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Dynamical chiral bag model
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Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

~Received 3 September 2001; published 20 March 2002!

We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but
movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the
equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson
wave we find three different kinds of resonances: fermionic, geometric, ands resonances. We discuss the
phenomenological implications of our results.
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I. INTRODUCTION

The MIT bag model@1# and its chirally invariant versions
such as the chiral bag model@2,3# and the cloudy bag mode
@4#, continue to be useful tools in the study of the physics
the nucleon and other baryons. They have also been
extensively in the discussion of various phenomena rang
from strange stars@5# to ultrarelativistic heavy-ion collisions
@6#, even though these often involve situations of hi
density/temperature where the applicability of the model
doubtful.

In most of the bag model studies so far, because of
simplicity, a static spherical bag is assumed. The few nota
exceptions, which allowed for the possibility of a dynamic
bag boundary, focused mainly on reproducing the corr
phenomenological parity order of the low-lying states of t
nucleon, although several approximations and modificati
to the theory had to be employed. For example, Rebbi
DeGrand@7# studied a bosonic bag and quantized the f
system with perturbation theory in the limit of small sphe
cal oscillations. The authors in Refs.@8–10# considered a
fermionic bag with a surface tension, as well as the volu
energy, and quantized only the motion of the bag bound
in the adiabatic approximation. Nogami and Tomio@11# also
quantized the motion of the boundary, but used the adiab
approximation only for the mesons. Although these wo
gave a reasonable ordering of the low-lying states of
nucleon, the more fundamental question of whether it is c
sistent and feasible to use a dynamical bag to model had
was not addressed. That is the motivation of the pres
work.

In a previous paper@12# we proved that the original MIT
bag model with massless quarks admits only one class
solution other than the static one, namely, a bag consta
expanding at the speed of light. We thus concluded tha
additional field, such as the mesons in the chiral bag mo
is needed to have a consistent and nontrivial dynamical
model of hadrons. In this paper we implement a method
allows us to find the classical solutions of a spherically sy
metric chiral bag for any motion of the bag radius. In p
ticular we look for the self-consistent solution of the fu
theory without any approximation, in which the motion
the bag surface is determined by the conservation of the
energy. We can thus study the full nonlinear features of
model. We find that when the bag interacts with an exter
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meson wave three different kinds of resonances occur:
mionic, geometric, ands resonances.

In the present work, in order to obtain spherical symm
try, we consider hedgehog configurations in which the qua
are neither in a flavor eigenstate nor in aJ eigenstate; they do
not represent any known hadrons. However the occurenc
the resonances we found does not depend on the flavor o
quarks, and since they are caused by spherical waves
angular momenta are not changed. Moreover, as we sho
Sec. III and in the conclusion, they are not related to spec
features of the hedgehog solution. Therefore, we conjec
that such resonances should occur also for more realistic
lutions, i.e., with definite flavor andJ.

This paper is organized as follows. We first show t
method we use to solve the problem. We then discuss
resonances found with a driven bag motion. In the third s
tion the problem of the self-consistent surface motion is
dressed, and we discuss the results obtained with diffe
incoming meson waves. We finally summarize our resu
and discuss their phenomenological implications. The A
pendix provides more details about the method of solutio

II. METHOD OF SOLUTION

The Lagrangian of the system we study is@2#

L5
1

2 H @ i ~ c̄gm]mc2~]mc̄!gmc!2B#uV~x!

2
1

f p
c̄~s1 i tW•pW g5!cDs1]ms]ms1]mpW •]mpW J ,

~1!

whereuV(x) is 1 inside the bag and 0 outside and

]uV

]xm 5nmDs , ~2!

Ds being the surface delta-function. From it we derive t
following Euler-Lagrange equations of motion:

gm]mc50 inside the bag, ~3!

igmnmc5
1

f p
~s1 i tW•pW g5!c on the bag surface,~4!
©2002 The American Physical Society03-1
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]m]ms52
1

2 f p
c̄cDs , ~5!

]m]mpW 52
1

2 f p
i c̄g5tWcDs . ~6!

It is possible to look for spherically symmetric solutions
the above equations@2# by writing

c5S g~ t,r !

2 isW • r̂ f ~ t,r !
D v, ~7!

s5s~ t,r !, ~8!

pW 5p~ t,r ! r̂ , ~9!

wherev includes the spin and isospin parts and can be w
ten as

v5
1

2
~ u↑,d&2u↓,u&). ~10!

The arrows indicate the spins whileu andd the up and down
flavors of the quarks, andv satisfies

~sW 1tW !v50. ~11!

In Eqs. ~7! and ~11!, sW are the three Pauli matrices an
should not be confused with the fields(t,r ). Equation~11!
ensures that the right-hand side~RHS! of Eqs.~4! and~6! are
spherically symmetric and causespW to be radially directed,
as in Eq.~9!. This kind of solutions is hence called hedgeh
solutions@2,13#.

