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Regular spectra in the vibron model with random interactions
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The phenomenom of emerging regular spectral features from random interactions is addressed in the context
of the vibron model. A mean-field analysis links different regions of the parameter space with definite geo-
metric shapes. The results that are, to a large extent, obtained in closed analytic form provide a clear and
transparent interpretation of the high degree of order that has been observed in numerical studies.
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I. INTRODUCTION

Random matrix theory was developed to describe stat
cal properties of nuclear spectra, such as average dist
tions and fluctuations of peaks in neutron-capture exp
ments @1,2#. In this approach, the Hamiltonian matr
elements are chosen at random, while keeping some gl
symmetries, e.g., the matrix should be Hermitean, and
invariant under time reversal, rotations, and reflections. S
cific examples include the Gaussian orthogonal ensem
~GOE! of real-symmetric random Hamiltonian matrices
which the many-body interactions are uncorrelated, and
two-body random ensemble~TBRE! in which the two-body
interactions are taken from a distribution of random numb
@3#. For two particles, the two ensembles are identical but
more than two particles, unlike the case of GOE, in TBR
the many-body matrix elements are correlated. As a con
quence, also the energy eigenvalues of states with diffe
quantum numbers are strongly correlated, since they a
from the same Hamiltonian.

The latter aspect was investigated recently in shell mo
calculations for even-even nuclei in thesd shell and thep f
shell@4#. An analysis of the energy spectra of an ensemble
random two-body Hamiltonians showed a remarkable sta
tical preference for ground states with angular moment
and parityLP501, despite the random nature of the tw
body matrix elements, both in sign and relative magnitude
similar preponderance of 01 ground states was found in a
analysis of the interacting boson model~IBM ! with random
interactions@5#. In addition, in the IBM evidence was foun
for both vibrational and rotational band structures. Accord
to the conventional ideas in the field, the occurrence oL
50 ground states and the existence of vibrational and r
tional bands are due to the very specific form of the inter
tions. Therefore these unexpected and surprising results
sparked a large number of investigations to explain and
ther explore the properties of random nuclei@6–19#.

The basic ingredients of the numerical simulations, b
for the nuclear shell model and for the IBM, are the struct
of the model space, the ensemble of random Hamiltonia
the order of the interactions~one- and two-body!, and the
global symmetries, i.e., time-reversal, Hermiticity, and ro
tion and reflection symmetry. The latter three symmetries
the Hamiltonian cannot be modified, since we are study
0556-2813/2002/65~4!/044316~8!/$20.00 65 0443
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many-body systems whose eigenstates have real energie
good angular momentum and parity. It has been shown
the observed spectral order is a robust property that does
depend on the specific choice of the~two-body! ensemble of
random interactions@4,6,7,15#, the time-reversal symmetry
@6#, or the restriction of the Hamiltonian to one- and tw
body interactions@8#. These results suggest that an explan
tion of the origin of the observed regular features has to
sought in the many-body dynamics of the model spa
and/or the general statistical properties of random inter
tions.

The purpose of this paper is to investigate the origin
the regular features that emerge from random interaction
a simple exactly solvable model. Hereto we use the vib
model, which is mathematically simpler than the IBM, b
exhibits many of the same qualitative features. A prelimina
account of this work has been published in Ref.@16#. In Sec.
II we present a review of the vibron model by studying
schematic Hamiltonian with an arbitrary strength parame
In Sec. III we discuss the spectral properties of an ensem
of random one- and two-body interactions, which are int
preted in Sec. IV in a mean-field analysis. Finally, in Sec
we present our summary and conclusions.

II. VIBRON MODEL

The vibron model was introduced in 1981 to describe
rotational and vibrational excitations of diatomic molecul
@20#, and has also found applications in nuclear cluster m
els @21# and meson spectroscopy@22#. In general terms, it
provides an algebraic treatment to describe the relative
tion in two-body problems. The algebraic approach cons
in quantizing the relative coordinates and momenta with v
tor boson operators with angular momentum and parityLP

512,

pm
† 5

1

A2
S r m2

]

]r m
D ,

pm5
1

A2
S r m1

]

]r m
D , ~1!
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and adding an auxiliary scalar boson withLP501. The
building blocks of the vibron model are then given by

s†,pm
† ~m521,0,1!. ~2!

