2p!3

3$6 ln@11exp~2bE12!#14 ln@11exp~2bE22!#

14 ln@11exp~2bE32!#12 ln@11exp~2bE42!#

12 ln@11exp~2bE52!#13bE12

12bE2212bE321bE421bE52%, ~31!

with

V0

V
54GS~a21b21g2!1

2uDqsu21uDqqu2

2GDIQ
. ~32!

This thermodynamical potential contains the~quark and
diquark! condensates as parameters. In order to evalu
them, we have to minimize

]V

]Š^q̄fqf&‹
50,

]V

]D f 1f 2

50. ~33!

This minimization yields the gap equations for the qua
condensates. For the SU~3! case the derivation is given in
Appendix D. These equations are coupled, we have to s
them selfconsistently. The resulting^qq& condensates may
be found in Appendix E.

B. Results at finite temperature and density

For this part we decide to take parameters in Ref.@29#:
m0,q55.96 MeV, L5592.7 MeV, GS56.92 GeV22,
GDIQ /GS53./4. andm0,s5130.7 MeV. We use the relation
between the coupling constants, (GDIQ53GS/4), given by
the Fierz transformation~see Appendix A!, close to~0.73!
@29#.

The condensates~masses! at zero temperature as a fun
tion of the chemical potentialmq5ms are displayed in Fig. 5.
On the left-hand side of this figure we show the light a
4-7
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strange quark mass, and on the right-hand side the diq
condensates. First we have to note that quark and diq
condensates compete with each other as they are forme
the same quarks. Temperature and density determine w
condensate dominates.

When the chiral phase transition occurs~the quark con-
densate disappears!, we observe for the light quarks that th
superconducting phase transition takes place, and we ha
diquark condensate. As the two transitions are related,
are of the same order. The same scenario repeats itself fo
strange diquark condensate at a higher chemical potentia
Fig. 5 we display only the solution which is the global min
mum of the thermodynamical potential.

At a quite low chemical potential~the light quarks have a
very small mass, the strange quarks are heavy! we have only
the light diquark condensate; the diquark condensate inc
ing strange quarks is almost zero, as the strange quarks s
a strong quark condensate. Only when the strange quark
densate drops, and the mass of the strange quarks appro
its current mass, does the strange diquark condensate ap
Here we have the coexistence of light and strange diqu
condensates, this is the regime where the chiral symmet
again broken, and the color and flavor are locked. This h
pens at a quite high chemical potential; the decreasing
quark condensate for even higher chemical potentials i
cates that we reach the limit of the model: we are too clos
the cutoff. The phase transitions concerning the stra
quarks are quite close to the limits of the models if we s
pose the current mass of the strange quark to be aro
140 MeV. We note that due to the relatively small differen
between the quark masses, both diquark condensates
approximately the same value: for the maximum we obt
Dqq'Dqs'(120 MeV)3. At zero temperature the chira
phase transition~where the quark condensates disappear! and
the superconducting phase transition~where the diquark con
densates appear! are strongly related in of our model. Th
changes at higher temperatures. There the diquark con
satesDqq extend to smaller values of the chemical potent
whereas we need higher densities in order to form aDqs
diquark condensate. In addition, the diquark condensate
come smaller with increasing temperature. This is shown
Fig. 6, where we plot the diquark condensates as a func
of the temperature and chemical potential. For a giv

FIG. 5. The light ~dark line! and strange~light line! quark
masses and the diquark condensatesDqq ~dark line! andDqs ~light
line! as a function of the chemical potentialmq5ms at zero tem-
perature.
04520
rk
rk
by

ich

e a
ey
the
In

d-
ow
n-
hes
ear.
rk
is

p-
i-
i-
to
e
-
nd

ave
n

n-
l,

e-
in
n

n

chemical potential we observe-as in the classi
superconductivity-a second order phase transition as a f
tion of the temperature.

In a next step we consider the diquark condensates in
mq2ms plane. As already mentioned, we expect the form
tion of a diquark condensate only if there are quarks w
similar Fermi momenta, independent of their mass. Beca
GD is zero the disappearance of the quark condensates^ss̄&
and ^qq̄& does not depend on the chemical potential of
other species. There is one exception the creation of
strange diquark condensates lowers the strange quark
densate and increases the light quark mass. In Fig. 7 we
the strength of the diquark condensates. Because both
quarks have the same chemical potential, a diquark cond
sateDqq between the two different flavors occurs whenev
the light quark mass is small.

