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Semiclassical character and optical model description of heavy ion scattering, direct reactions, and
fusion at near-barrier energies
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An approach is proposed to calculate the direct readiiiR) and fusion probabilities for heavy ion colli-
sions at near-Coulomb-barrier energies as functions of the distance of the closest afpradéttin the
framework of the optical model that introduces two types of imaginary potentials, DR and fusion. The prob-
abilities are calculated by using partial DR and fusion cross sections, together with the classical relations
associated with the Coulomb trajectory. Such an approach makes it possible to analyze the data for angular
distributions of the inclusive DR cross section, facilitating the determination of the radius parameters of the
imaginary DR potential in a less ambiguous manner. Simultangbamalyses are performed of relevant data
for the %0+ 2%pPp system near the Coulomb-barrier energy.
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I. INTRODUCTION wherek is the wave number.
As an illustration, we show in Fig. 1 such plots® and

Collisions between heavy ions at near-Coulomb-barriePy, for the %0+ 2%pPh systeni3,4] at five different incident
energies are very much governed by the Coulomb potentiagnergies oE,,,= 80, 84, 90, 96, and 102 MeV fd?: and at
involved, and thus the general features of the elastic scattea single energy oE;,,=90 MeV for Py, where the data
ing and direct reactiofDR) data can be understood based onare available. As seen, the valuesRqyf at different energies
the idea that the colliding ions primarily travel along a clas-line up to form a very narrow band and take a value very
sical Coulomb trajectory1]. These features are seen mostclose to unity for, sayd>1.65 fm (=d,, interaction dis-
dramatically in plots of the ratios of the elastic differential tance. Whend becomes smaller thadh, , Pg falls off very
cross sectiondog/dQ) or the inclusive(sum of all differ-  rapidly, approximately exponentially.
end DR one @dop/dQ) to the Rutherford differential cross The observed behavior d?z may easily be explained
section @o./dQ), i.e., based on the physical picture that the projectile ion moves

primarily along a Coulomb trajectory. For the casded,,
do;y / dog do;
Pi= 40 / dQ

_ the trajectory is far away from the target and the projectile is
~ dog
as a function of the distance of the closest apprdacbr the

) (1=E or D), @) scattered at the Coulomb scattering anglevithout being

|
reduced distancel) [1,2] that is related to the scattering 10°€ ' ' ' ' ' '
angle # through
1 1 a5 10°F
_ 13, A3 _ —
D=d(A;"+A5") 2Do 1+ sin(0/2)) 5
w
. 212262 \I_I/ 10-1 5_ o)
with D= £ (2 - : N —¢— 80 MeV
e ° i O —w— 84 MeV
HereD, is the distance of the closest approach in a head-on © qg2L ®— 90 MeV i
.. Nl E —A— 96 MeV E
collision (s wave. Further, @;,Z;) and (A,,Z,) are the - = 102 MeV
mass and charge of the projectile and target ions, respec- O— 90 MeV DR ]
tively, andE. , (Eap) is the incident energy in the center- 3 . . . . . ,
, 10 ; : : ' : : :
of—mass(laborat.ory system.Pg andRD thus defm_ed may bg 10 12 14 168 18 20 22 24
called the elastic and DR probabilities, respectively. The im- d
pact parametds and orbital angular momentumspecifying (fm)

the trajectory, are related ®andD by FIG. 1. Experimental elastic probabilitié®: as a function of

the reduced distanag for the *%0+2%%Pb system aE,,,=80, 84,

Do 0 90, 96, and 102 MeV. Th d DR probabil |
— —%ot.=/D(D-Dy), 3 , 96, an eV. The measure probabilifigsare also
2 E ( o) © plotted atE,,,=90 MeV. The data are taken from Ref8,4].
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influenced at all by the nuclear force. The resultant scatterin@, enables us to analyze the angular distribution of the in-
cross section is thus equal to the Rutherford cross sectiomjusive DR cross section. This facilitates the determination
and Pg becomes unity. When becomes smaller thad, , of the DR part of the optical potential with less ambiguity.
however, the incident ion gets under the influence of theNe shall demonstrate this also in Sec. Il. In Sec. lll, we
strong nuclear interaction, and absorption takes place, reducepeat the simultaneoug® analyses that we made several
ing the P¢ value below unity. years agd7] for the data on thé®0+ 2%%Pb system shown in

