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Revisiting the Hugenholtz-Van Hove theorem in nuclear matter
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An assessment of the magnitude of the rearrangement contribution to the Fermi energy and to the binding
energy per particle is carried out in symmetric nuclear matter by extendinG-matrix framework. The
restoration of the thermodynamic consistency or, equivalently, the fulfilment of the Hugenholtz—Van Hove
theorem, is discussed.
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I. INTRODUCTION surface, as proved by Luttinggr]. Actually, the concept of

. single-particle energy is still approximately tenable in the
H;’he phy?.lclsd %f nubclear dmaltter_ tr)]eyo_nd the Hartre?":oﬁlbroximity of the Fermi surface, but not away from the latter
(HF) mean field has been dealt with using a variety of techy oy herimentally verified with exclusive inelastic electron
nigues, such as the Bethe-Brueckner-Goldstone hole-line ©%cattering €,e’p) [8].

pansion[1], the variational approach based on correlated According’;Iy in this paper we investigate

functions[2], and the Green’s function Monte Carlo method () the contributions to the single-particle ener@y par-

[3], exploiting realistic nucleon-nucleon interactions, like thetjcylar at the Fermi surfagébeyond the mean field,
Bonn or the Urbana potentials, as input. (i) how they affect the total binding energy per particle,
Basically, these studies focused on two observables: The (jii) whether they help to fulfill the HVH theorem in
binding energy per particle and the saturation density, experinuclear matter.
mentally extracted from the semi empirical mass formula These items have been considered in the past by various
and from the high energy nuclear electron scattering experiauthors. In nuclear matter starting from the old paper of
ments. In addition, also the compression modulus, whos8rueckner and Goldmaf®] until the more recent work of
value can be inferred from the excitation energy of theBaldoet al.[10]. In finite nuclei, where the issues are even
breathing mode in nuclei, has been quite extensively exmore delicate, the theme has been addressed in several in-
plored. vestigations. To mention a few we recall those of Faessler
As is well known, all these investigations indicate that theet al. (see, for example, Refl11]) and of Meldner and
theory fails to account for the data. A remedy to this short-Shakin[12]. A comprehensive review of the topic has been
coming is presently sought in the introduction of three-bodygiven by Hogdsorj13].
forces [4] and/or in a covariant treatment of the nuclear From the above studies it appears that, in a given theoret-
many-body probleni5]. ical framework, the problem of fulfilling the HVH theorem is
However, a successful theory of nuclear matter will befar from trivial, both in nuclear matter and in finite nuclei.
required not only to account for the data, but to fulfill as well This recognition is the basic motivation for the present work.
general theorems, in particular the Hugenholtz—Van Hove
(HVH) one[6]. Indeed, a violation of the latter would signal Il. FORMALISM AND G-MATRIX RESULTS
an inconsistency of the theory both at the global and at the
single-particle level.
In the following we shall focus on the latter issue, which

We start from theG-matrix expression for the total energy
of nuclear matter at zero temperature,

has received comparatively less attention. According to the ki 1

HVH theorem, whose validity encompasses all the normal E=D, 2—n(k1,kF)+ 3 > (kiky|Glkqky)

Fermi systems at zero temperature, at equilibrium the aver- ky <M kiko

age energy per particle and the Fermi energy should coin- (ks ke n(ks Kk 1
Cide. ( 1 F) ( 2 F)v ( )

The HVH theorem holds because indeed a fead not kg being the Fermi momentum and tematrix obeying the
complex energy can be assigned to the particles at the Ferngquation

(Kyko GlKsko) = (Ko ko] V] Kpkp) — kz (kiko|VIkska)[1—n(ks,ke) [ 1—n(ky,ke)1(ksks|Glkiko) 2

K4 ec(kz,kp) +eg(Ky, Ke) —€c(ky, Ke) —eg(ka Ke) ,
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where the summation includes the spin-isospin degrees of 10 - T - T - 7
freedom and the matrix elements are meant to be antisym- /
metrized. We then solve ER) self-consistentlyith respect /
to the single-particle energies appearing in the denominator. 0 e =
These, to be defined below, are continuous functions of the /
energy across the Fermi surface. For the bare interation
we use the Bonn potentifl4].

Concerning self-consistency, we recall that in Landau’s
theory of Fermi liquids the energy of a single quasiparticle
e(k,kg) is obtained according to the prescription 20 .