The strange diquark condensate exists only in a b
where the chemical potentials of the light and strange qua
are approximately equal. The slight deformation of this ba
is due to the different current quark masses. The width of
band is determined by the coupling strength: if the coupl
in the diquark sector is strong, the quarks can bind and fo
a condensate even if their chemical potentials are quite
ferent. For a small coupling strength, the chemical potent
of the two quarks have to be~approximately, in case of dif-

FIG. 6. Strength of the diquark condensates as a function of
chemical potentialmq5ms and the temperature. As color levels w
show the strength of the condensatesDqq ~left-hand side! andDqs

~middle!, and superimpose both as a contour plot~right-hand side!.

FIG. 7. As a function of the chemical potentialsmq andms we
show the quark masses on the upper row~light quarks on the left-
hand side, and strange quarks right-hand side! and the diquark con-
densates in the lower row (Dqq on the left-hand side andDqs on the
right-hand side!.
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THERMODYNAMICS OF THE THREE-FLAVOR . . . PHYSICAL REVIEW C 65 045204
ferent quark masses! equal in order to form a diquark con
densate.

Now we should study the feedback of the formation of t
diquark condensates on the quark condensates~or the mass!.
In Fig. 8 we display the masses of the light and stran
quarks as a function ofmq andms . Dqq appears at the chira
phase transition, when the light quark condensate disapp
and it is formed by the free light quarks. This behavior
almost independent ofms . Only if Dqs becomes finite does
the lack of quarks for the quark condensate increases
light quark mass. The behavior ofDqs is generic: When the
diquark condensateDsq is finite it takes quarks from the
strange quark condensate, lowering the mass of the str
quark.

V. CONCLUSIONS

In conclusion, we presented the phase diagram of
SU(3) flavor NJL model extended to the diquark sector fo
set of parameters which reproduces meson masses and
pling constants. We found a rich structure of condensates
regions where no condensate exists. The temperature
density dependence of quark and diquark condensates
calculated in a mean-field approach by minimizing the th
modynamical potential.

The order of chiral phase transition depends on the va
of T andm where the phase transition occurs. At zero te
perature the phase transition is first order, and at zero ch
cal potential we observe a crossover~due to finite current
quark masses!. Therefore there exists a tricritical point. No
mal nuclear matter density exists only as a mixed phase
dense quark phase~where chiral symmetry is partially re
stored! and a very diluted quark gas or the vacuum~where
chiral symmetry is spontaneously broken!. Finally we ex-
tended the chiral phase transition to the plane of fin
strange quark density, relevant for the discussion of the
quark condensates.

Following the idea that the NJL model can be conside
as an approximation of the QCD Lagrangian we extend
NJL model by including an interaction in the diquark cha
nel. We find that this interaction gives rise to a diquark co
densation which is responsible for the formation of a sup
conducting gap. This condensation occurs at low tempera
and high density. If this gap is formed by two quarks
different flavors, their momenta have to be similar in ab

FIG. 8. As a function of the chemical potentialsmq andms we
show the quark masses~light quarks left-hand side, strange quar
on the right-hand side! to point out the effect of the diquark con
densate on the quark condensate atT51 MeV.
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lute value but opposite in direction and therefore their che
cal potential may differ. In SUF(3) flavor this condensate
breaks the SUF(3)3SUC(3) flavor down to a SUC3F(3)
flavor, a phenomenon already observed in phase diagr
based on instanton Lagrangians, and dubbed ‘‘color-fla
locking.’’ We can conclude that two quite differently mot
vated phenomenological approaches to the QCD Lagran
provide a very similar phase structures.

Diquark condensates do not exist at temperatures we
pect to obtain in relativistic heavy-ion collisions. In neutro
stars, which have a high density and a very low temperat
they could be of relevance.

Note added in proof.We would also like to thank M.
Buballa and M. Oertel for making us aware of a small co
tribution of terms likeâ†b̂ to the quasiparticle energies i
case of different quark masses.
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APPENDIX A: FIERZ TRANSFORMATION

Following Ebert@21# we have the following relations in
color and flavor space:

d i j dkl5
1

3
d ikd l j 1

1

2 (
a51

8

l ik
a l l j ~qq̄ channel!, ~A1!

d i j dkl5
1

2 (
a50

8

l i l
alk j

a ~qq channel!, ~A2!

(
a51

8

l i j
a lkl

a 5
16

9
d i l dk j2

1

3 (
a51

8

l i l
alk j ~qq̄ channel!,

~A3!

(
a51

8

l i j
a lkl

a 5
2

3 (
a50,1,3,4,6,8

l ik
a l l j

a 2
4

3

3 (
a52,5,7

l ik
a l l j

a ~qq channel! ~A4!

L52g(
a51

8

~ c̄gmlC
a c!2. ~A5!