In accordance with the observed behavior Rf, Pp Fig. 1. The reanalyses are needed since the fusion data have
starts to have a significant value dt=d,. It reaches its been revised8] after Ref.[7] was published. Section IV will
maximum value Pp~0.24) atd~1.58 fm, wherePz be- then be devoted to our conclusions.
comes approximately 0.7. In the region od

=1.58-1.65 fm, the surRe+ Py thus stays close to unity. || opTICAL MODEL CALCULATIONS OF Py AND P:
This indicates that in that region, the main cause of absorp-

tion in the elastic channel is DR processes. WHdiecomes A. Derivation of theoretical expressions

still smaller, the sumPg+ Py falls off rapidly from unity, for Pp and P

showing that absorption due to more complicated processes |n this section, we try to derive theoretical expressions for
eventually leading to fusion takes place. It is remarkable thapD and Pr within the framework of the optical model. We
the sumPe+Pp becomes extremely small, say, T0and  follow the approach proposed some time ago to calculate the
thus essentially zero, at aroude-d.=1.30 fm, which cor-  total DR and fusion cross sections within the optical model
responds to t_he radial dlstancg fqr tlsaNave_ Coulomb- by using imaginary, surface-type DR and volume-type fu-
barrier top. This means that the incident flux is almost coms;jon, potentialsyp(r) andWg(r), respectively[5—7]. The

pletely absorbed when it reaches that distance. It is worthotal DR and fusion cross sections are then calculated as
noting that the same picture holds irrespective of the mmder{[g,lo]

energy, so long as it is not far away from the Coulomb-
barrier energy.

Theoretically, we have a very well established optical
model for evaluatind®c . This is not the case fdP, . There
is a variety of theoretical methods proposed for calculatingyhere () is the usual distorted wave function that satisfies
contributions from inelastic scattering and transfer reactioqhe Schrdinger equation with the full optical model poten-
processes t.@D by means of either s_emiclassical or classicalijg) U(r). op, and o are thus calculated within the same
approximationg 1]. It is, however, still a formidable task to amework as the differential elastic scattering cross section,
carry out calculations including all possible processes to OdeE/dQ, is calculated. Such a unified description enables us

tain a theoretical value dPp . The aim of the present work ¢, describe all different types of reactions on the same foot-
is to propose a simple approach to calculggg within the 4.

framework of an optical model that introduces two types of “The pasic ingredients for obtaining theoretical expressions
the imaginary potentials; one for DR, the_ other fusﬁﬁn?]. for P, and P¢ are the partial wave cross sections,

We propose to evaluatep from the partial absorptive DR j—p or F), which are obtained by simply expanding the

cross sections generated from the optical model calculationy qss sections Eq5), into the partial wave components:
The underlying assumption is that even after the reactior)r:EIU, o ,’can e;<plicitly be given afo] ’
il i;

(removal from the elastic channethe projectile ion still '
moves along the Coulomb trajectory, being eventually emit-
ted at the Coulomb S(_:attering _angle. Under the assumption, (,H:Im +1)T,, (i=D or F), (6)
we may use the classical relation Eg) to convert the par- TK2 ’
tial wave cross section tBp .
The conventional wisdom assumey that where

_ 2 WY (=D or F 5
Ui_%O( IWi(r)[x*™) (i=D or F), 5

Pe+Pp+Pe~1, 4 8 (=

Ti;lzﬂj [xi(D)]?W,(r)dr. (7)

which expresses a simple physical idea that what is absorbed 0

in the elastic channel at=D goes into either DR or fusion ) ) ) ]

channels. Since there is no measured angular distributioff the above equationy,(r) is the partial distorted wave

available for the fusion probabilitPe , it has been impos- function andv is the relative velocity. _

sible to test the above relation experimentally. However, it is Equation(6) with Eq. (7) is still a quantum-mechanical

possible to examine it by using the theoretiBal, which we ~ €XPression, wheré takes only integer values. In what fol-

may generate from the partial wave fusion cross section a@WS, We introduce a few semiclassical approximations cus-

we calculateP,, described above. tomarlly used1,2,11,12. The first is to treat as a continu-
In the present work, theoretical expressions Ry and ~ ©US variable and to assume that

