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Revisiting the Hugenholtz–Van Hove theorem in nuclear matter
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An assessment of the magnitude of the rearrangement contribution to the Fermi energy and to the binding
energy per particle is carried out in symmetric nuclear matter by extending theG-matrix framework. The
restoration of the thermodynamic consistency or, equivalently, the fulfillment of the Hugenholtz–Van Hove
theorem, is discussed.
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I. INTRODUCTION

The physics of nuclear matter beyond the Hartree-F
~HF! mean field has been dealt with using a variety of te
niques, such as the Bethe-Brueckner-Goldstone hole-line
pansion @1#, the variational approach based on correla
functions@2#, and the Green’s function Monte Carlo metho
@3#, exploiting realistic nucleon-nucleon interactions, like t
Bonn or the Urbana potentials, as input.

Basically, these studies focused on two observables:
binding energy per particle and the saturation density, exp
mentally extracted from the semi empirical mass form
and from the high energy nuclear electron scattering exp
ments. In addition, also the compression modulus, wh
value can be inferred from the excitation energy of t
breathing mode in nuclei, has been quite extensively
plored.

As is well known, all these investigations indicate that t
theory fails to account for the data. A remedy to this sho
coming is presently sought in the introduction of three-bo
forces @4# and/or in a covariant treatment of the nucle
many-body problem@5#.

However, a successful theory of nuclear matter will
required not only to account for the data, but to fulfill as w
general theorems, in particular the Hugenholtz–Van Ho
~HVH! one@6#. Indeed, a violation of the latter would sign
an inconsistency of the theory both at the global and at
single-particle level.

In the following we shall focus on the latter issue, whi
has received comparatively less attention. According to
HVH theorem, whose validity encompasses all the norm
Fermi systems at zero temperature, at equilibrium the a
age energy per particle and the Fermi energy should c
cide.

The HVH theorem holds because indeed a real~and not
complex! energy can be assigned to the particles at the Fe
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surface, as proved by Luttinger@7#. Actually, the concept of
single-particle energy is still approximately tenable in t
proximity of the Fermi surface, but not away from the latt
as experimentally verified with exclusive inelastic electr
scattering (e,e8p) @8#.

Accordingly, in this paper we investigate
~i! the contributions to the single-particle energy~in par-

ticular at the Fermi surface! beyond the mean field,
~ii ! how they affect the total binding energy per particl
~iii ! whether they help to fulfill the HVH theorem in

nuclear matter.
These items have been considered in the past by var

authors. In nuclear matter starting from the old paper
Brueckner and Goldman@9# until the more recent work of
Baldo et al. @10#. In finite nuclei, where the issues are ev
more delicate, the theme has been addressed in severa
vestigations. To mention a few we recall those of Faes
et al. ~see, for example, Ref.@11#! and of Meldner and
Shakin@12#. A comprehensive review of the topic has be
given by Hogdson@13#.

From the above studies it appears that, in a given theo
ical framework, the problem of fulfilling the HVH theorem i
far from trivial, both in nuclear matter and in finite nucle
This recognition is the basic motivation for the present wo

II. FORMALISM AND G-MATRIX RESULTS

We start from theG-matrix expression for the total energ
of nuclear matter at zero temperature,

E5(
k1

k1
2

2m
n~k1 ,kF!1

1

2 (
k1k2

^k1k2uGuk1k2&

3n~k1 ,kF!n~k2 ,kF!, ~1!

kF being the Fermi momentum and theG-matrix obeying the
equation
^k1k2uGuk1k2&5^k1k2uVuk1k2&2(
k3k4

^k1k2uVuk3k4&@12n~k3 ,kF!#@12n~k4 ,kF!#^k3k4uGuk1k2&
eG~k3 ,kF!1eG~k4 ,kF!2eG~k1 ,kF!2eG~k2 ,kF!

, ~2!
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where the summation includes the spin-isospin degree
freedom and the matrix elements are meant to be antis
metrized. We then solve Eq.~2! self-consistentlywith respect
to the single-particle energies appearing in the denomina
These, to be defined below, are continuous functions of
energy across the Fermi surface. For the bare interactioV
we use the Bonn potential@14#.