This leads to the following relations between the differe
coupling constants:

qq̄ channel GSCA5
8

9
g, ~A6!

qq channel GDIQ5
2

3
g. ~A7!
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APPENDIX B: Šqq̄‹ CONDENSATES

1. Light quark condensate

Š^q̄q&‹52
1

2E p2dp

2p2

Mq

Eq
H 3

E2

E2
1

1 f 8~E2
2 !S 1

Z S 4Dqs
2 N~p!

]N

]Š^q̄q&‹
U

q

1E21Es
2D 11D

1 f 8~E2
3 !S 1

Z S 4Dqs
2 N~p!

]N

]Š^q̄q&‹
U

q

1E21Es
2D 21D 1

f 8~E2
4 !

2E2
4 F4Dqs

2 N~p!
]N

]Š^q̄q&‹
U

q

1E2

2
1

4X S F ~E22Es
2!„8Dqs

2 N21~E21Es
2!2

…1~E22Es
2!2S 8Dqs

2 N~p!
]N

]Š^q̄q&‹
U

q

1~E21Es
2!D

1Dqq
2 S 8Dqs

2 N~p!
]N

]Š^q̄q&‹
U

q

12E2D G D G1
f 8~E2

5 !

2E2
5 F4Dqs

2 N~p!
]N

]Š^q̄q&‹
U

q

1E2

1
1

4X S F ~E22Es
2!„8Dqs

2 N21~E21Es
2!2

…1~E22Es
2!2

3S 8Dqs
2 N~p!

]N

]Š^q̄q&‹
U

q

1~E21Es
2!D 1Dqq

2 S 8Dqs
2 N~p! U ]N

]Š^q̄q&‹
U

q

12E2D G D G1~2 !⇒~1 !J . ~B1!

2. Strange quark condensate

Š^s̄s&‹52E p2dp

2p2

Ms

Es
H E2

E2
1

1 f 8~E2
2 !S 1

Z S 4Dqs
2 N~p!

]N

]Š^s̄s&‹
U

q

1E21Es
2D 21D

1 f 8~E2
3 !S 1

Z S 4Dqs
2 N~p!

]N

]Š^s̄s&‹
U

q

1E21Es
2D 11D 1

f 8~E2
4 !

2E2
4 F4Dqs

2 N~p!
]N

]Š^ s̄s&‹
U

s

1Es
22

1

4X S F2~E22Es
2!„8Dqs

2 N21~E21Es
2!2

…1~E22Es
2!2S 8Dqs

2 N~p!
]N

]Š^ s̄s&‹
U

s

1~E21Es
2!D

1Dqq
2 S 8Dqs

2 N~p!
]N

]Š^s̄s&‹
U

s

22Es
2D G D G ~B2!

1
f 8~E2

5 !

2E2
5 F4Dqs

2 N~p!
]N

]Š^ s̄s&‹
U

s

1Es
21

1

4X S F2~E22Es
2!~8Dqs

2 N21~E21Es
2!2!1~E22Es

2!2

3S 8Dqs
2 N~p!

]N

]Š^s̄s&‹
U

s

1~E21Es
2!D

1Dqq
2 S 8Dqs

2 N~p!
]N

]Š^ s̄s&‹
U

s

22Es
2D G D G1~2 !⇒~1 !]. ~B3!
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APPENDIX C: MATRIX

