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Dynamical chiral bag model
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We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but
movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the
equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson
wave we find three different kinds of resonances: fermionic, geometriccaresonances. We discuss the
phenomenological implications of our results.
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I. INTRODUCTION meson wave three different kinds of resonances occur: fer-
mionic, geometric, and- resonances.
The MIT bag mode[1] and its chirally invariant versions, In the present work, in order to obtain spherical symme-

such as the chiral bag modé,3] and the cloudy bag model try, we consider hedgehog configurations in which the quarks

[4], continue to be useful tools in the study of the physics ofare neither in a flavor eigenstate nor id eigenstate; they do

the nucleon and other baryons. They have also been usé®@t represent any known hadrons. However the occurence of
extensively in the discussion of various phenomena ranging§e resonances we found does not depend on the flavor of the
from strange starE5] to ultrarelativistic heavy-ion collisions quarks, and since they are caused by spherical waves the
[6], even though these often involve situations of highangular momenta are not changed. Moreover, as we show in

density/temperature where the applicability of the models is>ec. lll and in the conclusion, they are not related to specific
doubtful. features of the hedgehog solution. Therefore, we conjecture

In most of the bag model studies so far, because of itshat such resonances should occur also for more realistic so-

simplicity, a static spherical bag is assumed. The few notabl&itions, i.e., with definite flavor and.

exceptions, which allowed for the possibility of a dynamical ~ This paper is organized as follows. We first show the
bag boundary, focused mainly on reproducing the correcinethod we use to solve the problem. We then discuss the
phenomenological parity order of the low-lying states of theresonances found with a driven bag motion. In the third sec-
nucleon, although several approximations and modification§on the problem of the self-consistent surface motion is ad-
to the theory had to be emp|oyed_ For examp|e, Rebbi angressed, and we discuss the results obtained with different
DeGrand[7] studied a bosonic bag and quantized the fullincoming meson waves. We finally summarize our results
system with perturbation theory in the limit of small spheri- and discuss their phenomenological implications. The Ap-
cal oscillations. The authors in Refi8—10] considered a Pendix provides more details about the method of solution.
fermionic bag with a surface tension, as well as the volume

energy, and quantized only the motion of the bag boundary Il. METHOD OF SOLUTION

in the adiabatic approximation. Nogami and Torfild] also
guantized the motion of the boundary, but used the adiabatic
approximation only for the mesons. Although these works
gave a reasonable ordering of the low-lying states of the 'C:E [i(EY"l?,M—(@,LE) v i) — B]Oy(X)
nucleon, the more fundamental question of whether it is con-

The Lagrangian of the system we studyf 29

sistent and feasible to use a dynamical bag to model hadrons 1_ o _ _
Wask not addressed. That is the motivation of the present —f—¢//(0'+i7'~77y5) YA+ d, 00 o+ d,m-
work. 7

In a previous pap€rl2] we proved that the original MIT (1)

bag model with massless quarks admits only one classical o .

solution other than the static one, namely, a bag constantijyhere 6y(x) is 1 inside the bag and 0 outside and
expanding at the speed of light. We thus concluded that an

additional field, such as the mesons in the chiral bag model, 3_9\,:“ A )
is needed to have a consistent and nontrivial dynamical bag gxk TS

model of hadrons. In this paper we implement a method that ) . . .
allows us to find the classical solutions of a spherically sym2s P€ing the surface delta-function. From it we derive the
metric chiral bag for any motion of the bag radius. In par-following Euler-Lagrange equations of motion:

ticular we look for the self-consistent solution of the full I

theory without any approximation, in which the motion of y*0,4=0 inside the bag, ©)
the bag surface is determined by the conservation of the total 1

energy. We can thus study the full nonlinear features of the iy“n, = —(o+iT-mys)y onthe bag surface,(4)
model. We find that when the bag interacts with an external fr
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It is possible to look for spherically symmetric solutions of (17)

the above equation&] by writing . )
Forr #R, we notice thatr(t,r) obeys the equation of a free

g(t,r) s wave while 7(t,r), being the radial part of the vectar,
= v (@) satisfies the equation of a frpavave. Hence we can look for

