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Semiclassical character and optical model description of heavy ion scattering, direct reactions, an
fusion at near-barrier energies
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An approach is proposed to calculate the direct reaction~DR! and fusion probabilities for heavy ion colli-
sions at near-Coulomb-barrier energies as functions of the distance of the closest approachD within the
framework of the optical model that introduces two types of imaginary potentials, DR and fusion. The prob-
abilities are calculated by using partial DR and fusion cross sections, together with the classical relations
associated with the Coulomb trajectory. Such an approach makes it possible to analyze the data for angular
distributions of the inclusive DR cross section, facilitating the determination of the radius parameters of the
imaginary DR potential in a less ambiguous manner. Simultaneousx2 analyses are performed of relevant data
for the 16O1208Pb system near the Coulomb-barrier energy.
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I. INTRODUCTION

Collisions between heavy ions at near-Coulomb-bar
energies are very much governed by the Coulomb poten
involved, and thus the general features of the elastic sca
ing and direct reaction~DR! data can be understood based
the idea that the colliding ions primarily travel along a cla
sical Coulomb trajectory@1#. These features are seen mo
dramatically in plots of the ratios of the elastic different
cross section (dsE /dV) or the inclusive~sum of all differ-
ent! DR one (dsD /dV) to the Rutherford differential cros
section (dsc /dV), i.e.,

Pi[
ds i

dV Y dsc

dV S 5
ds i

dsc
D ~ i 5E or D !, ~1!

as a function of the distance of the closest approachD ~or the
reduced distanced) @1,2# that is related to the scatterin
angleu through

D5d~A1
1/31A2

1/3!5
1

2
D0S 11

1

sin~u/2! D
with D05

Z1Z2e2

Ec.m.
. ~2!

HereD0 is the distance of the closest approach in a head
collision (s wave!. Further, (A1 ,Z1) and (A2 ,Z2) are the
mass and charge of the projectile and target ions, res
tively, andEc.m. (Elab) is the incident energy in the cente
of-mass~laboratory! system.PE andPD thus defined may be
called the elastic and DR probabilities, respectively. The
pact parameterb and orbital angular momentuml, specifying
the trajectory, are related tou andD by

b5
l

k
5

D0

2
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2
5AD~D2D0!, ~3!
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wherek is the wave number.
As an illustration, we show in Fig. 1 such plots ofPE and

PD for the 16O1208Pb system@3,4# at five different incident
energies ofElab580, 84, 90, 96, and 102 MeV forPE and at
a single energy ofElab590 MeV for PD , where the data
are available. As seen, the values ofPE at different energies
line up to form a very narrow band and take a value ve
close to unity for, say,d.1.65 fm ([dI , interaction dis-
tance!. Whend becomes smaller thandI , PE falls off very
rapidly, approximately exponentially.

The observed behavior ofPE may easily be explained
based on the physical picture that the projectile ion mo
primarily along a Coulomb trajectory. For the cased.dI ,
the trajectory is far away from the target and the projectile
scattered at the Coulomb scattering angleu without being

FIG. 1. Experimental elastic probabilitiesPE as a function of
the reduced distanced for the 16O1208Pb system atElab580, 84,
90, 96, and 102 MeV. The measured DR probabilitiesPD are also
plotted atElab590 MeV. The data are taken from Refs.@3,4#.
©2002 The American Physical Society07-1



rin
tio

th
du

.
r

ss
h

m
r
e
b

a

in
io
ca

ob

o

io
tio

i
tio

rb

ti

t i

ca

in-
ion
y.
e

al

have

for
e
the

del
fu-

as

es
-
e
ion,
us
ot-

ons

e
;

l
l-
us-

B. T. KIM, W. Y. SO, S. W. HONG, AND T. UDAGAWA PHYSICAL REVIEW C65 044607
influenced at all by the nuclear force. The resultant scatte
cross section is thus equal to the Rutherford cross sec
and PE becomes unity. Whend becomes smaller thandI ,
however, the incident ion gets under the influence of
strong nuclear interaction, and absorption takes place, re
ing thePE value below unity.