The total matrix can be separated into four submatrice

a a†

a† A C
a -C† B

These submatrices are given by

uR uG uB dR dG dB sR sG ssB

A5

uR
† E2 0 0 0 0 0 0 0 0

uG
† 0 E2 0 0 0 0 0 0 0

uB
† 0 0 E2 0 0 0 0 0 0

dR
† 0 0 0 E2 0 0 0 0 0

dG
† 0 0 0 0 E2 0 0 0 0

dB
† 0 0 0 0 0 E2 0 0 0

sR
† 0 0 0 0 0 0 Es

2 0 0

sG
† 0 0 0 0 0 0 0 Es

2 0

sB
† 0 0 0 0 0 0 0 0 Es

2

uR
† uG

† uB
† dR

† dG
† dB

† sR
† sG

† sB
†

B5

uR E1 0 0 0 0 0 0 0 0

uG 0 E1 0 0 0 0 0 0 0

uB 0 0 E1 0 0 0 0 0 0

dR 0 0 0 E1 0 0 0 0 0

dG 0 0 0 0 E1 0 0 0 0

dB 0 0 0 0 0 E1 0 0 0

sR 0 0 0 0 0 0 Es
1 0 0

sG 0 0 0 0 0 0 0 Es
1 0

sB 0 0 0 0 0 0 0 0 Es
1

uR
† uG

† uB
† dR

† dG
† dB

† sR
† sG

† sB
†

C5

uR
† 0 0 0 0 Dqq 0 0 0 Dqs

uG
† 0 0 0 2Dqq 0 0 0 0 0

uB
† 0 0 0 0 0 0 2Dqs 0 0

dR
† 0 2Dqq 0 0 0 0 0 0 0

dG
† Dqq 0 0 0 0 0 0 0 Dqs

dB
† 0 0 0 0 0 0 0 2Dqs 0

sR
† 0 0 2Dqs 0 0 0 0 0 0

sG
† 0 0 0 0 0 2Dqs 0 0 0

sB
† Dqs 0 0 0 Dqs 0 0 0 0
04520
:

APPENDIX D: THERMODYNAMICAL POTENTIAL

1. Formal derivation of the thermodynamical potential

]V

]a
5

]V0

]a
2

1

bE d3pW

~2p!3

3F26b
]E2

1

]a
f ~E2

1 !24b
]E2

2

]a
f ~E2

2 !24b

3
]E2

3

]a
f ~E2

3 !22b
]E2

4

]a
f ~E2

4 !22b
]E2

5

]a
f ~E2

5 !

13b
]E2

1

]a
12b

]E2
2

]a
12b

]E2
3

]a
1b

]E2
4

]a

1b
]E2

5

]a
~2 !→~1 !G , ~D1!

]V

]a
5

]V0

]a
22E d3pW

~2p!3 F3
]E2

1

]a
f 8~E2

1 !12
]E2

2

]a
f 8~E2

2 !

12
]E2

3

]a
f 8~E2

3 !1
]E2

4

]a
f 8~E2

4 !1
]E2

5

]a
f 8~E2

5 !G ,
~D2!

where f 8(x)5122 f (x)

2. N„p… derivatives

N~p!5S11
p2

~E1m!~Es1ms!
DA~E1m!~Es1ms!

4mms
Amms

EEs
.

~D3!

Then we write

U5S 11
p2

~E1m!~Es1ms!
D , ~D4!

V5Amms

EEs
, ~D5!

W5A~E1m!~Es1ms!

4mms
, ~D6!

]W

]a
5

1

2W

~Eq1mq!~Es1ms!

4mq
2ms

2 F]E2

]a S ms

mq
~mq2Eq! D

~D7!

1
]Es

2

]a S mq

ms
~ms2Es! D G , ~D8!

]W

]a
5

]Eq
2

]a

]W

]a
Uq1

]Es
2

]a

]W

]a
U

s

, ~D9!
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5
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2V F ]E2

]a S ms

Esmq
2

msmq

Eq
2Es

D
1

]Es
2

]a S mq

Eqms
2

msmq

Es
2Eq

D G
]V

]a
5

]Eq
2

]a

]V

]a
Uq1

]Es
2

]a

]V
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U
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5

2p2
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1

mq
1

]Es
2
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1

ms
G
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]U

]a Uq1
]U
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So,

]N~p!

]a Uq5
]U

]aU
q

VW1U
]V

]a UqW1UV
]W

]a U
q

, ~D12!

]N~p!

]a Us5
]U

]aU
s

VW1U
]V

]aUsW1UV
]W

]a U
s

. ~D13!
v.

ta

,

04520
APPENDIX E: Šqq‹ CONDENSATES

1. Light diquark condensates

Dqq5
Gdiq

p2 E p2dpF3Dqq

E2
1

f 8~E2
1 !1

f 8~E2
4 !

2E2
4

3S Dqq2
1

2X
„Dqq

3 1Dqq~4Dqs
2 ~p!1E222Es

22!…D
1

f8~E5
2!

2E2
5 SDqq1

1

2X
„Dqq

3 1Dqq

3~4Dqs
2 ~p!1E222Es

22!…D1~2 !⇒~1 !G . ~E1!

2. Strange diquark condensates

Dqs5
Gdiq

2p2E p2dpF4DqsN
2~p!

Z
f 8~E2

2 !

1
4DqsN

2~p!

Z
f 8~E2

3 !1
f 8~E2

4 !

2E2
4 S 4DqsN

2~p!

2
4

2X
„~E22Es

2!2
„DqsN

2~p!…1Dqq
2 DqsN

2~p!…D
1

f 8~E2
5 !

2E2
5 S 4DqsN

2~p!1
4

2X
„~E22Es

2!2
„DqsN

2~p!…

1Dqq
2 DqsN

2~p!…D1~2 !⇒~1 !G . ~E2!
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