For a static bag an analytic solution is known@2,13#,
which represents a stationary fermion field coupled at
surface of the bag to time-independents andp fields. Our
goal is to find the hedgehog solution for any spherically sy
metric motion of the bag’s surface.

Substituting Eq.~7! for c in Eq. ~3! we obtain

i
] f

]t
5

]g

]r
, ~12!

2 i
]g

]t
5

] f

]r
1

2

r
f . ~13!

It is not difficult to verify @12# that the general solution o
Eqs.~12!, ~13! has the form

g~ t,r !5
1

r
@Q8~ t2r !2Q8~ t1r !#, ~14!

f ~ t,r !5
i

r H Q8~ t2r !1Q8~ t1r !1
1

r
@Q~ t2r !2Q~ t1r !#J ,

~15!

whereQ(z) is an arbitrary function. In spherical coordinat
Eqs.~5! and ~6! become
04520
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]t2 2
]2s

]r 2 2
2

r

]s

]r
52

1

2 f p
@g* g2 f * f #d~R2r !,

~16!

]2p

]t2 2
]2p

]r 2 2
2

r

]p

]r
1

2

r 2 p5
1

2 f p
@g* f 1g f* #d~R2r !.

~17!

For rÞR, we notice thats(t,r ) obeys the equation of a fre
s wave whilep(t,r ), being the radial part of the vectorpW ,
satisfies the equation of a freep wave. Hence we can look fo
a solution of the form

s~ t,r !5s in~ t,r !u~R2r !1sout~ t,r !@12u~R2r !#,
~18!

p~ t,r !5p in~ t,r !u~R2r !1pout~ t,r !@12u~R2r !#,
~19!

where the fields inside and outside of the bag can be wri
accordingly as

s in~ t,r !5
1

r
@S in~ t2r !2S in~ t1r !#1s0,in~r !, ~20!

sout~ t,r !5
1

r
@Sout2~ t2r !2Sout1~ t1r !#1s0,out~r !,

~21!

p in~ t,r !5
1

r H P in8 ~ t2r !1P in8 ~ t1r !

1
1

r
@P in~ t2r !2P in~ t1r !#J 1p0,in~r !,

~22!

pout~ t,r !5
1

r H Pout28 ~ t2r !1Pout18 ~ t1r !1
1

r
@Pout2~ t2r !

2Pout1~ t1r !#J 1p0,out~r !, ~23!

whereSout1 , Sout2 , S in , P in , Pout1 , andPout2 are arbi-
trary functions. Notice thatSout1 and Sout2 are in general
different functions as are alsoPout1 and Pout2 . Here, the
time-independent termss0,in(r ), s0,out(r ), p0,in(r ), and
p0,out(r ) are the static-bag solutions given by@2,13#

s0,in~r !5g0 ,

s0,out~r !5g01aR0
2S 1

R0
2

1

r D ,

p0,in~r !52
b

3
r ,

p0,out~r !52
b

3

R0
3

r 2 .
3-2
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Substituting Eqs.~18! and ~19! in Eqs.~16! and ~17! and
requiring the continuity ofs(t,r ) and p(t,r ) at r 5R, we
finally obtain two relations that can be viewed as bound
conditions for the fieldsg, f, s in , sout, p in , andpout:

ṘS ]s in

]t
2

]sout

]t D1S ]s in

]r
2

]sout

]r D
52

1

2 f p
~g* g2 f * f ! at r 5R, ~24!

ṘS ]p in

]t
2

]pout

]t D1S ]p in

]r
2

]pout

]r D
5

1

2 f p
~g* f 1g f* ! at r 5R. ~25!

From Eq.~4! we can expresss(t,R) andp(t,R) in terms of
g(t,R) and f (t,R) ~see the Appendix! and use Eqs.~24! and
~25! to find g(t,r ), f (t,r ), i.e., Qre(z) andQim(z) @see Eqs.
~14!, ~15!# with the null-lines method@14,15#.

From the point of view of the null-lines method the u
knowns in Eqs.~24! and ~25!, as long asuṘu<1 @15#, are
Qre(t1R), Qim(t1R), S in(t1R), P in(t1R), Sout2(t2R),
andPout2(t2R). Furthermore, the latter four are fixed on
Qre(t1R) andQim(t1R) are known, using

S in~ t1R!5S in~ t2R!1Rg02Rs~ t,R!, ~26!

Sout2~ t2R!5Sout1~ t1R!1aR0
22R~g01aR0!

1Rs~ t,R!, ~27!

P in8 ~ t1R!5
1

R
@P in~ t1R!2P in~ t2R!#1P in8 ~ t2R!1

b

3
R2

1Rp~ t,R!, ~28!