P are derived in Sec. Il, where we also perform numerical

calculations ofPp and Pr along with Pg and examine the doi(l) _ ®)

validity of the relation Eq(4). The feasibility of evaluating dl it -
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We then use the classical relation E8). that related to 6. It do _
is then straightforward to get O'C:Z Oc|= J Wdl with
do(l) 1 dldoj(l) kDg 1
dQ  2msingdd dl 16w : it do - .
cog 6/2)sir’(6/2) © g~ e g (2= 52, (15

Inserting further Eq(6) into Eq.(9), and dividing the result- ) ) o i
ant expression by the Rutherford cross sectiqn one fi- ~ BY inserting the last expression in EQ5) into Eq.(9), we
nally obtains obtain the Rutherford differential cross section.

It appears that the procedure used for reducing the

2| + quantum-mechanical Rutherford cross section to the classical
Pi=1p tan2)Ti~T;,. (100 one involves a contradictory element; we first integrate the
0 differential cross section over angle, but then recover it from

the partial wave cross sections we obtained as a result of the
angle integration. However, the procedure can be justified.

The quantum-mechanical cross section @4) is given as a

coherent sum ovdr As has been demonstrated in a number

We used the approximation 2 1~2I to obtain the last ex-
pression.
In order thatP; can be a probability, it should satisfy

P.<1. (11)  of semiclassical treatments of Ed4) [11,12, the dominant
contribution to the differential cross section for a given scat-
This requirement is indeed satisfied; in fact we have tering angled comes from the partial waves arouhe |,
wherel , is related tod by Eq.(3). The contribution becomes
Po+Pe=Tp,+ T =T i=1-S/%, (12)  S-function-like in the classical limit o —0. In the present

procedure, we carry out an integration ovefirst, but from
whereT, is the transmission factor arg] is the partial wave what has been discussed above, it is seen that the contribu-
S matrix. Since bottPp and Pg are positive quantities, it is tion from the angled is stored into the partial wave cross
clear from the above relation th&j, and Pg should be less section ofl =1 ,. It is thus justifiable to recover the differen-
than unity.(Note that there is no reason thag should be tial cross section at an angkefrom the partial wave cross
smaller than unity. Quantum effects such as interference arskection forl=1,. This procedure is most justified when the
diffraction, may cause the value to be greater than ynity.scattering is closest to classical one.
Now, for very smalll values, we expect th&p— 0, hence

PF~1—|S||2—>1 for small |. (13) B. Numerical Examples
Calculations ofPg, Pp, and Pg are performed for the
The last relation follows from the fact that for such a strong 160+ 29%pph system with incident enerdsj,,.=90 MeV, us-
absorptive case as in heavy ion collisioBspecomes essen- ing the optical model potential as fixed in our previous study
tially zero for smalll. Since Pg+Pp—0 for smalll, Pe  [7]. We present the results in Fig. 2, where the salibick
+Pp+ Pr—1 as expected earlier in EG). In the Sec. 1B and thin dotted, andthick and thin dashed curves are the
we further study this point numerically. calculated values oPg, Py and Pg, respectively. The ex-