Sometimes, the scalar and vector bosons are also calle
brons. The 16 bilinear products of creation and annihilat
operators are the generators of the Lie algebra of U(4)

s†s,s†pm ,pm
† s,pm

† pn ~m,n521,0,1!. ~3!

The Hamiltonian and all other physical operators of inter
are expressed in terms of the generators. Therefore the
number of vibrons,

N̂5s†s1(
m

pm
† pm , ~4!

is a conserved quantity. The presence of the scalar bo
makes it possible to consider, in addition to the thre
dimensional harmonic oscillator, also situations in which
oscillator shells are mixed. In addition to the total number
bosonsN, the eigenfunctions have good angular moment
L and parityP. For a more detailed discussion of the vibro
model see Ref.@23# and references therein.

A. A schematic Hamiltonian

For the study of random interactions, it is convenient
first consider a schematic Hamiltonian which contains
basic features of the model@24#,

H52cosx p†
• p̃1

sinx

4~N21!
~s†s†2p†

•p†!

3~ s̃s̃2 p̃• p̃!, ~5!

with s̃5s and p̃m5(21)12mp2m . The dots denote a scala
product with respect to the rotation group. The range of
anglex is that of a full period2p/2,x<3p/2, such that all
possible combinations of attractive and repulsive interacti
are included.

For x50, p the Hamiltonian has a U(3) dynamic sym
metry. The spectrum is that of a three-dimensional harmo
oscillator, i.e., a series of oscillators shells with

n50,1, . . . ,N,

L5n,n22, . . . ,1 or 0. ~6!

The parity of the states isP5(21)n5(21)L. The energy
spectrum is given by

E56n, ~7!

where the1 (2) sign corresponds tox50 (p).
For x5p/2, 3p/2 the Hamiltonian has an SO(4) dy

namic symmetry. In this case, the harmonic oscillator sh
are mixed by the Hamiltonian. The spectrum is that o
deformed or Morse oscillator, which consists of a series
rotational bands labeled by
04431
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s5N,N22, . . . ,1 or 0,

L50,1, . . . ,s. ~8!

The corresponding energy spectrum is given by

E56
1

4~N21!
~N2s!~N1s12!56

N11

N21
vS 12

v
N11D ,

~9!

where the1 (2) sign corresponds tox5p/2 (3p/2). The
ground state band hasv5(N2s)/250 for x5p/2 and v
5@N#/2 for x53p/2.

B. Geometric shapes

The schematic Hamiltonian of Eq.~5! exhibits various
geometric shapes~as well as the phase transitions inbetwe
them! which are relevant for the subsequent studies with r
dom interactions. The connection between the vibron mo
potential energy surfaces, geometric shapes, and phase
sitions can be investigated by means of standard Hart
Bose mean-field methods@24–26#. For the vibron model, it
is convenient to introduce a coherent, or intrinsic, state
pressed as a condensate of deformed bosons with axial
metry,

uN,a&5
1

AN!
~cosa s†1sina p0

†!Nu0&, ~10!

with 0<a<p/2. The potential energy surface is then giv
by the expectation value of the Hamiltonian in the coher
state,

1

N
E~a!5

1

N
^N,auHuN,a&5cosx sin2a1

1

4
sinx cos22a.

~11!

The equilibrium configuration is characterized by the va
a5a0 for which the potential energy surface attains its mi
mum value,

1

N

]E~a!

]a
50,

1

N

]2E~a!

]a2
.0. ~12!

The solutions can be divided into three different classes
phases:

a050, 2p/2,x<p/4,

cos 2a05cotx, p/4<x<3p/4,

a05p/2, 3p/4<x<3p/2, ~13!

which correspond to ans-boson or spherical condensate,
deformed condensate, and ap-boson condensate, respe
tively ~see Fig. 1!. The nature of the phase transitions at t
critical pointsxc5p/4, 3p/4, and 3p/2 can be investigated
6-2
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REGULAR SPECTRA IN THE VIBRON MODEL WITH . . . PHYSICAL REVIEW C65 044316
by examining the Hartree-Bose ground state energy and
derivates. The ground state energy itself is a continu
function of x,

1

N
E~x!55

1

4
sinx 2p/2,x<p/4

1

2
cosx2

cos2x

4sinx
p/4<x<3p/4

cosx1
1

4
sinx 3p/4<x<3p/2.