In accordance with the observed behavior ofPE , PD
starts to have a significant value atd'dI . It reaches its
maximum value (PD'0.24) atd'1.58 fm, wherePE be-
comes approximately 0.7. In the region ofd
51.58–1.65 fm, the sumPE1PD thus stays close to unity
This indicates that in that region, the main cause of abso
tion in the elastic channel is DR processes. Whend becomes
still smaller, the sumPE1PD falls off rapidly from unity,
showing that absorption due to more complicated proce
eventually leading to fusion takes place. It is remarkable t
the sumPE1PD becomes extremely small, say, 1023 and
thus essentially zero, at aroundd5dc51.30 fm, which cor-
responds to the radial distance for thes-wave Coulomb-
barrier top. This means that the incident flux is almost co
pletely absorbed when it reaches that distance. It is wo
noting that the same picture holds irrespective of the incid
energy, so long as it is not far away from the Coulom
barrier energy.

Theoretically, we have a very well established optic
model for evaluatingPE . This is not the case forPD . There
is a variety of theoretical methods proposed for calculat
contributions from inelastic scattering and transfer react
processes toPD by means of either semiclassical or classi
approximations@1#. It is, however, still a formidable task to
carry out calculations including all possible processes to
tain a theoretical value ofPD . The aim of the present work
is to propose a simple approach to calculatePD within the
framework of an optical model that introduces two types
the imaginary potentials; one for DR, the other fusion@5–7#.
We propose to evaluatePD from the partial absorptive DR
cross sections generated from the optical model calculat
The underlying assumption is that even after the reac
~removal from the elastic channel! the projectile ion still
moves along the Coulomb trajectory, being eventually em
ted at the Coulomb scattering angle. Under the assump
we may use the classical relation Eq.~3! to convert the par-
tial wave cross section toPD .

The conventional wisdom assumes@2# that

PE1PD1PF'1, ~4!

which expresses a simple physical idea that what is abso
in the elastic channel atr 5D goes into either DR or fusion
channels. Since there is no measured angular distribu
available for the fusion probabilityPF , it has been impos-
sible to test the above relation experimentally. However, i
possible to examine it by using the theoreticalPF , which we
may generate from the partial wave fusion cross section
we calculatePD described above.

In the present work, theoretical expressions forPD and
PF are derived in Sec. II, where we also perform numeri
calculations ofPD and PF along with PE and examine the
validity of the relation Eq.~4!. The feasibility of evaluating
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PD enables us to analyze the angular distribution of the
clusive DR cross section. This facilitates the determinat
of the DR part of the optical potential with less ambiguit
We shall demonstrate this also in Sec. II. In Sec. III, w
repeat the simultaneousx2 analyses that we made sever
years ago@7# for the data on the16O1208Pb system shown in
Fig. 1. The reanalyses are needed since the fusion data
been revised@8# after Ref.@7# was published. Section IV will
then be devoted to our conclusions.

II. OPTICAL MODEL CALCULATIONS OF PD AND PF

A. Derivation of theoretical expressions
for PD and PF

In this section, we try to derive theoretical expressions
PD and PF within the framework of the optical model. W
follow the approach proposed some time ago to calculate
total DR and fusion cross sections within the optical mo
by using imaginary, surface-type DR and volume-type
sion, potentials,WD(r ) andWF(r ), respectively,@5–7#. The
total DR and fusion cross sections are then calculated
@9,10#

s i5
2

\v
^x (1)uWi~r !ux (1)& ~ i 5D or F !, ~5!

wherex (1) is the usual distorted wave function that satisfi
the Schro¨dinger equation with the full optical model poten
tial U(r ). sD and sF are thus calculated within the sam
framework as the differential elastic scattering cross sect
dsE /dV, is calculated. Such a unified description enables
to describe all different types of reactions on the same fo
ing.

The basic ingredients for obtaining theoretical expressi
for PD and PF are the partial wave cross sections,s i ; l
( i 5D or F), which are obtained by simply expanding th
cross sections, Eq.~5!, into the partial wave components
s i5( ls i ; l . s i ; l can explicitly be given as@9#

s i ; l5
p

k2
~2l 11!Ti ; l ~ i 5D or F !, ~6!

where

Ti ; l5
8

\vE0

`

ux l~r !u2Wi~r !dr. ~7!

In the above equation,x l(r ) is the partial distorted wave
function andv is the relative velocity.