10— /< -

Energy (MeV)
\

B k,k 3 30 N -7
5n(k,kp)_6( ’ F)! () - \\\ ///

- —
1 ] 1 =" ]
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wheren(k,kg) gives the quasiparticle number in tkestate. o (fm™)

The distribution functionn(k,kg) fixes the density of the

system and depends up&p, to be viewed as a parameter. FIG. 1. Symmetric nuclear matter binding energy per particle
When Eq.(3) is implemented in theG-matrix framework  (solid ling) and Fermi energydashegias a function of the density.

(but ignoring the dependence uponof the G-matrix ele-  The lower and upper dashed lines refer to Fermi energies without
ments, it yields and with rearrangement contribution, respectively, whereas the
solid line has no rearrangement.

2

k
eG(kikF):ﬁ_’_kEZ <kk2|G|kk2>n(k2!kF)! (4) e(kakF):eG(k1kF)+%k§; n(klku)n(erkF)

172

. . . . o
which we view he ener f rticle of given momen- -
tumck. e view as the energy of a particle of given mome X(Sn(k,kF)<k1k2|G|k1k2>' (5)

In accord with the theory of Brueckngt5], which rep-
resent the leading term of the hole-line expansion and exthe last term on the right-hand side being often referred to as
actly incorporates the two-particle correlations, we solvethe rearrangementontribution. This in principle should be
then Eq.(2) seeking for self-consistency on the basis of Eq.computed by making the variation on the right-hand side of
(4). From a diagrammatic point of view this amounts to dressgq. (2) with respect ton(ks,kg) andn(k,,ke) and also to
the particles and thavo-holelines of a ladder diagram with the n(k’kF) entering into the Sing|e_partic|e energies of the
afirst order self-energy containing &-matrix interaction.  denominator. These variations represent corrections to the

However, it has been known for a long time that, whenpauli operator and to the energies of the initial and interme-
computed ak=kg, Eq. (4) violates the HVH theorem, in diate states, respectively, resulting from the removal of one
contrast with the HF theorysee the Appendjx This is in-  particle.
deed seen to occur in Fig. 1, where we display, as a function For a discussion of the associated diagrams and for the
of p=2kE/372, the results of our calculation of the binding convergence of the hole-line expansion in general we refer
energy per particl¢l) and of the Fermi energy, as obtained the reader to Ref$10,16—18, where the impact of the hole-
from Eq. (4), carried out with the distributiom(k,kg) hole ladder diagrams and of the off-shElmatrix in connec-
=0(ke—k). It appears from the figure that our self- tion with the HVH theorem is explored.
consistent-matrix yields a good binding energy per particle  Here we aim instead to compute the rearrangement con-
(—16.1 MeV), but at the wrong densityp&0.25 fm 3, tribution to the single-particle energy @r in the proximity
i.e., ke=1.55 fm1); these results are close to those re-of) the Fermi surface by using the following procedure in
cently obtained in Refl16], also in the Brueckner-Hartree- carrying out the functional derivative, that is
Fock (BHF) scheme, with thev14 Argonne potential and
with a continuous auxiliary potential. In addition, a most 1
substantial violation of the HVH theorefof 17.2 MeV, the e(k~kg ,ke)=eg(k.ke) += > n(ky,ke)n(ky,ke)
Fermi energy being-=—33.3 MeV) is seen to occum 2 ik,
guantitativeaccord with the findings of Refl10]. P

Note that the above quotegt corresponds to a BHF po- xm(klkz|G|klk2>
tential energy of about 80 MeV: Hence the rearrangement F
corresponds to a correction ef20% of the latter.

Thus, in the spirit of Landau’s theory, we carry out morewhere p=p(kg) is the density of the system. Of course, if
thoroughly the variatior{3) of the energy versus the distri- the (large) volume V enclosing the nuclear matter is kept
bution n(k,kg) writing fixed, then

(9k|: 5p

ap onkks)’ ©
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op 1 ) 80 . . | . | |
on(k,kg) Vv on(K,ke) kZl n(ky,ke) _
1V f on(kyke) 1 ; ol
“Vome) Sk v O _

a0

A (MeV fm)

In the Appendix we shall show that the above prescription
for the functional derivative of the energy with respect to the L
distribution, worked out at constant volume, just yields the
Fermi energy, whereas, when the number of particles is kept 20+
fixed, is proportional to the pressure. The latter, of course,
should vanish for a system at equilibrium.