Concerning self-consistency, we recall that in Landa
theory of Fermi liquids the energy of a single quasiparti
e(k,kF) is obtained according to the prescription

dE

dn~k,kF!
5e~k,kF!, ~3!

wheren(k,kF) gives the quasiparticle number in thek state.
The distribution functionn(k,kF) fixes the density of the
system and depends uponkF , to be viewed as a paramete
When Eq. ~3! is implemented in theG-matrix framework
~but ignoring the dependence uponn of the G-matrix ele-
ments!, it yields

eG~k,kF!5
k2

2m
1(

k2

^kk2uGukk2&n~k2 ,kF!, ~4!

which we view as the energy of a particle of given mome
tum k.

In accord with the theory of Brueckner@15#, which rep-
resent the leading term of the hole-line expansion and
actly incorporates the two-particle correlations, we so
then Eq.~2! seeking for self-consistency on the basis of E
~4!. From a diagrammatic point of view this amounts to dre
the particles and thetwo-holelines of a ladder diagram with
a first order self-energy containing aG-matrix interaction.

However, it has been known for a long time that, wh
computed atk5kF , Eq. ~4! violates the HVH theorem, in
contrast with the HF theory~see the Appendix!. This is in-
deed seen to occur in Fig. 1, where we display, as a func
of r52kF

3/3p2, the results of our calculation of the bindin
energy per particle~1! and of the Fermi energy, as obtaine
from Eq. ~4!, carried out with the distributionn(k,kF)
5u(kF2k). It appears from the figure that our sel
consistentG-matrix yields a good binding energy per partic
(216.1 MeV), but at the wrong density (r50.25 fm23,
i.e., kF51.55 fm21); these results are close to those
cently obtained in Ref.@16#, also in the Brueckner-Hartree
Fock ~BHF! scheme, with thev14 Argonne potential and
with a continuous auxiliary potential. In addition, a mo
substantial violation of the HVH theorem~of 17.2 MeV, the
Fermi energy beingeF5233.3 MeV) is seen to occur,in
quantitativeaccord with the findings of Ref.@10#.

Note that the above quotedeF corresponds to a BHF po
tential energy of about 80 MeV: Hence the rearrangem
corresponds to a correction of>20% of the latter.

Thus, in the spirit of Landau’s theory, we carry out mo
thoroughly the variation~3! of the energy versus the distr
bution n(k,kF) writing
04431
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e~k,kF!5eG~k,kF!1
1

2 (
k1k2

n~k1 ,kF!n~k2 ,kF!

3
d

dn~k,kF!
^k1k2uGuk1k2&, ~5!

the last term on the right-hand side being often referred to
the rearrangementcontribution. This in principle should be
computed by making the variation on the right-hand side
Eq. ~2! with respect ton(k3 ,kF) and n(k4 ,kF) and also to
the n(k,kF) entering into the single-particle energies of t
denominator. These variations represent corrections to
Pauli operator and to the energies of the initial and interm
diate states, respectively, resulting from the removal of o
particle.

For a discussion of the associated diagrams and for
convergence of the hole-line expansion in general we re
the reader to Refs.@10,16–18#, where the impact of the hole
hole ladder diagrams and of the off-shellT matrix in connec-
tion with the HVH theorem is explored.

Here we aim instead to compute the rearrangement c
tribution to the single-particle energy at~or in the proximity
of! the Fermi surface by using the following procedure
carrying out the functional derivative, that is

e~k'kF ,kF!5eG~k,kF!1
1

2 (
k1k2

n~k1 ,kF!n~k2 ,kF!

3
]

]kF
^k1k2uGuk1k2&

]kF

]r

dr

dn~k,kF!
, ~6!

wherer[r(kF) is the density of the system. Of course,
the ~large! volume V enclosing the nuclear matter is ke
fixed, then

FIG. 1. Symmetric nuclear matter binding energy per parti
~solid line! and Fermi energy~dashed! as a function of the density
The lower and upper dashed lines refer to Fermi energies with
and with rearrangement contribution, respectively, whereas
solid line has no rearrangement.
7-2
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dr

dn~k,kF!
5

1

V

d

dn~k,kF! (
k1

n~k1 ,kF!

5
1

V
4

V

~2p!3E dk1

dn~k1 ,kF!

dn~k,kF!
5

1

V
. ~7!

In the Appendix we shall show that the above prescript
for the functional derivative of the energy with respect to t
distribution, worked out at constant volume, just yields t
Fermi energy, whereas, when the number of particles is k
fixed, is proportional to the pressure. The latter, of cour
should vanish for a system at equilibrium.

To proceed further we now define

A~kF!5
1

2N (
k1k2

n~k1 ,kF!n~k2 ,kF!