Equation~6! with Eq. ~7! is still a quantum-mechanica
expression, wherel takes only integer values. In what fo
lows, we introduce a few semiclassical approximations c
tomarily used@1,2,11,12#. The first is to treatl as a continu-
ous variable and to assume that

ds i~ l !

dl
5s i ; l . ~8!
7-2
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We then use the classical relation Eq.~3! that relatesl to u. It
is then straightforward to get

ds i~ l !

dV
5

1

2psinu

dl

du

ds i~ l !

dl
5

kD0

16p

1

cos~u/2!sin3~u/2!
s i ; l .

~9!

Inserting further Eq.~6! into Eq.~9!, and dividing the result-
ant expression by the Rutherford cross sectionsc , one fi-
nally obtains

Pi5
2l 11

kD0
tan~u/2!Ti ; l'Ti ; l . ~10!

We used the approximation 2l 11'2l to obtain the last ex-
pression.

In order thatPi can be a probability, it should satisfy

Pi<1. ~11!

This requirement is indeed satisfied; in fact we have

PD1PF5TD; l1TF; l[Tl512uSl u2, ~12!

whereTl is the transmission factor andSl is the partial wave
S matrix. Since bothPD andPF are positive quantities, it is
clear from the above relation thatPD andPF should be less
than unity.~Note that there is no reason thatPE should be
smaller than unity. Quantum effects such as interference
diffraction, may cause the value to be greater than un!
Now, for very smalll values, we expect thatPD→0, hence

PF'12uSl u2→1 for small l . ~13!

The last relation follows from the fact that for such a stro
absorptive case as in heavy ion collisions,Sl becomes essen
tially zero for small l. Since PE1PD→0 for small l, PE
1PD1PF→1 as expected earlier in Eq.~4!. In the Sec. II B
we further study this point numerically.

In passing, we remark that the procedure we have p
posed can also be used to reduce the quantum-mecha
Rutherford cross section to the classical one. As is w
known, this reduction has been given by using a set of se
classical approximations@11,12#. The quantum-mechanica
Rutherford cross section has the well-known form

dsc

dV
5U 1

2ik (
l

~2l 11!~e2ih l21!Pl~u!U2

, ~14!

whereh l is the Coulomb phase shift andPl is the Legendre
function. One of the approximations introduced in the red
tion process is to ignore the term2(1/2ik)( l(2l 11)Pl(u).
This term gives rise to a divergent contribution at extrem
forward angles and we ignore it as is usually done~see Refs.
@11,12#!. We then integrate Eq.~14! over angles to obtain the
total elastic cross section expressed as a sum of the pa
cross sections, which is in turn converted to an integral o
l. The resultant total elastic scattering cross section tak
very simple form, namely,
04460
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dl
dl with

dsc

dl
5sc; l5

p

k2
~2l 11!'

p

k2
~2l !. ~15!

By inserting the last expression in Eq.~15! into Eq. ~9!, we
obtain the Rutherford differential cross section.

It appears that the procedure used for reducing
quantum-mechanical Rutherford cross section to the class
one involves a contradictory element; we first integrate
differential cross section over angle, but then recover it fr
the partial wave cross sections we obtained as a result o
angle integration. However, the procedure can be justifi
The quantum-mechanical cross section Eq.~14! is given as a
coherent sum overl. As has been demonstrated in a numb
of semiclassical treatments of Eq.~14! @11,12#, the dominant
contribution to the differential cross section for a given sc
tering angleu comes from the partial waves aroundl 5 l u ,
wherel u is related tou by Eq.~3!. The contribution becomes
d-function-like in the classical limit of\→0. In the present
procedure, we carry out an integration overu first, but from
what has been discussed above, it is seen that the cont
tion from the angleu is stored into the partial wave cros
section ofl' l u . It is thus justifiable to recover the differen
tial cross section at an angleu from the partial wave cross
section forl 5 l u . This procedure is most justified when th
scattering is closest to classical one.