—ioerftn a solution of the form
o=o(tr), ® o(t,1) = on(t,1) B(R—1) + oou(t,)[1— B(R—T)],
- . (18
m=a(t,r)r, 9
t,r)=ma(t,r)0(R—r)+ t,r)[1-6(R—r)],
wherev includes the spin and isospin parts and can be writ- (L) =it ) 6 J* Mol 0L ( )] (19)
ten as

where the fields inside and outside of the bag can be written

D= %(H:d)—ll,U))- (10) accordingly as

1
The arrows indicate the spins whileandd the up and down Tin(t,1) = T [Zin(t=1) = Zin(t+1) ]+ aou(r), (20

flavors of the quarks, and satisfies

1
(o+7)v=0. (11 Uout(trr):F[Eout—(t_r)_zout+(t+r)]+0'0,ou“):
- 21
In Egs. (7) and (11), o are the three Pauli matrices and @)
should not be confused with the fiete(t,r). Equation(11) 1
ensures that the right-hand siRHS) of Egs.(4) and(6) are min(t,r)= T
spherically symmetric and causesto be radially directed,

Hlln(t_r)+H|,n(t+ I’)

as in Eq.(9). This kind of solutions is hence called hedgehog 1
solutions[2,13). + (=) = Min(t+ 1) It + 7o(r),
For a static bag an analytic solution is know®,13], 22

which represents a stationary fermion field coupled at the
surface of the bag to time-independentand 7 fields. Our 1 1
goal is to find the hedgehog solution for any spherically sym- 7~ (¢ )= _i 1) (t= 1)+ TT e (t 1)+ = [Ty (t—1)
metric motion of the bag's surface. r r

Substituting Eq(7) for ¢ in Eq. (3) we obtain

— oy (t+71)] +7TO,ou£r)a (23
of ag
IE = E, (12)
whereX ot Dout » iny Hins Houw » andIly, are arbi-
ga of 2 trary functions. Notice thak ., and3,,_ are in general
%9 4+ T, (13 different functions as are alsd, . andIl,, . Here, the
gt arr time-independent termsry (1), oooulr), moin(r), and

. i . . r) are the static-bag solutions given [,13]
It is not difficult to verify [12] that the general solution of To.0ul) lc-bag solutions given (313

Egs.(12), (13) has the form ooin(r) =0,
g(t,r)=E[Q’(t—r)—Q’(Hr)], (14 _ (1 1
r 0,0l =dot aRg Ry, 1)’
i 1
=+ Q'(t—r>+Q'<t+r>+;[Q(t—r)—Q(Hr)]}, moi(r)=— D
(15) " 3

whereQ(z) is an arbitrary function. In spherical coordinates TooulT)= —
Egs.(5) and(6) become O.0u
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Substituting Eqs(18) and(19) in Eqgs.(16) and(17) and 2.90 . . :
requiring the continuity ofo(t,r) and =(t,r) atr=R, we 2701 4
finally obtain two relations that can be viewed as boundaryys 250
conditions for the fieldg, f, oin, oTout,» Tin,» ANd T oy o 2380

4 e T e T N K
Phaia D P N N

015 | J— V=‘ll',/lR0
at at ar ar oto | b) —— v=3.4/R,

. (ﬁo'in _ ao'out) n ( doin  dogy

1
=—F(g*g—f*f) at r=R, (24

. [ Iy O Jdmy, o
R( in out) +( in out)

at at ar ar
1 * * 1 |
=—(g*f+gf*) at r=R. (25 10 20 20 2
2
t/R,
From Eq.(4) we can express(t,R) and#(t,R) in terms of FIG. 1. Time evolution of the energy for driven surface oscilla-

g(t,R) andf(t,R) (see the Appendjxand use Eq924) and  tions at thev=w/R, (dashed linegsand v=E,—E; (solid lineg
(25) to find g(t,r), f(t,r), i.e.,Q,(z) andQ;,(z) [see Egs. resonances withke=0.01R,. (a) Energy of the fermion field(b)
(14), (15)] with the null-lines method14,15. Energy of therr-field. (c) Energy of thes-field.

From the point of view of the null-lines method the un-

knowns in Egs(24) and (25), as long as R|<l [15], are IIl. RESONANCES WITH A DRIVEN BAG MOTION

Q.(t+R), Qin(t+R), Xin(t+R), II;,(t+R), 2, (t—R), With the method discussed in the previous section we first
andll,, (t—R). Furthermore, the latter four are fixed once computed the solution for a static bag and then for a slowly
Q. (t+R) andQ;,(t+R) are known, using moving one. We verified that the norm of the fermion field is
conserved and that our numerical method is accurate up to
Zin(t+R)=%2(t—R)+Rgy—Ro(t,R), (26)  the second derivative d@(z) for a bag of initial radiusR,
=1 fm andf,=1 fm~ 1. With these parameters the static
_DPY— 2_ chiral bag is similar to the MIT bag, with an almost constant
Fou-(1=R)=2ou (11 R) + aRo ~R(go* aRo) o(r) and a very smaltr(r). All the results presented below
+Ro(t,R), (27) are obtained with such values &, and f_, which is a
representative set of parameters for showing the qualitative
1 B features of a dynamical chiral bag model.
I (t+R)= ﬁ[Hin(H R) —ITj,(t—R)]+1T{(t—R) + §R2 Since we are particularly interested in the behavior of the
fields under the effect of the motion of the boundary, we first
+R7(t,R), (28)  study the chiral bag with an imposed surface motion. Sub-

jecting the bag boundary to a sinusoidal moti&{t) =R,
+ e[ cos@t) —1], we found three different kinds of resonances