3
]

]kF
^k1 ,k2uGuk1 ,k2&, ~8!

which, together with Eq.~7!, allows us to recast Eq.~6! as
follows:

e~k'kF ,kF!5eG~k,kF!1r
]kF

]r
A~kF!

5eG~k,kF!1S ]

]kF
ln r D 21

A~kF!. ~9!

The above equation, where theG matrix and the rearrange
ment contributions to the single-particle~or, better, quasipar
ticle! energy are neatly separated, yields the correct Fe
energye(kF ,kF)[eF , being rigorously valid at the Ferm
surface.

We should now compute the impact of the rearrangem
on the binding energy per particle. In this connection, we
aware that the BHF formula,

EG

N
5

1

2N (
k

n~k,kF!F k2

2m
1eG~k,kF!G , ~10!

linking the total and the single particle energies, no lon
holds when the rearrangement is included. Furthermore,
culations of the nucleon momentum distribution includi
correlations among nucleons beyond the BHF ones indi
that the corrections to the latter tend to be more pronoun
near the Fermi surface@19#, where the Landau theory ap
plies. Hence, inspired by the Landau theory, we heuristic
assume Eq.~9! to be applicable as well in the proximity o
the Fermi surface, where the concept of quasiparticle is
able. In the conclusions the foundation and the limits of t
assumption will be addressed. Here we write, as an exten
of Eq. ~10!,
04431
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EG

N
1A~kF!S ]

]kF
ln r D 21 1

2N (
k.kQP

n~k,kF!

5
EG

N
1A~kF!S ]

]kF
ln r D 21 1

p2r
E

kQP

kF
dk k2

5
EG

N
1A~kF!S ]

]kF
ln r D 21 1

2 F12S kQP

kF
D 3G . ~11!

In the above the summation is meant to be carried out i
restricted region near the Fermi surface, namely in the ra
of momentakQP<k<kF . In the derivation of Eq.~11!, the
u-function distribution is used to be consistent with t
G-matrix calculation. Obviously the momentumkQP should
be viewed as a parameter: If it will turn out to be close tokF ,
then the omission of thek dependence in the rearrangeme
contribution to the single-particle energy~9! should be ex-
pected to have not too serious consequences.

Thus, the expression~11!, beyond the standardG-matrix
contribution ~namely EG /N!, explicitly embodies the rear
rangement one as well, but the latter, and this is importan
reduced by the factor@12(kQP/kF)3#/2 with respect to Eq.
~9!.

III. RESULTS FOR THE REARRANGEMENT ENERGY

In order to compute the rearrangement contribution,
quantityA(kF) is needed: It has been numerically evaluat
and it is displayed as a function ofr in Fig. 2. It appears tha
A(kF) is always positive, growing linearly withr, and sub-
stantial. Actually, it turns out to be well approximated by t
expressionA(kF)5(150r115) MeV fm.

Since the above findings onA(kF) have been obtained
with a u-function distribution, for consistency we evalua

FIG. 2. The quantityA(kF), defined in the formula~8! of the
text versus the densityr52kF

3/2p2. The crosses show the calcu
lated values, whereas the solid line corresponds to the linear fiA
5150r115 MeV fm. We do not display A(kF) for r
,0.05 fm23 because here its numerical evaluation becomes q
inaccurate.
7-3
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@](ln r)/]kF#21 with the u function as well. An elementary
calculation yields

S ]

]kF
ln r D 21

5
kF

3
. ~12!

Hence, from Eq.~9! it follows that the rearrangement contr
bution to the Fermi energy grows askF

4 , in accord with Ref.
@20#, where it was conjectured to grow askF

5 and found to
vary askF

4 in a schematic estimate.
In Fig. 1, we display the Fermi energy including the re

rangement, obtained using Eq.~12!, versus the densityr
52kF

3/3p2.
We note
~i! the occurrence, in correspondence of the minimum

the binding energy, of apositiverearrangement contributio
of about 25 MeV, larger than the value of 17 MeV obtain
in Ref. @10# in a perturbative scheme. Since in Ref.@10# only
the leading diagrams, beyond the BHF ones, were kept,
could view the difference as an estimate of the contribut
of the higher order terms in the hole-line expansion. Ho
ever, this estimate should not be taken at face value, sinc
Ref. @10# the Paris potential was employed, whereas we
the Bonn one;

~ii ! notably, our rearrangement contribution stays rema
ably constant to the left of our saturation densityr
'0.25 fm23 ~say, in the range 0.20<r<0.25 fm23), in ac-
cord with the old finding of Thouless@20#;

~iii ! while in Ref. @10# the obtained rearrangement cont
bution was just enough to restore the thermodynamic con
tency, in our case we ‘‘overcure’’ the HVH violation: Indee
we predict the equality between the Fermi energy and
binding energy to occur atr'0.17 fm23, i.e., not at equi-
librium. However, in Ref.@10# no change was assumed
occur in the ground state energy due to rearrangement.