In passing, we remark that the procedure we have properimental data foPg and Py are also plotted as the solid
posed can also be used to reduce the quantum-mechaniegid open circles, respectively. As seen, the calculfed
Rutherford cross section to the classical one. As is welkeproduces the experiment®L very well. This is not the
known, this reduction has been given by using a set of semicase, however, foPp ; the calculatedPp, is shifted to the
classical approximationgl1,12. The quantum-mechanical smallerd region by about 0.05 fm as compared to the experi-
Rutherford cross section has the well-known form mental data, particularly in the region d&1.6 fm. Thus,
the comparison of the calculatd?}, with the data provides
an additional test of the parameters used in R&f.In fact,
this shift means the radius parametgr=1.50 fm used in
Ref.[7] is too small to describe the data. We thus repeated
where 5, is the Coulomb phase shift arR] is the Legendre the calculation with a larger radius parameter ©f
function. One of the approximations introduced in the reduc=1.55 fm. The calculate®p thus obtained is plotted as the
tion process is to ignore the term(1/2ik)X,(21+1)P,(#).  thin dotted curve shown in Fig. 2. The fit to the data is
This term gives rise to a divergent contribution at extremelyimproved. It is worth noting that the recalculat®g, shifts
forward angles and we ignore it as is usually désee Refs. toward the larged region by 0.05 fm, the same amount as
[11,17)). We then integrate Eq14) over angles to obtain the the increase of the radius paramatgr. This shows that the
total elastic cross section expressed as a sum of the partiekperimentalPy provides a very sensitive test of thrg
cross sections, which is in turn converted to an integral ovevalue. Based on the result obtained above, we use the value
|. The resultant total elastic scattering cross section takes @,=1.55 fm in they? analysis discussed in the following
very simple form, namely, section.

do. | 1 - ’
d((r): mZ (2+1)(e?n-1)P(6) , (14
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. . . . FIG. 3. Results of calculations for elastic probabilites as a
FIG. 2. Optical model predictions of elastic, DR, and fusion function of the reduced distanae for the %0+2%8Ph system at

i ; ; 16,
prgobabllltles as a function of the reduced. dIStaIUb&?I’ the . O E,.o=80, 84, 90, 96, and 102 MeV, using the final fully dispersive
+20%pp system aE,,,=90 MeV are shown in comparison with the optical potential

experimental ones. The theoretical total probabilities are also

shown. The thick dotted curve denoteg calculated with the dis- . . .

persive optical potential determined i§n RéET]. The thin dotted is that th.e fusion data have_ been revis8yl after Ref.[7]

curve represent®y calculated with the same potential but with was puk?llshed. T.he second is that we are now'able.to test the

modifiedr (=1.55 fm). The thick(thin) dashed curve denoté% Calcula_tlons agf';\lnst the data fétp. As de_scrlbed in the

calculated withaz=0.25 fm (ar=0.45 fm). preceding secthn, the yalue of the rad|u§ parameter
=1.50 fm used in Ref.7] is too small to explain the data. A

betterr value isrp=1.55 fm. Other parameters must be

fixed with this more appropriate value of . As in Ref.[7],

we utilize a dispersive-type optical potentjai3]

In the calculation o shown in Fig. 2y =1.40 fm has
been used. Thus theg curve lies in much smalled region
than thePp. We also observe that the slope B is much
steeper than that dPp. This reflects the fact that the dif- U=Uc(r)—[Vo(r)+V(r;E)+iW(r;E)], (16)
fuseness parameter used fg(r;E) (ag=0.25 fm) is
smaller than that oWp(r;E) (ap=0.45 fm). To show the where Uc(r) is the Coulomb potential an¥q(r) is the
effects of thear value, we present as the thin dashed curveenergy-independent Hartree-Fock part of the potential, while
anotherPg calculated withap=0.45 fm. It is seen that the V(r;E)+iW(r;E) is the polarization part of the potential
slope of P at large distances is almost the same as that of14,15 that originates from couplings to reaction channels.
Pp with ap=0.45 fm. They are assumed to have volume-type fusion and surface-

