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Liquid drop model and quantum pressure resisting noncompact nuclear geometries
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The importance of quantum effects for exotic nuclear shapes is discussed. Based on an example of a sheet
of nuclear matter of infinite lateral dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the conjugate geometrical space,
generates a pressure resisting such a confinement and, consequently, restoring forces driving the systems
toward compact geometries. In the liquid-drop model, these quantum effects are implicitly included in the
surface energy term, via a choice of interaction parameters, an approximation that has been found valid for
compact shapes, but has not yet been scrutinized for exotic shapes.
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In recent years, noncompact nuclear geometries obnic momentum distribution that is changing rapidly with the
bubbles, tori, and sheets have attracted considerable interesgiatial coordinate perpendicular to the surface. Cmijk
[1-8] in the context of nuclear multifragmentation studies. matter is the subject of the present study.

According to the scenarios considerd@-8] it has been The energy per nucleon dfulk matter can be calculated
suggested that nuclear systems may assume transiently e¥sing a formalism similar to that suggested by Seyler and
otic shapes, and then undergo a characteristic multifragmeflanchard 9] and employed successfully in the development
decay. One of the prominent cases of noncompact geometri€$ the droplet mode[10-12. This formalism, based on the

is that of an infinite sheet. This case affords a high degree ofhomas-Fermi approximation, was modified here to account
computational simplicity in theoretical modeling attemptsapproximately for effects of a quantization of the nucleonic
and still shows enough features common to many exotic gghlomentum componer, perpendicular to the-y surface
ometries to serve as a test ground for the validity of cruciaPlane of the sheet. This quantization is a necessary conse-
concepts. As an example, it has been claif&d] that suf- ~ quence of the spatial confinement of the nucleonic motion by
ficiently thin sheets of nuclear matter, formed dynamicallythe geometry of a sheet of a finite thicknesss discussed
during a heavy-ion collision, are subject to a new form offurther below, it is necessary to distinguish between the
instability driven by the proximity interaction of the oppos- model thicknessd, used here to construct the momentum
ing surfaces. More recently, the concept of this sheet instedistribution of nucleons, and the physicalatter thickness
bility has been appliefB] to assess the stability of Coulomb drm describing the profile of the corresponding spatial distri-
bubbles, in general, and againstaspation modein par-  bution of nuclear matter. The former quantiyrepresents
ticular. In both these latter casd8,4,8), the analysis relies the width of an idealizedsquarge confining potential well
critically on the liquid-drop modelLDM). However, the as- With infinitely high walls and defines the finite elementary
sumptions of the LDM and, in particular, the various pro-quantum of the perpendicular momentum compormgnt
posed sets of model parametégs-12] were shown to be

valid only for regular nuclear geometries but not for exotic Ap :i (1)
ones. Similarly, Boltzmann-Uehling-Uhlenba¢RUU) [13] zo2d’

or Landau-Vlasov methodd44], used[2,5-7] in most theo-

retical discussions of noncompact geometries, are not de- As a result of the above quantization @f, single-
signed to handle quantum effects resulting from strong spaaucleon states fobulk sheet matter populate discrete, infi-
tial constraints associated with such geometries. nitely thin sheets in nucleonic momentum space, located at

Below, the importance of quantum effects for the proper-discrete values of the perpendicular momentum component,
ties of nuclear matter in noncompact spatial shapes is denp,=KAp,, wherek is any nonzero integer. This type of
onstrated for the case of an infinite sheet. The scope of thigopulation is in a clear contrast to the uniform population of
study is limited to the calculation of the volume energy ofthe Fermi sphere that is usually assumed in Thomas-Fermi
symmetric nuclear matter. It is clear, however, that the surcalculationd9-12] modeling nuclear matter. An example of
face energy would also be affected by quantum phenomerguich discrete population of a Fermi sphéf®) of a radius
of the type considered. Therefore, the surface energy needsjual to the Fermi momentupy: is depicted in Fig. 1. Note
to be calculated accordingly, before realistic model predicthat there is no sheet witk=0, leaving a relatively large
tions can be made for the geometries of interest. Also, for thgap between the shegis=+ Ap, andp,=—Ap,. Itis this
sake of simplicity, the Coulomb energy is disregarded in thegap that accounts for most of the quantum effects discussed
present study. Central to the approach used in this work is thieelow.
notion of bulk matter as opposed teurface matter. The The quantization of the perpendicular component of the
former is characterized by spatial uniformity in the control-momentum can be be described by introducing a population
ling parameters and, most notably, in the nucleonic momenfunction f(p,z), defined as the density of nucleonic states in
tum distribution, while the latter is characterized by a nucle-momentum space per unit nuclear volume,
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all quantities in Eqs(2)—(6) arez independent, in agreement
with the definition of thebulk matter.