Here, as discussed above, we schematically estimate
magnitude of this change by resorting to formula~11! and
searching for a value of the momentumkQP such to restore
the validity of the HVH theorem. This turns out to be fu
filled when kQP50.09kF , as it appears from Fig. 3, wher
we display, in correspondence to this value, the binding
Fermi energies, both including rearrangement, versus
density.

We see in the figure that the minimum of the bindi
energy, while reduced, as expected, to a va
(213.15 MeV) higher than the BHF prediction, occurs a
saturation densityrmin>0.19 fm23 (kF51.41 fm21), in
closer contact with the experimental valuerexp50.17 fm23.

Concerning the rearrangement effect, atkF51.41 fm21

we obtain a positive contribution of'20 MeV for the Fermi
energy and of'1.8 MeV for the binding energy per pa
ticle. These values might be compared with those obtai
long ago by Brueckneret al. @21#, namely about 12 and 1.
MeV for the Fermi and mean energies, respectively, and w
the recent ones of Ref.@18#, namely about 12 and 1 MeV
respectively. It should, however, be remarked that these
ues have been obtained with simple, as compared to
Bonn potential, interactions.
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Finally, the compression modulus predicted in our fram
work, via a polynomial interpolation of the binding energ
turns out to be'150 MeV, significantly larger than the on
obtained in a pure BHF scheme ('120 MeV), as expected
owing to the rapidkF dependence of the rearrangement ter
but still somewhat lower than the experimental value.

IV. CONCLUSIONS

In these concluding remarks we seek for some justifi
tion of our empirical procedure in computing the rearrang
ment contribution to the binding energy per particle.

We start by recalling the link@see Eq.~10!# between the
single-particle and mean energies, which holds only for st
mean field theories, like HF and BHF. Should these sche
be valid, then, as it is well known@13#, the separation and th
single-particle energies would coincide, as it is~nearly! true
in atoms~Koopman’s theorem, see Ref.@13#!.

In nuclei, of course, HF~which respects HVH! is not
applicable and BHF, as shown by many calculations, wh
not unrealistic, fails to fulfill the HVH theorem. Indeed, th
amount of the failure measures the impossibility of descr
ing the system in terms of independent constituents. Actua
beyond the mean field framework the only remaining li
between the mean and single-particle energies is the one
pressed by the HVH theorem itself.

Our simple approach is based on the premise that
contribution to the system’s mean energy arising from
proximity of the Fermi surface can still be simply related
the energy of individual entities. We identify the latter wi
Landau’s quasiparticles and not with the BHF particle
since, as previously mentioned, the BHF framework fails
account for the appreciable depletion of the single-part
orbits induced by the strong short-range repulsion among
nucleons, a depletion occurring mainly, although not on
near the Fermi surface. Indeed, it is established that the

FIG. 3. Symmetric nuclear matter binding energy per parti
~solid lines! and Fermi energy~dashed! as a function of the density
The lower and upper solid lines refer to binding energies with
and with rearrangement contribution, respectively, whereas
dashed line includes rearrangement.
7-4
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pulsion much affects both the momentum distribution a
the rearrangement energy@20#.

Accordingly, we use the quasiparticle approximation
the propagatorG(k,v) in the expression@22#

E

N
5

1

r
lim

h→01

E dk

~2p!3E2`

` dv

2p i
eivh

3F k2

2m
1

1

2
S* ~k,v!GTr G~k,v!, ~13!

which yields the binding energy per particle. The quasipa
cle approximation forG(k,v) is best grasped by startin
from the canonical spectral representation,

G~k,v!5E
eF

`

dv8
Sp~k,v8!

v2v81 ih
1E

2`

eF
dv8

Sh~k,v8!

v2v82 ih
.

~14!

It amounts to set for the hole spectral function the express

Sh
QP~k,v!5

1

p

Z2~k!uW~k!u

@v2E~k!#21@Z~k!W~k!#2
, ~15!

whereW(k) is the imaginary part of the quasiparticle se
energy andZ(k) the so-called quasiparticle strength.