Pout28 ~ t2R!5
1

R
@Pout1~ t1R!2Pout2~ t2R!#

2Pout18 ~ t1R!1
b

3

R0
3

R
1Rp~ t,R!. ~29!

Here for convenience we have not written explicitly the d
pendence onQre(t1R) andQim(t1R) which are hidden in
s(t,R) andp(t,R).

We still need to solve Eqs.~28! and~29!. This can be done
numerically either by simply replacingP in8 (t1R) and
Pout8 (t2R) with their finite-difference counterparts or by in
tegrating betweenz2dz and z, where z5t1R and z5t
2R, respectively, for the first and second equations, and
approximating all quantities other thanP in(t1R) and
Pout(t2R) as being constant in this infinitesimal interva
The numerical results turn out to be slightly more accur
with the second method. To solve Eqs.~24! and~25! we used
a fourth-order Runge-Kutta algorithm.
04520
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III. RESONANCES WITH A DRIVEN BAG MOTION

With the method discussed in the previous section we fi
computed the solution for a static bag and then for a slo
moving one. We verified that the norm of the fermion field
conserved and that our numerical method is accurate u
the second derivative ofQ(z) for a bag of initial radiusR0
51 fm and f p51 fm21. With these parameters the stat
chiral bag is similar to the MIT bag, with an almost consta
s(r ) and a very smallp(r ). All the results presented below
are obtained with such values ofR0 and f p , which is a
representative set of parameters for showing the qualita
features of a dynamical chiral bag model.

Since we are particularly interested in the behavior of
fields under the effect of the motion of the boundary, we fi
study the chiral bag with an imposed surface motion. S
jecting the bag boundary to a sinusoidal motion,R(t)5R0
1e@cos(nt)21#, we found three different kinds of resonanc
~i! the fermionicresonances, which are excited when the
cillation frequencies are close to the difference between
static-bag eigenenergies,n.En2Ek , ~ii ! the geometrics
resonances, forn.np/R0, and ~iii ! the parametrics reso-
nances, forn.(2n11)p/(2R0), wheren is an integer.

The origin of the fermionic resonances atn.En2Ek is
similar to those found for a Schro¨dinger particle in an oscil-
lating cavity @16#. The difference here is that the fermion
cannot really be excited to the upper static-cavity level
cause the upper level is associated with different static p
fields which cannot be produced by the boundary moti
However, since with our choice of parameterss(r ) andp(r )
change little for different static solutions, the system still g
excited for oscillation frequencies close to the static ene
gaps. The smallerf p is, these resonance frequencies devi
more from En2Ek . As an example, we show forn
53.4/R0.E22E1 the time dependence of the energies
the fermion and the meson fields in Figs. 1~a!, 1~b!, and 1~c!,
respectively. It is interesting to note that neither thes nor the

FIG. 1. Time evolution of the energy for driven surface oscil
tions at then5p/R0 ~dashed lines! and n5E22E1 ~solid lines!
resonances withe50.01R0. ~a! Energy of the fermion field.~b!
Energy of thep-field. ~c! Energy of thes-field.
3-3
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p fields gain considerable energy.
For n5np/R0 we found resonances involving thes field.

As can be seen in Fig. 1 the energy of thes field increases
remarkably, while the energies of the fermion and thep field
change little. These resonances may be consideredgeomet-
ric, since the resonance frequencies are related to the tim
takes for the wave components ofs(t,r ), i.e.,S in(t2r ) and
S in(t1r ), to travel from the boundary of the bag to its cen
and back again. It has been shown@17# that p wavesin an
oscillating spherical cavity also manifest resonances an
5np/R0, and so it is somewhat surprising that here the
ergies of the fermion andp fields are little affected. The
strongly nonlinear interaction at the bag boundary seem
damp out the resonant evolution. The energy of the fermi
actually shows some resonant behavior, but this is proba
mainly due to the fact that the driving frequency is close
E22E1.

The third kind of resonances we found is a peculiar f
ture of the system under analysis. As we can see from Fig
it involves mainly thes field. Note thatS in(z) ~Fig. 3! has
an almost periodic dependence and the period is about
that of the oscillating bag. In other words the bag surfa
oscillating at frequenciesn5(2n11)p/(2R0), acts as a

FIG. 2. Time evolution of the energy for driven surface oscil
tions at then5p/(2Rav) resonance withe50.08R0 (Rav5R01e).