To proceed further we now define 0 \ | . L ) 1 s
0 0.1 0.2 0.3 0.4

p (fm”)

1
A(kp)= = n(ky,kg)n(ks,,k
(ke)= 2N k%:‘z (ke ke)n(kz ke) FIG. 2. The quantityA(kg), defined in the formuld8) of the

text versus the density=2k2/272. The crosses show the calcu-

d lated values, whereas the solid line corresponds to the linear fit
Xd_kp<kl’k2|G|kl’k2>’ ®) =150p+15 MeVfm. We do not display A(kg) for p
<0.05 fm 2 because here its numerical evaluation becomes quite
) ) inaccurate.
which, together with Eq(7), allows us to recast Ed6) as
follows: 1
E=E+A(k) i|np 1 > n(k.ke)
N~ N P\ ke N ke T
IKg
e(kaFakF):eG(kka)"i'P&_A(kF) Es 9 -1 1 (ke
P = TAke)| Z-np|  —— dk k2
9 -1 N I T pJkop
= +| = . _
eotlele) ‘”‘Flnp) A © B neo|mp] Hao(k]
N Floke P 2 ke

The above equation, where tiB&matrix and the rearrange-
ment contributions to the single-partidler, better, quasipar-
ticle) energy are neatly separated, yields the correct Fer
energye(kg ,kg)=e€g, being rigorously valid at the Fermi
surface.

We should now compute the impact of the rearrangeme
on the binding energy per particle. In this connection, we ar
aware that the BHF formula,

In the above the summation is meant to be carried out in a

rT{Iestricted region near the Fermi surface, namely in the range

of momentakgp<k=<Kg. In the derivation of Eq(11), the

f-function distribution is used to be consistent with the

@—matrix calculation. Obviously the momentukgy should

e viewed as a parameter: If it will turn out to be clos&tq

then the omission of thie dependence in the rearrangement

contribution to the single-particle energ9) should be ex-

pected to have not too serious consequences.

Ec 1 k? Thus, the expressiofiLl), beyond the standar@-matrix

N 2N Ek n(k,k,:)[ereG(k,k,:)}, (10 contribution (namely E¢g/N), explicity embodies the rear-
rangement one as well, but the latter, and this is important, is
reduced by the factqu—(ka/kF)3]/2 with respect to Eq.

linking the total and the single particle energies, no longer9).

holds when the rearrangement is included. Furthermore, cal-

culation.s of the nucleon momentum distribution inc_ludjng IIl. RESULTS FOR THE REARRANGEMENT ENERGY

correlations among nucleons beyond the BHF ones indicate

that the corrections to the latter tend to be more pronounced In order to compute the rearrangement contribution, the

near the Fermi surfacgl9], where the Landau theory ap- quantityA(kg) is needed: It has been numerically evaluated

plies. Hence, inspired by the Landau theory, we heuristicallyand it is displayed as a function pfin Fig. 2. It appears that

assume Eq(9) to be applicable as well in the proximity of A(kg) is always positive, growing linearly witp, and sub-

the Fermi surface, where the concept of quasiparticle is terstantial. Actually, it turns out to be well approximated by the

able. In the conclusions the foundation and the limits of thisexpressiorA(kg) = (150 + 15) MeV fm.

assumption will be addressed. Here we write, as an extension Since the above findings oA(kg) have been obtained

of Eq. (10), with a #-function distribution, for consistency we evaluate
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[a(In p)/oke]~* with the @ function as well. An elementary
calculation yields

- )l—kF 12
prald iy (12)

Hence, from Eq(9) it follows that the rearrangement contri-
bution to the Fermi energy grows aé, in accord with Ref.
[20], where it was conjectured to grow &8 and found to
vary ask in a schematic estimate.

In Fig. 1, we display the Fermi energy including the rear-
rangement, obtained using E@L2), versus the density
=2k3/372.