~14!

The first derivative ofE(x) shows a discontinuity atxc
53p/2, and hence the phase transition between the sph
cal, ors-boson, condensate and thep-boson condensate is o
first order. The phase transitions involving the deformed c
densate are of second order, since the second derivativ
the ground state energy is discontinuous atxc5p/4 and
3p/4.

C. Rotations

In the previous section, we investigated the equilibriu
configurations of the schematic Hamiltonian of Eq.~5!. Each
one of them corresponds to an intrinsic ground state b
uN,a0&, whose angular momentum content depends on
value ofa0. The rotational energies can be obtained by
plying standard many-body techniques@25#.

In the coherent, or intrinsic, state of Eq.~10!, the rota-
tional symmetry is spontaneously broken. In random ph
approximation the corresponding spurious excitations are
coupled from the physical ones and lie at zero energy.
collective or rotational energies are then determined by
inertial parameter associated with the spurious motion,

Erot5
1

2IL~L11!, ~15!

where the moment of inertiaI is obtained from the Thouless
Valatin formula. The general procedure is described in R
@25# and applied to systems of interacting bosons in R
@26#. For the Hamiltonian of Eq.~5!, we find that the mo-
ment of inertia is given by

FIG. 1. Equilibrium configurations of the schematic Ham
tonian of Eq.~5! as a function ofx.
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I5
2N sin2a0

cos 2a0sinx
. ~16!

The ordering of the rotational energy levels is then det
mined by the sign of the moment of inertia. In the followin
we examine each one of the equilibrium configurations
more detail.

~i! For a050, the equilibrium configuration has spheric
symmetry, and hence can only haveL50. The moment of
inertia isI50.

~ii ! For 0,a0,p/2, the equilibrium shape is deformed
The intrinsic state is a condensate ofN deformed bosons
which are superpositions of monopole and dipole bos
with cos 2a05cotx andp/4<x<3p/4. The ordering of the
rotational energy levelsL50,1, . . . ,N is determined by the
sign of the moment of inertia,

I5
N~sinx2cosx!

sinxcosx
. ~17!

For p/4<x<p/2 the moment of inertia is positive an
hence the ground state has angular momentumL50,
whereas for forp/2<x<3p/4 it is negative corresponding
to a ground state withL5N.

~iii ! For a05p/2, the coherent state is a condensate oN
dipole orp bosons. The angular momentum content is tha
a three-dimensional harmonic oscillator shell withN quanta:
L5N,N22, . . . ,1 or 0 forN odd or even, respectively. Th
moment of inertia is

I52
2N

sinx
. ~18!

This equilibrium shape arises for 3p/4<x<3p/2. For
3p/4<x<p, the moment of inertia is negative and th
ground state has angular momentumL5N. For p<x
<3p/2, the moment of inertia is positive and the angu
momentum of the ground state isL50 for N even andL
51 for N odd.

In summary, the schematic Hamiltonian of Eq.~5! gives
rise to three different equilibrium configurations or geom
ric shapes, which are separated by phase transitions.
analysis of the angular momentum content of the cor
sponding condensate combined with the sign of the mom
of inertia yields transparent results for the ground state
gular momentum. The results of Table I were obtained
assuming a constant probability distribution forx on the in-
terval 2p/2,x<3p/2. The ground state is most likely t
have angular momentumL50: in 75% of the cases forN
even and in 50% forN odd. In 25% of the cases, the groun
state has the maximum value of the angular momentumL
5N. The only other value of the ground state angular m
mentum isL51 in 25% of the cases forN odd. The fluctua-
tion in theL50 andL51 percentages is due to the cont
bution of thep-boson condensate. The sum of theL50 and
L51 percentages is constant~75%! and does not depend o
the total number of vibronsN.