Let us now turn to the surPg+Pp+ P shown by the  derivative-type DR parts. ExplicitlyVo(r), V(r;E) and
dash-dotted curve. As expected, it stays very close to unityy(r;E) are given, respectively, by
confirming that the relation Eq4) is fairly well satisfied,

within the accuracy of, say, 20%. The sum shows some os- Vo(r)=Vof(Xp), (17

cillations around unity, which may be ascribed to quantum

interference effects. The oscillation is also visible in the ex- V(r;E)=Vg(r;E)+Vp(r;E)

perimentalPg values. Accumulation of more accurate data df(Xy)

may enable us to test this explanation in a more detailed — D

maxner. P =Ve(E)f(Xp) +4Vp(E)ap dR, (18)
The Pg values calculated for the incident energies consid-

ered in Fig. 1 are presented in Fig. 3. The optical potential W(r;E)=WEg(r;E)+Wp(r;E)

determined from the:? analysis discussed in the following df(Xo)

section has been used. Since we use such a potential as de- :WF(E)f(XF)+4WD(E)aD—Da (19)

termined from they? fit, the calculatedP fit the data given dRp

in Fig. 1 very well and thus they form a band very much

similar to that seen in Fig. 1. where f(X;)=[1+exp(X)]"" with X;=(r—R)/a (i

=0, D or F) is the usual Woods-Saxon function. Use is
made of the values used in RgT] for the parameters of the
bare potentialVy(r), and the geometrical parameters of
We have repeated simultaneoysanalyses as in Ref7]  V(r;E) and W(r;E) (exceptrp as discussed aboneV,
for the elastic scattering, DR, and fusion data for %@  =60.4 MeV,r,=1.176 fm,a,=0.658 fm,rg=1.40 fm,
+2%pp system. This is motivated for two reasons: The firsiag=0.25 fm, rp=1.55 fm, andap=0.45 fm. Once the

ll. x?> ANALYSES
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FIG. 4. The Stelson plot 0§ = VE_o; for direct reaction i E_ (MeV)

=D, solid circles and fusion {=F, open circles cross sections. Iab

The sFraight I_ine§ are drawn tp show the extraction of the th_reshold FIG. 5. Strength parameteké,(E) and W (E) for the direct
energies. Thin lines connecting the circles are only to guide theaction potential as functions & The open and solid circles are
eyes. the values extracted from the? analyses. The solid lines denote
Wp(E) andVp(E) calculated, respectively, from E2) and from
geometrical parameters are fixed, the dispersion relation igq. (20) together with Eq(22). The thin lines connecting the circles
reduced to a relation for the strength parametéf&€) and  are only to guide the eyes.
W;(E) (i=D andF). The relation now readsl3]
In an attempt to determine the polarization potential, si-
E-Es [~ W, (E") multaneousy? analyses were performed, treating all four
PJ — ; ) strength parameteidy, Ve, Wp, andWe as the adjustable
(E'—E9)(E'—E) (20) parameters. We took into account all the d&af] available
for incident energies betwedf),,=80 MeV and 104 MeV.
where P stands for the principal value andi(E.) is the \;\rlillglscell;fjed the total DR and fusion cross sections in the
potential value ata reference energy pdfn:t: Es. The values of the parameters thus extracted are presented
As was dong in Refl7], we approximate th& dePe”‘ in Fig. 5 forVp andWp and in Fig. 6 forVg andW. Let us
dence ofW;(E) just above the threshold enerBy; [defined ., Giqer first the results fov, and Wp. A considerable
asW;(Eq) =0] by a linear function of. [See the forthcom- g 1/12tion is seen in the values df, . but W changes
ing Egs.(22) and(23).] We then identify this threshold en- smoothly as a function dt. The fact tr?éw couEI)d be fixed
ergy as that determined from the linear representation of thgS a smooth function OE' indicates thatDthese values are