, 1 . o ; :
Moy (t=R)= 2 Hou (t+R) ~ oy (t=R)] (i) the fermionicresonances, which are excited when the os-
cillation frequencies are close to the difference between two
B R static-bag eigenenergies~E,—E,, (ii) the geometrico
T}, (tR) +2 0. Rm(t,R). (29 resonances, for=nx/R,, and (iii) the parametrico reso-
3 R nances, fow=(2n+1)m/(2R,), wheren is an integer.

The origin of the fermionic resonances @=E,—E, is

Here for convenience we have not written epr|C|t|y the de'sim"ar to those found for a Schﬂtnger partic]e in an oscil-
pendence 0Q(t+R) and Qn(t+R) which are hidden in |ating cavity[16]. The difference here is that the fermions
o(t,R) and w(t,R). cannot really be excited to the upper static-cavity level be-

We still need to solve Eq$28) and(29). This can be done  cause the upper level is associated with different static pion
numerically either by simply replacindI;(t+R) and fields which cannot be produced by the boundary motion.
I1; {(t—R) with their finite-difference counterparts or by in- However, since with our choice of parameteis) and(r)
tegrating betweerz—dz and z, where z=t+R and z=t  change little for different static solutions, the system still gets
—R, respectively, for the first and second equations, and bgxcited for oscillation frequencies close to the static energy
approximating all quantities other thahl;,(t+R) and gaps. The smallef is, these resonance frequencies deviate
IT,,{t—R) as being constant in this infinitesimal interval. more from E,—E,. As an example, we show fow
The numerical results turn out to be slightly more accurate=3.4R,=E,—E; the time dependence of the energies of
with the second method. To solve E¢®4) and(25) we used the fermion and the meson fields in Figsa)l 1(b), and 1c),
a fourth-order Runge-Kutta algorithm. respectively. It is interesting to note that neither thaor the
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25 ' - ‘ source for ao field with frequencies (B+1)w/Ry. Such
) ] frequencies are obviously resonant with the cavity so that the
AVAVAVAVAVAVAVAVEANVE o field is resonantly enhanced. The occurence of this kind of
15 quark energy 1 resonances can be understood in the following way. Since the
o7 e 0 eDT fermion field is not excited we can approximate its value at
1+ gy g . . .
) ———- Genergy the bag boundary with its static-bag expression
05 - -
o T g[t,R(t)]=Nexp(—iEt)jo[ ER(t)], (30
05 ; - 5 = y f[t,R(t)]= — Nexp( —iEt)j,[ER(1)]. (31
tR,

From Egs.(A3)—(A6) we obtain after some manipulations
FIG. 2. Time evolution of the energy for driven surface oscilla-

tions at thev=7/(2R,,) resonance witle=0.08R; (R,,=Rg+ €). fée(t,R)+ffm(t,R)—g%e(t,R)—g,zm(t,R)

(LR =1, 2 2 2 ’
 fields gain considerable energy. fRdt,R) + fin(t,R) + 9 t,R) + gin(t,R)
For v=nw/R, we found resonances involving thefield. (32
As can be seen in Fig. 1 the energy of thdield increases
remarkably, while the energies of the fermion and théeld frdt,R)Grd t,R) + fim(t,R)Gim(t,R)

change little. These resonances may be considgeednet- o (t,R)=—2f
ric, since the resonance frequencies are related to the time it

takes for the wave components &ft,r), i.e.,%;,(t—r) and
3.,(t+71), to travel from the boundary of the bag to its center

and back again. It has been shojry] thatp wavesin an our approximation and the whole expressions become peri-

oscillating spherical cavity also manifest resonances at . : . e . ;
—nm/Ro, and so it is somewhat surprising that here the en_odlc functions with period =2#/v. The Fourier expansion

ergies of the fermion andr fields are little affected. The pf such functions involves all multip_le frequencie_su)iand,
strongly nonlinear interaction at the bag boundary seems tg}st:emf:sglozjézlg;r (1)%:-71?(2RI?)i,slt%::eerbigqeur:ttlalr?:t ‘?rzi
damp out the resonant evolution. The energy of the fermion& 9 f Rp d RO. tain t .

actually shows some resonant behavior, but this is probabl xpressions forr(R) and 7(R) contain terms in resonance