An exact analysis in which the Hamiltonian of Eq.~5! is
diagonalized numerically for different values ofx yields
6-3
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identical results for the distribution of the ground state an
lar momenta as are obtained from the mean-field analys

III. RANDOM INTERACTIONS

In this section, we discuss the properties of the vibr
model with random interactions, or more precisely, with on
and two-body interactions with random strengths. We c
sider the most general one- and two-body Hamiltonian of
form

H5
1

N FH11
1

N21
H2G , ~19!

whereH1 contains the boson energies

H15ess
†
• s̃2epp†

• p̃, ~20!

andH2 consists of all possible two-body interactions,

H25u0

1

2
~s†3s†!(0)

•~ s̃3 s̃!(0)1u1~s†3p†!(1)
•~ p̃3 s̃!(1)

1 (
l50,2

cl

1

2
~p†3p†!(l)

•~ p̃3 p̃!(l)

1v0

1

2A2
@~p†3p†!(0)

•~ s̃3 s̃!(0)1H.c.#. ~21!

We have scaledH1 by N and H2 by N(N21) in order to
remove theN dependence of the matrix elements. The se
parameters of the Hamiltonian, altogether denoted by

~xW ![~es ,ep ,u0 ,u1 ,c0 ,c2 ,v0!, ~22!

are taken as independent random numbers on a Gau
distribution,

P~xi !5e2xi
2/2s2

/sA2p, ~23!

with zero mean and widths. In this way, the interaction
terms are arbitrary and equally likely to be attractive or
pulsive. The spectral properties of each Hamiltonian are a
lyzed by exact numerical diagonalization. The results d
cussed in this section are based on 100 000 runs.

In Fig. 2 we show the percentages ofL50, L51, andL

TABLE I. Probabilities of ground states withL50, 1, andN,
obtained in a mean-field analysis of the vibron Hamiltonian of E
~5!.

Shape L50 L51 L5N

a050 3/8 3/8 0 0
0,a0,p/2 1/4 1/8 0 1/8
a05p/2 3/8 1/4 0 1/8 N52k

3/8 0 1/4 1/8 N52k11

Total 1 3/4 0 1/4 N52k
1 1/2 1/4 1/4 N52k11
04431
-
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5N ground states as a function of the total number of
brons N. The vibron model shows a dominance ofL50
ground states. For even values ofN the ground state hasL
50 in ;71% of the cases, and for odd values in;54% of
the cases. Similarly, the percentage of ground states witL
51 shows an oscillation between;1% for even values ofN
and;18% for odd values. In;24% of the cases the groun
state has the maximum value of the angular momentumL
5N.

For the cases with aL50 ground state, it is of interest to
study the probability distribution of the ratio of excitatio
energies,

R5
E21

2E01

E11
2E01

, ~24!

which constitutes a measure of the spectral properties of
vibron Hamiltonian. The energy ratioR has characteristic
values ofR52 for the vibrational or U(3) limit@harmonic
oscillator, see Eq.~7!#, andR53 in the rotational or SO(4)
limit @Morse oscillator, see Eq.~15!#. Figures 3 and 4 show
that, both for odd and even values ofN, the probability dis-
tribution P(R) has two pronounced peaks, one at the vib
tional value ofR52 and one at the rotational value ofR

.

FIG. 2. Percentage of ground states with angular momentumL
50 ~solid line!, L51 ~dashed line!, andL5N ~dotted line! in the
vibron model with random one- and two-body interactions obtain
for 10<N<20 and 100 000 runs.

FIG. 3. Probability distributionP(R) of the energy ratioR of
Eq. ~24! in the vibron model with random one- and two-body inte
actions obtained forN519 and 100 000 runs.
6-4
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53. Moreover, for even values ofN there is a maximum a
R50, which is absent for odd values.

These numerical results are very similar to those fou
for the IBM in nuclear physics@5#, although there are som
differences as well. Despite the random nature of the in
actions both in sign and relative magnitude, the spec
properties show a surprisingly large degree of order. In
cent studies, the tridiagonal form of the Hamiltonian mat
in the U(3) basis of the vibron model was used to estab
a connection with random polynomials@12#. However, in
general the Hamiltonian matrix is not of this form, and o
has to look for alternative methods to understand the or
of these regular properties in an analytic and more intuit
way. In the next section, we apply the same mean-field te
niques that were used in Sec. II, to the general one-
two-body vibron Hamiltonian of Eqs.~19!–~21! with random
interaction strengths.