FIG. 3. The functionS in(z) for driven surface oscillations at th
n5p/(2Rav) resonance withe50.08R0. The function clearly con-
tains a periodic contribution withT.2 R0.
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source for as field with frequencies (2n11)p/R0. Such
frequencies are obviously resonant with the cavity so that
s field is resonantly enhanced. The occurence of this kind
resonances can be understood in the following way. Since
fermion field is not excited we can approximate its value
the bag boundary with its static-bag expression

g@ t,R~ t !#5Nexp~2 iEt ! j 0@ER~ t !#, ~30!

f @ t,R~ t !#52Nexp~2 iEt ! j 1@ER~ t !#. ~31!

From Eqs.~A3!–~A6! we obtain after some manipulations

p~ t,R!5 f p

f Re
2 ~ t,R!1 f Im

2 ~ t,R!2gRe
2 ~ t,R!2gIm

2 ~ t,R!

f Re
2 ~ t,R!1 f Im

2 ~ t,R!1gRe
2 ~ t,R!1gIm

2 ~ t,R!
,

~32!

s~ t,R!522 f p

f Re~ t,R!gRe~ t,R!1 f Im~ t,R!gIm~ t,R!

f Re
2 ~ t,R!1 f Im

2 ~ t,R!1gRe
2 ~ t,R!1gIm

2 ~ t,R!
.

~33!

One can see that the dependence on exp(2iEt) cancels out in
our approximation and the whole expressions become p
odic functions with periodT52p/n. The Fourier expansion
of such functions involves all multiple frequencies ofn and,
in the case ofn5(2n11)p/(2R0), its even multiples are
also integral multiples ofp/R0. It is then evident that the
expressions fors(R) andp(R) contain terms in resonanc
with the cavity. However, it is surprising that for oscillatio
amplitudese.0.005R0 the frequency 2n for s(R) becomes
the dominating one even before the first bag oscillation
completed. In Fig. 3 we can see clearly how the amplitude
S in(z) increases with each bag oscillation. Although the e
pression forp(R) also contains terms with frequency bein
integral multiples ofp/R0, we observe no resonant behavi
for the p field, which is consistent with the previous obse
vation that this field is not excited forn5np/R0.

IV. SELF-CONSISTENT SURFACE MOTION

A. Equation for the radius and nonresonant interaction

Our main interest in this work is to study the behavior
the fields and the bag’s surface when perturbed from th
static-bag states by, for example, an incoming pion wave
this end we need to find the self-consistent dynamics of
bag surface and fields.

We notice that the velocity of points on the bag surfa
does not appear in the Lagrangian, Eq.~1!, and hence we
cannot derive from it an equation of motion for the bag
dius @7,8#. The motion of the bag, however, is constrained
the conservation of the total energy. Let us consider
energy-momentum tensor

Tmn52gmnL1
i

2
@c̄gm]nc2]nc̄gmc#uV

1]ms]ns1]mpW •]npW . ~34!
3-4
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The conservation of energy and momentum requires]mTmn

50, from which, by using the equations of motion Eqs.~3!–
~6! and after some algebra, we derive

Bnn5
1

2 f p
]n@c̄~s1 i tW•pW g5!c# on the surface.~35!

For spherically symmetric solutionsnn[(Ṙ, r̂ ), and the
above equation can be written as

BṘ5
1

2 f p
H ]

]t
@c̄~s1 i tW• r̂pg5!c#J

r 5R

, ~36!

B5
1

2 f p
H ]

]r
@c̄~s1 i tW• r̂pg5!c#J

r 5R

. ~37!

In the static case Eq.~36! is identically satisfied becauseṘ
50 andc̄(s1 i tW•pW g5)c is time independent, and we cou
use Eq.~37! to deriveB. However, the RHS of Eq.~37! is an
ambiguous expression, because it involves the derivative
s andp at the boundary which are discontinuous. To ov
come this difficulty we use the fact thatTmn can also be
written as@2#

Tmn5Tin
mnuV1Tout

mn~12uV!, ~38!

because the surface term is zero along the trajectorie
motion. Since]mTin

mn50 and ]mTout
mn50, the conservation

condition for energy and momentum becomes

nmTin
mn5nmTout

mn on the surface. ~39!

Again using the equations of motion we obtain

nmTin
mn2nmTout

mn5nn@B2D~ t !#1
1

2 f p
]n@c̄~sav

1 i tW•pW avg5!c#2nm]ms in]
nsout

1nm]msout]
ns in2nm]mp in]

npout

1nm]mpout]
np in50, ~40!

with

sav[
1

2
~s in1sout!, ~41!

pav[
1

2
~p in1pout!, ~42!

D~ t ![
1

2
@~]rs in!21~]rpW in!22~]rsout!

22~]rpW out!
2#,

~43!

and all the functions in the above expressions are evalu
at the surface of the bag.