We note 0.1 0.2 03 0.4

(i) the occurrence, in correspondence of the minimum of
the binding energy, of @ositiverearrangement contribution
of about 25 MeV, larger than the value of 17 MeV obtained  fg, 3. Symmetric nuclear matter binding energy per particle
in Ref.[10] in a perturbative scheme. Since in Ref0] only  (solid lineg and Fermi energydashedias a function of the density.
the leading diagrams, beyond the BHF ones, were kept, onene lower and upper solid lines refer to binding energies without
could view the difference as an estimate of the contributiorand with rearrangement contribution, respectively, whereas the
of the higher order terms in the hole-line expansion. How-dashed line includes rearrangement.
ever, this estimate should not be taken at face value, since in
Ref.[10] the Paris potential was employed, whereas we use Finally, the compression modulus predicted in our frame-
the Bonn one; work, via a polynomial interpolation of the binding energy,

(i) notably, our rearrangement contribution stays remarkturns out to be~150 MeV, significantly larger than the one
ably constant to the left of our saturation density obtained in a pure BHF scheme=(20 MeV), as expected
~0.25 fm 3 (say, in the range 0.20p<0.25 fm %), inac-  owing to the rapicke dependence of the rearrangement term,

cord with the old finding of Thouled20]; but still somewhat lower than the experimental value.

(ii ) while in Ref.[10] the obtained rearrangement contri-
bution was just enough to restore the thermodynamic consis-
tency, in our case we “overcure” the HVH violation: Indeed,
we predict the equality between the Fermi energy and the |n these concluding remarks we seek for some justifica-
binding energy to occur gi~0.17 fm °, i.e., not at equi- tion of our empirical procedure in computing the rearrange-
librium. However, in Ref[10] no change was assumed to ment contribution to the binding energy per particle.
occur in the ground state energy due to rearrangement. We start by recalling the linksee Eq.(10)] between the

Here, as discussed above, we schematically estimate thgngle-particle and mean energies, which holds only for strict
magnitude of this change by resorting to form@id) and  mean field theories, like HF and BHF. Should these schemes
searching for a value of the momentugp such to restore  be valid, then, as it is well knowiri3], the separation and the
the validity of the HVH theorem. This turns out to be ful- single-particle energies would coincide, as i(igarly true
filled whenkqop=0.0%, as it appears from Fig. 3, where in atoms(Koopman’s theorem, see Ré¢1L3)).
we display, in correspondence to this value, the binding and In nuclei, of course, HRwhich respects HVH is not
Fermi energies, both including rearrangement, versus thgpplicable and BHF, as shown by many calculations, while
density. not unrealistic, fails to fulfill the HVH theorem. Indeed, the

We see in the figure that the minimum of the binding amount of the failure measures the impossibility of describ-
energy, while reduced, as expected, to a valudngthe system interms of independent constituents. Actually,
(—13.15 MeV) higher than the BHF prediction, occurs at abeyond the mean field framework the only remaining link
saturation densityp,n=0.19 fm 3 (kp=1.41 fm1), in between the mean and single-particle energies is the one ex-
closer contact with the experimental valpig,=0.17 fm 3. pressed by the HVH theorem itself.

Concerning the rearrangement effect kat=1.41 frm ® Our simple approach is based on the premise that the
we obtain a positive contribution e¢20 MeV for the Fermi  contribution to the system’s mean energy arising from the
energy and of~1.8 MeV for the binding energy per par- proximity of the Fermi surface can still be simply related to
ticle. These values might be compared with those obtainethe energy of individual entities. We identify the latter with
long ago by Brueckneet al.[21], namely about 12 and 1.5 Landau’s quasiparticles and not with the BHF particles,
MeV for the Fermi and mean energies, respectively, and witlsince, as previously mentioned, the BHF framework fails to
the recent ones of Refl8], namely about 12 and 1 MeV, account for the appreciable depletion of the single-particle
respectively. It should, however, be remarked that these vabrbits induced by the strong short-range repulsion among the
ues have been obtained with simple, as compared to theucleons, a depletion occurring mainly, although not only,
Bonn potential, interactions. near the Fermi surface. Indeed, it is established that the re-

Energy (MeV)

p (fm™)

IV. CONCLUSIONS

044317-4
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pulsion much affects both the momentum distribution and 5p 1 on(ky kg) 1

the rearrangement enerfg0]. Snikka ~V < Bnikks v (A3)
Accordingly, we use the quasiparticle approximation for on(k.ke) ki on(k.ke)

the propagatoG(k,w) in the expression22]