IV. MEAN-FIELD ANALYSIS

The potential energy surface associated with the gen
one- and two-body vibron Hamiltonian of Eqs.~19!–~21! is
given by its expectation value in the coherent state of
~10!,

E~a!5a4sin4a1a2sin2a1a0 . ~25!

The coefficientsai are linear combinations of the paramete
of the Hamiltonian,

a45rW•xW5
1

2
u01u11

1

6
c01

1

3
c21

1

A6
v0 ,

a25sW•xW52es1ep2u02u12
1

A6
v0 ,

a05 tW•xW5es1
1

2
u0 . ~26!

For random interaction strengths, the trial wave function
Eq. ~10! and the energy surface of Eq.~25! provide informa-
tion on the distribution of shapes that the model can acqu
The value ofa0 that characterizes the equilibrium config
ration of the potential energy surface only depends on

FIG. 4. As in Fig. 3, but forN520.
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coefficientsa4 anda2. Just as for the schematic Hamiltonia
of Eq. ~5!, the parameter space can be divided into differ
areas according to the three possible equilibrium configu
tions,

a050, a2.0,a4.2a2,

sin2a052a2/2a4 , 22a4,a2,0,

a05p/2, H a2,0,2a4,2a2

a4,2a2,0
. ~27!

In Fig. 5, the three regions in thea2a4 plane are labeled by
for the s-boson or spherical condensate (a050), by II for
the deformed condensate (0,a0,p/2), and by III for the
p-boson condensate (a05p/2). They are separated by th
separatricesa250, a4.0 for I-II, a2522a4 , a4.0 for
II-III, and a252a4 , a4,0 for III-I. The dashed curve cor-
responds to the schematic Hamiltonian of Eq.~5!, and is
characterized bya45sinx anda25cosx2sinx with 2p/2
,x<3p/2. In the previous section, we showed that th
Hamiltonian exhibits three phase transitions: second or
transitions atxc5p/4 andxc53p/4, and a first order tran-
sition atxc53p/2. The intersections of the dashed curve a
the separatrices occurs exactly at the critical pointsxc
5p/4, 3p/4 and 3p/2. To study the nature of the phas
transitions for the case of the general Hamiltonian of E
~19!–~21! we take an arbitrary ellipse in thea2a4 plane that
encloses the origin as its center. It is straightforward to sh
that the order of the phase transitions does not depend on
orientation nor the eccentricity of the ellipse. In other word
the phase transitions are independent of the angle u
which the separatrices are crossed.

The distribution of shapes for an ensemble of Hamil
nians depends on the joint probability distribution of the c
efficients a4 and a2 which, for the Gaussian distribution
P(xi) of Eq. ~23!, is given by a bivariate normal distribution

FIG. 5. Equilibrium configurations in thea2a4 plane:~I! spheri-
cal shape (a2.0,a4.2a2), ~II ! deformed shape (22a4,a2,0),
and ~III ! p-boson condensate. The dashed curve corresponds to
schematic Hamiltonian of Eq.~5!, and is characterized bya4

5sinx anda25cosx2sinx with 2p/2,x<3p/2.
6-5
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P~a4 ,a2!5E )
i 51

7

dxi P~xi !d~a42rW•xW !d~a22sW•xW !

5
1

2pAdetM
expF2

1

2 ~a4 a2!M 21S a4

a2
D G ,

~28!

with

M5S rW•rW rW•sW

rW•sW sW•sW
D 5

1

18S 28 230

230 75D . ~29!

The vectorsrW andsW are defined in Eq.~26!. The probability
that the equilibrium shape of an ensemble of Hamiltonian
spherical can be obtained by integratingP(a4 ,a2) over the
appropriate range I (a2.0,a4.2a2),

P15E
I
da4da2P~a4 ,a2!5

1

4p Fp12arctanS usW•sW1rW•sWu

AdetM
D G

5
1

4p Fp12 arctanA27

16G50.396. ~30!