The nucleon-nucleon interaction was assumed to be mo-
mentum dependent and given by the Seyler-Blanchéid
formula

e—r/a

(r/a)

V(r,p)=—-C

2
) Y

whereC represents the strength of the interaction, the param-
eter a represents the range of the Yukawa force, ande-
notes a critical value of the relative momentum, beyond
which the force becomes repulsive. The quantitieend p
are the distance between the nucleons and their relative mo-
mentum, respectively. Values of the parameters of the inter-
FIG. 1. Population of nucleonic momentum spacelolk mat- action were taken to be equal [40] C:32$'§1 MeV, a
ter of an idealized sheet, infinite iry dimensions. The axis is = 0-62567 fm, and=392.48 MeVk. For infinite symmet-
perpendicular to the surface of the sheet. ric nuclear mattef10], these values assure a volume energy
per nucleon ofe,= —15.677 MeV and a kinetic Fermi en-
4Ap, , ergy of 33.138 MeV. o o
f(p,2)= ?Eleé(pzt VK2Aps—S(2)). (2 A stra|g.htforward analyncal integration in Eq&), (5),
and(6), using Eq(7), yields for thebulk matter(the z argu-
4 ment is left out for the sake of brevity

Here §() denotes the Dirac delta function, the factor
represents the spin-isospin degeneracy, and the fungfin 8 1 1 1
describes the d(_epen_dence of the mome_ntum-independent P= 17 pzppﬁ—§pgp— EApngF — g(Apz)zsz, )
part of the effective single-nucleon potential

Ap? p
S(z)=mod U(2)~U(0), 5=/, ) U(p)=Vo+ Vi, 9

where M denotes the average nucleon méksken asM and
=938.903 MeVt?). The origin of thez coordinate is set
half way between the sheet surfaces. A boldface font is used
in Eq. (2) and throughout this paper to denote a vector quan-
tity.

For the nuclear matter densify(z), the single-particle Here,
potential U(p,z), and the energy per nucleo,(z), one
writes then in a close analogy to Ref8—12]

1 M
€Ey= — §V1+ GTM—H. (10)
e

2a 1 1 1
GTZW szpé_gng_ EApzp‘le - §(Ap2)2p§F

p(Z)=J dpf(p.2), (4) 1
FS(2) + %(Apz)‘lsz (11
U(p’z):f dr’f dp'f(p’.2)V(r—r'l,lp—p’]), is the average kinetic energy of a nucleon and
FS(2)

® Mesi=M b—2 12

and eff™ b2+ 2MV1 ( )
1 2 is the effective mass summarizing effects of the interaction

ey(2)= — dpf(p,2) p_+ ~U(p,2)|, (6 component quadratic in nucleonic momentum The
P(2) JFs() 2M 2 strengths of the momentum-dependent and momentum-

independent components of the effective single-nucleon po-

respectively. In the above equationg(r,p) denotes the ianiial respectively, are given by

nucleon-nucleon interaction, anr and [gg,dp denote

integration over theinfinite) nuclear volume and over the V,=4n7Ca’p (13
Fermi sphere of a radiys:(z) in momentum space, respec-

tively. Assuming that the range of the nucleon-nucleon interand

action is small compared to the linear dimensions oftthik

domain, the spatial integration in E¢p) is effectively lim- Ve —v.l1 2M

. . . . o~ — Vi1 - _2_61' . (14)
ited to this domain. Then, for thaulk matter of interest here, b
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FIG. 3. The relationship between thmodel and the matter
thickness of a sheet of nuclear matter.
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MeV, lengths in units of femtometer, and masses in units of

; MeV/c?. Accordingly, the Planck constant is in units of MeV
0.15

& - fm/c, h=1239.86 MeV fm¢.
E 0.10 Results of the calculations are summarized in Fig. 2,
: 0.05 : where values of selected parameters characterizing properties

of the bulk sheet matter are plotted vs theatter thickness
d,, of the sheet. The latter quantity was evaluated for any