Hence

E 1 dk (> do .
—=Z lim f 3f — gion 5E—[n]
N P, o) (2m)3) = 21i on(k,kg) k=ke

k2 1

X| o=+ 3% (ko) [TrG(kw),  (13) _OE ke 1 OB ke 0E_
2m = 2 ok d(NIV) V kg dN  oN F
which yields the binding energy per particle. The quasiparti- (A4)

cle approximation forG(k,w) is best grasped by starting

from the canonical spectral representation, In the case of a free Fermi gas, E&\) yields indeed

< gk e, Ske!) O]
Gkw)=| do'————+ do'———. on(k,ke) [,
¢ w—w'+inp J-o w—w'-ip =XF
(14) _E w1 x? &<N3 k,%)
It amounts to set for the hole spectral function the expression ke ZkE Vv _2k§ dke\V 5 2m
1 Z2(k)|W(k k
Sk w)= = (9lW| (15) = Sm =€ - (A5)

T [w—ER) P+ [Z(OW(K)]*
whereW(K) is the imaginary part of the quasiparticle self- On the other hand, whei is constantbut V varies,
energy andZ(k) the so-called quasiparticle strength. SN
In our crude and empirical model, to avoid the introduc- SN=> ————on(k,kp)=2, dn(k,kg)=0, (A6)
tion of further parameters beyoridy, we have seZ(k) k on(k,ke) K
=1 andW(k)=0. Of course, the former should be lower
than 1, but not too much, in order not to spoil the concept ofInce
guasiparticle, and the latter should be small for the same
reason. Thus our quasiparticle propagator differs from the oN _ 6 E n(ky k) =1 (A7)
BHF one only in the location of the pole, which is moved by on(k.ke) on(kke) & T
the rearrangement contribution.
Finally, we find it gratifying that the only parameter of our Thus the vanishing oBN does not imply the vanishing of
approach, namelkqp, confines the quasiparticle existence 5N/n(k,kg). Hence
to a quite narrow domain close to the Fermi surface. Also
satisfying is our result that the rearrangement affects the  SE[n]
Fermi energy an order of magnitude more than the mean m

“oke dp V. kg dp V on(k,kg)’

energy, a finding on which a general consensus exists. K=ke A8)
APPENDIX the second term on the right-hand side actually not contrib-
We comment here on the formula uting_ becaus& andn(k,kg) are varying independently. Ac-
cordingly,
GEIn] | _Edke o AL SE[N] JE1 ke 1 10E P
on(kke)|,_. ke dp on(k,kg)’ (A1) S - TR - 2T
k=kg 5n(k,k|:) K=k akp N (9(1N) \% P oV pP
—F
where (A9)
Sp P 1 which vanishes at equilibrium because so does the pressure
n(k,ke)  on(kke) [V 4 Curiously, from Eq.(A9) for a perfect Fermi gas it fol-
) o ) lows that
for the functional derivative of the energy with respect to the
distribution function. The sum over spin and isospin is un- SE[n] 2 3
derstood. W T EFTEF T S EF, (A10)
We first consider the volum¥ constant. In this case T Tk=ke
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showing that a nonconfined Fermi gas satisfies the HVHand it is an easy matter to carry out the derivative in Eqg.

theorem, i.e., it reaches equilibrium, at zero density. (A11), getting
On the other hand, for a translationally invariant Fermi
system, with a generic interactiovi(q), one has from Eq. d(EIN) E 1
SOE[N] ke d(EIN) 2K
i T ey ) (A11) f F _ 9
on(kke) |, 3 ok x|, daqvia|l-5 -] (AL3)
In the HF approximation22], Now, in HF the Fermi energy reads
E 3 1 dk’
K-z Vo | Sl h et~ o+ pvi0)- | Sy eV ke ) = ef
[ otk kvalk-k e
X ! !
m® 1 (2 q
——— | dadV(a)|1-5—]|. (A14)
3 1 2kg (2m)?Jo 2kg
— s 5oV -—— [ “da v o
(2m)<Jo Hence, by comparing with EgA13), one sees that the HVH
3 1 3 theorem is fulfilled in the HF approximation no matter what
x| 1— _i+ _(i) } (A12)  the interaction is, providing the latter is independent of the
22k 2\ 2ke density.
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