In our crude and empirical model, to avoid the introdu
tion of further parameters beyondkQP, we have setZ(k)
51 and W(k)50. Of course, the former should be low
than 1, but not too much, in order not to spoil the concep
quasiparticle, and the latter should be small for the sa
reason. Thus our quasiparticle propagator differs from
BHF one only in the location of the pole, which is moved
the rearrangement contribution.

Finally, we find it gratifying that the only parameter of ou
approach, namelykQP, confines the quasiparticle existen
to a quite narrow domain close to the Fermi surface. A
satisfying is our result that the rearrangement affects
Fermi energy an order of magnitude more than the m
energy, a finding on which a general consensus exists.

APPENDIX

We comment here on the formula

dE@n#

dn~k,kF!
U

k>kF

5
]E

]kF

]kF

]r

dr

dn~k,kF!
, ~A1!

where

dr

dn~k,kF!
5

d

dn~k,kF! F 1

V (
k1

n~k1 ,kF!G , ~A2!

for the functional derivative of the energy with respect to t
distribution function. The sum over spin and isospin is u
derstood.

We first consider the volumeV constant. In this case
04431
d

r

i-

n

-

f
e
e

o
e
n

-

dr

dn~k,kF!
5

1

V (
k1

dn~k1 ,kF!

dn~k,kF!
5

1

V
. ~A3!

Hence

dE@n#

dn~k,kF!
U

k>kF

5
]E

]kF

]kF

]~N/V!

1

V
5

]E

]kF

]kF

]N
5

]E

]N
5m5eF .

~A4!

In the case of a free Fermi gas, Eq.~A4! yields indeed

dE@n#

dn~k,kF!
U

k>kF

5
]E

]kF

p2

2kF
2

1

V
5

p2

2kF
2

]

]kF
S N

V

3

5

kF
2

2mD
5

kF
2

2m
[eF

FG. ~A5!

On the other hand, whenN is constant~but V varies!,

dN5(
k

dN

dn~k,kF!
dn~k,kF!5(

k
dn~k,kF!50, ~A6!

since

dN

dn~k,kF!
5

d

dn~k,kF! (
k1

n~k1 ,kF!51. ~A7!

Thus the vanishing ofdN does not imply the vanishing o
dN/dn(k,kF). Hence

dE@n#

dn~k,kF!
U

k>kF

5
]E

]kF

]kF

]r

1

V
2

]E

]kF

]kF

]r

r

V

dV

dn~k,kF!
,

~A8!

the second term on the right-hand side actually not cont
uting becauseV andn(k,kF) are varying independently. Ac
cordingly,

dE@n#

dn~k,kF!
U

k>kF

5
]E

]kF

1

N

]kF

]~1/V!

1

V
52

1

r

]E

]V
5

P

r
,

~A9!

which vanishes at equilibrium because so does the pres
P.

Curiously, from Eq.~A9! for a perfect Fermi gas it fol-
lows that

dE@n#

dn~k,kF!
U

k>kF

5
2

5
eF5eF2

3

5
eF , ~A10!
7-5
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showing that a nonconfined Fermi gas satisfies the H
theorem, i.e., it reaches equilibrium, at zero density.

On the other hand, for a translationally invariant Fer
system, with a generic interactionV(q), one has from Eq.
~A9!

dE@n#

dn~k,kF!
U

k>kF

5
kF

3

]~E/N!

]kF
50. ~A11!

In the HF approximation@22#,

E

N
5

3

5
eF

FG1
1

2
rV~0!2E dk

~2p!3
u~kF2k!

3E dk8

~2p!3
u~kF2k8!V~ uk2k8u!

5
3

5
eF

FG1
1

2
rV~0!2

1

~2p!2E0

2kF
dq q2V~q!

3F12
3

2

q

2kF
1

1

2 S q

2kF
D 3G ~A12!
l

-

04431
H

i

and it is an easy matter to carry out the derivative in E
~A11!, getting

]~E/N!

]kF
52

E

N
1eF

FG1rV~0!2
1

~2p!2

3E
0

2kF
dq q2V~q!S 12

q

2kF
D . ~A13!

Now, in HF the Fermi energy reads

eF
HF5eF

FG1rV~0!2E dk8

~2p!3
u~kF2k8!V~ ukF2k8u!5eF

FG

1rV~0!

2
1

~2p!2E0

2kF
dq q2V~q!S 12

q

2kF
D . ~A14!

Hence, by comparing with Eq.~A13!, one sees that the HVH
theorem is fulfilled in the HF approximation no matter wh
the interaction is, providing the latter is independent of t
density.
.
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