. - : ith the cavity. However, it is surprising that for oscillation
Ejlnllzyldue to the fact that the driving frequency is close toamplitudeSe>0.OOERO the frequency 2 for o(R) becomes

The third kind of resonances we found is a peculiar fea_the dominating.one even before the first bag oscillf_altion is
ture of the system under analysis. As we can see from Fig. omple_ted. In Fig. 3 we can see clegrly_how the amplitude of
it involves mainly theo field. Note thatS(2) (Fig. 3) has in(2) increases with each bag oscillation. Although the ex-

an almost periodic dependence and the period is about hawession f0r7_T(R) also contains terms with frequency bei_ng
that of the oscillating bag. In other words the bag SurfaCemtegral multiples ofr/R,, we observe no resonant behavior

o : for the = field, which is consistent with the previous obser-
oscillat tf ey=(2n+1)7w/(2Ry), act . PR ;
scillating at frequencies=(2n+1)m/(2Ro), acts as a vation that this field is not excited far=n=/R,.

T 124, R)+2(t,R) +g&dtL,R)+gZ(t,R)
(33)

One can see that the dependence oneigt) cancels out in

IV. SELF-CONSISTENT SURFACE MOTION

0.125
A. Equation for the radius and nonresonant interaction
Our main interest in this work is to study the behavior of
the fields and the bag's surface when perturbed from their
0075 | 1 static-bag states by, for example, an incoming pion wave. To
o this end we need to find the self-consistent dynamics of the

bag surface and fields.

We natice that the velocity of points on the bag surface
0.025 | does not appear in the Lagrangian, Efj), and hence we
cannot derive from it an equation of motion for the bag ra-
dius[7,8]. The motion of the bag, however, is constrained by
the conservation of the total energy. Let us consider the
~0.025 ¢ : s ‘ energy-momentum tensor

20 30 40
1R,

FIG. 3. The functior®;,(z) for driven surface oscillations at the
v=ml(2R,) resonance withe=0.08R,. The function clearly con- . .
tains a periodic contribution witi=2 R,,. +otad’ o+ ot 9V . (39

i — —
THr =~ gh L Sy o = 3"y by
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The conservation of energy and momentum requirgs*" 1 AT out
=0, from which, by using the equations of motion E(— B=D(t)+ 5 5 ar [llf((Tav+|T TavYs) ¥] =N, iy e
(6) and after some algebra, we derive
1 n eIt g ST gy 97
Bn”=—(9”[¢(a+|r mys)]  on the surface.(35) pE oM gr e T gr po T g
(44)

For spherically symmetric solutions”z(R,F), and the

i ; where the static-bag solution has to be used. With the static
above equation can be written as

hedgehog solution the terms involving products of fields in-

1 side and outside the bag actually cancel out each other. Such
BR= —— of ( [zp(a+|r r7'r'y5)¢]} , (36) a value ofB ensures that the continuity equation for the
r=R linear momentum is satisfied. Choosing-0 from Eq.(40)
1 we can derive an equation f&:
— 11— + .
B= 5 [ [Wlo+iT WSM}rR (37 11 ) oo g0
' B— D(t) 2f at[‘p(a'av i7: 7Tav75) )= r ot
In the static case Eq36) is identically satisfied because
=0 andy(o+ir- mys) ¥ is time independent, and we could n 90out 9Tin _ ITin &Wout+‘9”0m ITin _ (45)

use Eq.(37) to deriveB. However, the RHS of Eq37) is an ar dt ar ot ar ot
ambiguous expression, because it involves the derivatives
o and 7 at the boundary which are discontinuous. To over-
come this difficulty we use the fact tha*” can also be
written as[2]

%e use the above expression to compute the motion of the
bag’s surface, which conserves the total energy and momen-
t

It is important to notice that for spherically symmetric
TE'=THY o+ THY(1— 6y) (38)  solutions the total linear momentum is conserved regardless
in YV out V/s . . .
of the value ofB, because the associated current is radial and
because the surface term is zero along the trajectories ¢fie vector sum always gives a zero total momentum. This
motion. Sinced, T,"=0 and 4, T/ =0, the conservation guarantees the conservation of the total momentum also for a

condition for energy and momentum becomes nonstatic bag surface, because in such a case the RHS of Eq.
(44) is not constant and hence the equation is not satisfied.
n,Ti"=n,Toy on the surface. (39 The first question we want to address is whether the static
) ] ] ) ) hedgehog solution is stable with respect to a small perturba-
Again using the equations of motion we obtain tion or it is just a special field configuration permitted only
1 with a static boundary. If the static hedgehog models a had-
n, T4 —n,Th'=n"[B— D(t)]+ v[ w(gav ron state one would like it to be little affected by a small

nonresonant perturbation. We therefore considered an incom-
ing wave packet incident on the bag, and we computed the

i N ot Y ; : \
T Tayys) Y1 =N,  Tind" Toue evolution of the system. We used bothrdield and ao field