quantity S(E) introduced by Stelsort al. [16] as reliable. There is a reason thaf; can be determined rather
) unambiguously and becomes a smooth functiorEoft is
S=VEaGi(E)<(E-Ep;) (i=D or F).  (21)  pecausew, is the dominant absorptive term in the periph-
eral region. Therefore, the elastic scattering cross section is
The threshold energiey; thus defined are essentially the quite sensitive to the value &/ . This is not the case for
threshold energies of the DR« D) and fusion {(=F) cross v ; at the strong absorption radius, where the elastic scat-
sections, and it is plausible to identify the two threshold eNtering cross section is sensitive to the real potenWg,is
ergies to be the same. The authors of IRE6] considered the generally much smaller than the bare poteritig(r), result-
quantity S only for thei=F case, but we extend it to DR. ing in some difficulty in determininyy unambiguously. The
Originally, two threshold phenomena in the imaginary part offluctuation seen in Fig.(8) may be understood to arise from
the optical potential and the fusion cross section data werghis difficulty.
found independently, but it was noticed Ia[dr?] that the The Wp values determined from th/ez ana|yses can be
two are very close to one another. Once we have separatggk|| represented by the following function & (in units of
the imaginary potential into the DR and fusion parts, it ispmeV):
physically plausible to require that the two thresholds should
be the same. In Fig. 4, we present Bevalues fori=D and 0 forE<73.0
F. There we find that Eq.p=73.0 MeV and Eg.p
=76.0 MeV, which will be used later as the threshold ener- Wp(E)=1 0.015E-73.0 for73.0<E<92.5 (22
gies of Wp(E) andWg(E), respectively. 0.2925 forE> 92.5,

Vi(E)=Vi(Eo) +
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E_ (MeV)

lab

FIG. 6. Strength parameteks(E) and W(E) for the fusion

potential as functions dt. The open and solid circles are the values

extracted from thee? analyses. The solid lines dendté-(E) and
Ve(E) calculated, respectively, with Eq&23) and (20). The thin
lines are to guide the eyes.
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FIG. 7. Ratios of the elastic scattering cross sections to Ruther-
ford cross sections calculated with our final optical potential for the
160-+2%8pp system are shown in comparison with the experimental

whereEyp=73.0 MeV is used as extracted in Fig. 4. The jo1a The data are taken from RT3, 4].

solid line shown in Fig. ) is Wy given by Eq.(22). The
line fits the empirical values quite well.

Since a reliable value ofV, is now available, one can
calculateVp by using the dispersion relation E¢RO). In

Figs. 7 and 8 in comparison with the experimental data. As
seen, all experiment&®:, op, andog are well reproduced
by the calculations.

doing this, we need to know one more parameter, i.e., the” we now wish to make some remarks on the polarization

value ofVp atE=E4. We may fix thisVp(E,) by fitting the
average of the resultaMy to that of the empirically deter-
minedVp . The solid curve shown in Fig.(8 shows theVp
values thus calculated. Thép(Es) value used isVp(Eg)
=0.4 MeV atEg=92.5 MeV.

As seen in Fig. 6V and Wr are both determined as
fairly smooth functions oE. The W values may be repre-
sented(in units of MeV) as

0 forE<76.0
0.32E—76.0 for 76.0<E=<86.0 (23
3.2 forE> 86.0.

We(E)=

Again we took the threshold energy Bf..=76.0 MeV de-
termined fromSg. The solid line shown in Fig. ®) repre-
sentsWe in Eq. (23). We then calculated thé:(E) by using
the dispersion relation Eq20) with W given by Eq.(23).
The reference potentia¥/(Es) involved was chosen as
Ve(Eg)=3.50 MeV atE;=86.0 MeV. As shown by the
solid curve in Fig. 6a), the predicted/r values again agree
reasonably well with the empirically determined values.
We take as our final potential parametét, and Wg
given, respectively, by Eq$22) and (23), and alsoVy and
Ve generated from the dispersion relation E20). The po-

potential we have obtained. First, there is a remarkable dif-
ference in the the energy dependences between the DR and
fusion potentials. A very rapid change is seen only in the
fusion part of the potential. The slope\&f-(E) given by Eq.

(23) in the threshold region is 0.32, while that Wy (E)

given by Eq.(22) is only 0.015. As a result, we see a signifi-
cant energy variation of about 2 MeV W (E) in the inter-