Equation~40! is well defined, and since the spatial part
nn in the case of spherical symmetry isr̂ , it can be used to
calculate the bag constantB as
04520
of
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B5D~ t !1
1

2 f p

]

]r
@c̄~sav1 i tW•pW avg5!c#2nm]ms in

]sout

]r

1nm]msout

]s in

]r
2nm]mp in

]pout

]r
1nm]mpout

]p in

]r
,

~44!

where the static-bag solution has to be used. With the st
hedgehog solution the terms involving products of fields
side and outside the bag actually cancel out each other. S
a value of B ensures that the continuity equation for th
linear momentum is satisfied. Choosingn50 from Eq.~40!

we can derive an equation forṘ:

Ṙ5
21

B2D~ t ! H 1

2 f p

]

]t
@c̄~sav1 i tW•pW avg5!c#2

]s in

]r

]sout

]t

1
]sout

]r

]s in

]t
2

]p in

]r

]pout

]t
1

]pout

]r

]p in

]t J . ~45!

We use the above expression to compute the motion of
bag’s surface, which conserves the total energy and mom
tum.

It is important to notice that for spherically symmetr
solutions the total linear momentum is conserved regard
of the value ofB, because the associated current is radial a
the vector sum always gives a zero total momentum. T
guarantees the conservation of the total momentum also f
nonstatic bag surface, because in such a case the RHS o
~44! is not constant and hence the equation is not satisfi

The first question we want to address is whether the st
hedgehog solution is stable with respect to a small pertu
tion or it is just a special field configuration permitted on
with a static boundary. If the static hedgehog models a h
ron state one would like it to be little affected by a sm
nonresonant perturbation. We therefore considered an inc
ing wave packet incident on the bag, and we computed
evolution of the system. We used both ap field and as field
as the incoming packet, with the following form:

sout~ t0 ,r !

pout~ t0 ,r !
J 5

A@e2b(r 2R0)21#3sin@n~ t01r !#e2a(r 2R0)

r .R0 ,
~46!

which, atr 5R0, is zero up to the third derivative, in order t
avoid discontinuities at the instant of the collision. The m
tion of the bag surface depends on the bag constantB. With
R051 fm and f p51 fm21, from Eq. ~44! we have B
.0.16 fm24. However with such a small value ofB our
numerical implementation allowed us to obtain accurate
lutions only for short times. We useB51 fm24 to demon-
strate the qualitative features of the system even if it is
unrealistically high value, and we have verified that usi
smaller bag constants do not change the qualitative feat
of the system.

In Fig. 4 we show the energy of the fields inside a
outside the bag versus time for smallA and n. In all the
computations we usedb51/R0. Both for ap wave and as
wave the bag is hardly changed, and after the interaction
3-5
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velocity of the surface goes back to zero gradually as
pected. Part of the pion field is reflected back at the surf
of the bag, while the other part after penetrating the bag g
back out towards infinity. It is interesting to observe that as
wave has almost no effect at all on the bag and nearly d
not enter it. We verified that the static hedgehog solut
remains little affected also for largerA and higher
frequenciesn, thus validating its use as a stationary sta
of a hadron.

B. Resonances

We next consider whether the resonances found in
case of a driven bag motion still occur for the self-consist
motion caused by an incoming wave of appropriate f
quency. This is a nontrivial question because the nonlin
relation between the fields and the motion of the bound
as expressed in Eq.~45!, might in principle destroy any
phase coherence on which a resonance is built up. We h
performed our computation with incomingp waves given by
Eq. ~46! with a50 and n5np/R0 , n5(En2Ek), and n
5(2n11)p/(2R0). Again due to numerical limitations we
had to use small values ofA.

In Fig. 5 we plot the energy of the fields inside the bag
time for n5p/R0 and in Fig. 6 forn5E22E1. We can see
that the resonant behavior is still present. From the poin
view of the energy gained by the bag the two resonan
merge and appear as a broad resonance peaked atn5E2
2E1. With a closer look, however, one can observe t
different physical phenomena. Forn close top/R0 the s
field is excited and the bag expands while the fermion fi
gets only a small contribution from the second static hed
hog state. Forn close toE22E1 thes field is slightly out of

FIG. 4. Time evolution of the energy in the case of a collisi
with a wavepacket withn51/R0 , a50.2/R0 , p wave with A
50.05/R0 ~dashed line! or s wave withA50.1/R0 ~solid line! ~see
Eq. 46!: ~a! volume energy,~b! fermion energy,~c! p-field energy
inside the bag,~d! s-field energy inside the bag,~e! p-field energy
outside the bag, and~f! s-field energy outside the bag.
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resonance while the fermion field tends to be excited towa
the second static hedgehog state and the volume of the
decreases.

In the case of a wave withn5p/(2R0) we also have a
clear resonance that involves thes field ~Fig. 7!. At this
frequency the fermion field is completely out of resonan
Overall the bag’s energy increases not only as the pion
ergy but also in the form of volume energy due to the exp
sion of the bag. The excitation mechanism for thes field is
the same as explained in the previous section by mean
Eqs.~32! and ~33!.