+ 1, 0P 0 o0 Tin— N, P00 Ty as the incoming packet, with the following form:
+N, 0 Toud"Tin =0, (40) Toulto.r)| Ale PUTRI—1Psiu(ty+r)]e” "R
; Toulto. ) - r>Ry,
with (46)
= E(Uin+0'out) (42) which, atr =Ry, is zero up to the third derivative, in order to

avoid discontinuities at the instant of the collision. The mo-
tion of the bag surface depends on the bag con&ali¥ith
Ro=1 fm and f,=1 fm™!, from Eq. (44 we haveB
=0.16 fm 4. However with such a small value & our
numerical implementation allowed us to obtain accurate so-
_ 2 = 5 ) - lutions only for short times. We usg=1 fm~* to demon-
D(H= 5[(‘9p0in) +(9pin) "= (9p00u) “~ (9, Tou) “1, strate the qualitative features of the system even if it is an
(43) unrealistically high value, and we have verified that using
smaller bag constants do not change the qualitative features
and all the functions in the above expressions are evaluatest the system.
at the surface of the bag. In Fig. 4 we show the energy of the fields inside and
Equation(40) is well defined, and since the spatial part of outside the bag versus time for smalland ». In all the
n” in the case of spherical symmetryrisit can be used to computations we used=1/R,. Both for a= wave and ar
calculate the bag constaBtas wave the bag is hardly changed, and after the interaction the

1
Tav—= 2 (Tint Tous (42
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0.00 t = t
e 4.0 a
|S d) /A\// N e
~ 2.0 /
/__/
§ == —— — 0.04
003fF 7 - L
& 002 © -7 M oozt
mgs 0.01 | 1
o ' ' 000, 20 20 ) 80
0.06 [ ]
& o004l ) ] VR,
& oo02f ] _ _ _
000 : s 1 FIG. 5. Time evolution of the energy for a resonance with an
t/R, incoming v=m/R,, A=0.005R,, a=0 7 wave [see Eq.(46)],

showing(a) fermion energy plus volume enerd¥) = field energy
FIG. 4. Time evolution of the energy in the case of a collision inside the bag’ anct) o-field energy inside the bag

with a wavepacket withv=1/R,, «=0.2R,, = wave with A
=0.05R, (dashed lingor o wave withA=0.1R, (solid line) (see  resonance while the fermion field tends to be excited towards
Eq. 46: (a) volume energy(b) fermion energy(c) =-field energy  the second static hedgehog state and the volume of the bag
inside the bag(d) o-field energy inside the bagg) =-field energy  gecreases.
outside the bag, and) o-field energy outside the bag. In the case of a wave with=7/(2R,) we also have a
clear resonance that involves tlee field (Fig. 7). At this

velocity of the surfaqe goes 'back to zero gradually as ®Xfrequency the fermion field is completely out of resonance.
pected. Part of the pion field is reflected back at the S”rfaC@)verall the bag's energy increases not only as the pion en-

of the bag, while the other part after penetrating the bag goeé’rgy but also in the form of volume energy due to the expan-
back out towards infinity. It is interesting to observe that a

h | i I he b g v d sion of the bag. The excitation mechanism for théield is
wave has almost no effect at all on the bag and nearly dogge game as explained in the previous section by means of
not enter it. We verified that the static hedgehog solut|0nE

: . . gs.(32) and (33).
remains little affected also for largeA and higher

. S . It is very interesting to notice that the expansion of the
frequenciesy, thus validating its use as a stationary Statebag is related to the excitation of tlaefield and not directly
of a hadron.

to the fermions. The increase of energy due to a larger bag
radius is the classical counterpart of the breathing modes
B. Resonances proposed by other authof§—11] to explain certain radial
We next consider whether the resonances found in th@xcitations of the baryons such as the Roper resonance.
case of a driven bag motion still occur for the self-consistentl hese authors propose that such resonances are excitations of
motion caused by an incoming wave of appropriate fre-
guency. This is a nontrivial question because the nonlineal
relation between the fields and the motion of the boundary,,> %%
as expressed in Eq45), might in principle destroy any ;> 6.45
phase coherence on which a resonance is built up. We henct, 835
performed our computation with incomingwaves given by B s

6.65 T T T

Eq. (46) with «=0 and »v=nm/R,, v=(E,—E,), and v 0.08

=(2n+1)7/(2R,). Again due to numerical limitations we ~_ ®%®[

had to use small values & A, 004
In Fig. 5 we plot the energy of the fields inside the bag vs M o0

time for v=m/R, and in Fig. 6 forv=E,—E;. We can see 0.003
that the resonant behavior is still present. From the point of

view of the energy gained by the bag the two resonances _ 0002
merge and appear as a broad resonance peaked- Bb
—E;. With a closer look, however, one can observe two
different physical phenomena. For close to7/Ry the o 0
field is excited and the bag expands while the fermion field

gets only a small contribution from the second static hedge-

hog state. Fop close toE,— E; the o field is slightly out of FIG. 6. Same as Fig. 6, but far=E,—E;.