1000 T . T . T
2 100}
£ 3
(o)
—&— Fusion
10 L n 1 " 1
80 90 100
E_ (MeV)

lab

FIG. 8. Direct reaction and fusion cross sections calculated with

tential with such parameters then fully satisfies the disperour final optical potential for thé%0+2°%Pb system are shown in
sion relation. Using such an optical potential, we calculatedomparison with the experimental data. The direct reaction data are

the final theoreticaPg, op, andog and presented them in

taken from Refs[3,4], while the fusion ones are from RéB].
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val of ~10 MeV, but the change iNp is only 0.1 MeV in  inclusive DR cross section, demonstrating that the data pro-
the energy range of 20 MeV. We may thus conclude that Vvide some useful information for determining the radius pa-
the threshold anomaly exists in the fusion part of the potenrameters of the DR potential. It was observed that a very

tial, but not in the DR part. rapid energy variatioifthreshold anomajywas in the fusion
part of the potential, but it is hardly seen in the DR part,
IV. CONCLUDING REMARKS particularly in the real part of the potential.

) Simultaneousy? analyses of elastic scattering, DR and

We haVe presented a Slmp|e method to Calculate the D%Sion Cross Sections for thé60+208Pb System at near-
and fusion probabilities within the optical model by intro- parrier energies were performed for determining the polar-
ducing two types of imaginary potentials, DR and fusion.jzation part of the optical potential that satisfies the disper-

These probabilities are calculated by using the partial DRsjon relation over all space. The potential thus determined is
and fusion cross sections generated from the correspondifgund to reproduce the data well.

imaginary potentials with the help of the classical relation
between the orbital angular momenturmand the scattering
angle#. The probabilities thus calculated were shown to sat-
isfy the condition that the value should be equal to or less
than unity. The authors wish to express their sincere thanks to Pro-
Based on the expressions derived, numerical calculationfessor W. R. Coker for his kind reading of the manuscript
of these probability were performed. We found that the sumand comments. One of the authdB.T.K.) acknowledges
of the DR, fusion and elastic probabilities stays close tathe support by Korea Research FoundatiGnant No. KRF-
unity. We also analyzed the angular distribution data of the2000-DP008h

ACKNOWLEDGMENTS

[1] R. BassNuclear Reactions with Heavy loiSpringer-Verlag, Udagawa, B. T. Kim, and T. Tamur#id. 32, 124(1985.
New York, 1980. [10] M. S. Hussein, Phys. Rev. 80, 1962(1984.

[2] G. R. Satchlerintroduction to Nuclear Reactior$Viley, New  [11] N. F. Mott and H. S. W. Massefthe Theory of Atomic Colli-
York, 1980, p. 41. sions(Oxford University Press, Oxford, 1985p. 97—102.

[3] F. Videbaeket al, Phys. Rev. C15, 954 (1977). [12] K. W. Ford and J. A. Wheeler, Ann. Phyg, 287 (1959.

[4] E. Vulgaris, L. Grodzins, S. G. Steadman, and R. Ledoux,[13] C. C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Ph449,
Phys. Rev. G33, 2017(1986. 354 (1986; A456, 134 (1986; M. A. Nagarajan, C. C. Ma-

(5] SV\( HOQ;‘Q’ T. Udagawa, and T. Tamura, Nucl. Ph§&91, haux, and G. R. Satchler, Phys. Rev. L&#, 1136(1985.
492 (1989.

[14] W. G. Love, T. Terasawa, and G. R. Satchler, Nucl. Phys.

[6] ;I'l.9U8c$agawa, T. Tamura, and B. T. Kim, Phys. Re\3€, 1840 A291, 183 (1977.
[71B. T kim M. Naito. and T. Udagawa. Phvs. Lett. 287 19 [15] G. R. Satchler, M. A. Nagarajan, J. S. Lilley, and I. J. Thomp-
(1'99'0 T ' ' 9 RLAS e son, Ann. Phys(N.Y.) 178 110(198%.

[8] C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde, J. O. [16] P. H. Stelson, Phys. Lett. B05 190(1988; P. H. Stelson, H.

Newton, K. Hagino, and I. J. Thompson, Phys. Rev6@ J. Kim, and M. Beckerman, Phys. Rev.tﬂ, 1584(1990.
044608(1999. [17] T. Udagawa, M. Naito, and B. T. Kim, Phys. Rev.45, 876

[9] T. Udagawa and T. Tamura, Phys. Rev2@ 1922 (1984 T. (1992.

044607-7