B. Numerical Examples

Calculations ofPE , PD , and PF are performed for the
16O1208Pb system with incident energyElab590 MeV, us-
ing the optical model potential as fixed in our previous stu
@7#. We present the results in Fig. 2, where the solid,~thick
and thin! dotted, and~thick and thin! dashed curves are th
calculated values ofPE , PD and PF , respectively. The ex-
perimental data forPE and PD are also plotted as the soli
and open circles, respectively. As seen, the calculatedPE
reproduces the experimentalPE very well. This is not the
case, however, forPD ; the calculatedPD is shifted to the
smallerd region by about 0.05 fm as compared to the expe
mental data, particularly in the region ofd>1.6 fm. Thus,
the comparison of the calculatedPD with the data provides
an additional test of the parameters used in Ref.@7#. In fact,
this shift means the radius parameterr D51.50 fm used in
Ref. @7# is too small to describe the data. We thus repea
the calculation with a larger radius parameter ofr D
51.55 fm. The calculatedPD thus obtained is plotted as th
thin dotted curve shown in Fig. 2. The fit to the data
improved. It is worth noting that the recalculatedPD shifts
toward the largerd region by 0.05 fm, the same amount
the increase of the radius parameterr D . This shows that the
experimentalPD provides a very sensitive test of ther D
value. Based on the result obtained above, we use the v
r D51.55 fm in thex2 analysis discussed in the followin
section.
7-3
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In the calculation ofPF shown in Fig. 2,r F51.40 fm has
been used. Thus thePF curve lies in much smallerd region
than thePD . We also observe that the slope ofPF is much
steeper than that ofPD . This reflects the fact that the dif
fuseness parameter used forWF(r ;E) (aF50.25 fm) is
smaller than that ofWD(r ;E) (aD50.45 fm). To show the
effects of theaF value, we present as the thin dashed cu
anotherPF calculated withaF50.45 fm. It is seen that the
slope ofPF at large distances is almost the same as tha
PD with aD50.45 fm.

Let us now turn to the sumPE1PD1PF shown by the
dash-dotted curve. As expected, it stays very close to u
confirming that the relation Eq.~4! is fairly well satisfied,
within the accuracy of, say, 20%. The sum shows some
cillations around unity, which may be ascribed to quant
interference effects. The oscillation is also visible in the e
perimentalPE values. Accumulation of more accurate da
may enable us to test this explanation in a more deta
manner.

ThePE values calculated for the incident energies cons
ered in Fig. 1 are presented in Fig. 3. The optical poten
determined from thex2 analysis discussed in the followin
section has been used. Since we use such a potential a
termined from thex2 fit, the calculatedPE fit the data given
in Fig. 1 very well and thus they form a band very mu
similar to that seen in Fig. 1.

III. x2 ANALYSES

We have repeated simultaneousx2 analyses as in Ref.@7#
for the elastic scattering, DR, and fusion data for the16O
1208Pb system. This is motivated for two reasons: The fi

FIG. 2. Optical model predictions of elastic, DR, and fusi
probabilities as a function of the reduced distanced for the 16O
1208Pb system atElab590 MeV are shown in comparison with th
experimental ones. The theoretical total probabilities are a
shown. The thick dotted curve denotesPD calculated with the dis-
persive optical potential determined in Ref.@7#. The thin dotted
curve representsPD calculated with the same potential but wi
modifiedr D ~51.55 fm!. The thick~thin! dashed curve denotesPF

calculated withaF50.25 fm (aF50.45 fm).
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is that the fusion data have been revised@8#, after Ref.@7#
was published. The second is that we are now able to tes
calculations against the data forPD . As described in the
preceding section, the value of the radius parameterr D
51.50 fm used in Ref.@7# is too small to explain the data. A
better r D value is r D51.55 fm. Other parameters must b
fixed with this more appropriate value ofr D . As in Ref.@7#,
we utilize a dispersive-type optical potential@13#

U5UC~r !2@V0~r !1V~r ;E!1 iW~r ;E!#, ~16!

where UC(r ) is the Coulomb potential andV0(r ) is the
energy-independent Hartree-Fock part of the potential, w
V(r ;E)1 iW(r ;E) is the polarization part of the potentia
@14,15# that originates from couplings to reaction channe
They are assumed to have volume-type fusion and surf
derivative-type DR parts. Explicitly,V0(r ), V(r ;E) and
W(r ;E) are given, respectively, by

V0~r !5V0f ~X0!, ~17!

V~r ;E!5VF~r ;E!1VD~r ;E!

5VF~E! f ~XF!14VD~E!aD

d f~XD!

dRD
, ~18!

W~r ;E!5WF~r ;E!1WD~r ;E!