0.001 |
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6.4

slowly release the energy gained, hence looking similar to a
g 8B stable particle. Also in this case we can see thatithgave
5 sl inside the bag is not excited and its temporary increase in
Fo el energy is simply due to the part of the incoming wave that
= enters the bag before being reflected away.
Since the chiral bag is generally used to describe baryons,
we have also performed the previous calculations with three
ol guarks inside the bag in order to verify that our findings hold
" in this case too. Not having quantized the theory, we have to
consider already in the Lagrangian three distinct fermion
fields. Moreover, the coupling with the pions causes the so-
ozl © lution to differ from the one-quark bag. In fact, while each
o guark has to satisfy the same equati@)sand(4), the equa-
B oo tions for the pions change because the RHS of Egjsand
000 . . . (6) must be multiplied by a factor 3. Such a difference pro-
o 20 40 60 80 duces different eigenvalues for the static cavity solution and
Ry yields the following equation for the motion of the bag’s
FIG. 7. Same as Fig. 6, but fer= 7/(2R,) andA=0.02R,,. surface
the collective de f freed f ing -1 3 9. — iz 90in ITout
grees of freedom of the bag, represented ing— — [T a7 Tayys) ] —
the models they considered by the surface coordinates, while B—D(t) [ 2f; ot av avrs ar at
the quarks essentially remain in the ground state. In the chi- P do e 3 Py
ral bag model, in addition to the bag’s radius, the pions too ?%0ut 9%in _ OMin 9Mout | 7 Mout 7 Tin 47)

describe collective degrees of freedom, and hence our results ar ot o dt arat |
strongly support the above scenario.
For larger odd multiples ofr/(2R,) the resonant behav- We have verified that the features found with only one quark
ior is much attenuated. We believe that this is due to the faatemain with three quarks.
that at higher frequencies and with a self-consistent bag mo- For smaller values oB or bigger amplitude®\ we have
tion an approximation as the one shown in E§€) and(31) been able to obtain fairly accurate solutions for short times
is no longer acceptable. The perturbation still appears to b&<<10 fm/c) and, for resonant perturbations, we observe a
resonant for ther field, but its energy increases very slowly. much stronger and faster excitation process, which could
Another remarkable property of the chiral bag is that itprobably model realistic energy levels.
shows a realistic behavior in a scattering process. We have
already mentioned the dynamics for the scattering with a
nonresonant pion wave packet, but it is interesting to exam-
ine how the bag releases its energy after being excited by a We point out here the very interesting similarities between
resonant wave packet. In Fig. 8 it can be seen how, after thihe hedgehog solution and the soliton solution of a nonlinear
incoming wave packet has been scattered away, the bag rfield theory. We can define a classical soliton as any spatially
mains in its excited state for some time before starting taconfined and nondispersive solution of a classical field
theory[18]. In order to have soliton solutions it is necessary
to have some nonlinear couplings among the fields. The MIT
bag model with only fermions inside the bag does not have
nonlinear couplings. In fact, as we proved in a previous pa-
per[12], it admits baglike solutions, but these are unstable
with respect to perturbations of the bag surface. In the chiral
bag model the quark-pion coupling, although it is linear, in-
troduces a nonlinear self-coupling for the fermion field
through the boundary conditions, as apparent from Exs,
(25). We have seen that the hedgehog solution is indeed
stable with respect to perturbations of the bag surface.
For a boson field the various nonlinear couplings can be
characterized by a dimensionless coupling constarf g
=0, the theory is linear and there is no soliton solution.
However if g, however small, is different from zero, the
, , , theory admits soliton solutions. In the lingt— 0 the soliton
2 Uﬁ’o &0 80 solution grows to infinity. This is remarkably similar to what
happens in the dynamical chiral bag model. The dimension-
FIG. 8. Same as Fig. 6, but for=6.55R,=~E;—E,;, A  less coupling constant is in this cagéf ., with y an arbi-
=0.005R,, anda=0.2R,. trary constant with dimension df 1. If we set y/f_=0