T _225 given modelthicknessd based on the idealized matter den-
2 s sity profile y(z) along the direction perpendicular to the
> —100 £ : sheet surface. The procedure of evaluatipgs illustrated in
—12i‘>0'5' 10'1 : 10'2 : 10'3 ‘ ““1';-4 Fig. 3. The density profile of interest was generated by
(weighted summing of the sifi2m(z—d/2)p,/h] functions
Sheet thickness d (fm) for the actual distribution op, . The quantityd,,, was defined

FIG. 2. From tob to bottom: vol | via the requirement that the density(d,,/2) be equal to
2. <. FTom Top 10 bottom. volume energy per NUCIEoN, ComM-,pq_naif of the bulk density, , where the latter was defined

pressibility coefficient, reduced mass, nucleon kinetic Fermi energy, . “ I ’ . .

; ) -~ “Via the “outermost”(i.e., highest inz<d/2) solution of the

matter density, and strength of the momentum-independent single- i

particle potential, as functions of the sheet thickneigs The solid equation

curves are obtained with the Seyler-Blanchérgf. [8]) nucleon- .

nucleon interaction parametrization with values of the parameters as f W2)dz=Zy(Z)=Zy (16)

indicated in the legend. Results obtained with the parametrization of 0 b

the interaction as proposed in REE1] are shown with dotted lines.
_ _ . The difference between thmodeland matterthicknesses
The quantityp, in Egs.(8) and (11) denotes the maxi- calculated in the above manner dependsdofit increases
mum value of the perpendicular momentymallowed for a  Jinearly from 0 to its maximum value of approximately 2.8

given Fermi momentunpg fm, with d increasing from 0 to 5.6 fm. Fa>5.6 fm, this
difference decreases quasihyperbolically with thickness,
Pzr=Pr—mod pg,Ap,). (15  reaching saturation at approximately 2 fm ¥ 20 fm.

The main result of the present study is displayed in the

Note that the corresponding equations for infinite nucleatop panel of Fig. 2. As seen in this panel, the maximum
matter, characterized by a uniform population functionpossible binding energy per nucleon decreases dramatically
f(p,z)=4/h3, can be readily obtained from the above Egs.as the thickness,, of the sheet decreases. This energy be-
(8)—(13) by settingp,=pg, While dropping all terms con- comes negative, i.eg, becomes positive and the system
taining powers ofAp,. becomes unbound for thicknesses of abay#=2.8 fm and

The quantity of interest in the present study is the mini-below (d<5.6 fm). This effect of an increase in energy per
mum value of the energy per nucleosy, for bulk nuclear  nucleon with decreasing thickness of the sheet results purely
matter confined to the geometry of a sheet of finite thicknessrom the quantization of the perpendicular compongnof
This value can be obtained by varying the input value of thehe momentunisee Eq(2)].
Fermi momentumpg in a search routine minimizing, . This feature is only approximately accounted for by the
Note that a calculation oé, for given pr andd entails the standard droplet-model formula relying on a uniform,
use of Egs.(1), (15), (8), (13), (11), (12), and (10) in an  Thomas-Fermi population of the Fermi sphere in momentum
ordered sequence. Note also that in the above equations, mgpace. The latter model “adjusts” the parameters of the ef-
menta are expressed in units of MeyVénergies in units of fective nucleon-nucleon interaction to have the average shell

044319-3



J. TOKE AND W. U. SCHRODER PHYSICAL REVIEW C65 044319

effects included in the surface energy term. The model relies The remaining four panels of Fig. 2, shown mostly for the
here on the fact that for compact shagesy., of a square sake of completeness, illustrate effects of a quantization of
box) the integratedover the nuclear volumeshell effect is  the perpendicular momentum, on selected properties of
to a good approximation proportional to the surface area. Theuclear matter at the stationary density minimizing the en-
latter proportionality is due to the fact that the average shel€rgy per nucleon obulk matter. Sharp dips and peaks in the
correction to the volume energy arising from a ConfinemenfeSPeCFive functions resu_lt from the dlSCOﬂtanltleS in first
in any particular direction is inversely proportional to the derivatives of the underlyln_g momentum distribution at val-
confinement widthhere, thickness of the shén this di-  ues of momenta that are integer multiples of the the el-
rection. When multiplied by volume, this correction becomesEMentary quantump,. One notes, that the new parametri-

proportional to the associated surface area. Adding the cofalion[11,12 results in asymptotic values of the parameters
rections for confinements in all three directioxsy, andz that are different from those obtained using the “old0]

results, thus, in an overall quantum correction term proporP@rametrization, in agreement with those reported in Ref.
tional to the total surface area. [12] In particular, the values of effective masses obtained