It is very interesting to notice that the expansion of t
bag is related to the excitation of thes field and not directly
to the fermions. The increase of energy due to a larger
radius is the classical counterpart of the breathing mo
proposed by other authors@7–11# to explain certain radial
excitations of the baryons such as the Roper resona
These authors propose that such resonances are excitatio

FIG. 5. Time evolution of the energy for a resonance with
incoming n5p/R0 , A50.005/R0 , a50 p wave @see Eq.~46!#,
showing~a! fermion energy plus volume energy,~b! p field energy
inside the bag, and~c! s-field energy inside the bag.

FIG. 6. Same as Fig. 6, but forn5E22E1.
3-6
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the collective degrees of freedom of the bag, represente
the models they considered by the surface coordinates, w
the quarks essentially remain in the ground state. In the
ral bag model, in addition to the bag’s radius, the pions
describe collective degrees of freedom, and hence our re
strongly support the above scenario.

For larger odd multiples ofp/(2R0) the resonant behav
ior is much attenuated. We believe that this is due to the
that at higher frequencies and with a self-consistent bag
tion an approximation as the one shown in Eqs.~30! and~31!
is no longer acceptable. The perturbation still appears to
resonant for thes field, but its energy increases very slowl

Another remarkable property of the chiral bag is that
shows a realistic behavior in a scattering process. We h
already mentioned the dynamics for the scattering with
nonresonant pion wave packet, but it is interesting to exa
ine how the bag releases its energy after being excited
resonant wave packet. In Fig. 8 it can be seen how, after
incoming wave packet has been scattered away, the ba
mains in its excited state for some time before starting

FIG. 7. Same as Fig. 6, but forn5p/(2R0) andA50.02/R0.

FIG. 8. Same as Fig. 6, but forn56.55/R0.E32E1 , A
50.005/R0, anda50.2/R0.
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slowly release the energy gained, hence looking similar t
stable particle. Also in this case we can see that thep wave
inside the bag is not excited and its temporary increase
energy is simply due to the part of the incoming wave th
enters the bag before being reflected away.

Since the chiral bag is generally used to describe baryo
we have also performed the previous calculations with th
quarks inside the bag in order to verify that our findings ho
in this case too. Not having quantized the theory, we hav
consider already in the Lagrangian three distinct ferm
fields. Moreover, the coupling with the pions causes the
lution to differ from the one-quark bag. In fact, while eac
quark has to satisfy the same equations~3! and~4!, the equa-
tions for the pions change because the RHS of Eqs.~5! and
~6! must be multiplied by a factor 3. Such a difference pr
duces different eigenvalues for the static cavity solution a
yields the following equation for the motion of the bag
surface

Ṙ5
21

B2D~ t ! H 3

2 f p

]

]t
@c̄~sav1 i tW•pW avg5!c#2

]s in

]r

]sout

]t

1
]sout

]r

]s in

]t
2

]p in

]r

]pout

]t
1

]pout

]r

]p in

]t J . ~47!

We have verified that the features found with only one qu
remain with three quarks.

For smaller values ofB or bigger amplitudesA we have
been able to obtain fairly accurate solutions for short tim
(t,10 fm/c) and, for resonant perturbations, we observ
much stronger and faster excitation process, which co
probably model realistic energy levels.

V. SIMILARITIES WITH THE SOLITON

We point out here the very interesting similarities betwe
the hedgehog solution and the soliton solution of a nonlin
field theory. We can define a classical soliton as any spati
confined and nondispersive solution of a classical fi
theory@18#. In order to have soliton solutions it is necessa
to have some nonlinear couplings among the fields. The M
bag model with only fermions inside the bag does not ha
nonlinear couplings. In fact, as we proved in a previous
per @12#, it admits baglike solutions, but these are unsta
with respect to perturbations of the bag surface. In the ch
bag model the quark-pion coupling, although it is linear,
troduces a nonlinear self-coupling for the fermion fie
through the boundary conditions, as apparent from Eqs.~24!,
~25!. We have seen that the hedgehog solution is ind
stable with respect to perturbations of the bag surface.

For a boson field the various nonlinear couplings can
characterized by a dimensionless coupling constantg. If g
50, the theory is linear and there is no soliton solutio
However if g, however small, is different from zero, th
theory admits soliton solutions. In the limitg→0 the soliton
solution grows to infinity. This is remarkably similar to wha
happens in the dynamical chiral bag model. The dimensi
less coupling constant is in this caseg/ f p , with g an arbi-
trary constant with dimension ofL21. If we set g/ f p50
3-7
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already in the Lagrangian, we have the MIT bag model, a
no stable, spatially confined solution exists. If we take
limit g/ f p→0 ( f p→`), we still have stable hedgehog s
lutions, but the fields goes to infinity, so thats/ f p→1.