V. SIMILARITIES WITH THE SOLITON

6.35

63 -

6.25

EFEVR,

6.2

0.15 -

0.10 -

ER,

0.05 -

0.00

0.0015

0.0010

ER,

0.0005 -

0.0000
0

045203-7



K. COLANERO AND M.-C. CHU PHYSICAL REVIEW C65 045203

already in the Lagrangian, we have the MIT bag model, andield and in this sense warn against the use of the adiabatic

no stable, spatially confined solution exists. If we take theapproximation.

limit y/f,—0 (f,—), we still have stable hedgehog so- Compared to previous studies of dynamical bag models,

lutions, but the fieldr goes to infinity, so thatr/f_—1. our approach has two main advantages: we solve the equa-
Such similarities seem more than a coincidence, espdions of motion without approximations and we show the

cially if we consider the bag models as simplifications ofdynamics of the resonances. In the present work we have

more general models. In fact it has been shdw@| that a considered hedgehog configurations in which the quarks are

chiral model, similar to the Skyrme Lagrangian, can auto-neither in a flavor eigenstate nor inJaeigenstate; they do

matically produce baglike solutions. From this point of view N0t represent any known hadrons. However, the occurence of

one may put some features of the baglike solutions already iff'€ résonances we found does not depend on the flavor of the

the Lagrangian, thus obtaining a bag model. The fact that thguarks, and since they are caused by spherical waves the
);mgular momenta are not changed. Moreover they are not

MIT bag model does not admit a stable baglike solution ma o .
be viewed as due to an oversimplification, having completelyrelated to specific features. of the hedgehog solut|on'. In fact
neglected the quark-pion interaction, while in the chiral bagiN® ¥=En—Ex resonance is a general feature of discrete-
model such interaction is maintained at least at the surface ofV€! Systems. The resonancesvatn/R, are geometrical
the bag. resonances related to the fact that the mesons in this model
are massless, and the onesvat (2n+1)7/(2R,) are re-

lated to the linear boundary condition E¢). Therefore, we
conjecture that such resonances should occur also for more
realistic solutions, i.e., with definite flavor add

We have shown that the chiral bag described by the La-
grangian Eq(1) is stable in the sense that a baglike solution ACKNOWLEDGMENTS
exists even if the static bag is perturbed either by arbitrary
radial motions of its boundary or by its interaction with a  This work was supported by Hong Kong Research Grants
meson wave. This is in contrast with the purely fermionicCouncil Grant No. CUHK 4189/97P and a Chinese Univer-

VI. CONCLUSION

MIT bag which has been proved to be unstallg]. sity Direct Grant(Grant No. 2060198
Computing the solution for a bag perturbed by a nonreso-
nant meson wave, we found that it remains close to the static APPENDIX

hedgehog solution and that, after the incoming wave is scat-
tered away, it returns to the static hedgehog. Such a result For a spherical bag, can be written asR,—r) and, as
validates the use of the static hedgehog as a stationary statRown for example in Ref12], Eq. (4) in radial coordinates
of a hadron. becomes

We also examined the existence of resonant perturbations,
and we discovered three kinds of resonances which occur . 1
when the bag interacts with an incomimgwave. When the  IR9(t,R)—f(t,R)= c—[o(t, R)g(t,R) — 7(LRIT(LR) ],
frequency of the incoming wave is close to an energy gap " (A1)
v=E,—E, the fermion field is in resonance. Thefield is
also excited since is close to an integral multiple af/R,. 1
The fermion field tends to go to an upper static hedgehog—iRf(t,R)—g(t,R)= —[o(t,R)f(t,R) + m(t,R)g(t,R)].
level, but these resonances are not simply transitions from a fr
lower hedgehog state to an upper one, because in that case (A2)

there would be only a static meson field in the final state, ) ) )
while here we have remarkable energy contribution from @Eauating separately the real and imaginary parts of the two

nonstatico field. At »=nm/R, the fermion field is litle ~€guations we obtain the following four equations:
excited while theo field is in resonance and the bag ex-
pands. The third type of resonance occurs wheguals odd
multiples of 7/(2Rg), which is a consequence of the linear
boundary condition Eq(4). In this case the fermion field is
not excited and the increase in energy comes fronwtfield —7(LRF(LR)],  (A3)
and the increase in the volume energy associated with the
expansion of the bag. The occurence of a resonance at
=1/(2Ry), which is much smaller than the energy gap be-
tween the first and second static hedgehog states, gives sup-
port to the description of the Roper resonance as a radial +7(L,R)G(t,R)],  (A4)
excitation of the collective degrees of freedom. In particular

. 1
—Rgim(t,R) —f(t,R)= f_[U(tiR)gre(th)