The large magnitude of the volume shell effect raises thé’vIth the new parametrization appear much more realistic.

whether it is, thereforg, applicable at all to nuclear matter injsiance of the nuclear systems against the development of
noncompact geometries. The present paper does not ansWgdncompact geometries and to generate forces driving these
this question fully. At any rate, thiguantumeffect is largely  systems toward compact shapes. The large magnitude of the
responsible for the resistance of nuclear matter against thgffects discussed above allows one to question the validity of
development of noncompact geometries associated with exhe approximation made in the standard liquid-drop model in
otic spatial confinements of nucleonic motion, in addition tocases of extreme noncompact geometries, sometimes consid-
that generated by a “true” surface tension. It gives rise toered in the literature. It allows one also to question the va-
strong effective forces, akin to repulsive diabatic forEs, lidity of BUU type of computations in cases where noncom-
driving the nuclear system away from a formation of non-pact geometries are involved. One notes in this latter respect
compact shapes attained dynamically in nuclear reactions. that, similarly to the Thomas-Fermi method discussed in this
From the top panel of Fig. 2, one notes that the value oftudy, the BUU equations do not consider effects of spatial
the energy per nucleon for thmilk sheet matter differs sig- confinement on the spectrum of allowed states in momentum
nificantly from the asymptotic value of,..=—15.7 Mev  SPpace. While itis not clear, to what extent semiclassical mod-
already for sheet thicknessdg comparable in magnitude to els such as the modified Thomas-Fermi approach followed in
nuclear diameters. This indicates that the parameters of tH3€ Present work, can capture the essential features of
Seyler-Blanchard interactiof9,10] are not well suited for strongly quantized systems, more accurate calculations, in-

absolute, more accurate calculations of the type reported i luding surface and Coulomb energies, as well as effects of a

the present work. The same is true with respect to any p lngﬁonnuC(liatrhteer?nr:elriigjtirgnze%T t(:l’zs';i?w?jli% étmgggi?l "*:r\:gs-
rametrization that is set up to describe average trends i J P . 9
rnasent work for several issues, appear clearly warranted.

nuclear masses and, hence, accounts for the average s . ; T
roblems of high relevance to current reaction studies in-

effects due to a particular shape of a sphere, but not thos . -
associated with arbitrary shapes. Sude guestions to the validity of BUU and other types of

For comparison in Fig. 2, results obtained with a recentlycalculatlons, as well as issues associated with the magnitude

proposed 11,12 parametrization of the nucleon-nucleon in- Ol;rr]ee?ellllst:ngrr(])gtl%tr-]rlnOf((;lflthpearsan;;%ecrscggg gggleﬁérirggtteébﬁ_
teraction are shown as dotted lines. This new parametrizatiogtries of' real nuclei )Iéor exam IOIe of reIevanceF;n this cgntext
adds two terms to the Seyler-Blanchard form—an attractive . Pe,

interaction inversely proportional to the relative momentum,are issues concerning the relative stability of the neck matter

and a repulsive component proportional to the two-thirgd>etWeen the interacting nuclei and the decay modes of

power of the nuclear matter density. The integrals involvingn'“'CIear matter. This problern IS espeC|aI_Iy Interesting fqr an
the former term were evaluated numerically. It is clear fromunderstandlng of the dynamical production of intermediate-

the top panel of Fig. 2 that, although the quantum effec{"asS fragment§16] in heavy-ion reactions.

discussed above depends on the nucleon-nucleon interaction, llluminating discussions with Dr. W. J. Swiatecki are
it is strong for eithef10—12 parametrization. The large in- gratefully acknowledged. This work was supported by
crease ofey, with decreasing sheet thickness suggests a@he U.S. Department of Energy Grant No. DE-FGO02-
strong resistance of nuclear matter against such deformatioB8ER40414.
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