5WF~E! f ~XF!14WD~E!aD

d f~XD!

dRD
, ~19!

where f (Xi)5@11exp(Xi)#21 with Xi5(r 2Ri)/ai ( i
50, D or F) is the usual Woods-Saxon function. Use
made of the values used in Ref.@7# for the parameters of the
bare potentialV0(r ), and the geometrical parameters
V(r ;E) and W(r ;E) ~except r D as discussed above!; V0
560.4 MeV, r 051.176 fm, a050.658 fm, r F51.40 fm,
aF50.25 fm, r D51.55 fm, andaD50.45 fm. Once the

o

FIG. 3. Results of calculations for elastic probabilitiesPE as a
function of the reduced distanced for the 16O1208Pb system at
Elab580, 84, 90, 96, and 102 MeV, using the final fully dispersi
optical potential.
7-4
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geometrical parameters are fixed, the dispersion relatio
reduced to a relation for the strength parametersVi(E) and
Wi(E) ( i 5D andF). The relation now reads@13#

Vi~E!5Vi~Es!1
E2Es

p
PE

0

`

dE8
Wi~E8!

~E82Es!~E82E!
,

~20!

where P stands for the principal value andVi(Es) is the
potential value at a reference energy pointE5Es .

As was done in Ref.@7#, we approximate theE depen-
dence ofWi(E) just above the threshold energyE0;i @defined
asWi(E0;i)50# by a linear function ofE. @See the forthcom-
ing Eqs.~22! and ~23!.# We then identify this threshold en
ergy as that determined from the linear representation of
quantitySi(E) introduced by Stelsonet al. @16# as

Si[AEs i~E!}~E2E0;i ! ~ i 5D or F !. ~21!

The threshold energiesE0;i thus defined are essentially th
threshold energies of the DR (i 5D) and fusion (i 5F) cross
sections, and it is plausible to identify the two threshold e
ergies to be the same. The authors of Ref.@16# considered the
quantitySi only for the i 5F case, but we extend it to DR
Originally, two threshold phenomena in the imaginary part
the optical potential and the fusion cross section data w
found independently, but it was noticed later@17# that the
two are very close to one another. Once we have separ
the imaginary potential into the DR and fusion parts, it
physically plausible to require that the two thresholds sho
be the same. In Fig. 4, we present theSi values fori 5D and
F. There we find that E0;D573.0 MeV and E0;F
576.0 MeV, which will be used later as the threshold en
gies ofWD(E) andWF(E), respectively.

FIG. 4. The Stelson plot ofSi5AEcms i for direct reaction (i
5D, solid circles! and fusion (i 5F, open circles! cross sections.
The straight lines are drawn to show the extraction of the thresh
energies. Thin lines connecting the circles are only to guide
eyes.
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In an attempt to determine the polarization potential,
multaneousx2 analyses were performed, treating all fo
strength parametersVD , VF , WD , andWF as the adjustable
parameters. We took into account all the data@3,4# available
for incident energies betweenElab580 MeV and 104 MeV.
We included the total DR and fusion cross sections in
analyses.

The values of the parameters thus extracted are prese
in Fig. 5 forVD andWD and in Fig. 6 forVF andWF . Let us
consider first the results forVD and WD . A considerable
fluctuation is seen in the values ofVD , but WD changes
smoothly as a function ofE. The fact thatWD could be fixed
as a smooth function ofE indicates that these values a
reliable. There is a reason thatWD can be determined rathe
unambiguously and becomes a smooth function ofE. It is
becauseWD is the dominant absorptive term in the perip
eral region. Therefore, the elastic scattering cross sectio
quite sensitive to the value ofWD . This is not the case for
VD ; at the strong absorption radius, where the elastic s
tering cross section is sensitive to the real potential,VD is
generally much smaller than the bare potentialV0(r ), result-
ing in some difficulty in determiningVD unambiguously. The
fluctuation seen in Fig. 5~a! may be understood to arise from
this difficulty.

The WD values determined from thex2 analyses can be
well represented by the following function ofE ~in units of
MeV!:

WD~E!5H 0 for E<73.0

0.015~E273.0! for 73.0,E<92.5

0.2925 forE. 92.5,

~22!

ld
e

FIG. 5. Strength parametersVD(E) and WD(E) for the direct
reaction potential as functions ofE. The open and solid circles ar
the values extracted from thex2 analyses. The solid lines denot
WD(E) andVD(E) calculated, respectively, from Eq.~22! and from
Eq. ~20! together with Eq.~22!. The thin lines connecting the circle
are only to guide the eyes.
7-5
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whereE0;D573.0 MeV is used as extracted in Fig. 4. Th
solid line shown in Fig. 5~b! is WD given by Eq.~22!. The
line fits the empirical values quite well.