Such similarities seem more than a coincidence, es
cially if we consider the bag models as simplifications
more general models. In fact it has been shown@19# that a
chiral model, similar to the Skyrme Lagrangian, can au
matically produce baglike solutions. From this point of vie
one may put some features of the baglike solutions alread
the Lagrangian, thus obtaining a bag model. The fact that
MIT bag model does not admit a stable baglike solution m
be viewed as due to an oversimplification, having complet
neglected the quark-pion interaction, while in the chiral b
model such interaction is maintained at least at the surfac
the bag.

VI. CONCLUSION

We have shown that the chiral bag described by the
grangian Eq.~1! is stable in the sense that a baglike soluti
exists even if the static bag is perturbed either by arbitr
radial motions of its boundary or by its interaction with
meson wave. This is in contrast with the purely fermion
MIT bag which has been proved to be unstable@12#.

Computing the solution for a bag perturbed by a nonre
nant meson wave, we found that it remains close to the s
hedgehog solution and that, after the incoming wave is s
tered away, it returns to the static hedgehog. Such a re
validates the use of the static hedgehog as a stationary
of a hadron.

We also examined the existence of resonant perturbati
and we discovered three kinds of resonances which o
when the bag interacts with an incomingp wave. When the
frequency of the incoming wave is close to an energy g
n.En2Ek , the fermion field is in resonance. Thes field is
also excited sincen is close to an integral multiple ofp/R0.
The fermion field tends to go to an upper static hedge
level, but these resonances are not simply transitions fro
lower hedgehog state to an upper one, because in that
there would be only a static meson field in the final sta
while here we have remarkable energy contribution from
nonstatics field. At n5np/R0 the fermion field is little
excited while thes field is in resonance and the bag e
pands. The third type of resonance occurs whenn equals odd
multiples ofp/(2R0), which is a consequence of the line
boundary condition Eq.~4!. In this case the fermion field is
not excited and the increase in energy comes from thes field
and the increase in the volume energy associated with
expansion of the bag. The occurence of a resonancen
5p/(2R0), which is much smaller than the energy gap b
tween the first and second static hedgehog states, gives
port to the description of the Roper resonance as a ra
excitation of the collective degrees of freedom. In particu
the expansion of the bag without fermion excitation is t
classical analog of the breathing modes proposed by o
authors@7–11#. Our results, however, show that the expa
sion of the bag is strictly related to the excitation of thes
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field and in this sense warn against the use of the adiab
approximation.

Compared to previous studies of dynamical bag mod
our approach has two main advantages: we solve the e
tions of motion without approximations and we show t
dynamics of the resonances. In the present work we h
considered hedgehog configurations in which the quarks
neither in a flavor eigenstate nor in aJ eigenstate; they do
not represent any known hadrons. However, the occurenc
the resonances we found does not depend on the flavor o
quarks, and since they are caused by spherical waves
angular momenta are not changed. Moreover they are
related to specific features of the hedgehog solution. In
the n5En2Ek resonance is a general feature of discre
level systems. The resonances atn5np/R0 are geometrical
resonances related to the fact that the mesons in this m
are massless, and the ones atn5(2n11)p/(2R0) are re-
lated to the linear boundary condition Eq.~4!. Therefore, we
conjecture that such resonances should occur also for m
realistic solutions, i.e., with definite flavor andJ.
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APPENDIX

For a spherical bagnm can be written as (Ṙ,2 r̂ ) and, as
shown for example in Ref.@12#, Eq. ~4! in radial coordinates
becomes

iṘg~ t,R!2 f ~ t,R!5
1

f p
@s~ t,R!g~ t,R!2p~ t,R! f ~ t,R!#,

~A1!

2 iṘf ~ t,R!2g~ t,R!5
1

f p
@s~ t,R! f ~ t,R!1p~ t,R!g~ t,R!#.

~A2!

Equating separately the real and imaginary parts of the
equations we obtain the following four equations:

2Ṙgim~ t,R!2 f re~ t,R!5
1

f p
@s~ t,R!gre~ t,R!

2p~ t,R! f re~ t,R!#, ~A3!

Ṙf im~ t,R!2gre~ t,R!5
1

f p
@s~ t,R! f re~ t,R!

1p~ t,R!gre~ t,R!#, ~A4!

Ṙgre~ t,R!2 f im~ t,R!5
1

f p
@s~ t,R!gim~ t,R!

2p~ t,R! f im~ t,R!#, ~A5!
3-8
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2Ṙf re~ t,R!2gim~ t,R!5
1

f p
@s~ t,R! f im~ t,R!

1p~ t,R!gim~ t,R!#. ~A6!