Riin(tR) g LR)=  [o(LRILR)

the expansion of the bag without fermion excitation is the ) 1

classical analog of the breathing modes proposed by other RYwe(t,R) = fim(t,R) = [0 (L R) gim(L,R)
authors[7-11]. Our results, however, show that the expan- ”

sion of the bag is strictly related to the excitation of ihe -a(t,R)f,(t,R)], (Ab)

045203-8
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) 1 (A6) all the four functions mentioned above, then E4$)
~RI(L,R) = gim(t,R) = [ (L, R) fim(1,R) and(17) would requires,, and 7o, to be singular at =R,
N and even this would not guarantee the existence of a solution
+7(t,R)gim(t,R)]. (A6) in general. However, it turns out that E¢A.3)—(A6) are not
At this point we have four equations and four unknowns,independent and we need to impose some condition on the
i.e., Q(t+R), Qin(t+R), o(t,R), and #(t,R). This fact functions in order to have a unique solution. We have veri-
seems to make our requirement, thgt,r) and «(t,r) be fied this in two ways, as explained below.
continuous at =R, redundant hence making the whole prob-  Solving Eqs(A3)—(A6) for o(t,R) and(t,R) we obtain

lem inconsistent. In fact if we could derive from E¢A3)—  two different expressions for each function
J
o (t,R)=f o = 2fin(t, R Gim(t,R) + [Grel £, R) Gim(1,R) = Fre £, R) Fin(£, RV IRM[ 95 (1, R) + F (1, R) ], (A7)
o (t,R)=f{ = 2f o, R)Gre(t,R) ~ [ Grelt, R) Gim(£,R) — f 1ol t,R) Fim(t, R IRY[97(t, R) + F(£,R) ], (A8)
m(t,R) = f o {f (6, R) = 95n(t,R) — [fre(t, R Gim(t,R) + Gret, R) firm(t, RVIRM[ G5 (. R) + Fy(t,R)], (A9)
m(t,R) = f o {f(t,R) — Gt R) + [ f e, R)Gim(t,R) + Gret, R) firn(t, RV IRM[ g7 £, R) + F(t,R) . (A10)

Equating Eq(A7) with Eq. (A8) and Eq.(A9) with Eq. (A10) we obtain two nonlinear equations for the real and imaginary
parts off andg,

{2fim(t, RV Gim(t,R) — [ Gre( £, R) Gim(t,R) — f o t, R) Firn(t,R)TRI 9(t, R) + FA(t,R) ]

={2f (t, R Gy t,R) +[ Gre(t, R) Gimm(t,R) — F (£, R) F (£, R) IRY g24(1,R) + F2,(1,R) ], (A11)
{£2.(t,R) — g% (t,R) — [ f1(t, R)Gim(t,R) + Gre( £, R) fim(t, RV IR} 92(t,R) + F2(1,R) ]

={f2%(t,R) ~ G&(t,R) + [ Fret, R) Gim(t, R) + Grelt, R) Fim (1, RV IR G5 (1, R) + F2 (L, R) . (A12)

The problem is evidently extremely difficult to handle and (25) for Q,(t+R) and Q;»(t+R), as discussed in the
analytically, and so we used a numerical approach. Substitutnain part of the paper, witlr(t,R) and =(t,R) given by
ing Q" with a finite incremental ratio, Eq$A11) and(A12)  anyone of the above expressions or a combination of them.
become two nonlinear algebraic equations@gt+R) and  We thereby verified that Eq$A3)—(A6) are automatically
Qim(t+R). Solving numerically the algebraic equations, we satisfied.
have found that a whole region exists, in £g-Qin plane In the case oR=0 we can analytically prove that Egs.
aro_un.dQ(t+R.— d.z), n which the algebr@c equa_t|ons are A3)—(A6) are not independent. In fact, looking for solutions
satisfied, thus indicating that the solution is not unique. Sinc f the form g,.= P()g(r), fo=P(t)f(r), gim=S(t)g(r)

TS i re— v lreT ’ im— ’
this is not a rigorous proof, we need to cross check Ourfim=S(t)f(r), we easily verify that Eqs(A11), (A12) are

finding by imposing the continuity of(t,r) and«(t,r) on . . . :
the SL?rfaBée olfothe t?ag and by veri);ying(l wr)1ether tr(1e s)olution :'zlutomatlcally satisfied leavinB(t) and S(t) undetermined.

found without using Eqs(A1l) and (A12), satisfy all four It is reasonable to think that a8 slowly departs from zero
Eqgs. (A3)—(A6). the four equations still remain not independent, though we

In order to do this we have solved numerically E(B4)  are not able to provide a rigorous proof for it.
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