Since a reliable value ofWD is now available, one can
calculateVD by using the dispersion relation Eq.~20!. In
doing this, we need to know one more parameter, i.e.,
value ofVD at E5Es . We may fix thisVD(Es) by fitting the
average of the resultantVD to that of the empirically deter
minedVD . The solid curve shown in Fig. 5~a! shows theVD
values thus calculated. TheVD(Es) value used isVD(Es)
50.4 MeV atEs592.5 MeV.

As seen in Fig. 6,VF and WF are both determined a
fairly smooth functions ofE. The WF values may be repre
sented~in units of MeV! as

WF~E!5H 0 for E<76.0

0.32~E276.0! for 76.0,E<86.0

3.2 forE. 86.0.

~23!

Again we took the threshold energy ofE0;F576.0 MeV de-
termined fromSF . The solid line shown in Fig. 6~b! repre-
sentsWF in Eq. ~23!. We then calculated theVF(E) by using
the dispersion relation Eq.~20! with WF given by Eq.~23!.
The reference potentialVF(Es) involved was chosen a
VF(Es)53.50 MeV at Es586.0 MeV. As shown by the
solid curve in Fig. 6~a!, the predictedVF values again agree
reasonably well with the empirically determined values.

We take as our final potential parametersWD and WF
given, respectively, by Eqs.~22! and ~23!, and alsoVD and
VF generated from the dispersion relation Eq.~20!. The po-
tential with such parameters then fully satisfies the disp
sion relation. Using such an optical potential, we calcula
the final theoreticalPE , sD , andsF and presented them i

FIG. 6. Strength parametersVF(E) and WF(E) for the fusion
potential as functions ofE. The open and solid circles are the valu
extracted from thex2 analyses. The solid lines denoteWF(E) and
VF(E) calculated, respectively, with Eqs.~23! and ~20!. The thin
lines are to guide the eyes.
04460
e
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Figs. 7 and 8 in comparison with the experimental data.
seen, all experimentalPE , sD , andsF are well reproduced
by the calculations.

We now wish to make some remarks on the polarizat
potential we have obtained. First, there is a remarkable
ference in the the energy dependences between the DR
fusion potentials. A very rapid change is seen only in t
fusion part of the potential. The slope ofWF(E) given by Eq.
~23! in the threshold region is 0.32, while that inWD(E)
given by Eq.~22! is only 0.015. As a result, we see a signi
cant energy variation of about 2 MeV inVF(E) in the inter-

FIG. 7. Ratios of the elastic scattering cross sections to Rut
ford cross sections calculated with our final optical potential for
16O1208Pb system are shown in comparison with the experime
data. The data are taken from Refs.@3,4#.

FIG. 8. Direct reaction and fusion cross sections calculated w
our final optical potential for the16O1208Pb system are shown in
comparison with the experimental data. The direct reaction data
taken from Refs.@3,4#, while the fusion ones are from Ref.@8#.
7-6
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val of ;10 MeV, but the change inVD is only 0.1 MeV in
the energy range of;20 MeV. We may thus conclude tha
the threshold anomaly exists in the fusion part of the pot
tial, but not in the DR part.

IV. CONCLUDING REMARKS

We have presented a simple method to calculate the
and fusion probabilities within the optical model by intr
ducing two types of imaginary potentials, DR and fusio
These probabilities are calculated by using the partial
and fusion cross sections generated from the correspon
imaginary potentials with the help of the classical relati
between the orbital angular momentuml and the scattering
angleu. The probabilities thus calculated were shown to s
isfy the condition that the value should be equal to or l
than unity.

Based on the expressions derived, numerical calculat
of these probability were performed. We found that the s
of the DR, fusion and elastic probabilities stays close
unity. We also analyzed the angular distribution data of
ux

O

04460
-

R

.
R
ng

t-
s

ns

o
e

inclusive DR cross section, demonstrating that the data p
vide some useful information for determining the radius p
rameters of the DR potential. It was observed that a v
rapid energy variation~threshold anomaly! was in the fusion
part of the potential, but it is hardly seen in the DR pa
particularly in the real part of the potential.

Simultaneousx2 analyses of elastic scattering, DR an
fusion cross sections for the16O1208Pb system at near
barrier energies were performed for determining the po
ization part of the optical potential that satisfies the disp
sion relation over all space. The potential thus determine
found to reproduce the data well.
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