At this point we have four equations and four unknown
i.e., Qre(t1R), Qim(t1R), s(t,R), and p(t,R). This fact
seems to make our requirement, thats(t,r ) and p(t,r ) be
continuous atr 5R, redundant hence making the whole pro
lem inconsistent. In fact if we could derive from Eqs.~A3!–
le
itu

e

re
nc
ou

n

is

04520
,

-

~A6! all the four functions mentioned above, then Eqs.~16!
and~17! would requiresout andpout to be singular atr 5R,
and even this would not guarantee the existence of a solu
in general. However, it turns out that Eqs.~A3!–~A6! are not
independent and we need to impose some condition on
functions in order to have a unique solution. We have ve
fied this in two ways, as explained below.

Solving Eqs.~A3!–~A6! for s(t,R) andp(t,R) we obtain
two different expressions for each function
ary
s~ t,R!5 f p$22 f im~ t,R!gim~ t,R!1@gre~ t,R!gim~ t,R!2 f re~ t,R! f im~ t,R!#Ṙ%/@gim
2 ~ t,R!1 f im

2 ~ t,R!#, ~A7!

s~ t,R!5 f p$22 f re~ t,R!gre~ t,R!2@gre~ t,R!gim~ t,R!2 f re~ t,R! f im~ t,R!#Ṙ%/@gre
2 ~ t,R!1 f re

2 ~ t,R!#, ~A8!

p~ t,R!5 f p$ f im
2 ~ t,R!2gim

2 ~ t,R!2@ f re~ t,R!gim~ t,R!1gre~ t,R! f im~ t,R!#Ṙ%/@gim
2 ~ t,R!1 f im

2 ~ t,R!#, ~A9!

p~ t,R!5 f p$ f re
2 ~ t,R!2gre

2 ~ t,R!1@ f re~ t,R!gim~ t,R!1gre~ t,R! f im~ t,R!#Ṙ%/@gre
2 ~ t,R!1 f re

2 ~ t,R!#. ~A10!

Equating Eq.~A7! with Eq. ~A8! and Eq.~A9! with Eq. ~A10! we obtain two nonlinear equations for the real and imagin
parts off andg,

$2 f im~ t,R!gim~ t,R!2@gre~ t,R!gim~ t,R!2 f re~ t,R! f im~ t,R!#Ṙ%@gre
2 ~ t,R!1 f re

2 ~ t,R!#

5$2 f re~ t,R!gre~ t,R!1@gre~ t,R!gim~ t,R!2 f re~ t,R! f im~ t,R!#Ṙ%@gim
2 ~ t,R!1 f im

2 ~ t,R!#, ~A11!

$ f im
2 ~ t,R!2gim

2 ~ t,R!2@ f re~ t,R!gim~ t,R!1gre~ t,R! f im~ t,R!#Ṙ%@gre
2 ~ t,R!1 f re

2 ~ t,R!#

5$ f re
2 ~ t,R!2gre

2 ~ t,R!1@ f re~ t,R!gim~ t,R!1gre~ t,R! f im~ t,R!#Ṙ%@gim
2 ~ t,R!1 f im

2 ~ t,R!#. ~A12!
em.

.
s

we
The problem is evidently extremely difficult to hand
analytically, and so we used a numerical approach. Subst
ing Q8 with a finite incremental ratio, Eqs.~A11! and~A12!
become two nonlinear algebraic equations forQre(t1R) and
Qim(t1R). Solving numerically the algebraic equations, w
have found that a whole region exists, in theQre-Qim plane
aroundQ(t1R2dz), in which the algebraic equations a
satisfied, thus indicating that the solution is not unique. Si
this is not a rigorous proof, we need to cross check
finding by imposing the continuity ofs(t,r ) andp(t,r ) on
the surface of the bag and by verifying whether the solutio
found without using Eqs.~A11! and ~A12!, satisfy all four
Eqs.~A3!–~A6!.

In order to do this we have solved numerically Eqs.~24!
t-

e
r

s,

and ~25! for Qre(t1R) and Qim(t1R), as discussed in the
main part of the paper, withs(t,R) and p(t,R) given by
anyone of the above expressions or a combination of th
We thereby verified that Eqs.~A3!–~A6! are automatically
satisfied.

In the case ofṘ50 we can analytically prove that Eqs
~A3!–~A6! are not independent. In fact, looking for solution
of the form gre5P(t)g(r ), f re5P(t) f (r ), gim5S(t)g(r ),
f im5S(t) f (r ), we easily verify that Eqs.~A11!, ~A12! are
automatically satisfied leavingP(t) andS(t) undetermined.

It is reasonable to think that asṘ slowly departs from zero
the four equations still remain not independent, though
are not able to provide a rigorous proof for it.
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