Similarly, the probability for the occurrence of a deform
shape can be derived by integratingP(a4 ,a2) over the area
II ( 22a4,a2,0),

P25
1

2p
arctanS 2AdetM

sW•sW12rW•sW
D 5

1

2p
arctanA64

3
50.216.

~31!

Finally, the probability for finding the third solution,
p-boson condensate, is given by

P3512P12P250.388. ~32!

The angular momentum of the ground state for each of
equilibrium configurations can be estimated by evaluat
the moment of inertia. Just as in Sec. II, we adopt
Thouless-Valatin prescription, which leads to the formula

TABLE II. Percentages of ground states withL50, 1, andN,
obtained in a mean-field analysis of the vibron Hamiltonian of E
~19!–~21!.

Shape L50 L51 L5N

a050 39.6% 39.6% 0.0% 0.0%
0,a0,p/2 21.6% 13.3% 0.0% 8.3%
a05p/2 38.8% 17.9% 0.0% 20.9% N52k

0.0% 17.9% 20.9% N52k11

Total 100.0% 70.8% 0.0% 29.2% N52k
52.9% 17.9% 29.2% N52k11
04431
is

e
g
e

I5
2Nsin2a0

4~N21!F 1

2A6
v0cos2a02

1

6
~c02c2!sin2a0G .

~33!

The moment of inertia depends in a complicated way on
parameters in the Hamiltonian, both explicitly as seen in
denominator of Eq.~33! and implicitly througha0, which
determines the equilibrium configuration. For the schema
Hamiltonian of Eq.~5!, it was possible to obtain a close
expression for the moment of inertia, since in this case
properties depend on a single parameterx. However, this is
not the case for the general one- and two-body Hamilton
that we are considering here. Instead we have to solve
problem numerically.

In Table II we show the probability distribution of th
ground state angular momentum as obtained in the me
field analysis. The results are qualitatively the same as th
of Table I for the schematic Hamiltonian. There is a statis
cal preference forL50 ground states. This is largely due
the occurrence of a spherical shape~whose angular momen
tum content is justL50) for almost 40% of the cases@see
Eq. ~30!#. The deformed shape yields ground states eit

.

FIG. 6. Percentage of ground states with angular momentumL
50 ~solid line!, L51 ~dashed line!, andL5N ~dotted line! in the
vibron model with random one- and two-body interactions obtain
in a mean-field analysis for 10<N<20.

FIG. 7. Probability distributionP(R) of the energy ratioR ob-
tained for N519 and 100 000 runs for the spherical~solid line!,
deformed~dashed line!, andp-boson condensate~dotted line! equi-
librium configurations, respectively.
6-6



dd

en
f

s

on
en

f
ac

o

o
n

te
s

h

re
le
ve
uc
no
il

ra

ron
the
of
er-
und

a-
nd
oci-

rn
ape
f
as

y

ure,
ely,
ana-
r-

eld
f the
dies

uc-
an
ult,
hat

ex-
en-
the
sted
s of
does
tum
eo-
hese

ace
in-

ar.
nd
ed

he
te
ar

er
der

REGULAR SPECTRA IN THE VIBRON MODEL WITH . . . PHYSICAL REVIEW C65 044316
with L50 for positive values of the moment of inertiaI
.0, or with L5N for I,0. The third solution, thep-boson
condensate, gives rise to ground states withL5N and, de-
pending whether the total number of vibrons is even or o
to L50 or L51, respectively. The sum of theL50 andL
51 percentages is constant. In Fig. 6 we show the perc
ages ofL50, L51 andL5N ground states, as a function o
the total number of vibronsN. As is clear from the results
presented in Table II, the fluctuations in the percentage
L50 andL51 ground states withN are due to the contri-
bution from thep-boson condensate solution. A comparis
with Fig. 2 shows that the mean-field results are in excell
agreement with the exact ones. The difference observed
the L5N percentage arises from the fact that in the ex
calculations for approximately 5% of the cases, the value
the ground state angular momentum is different fromL50,
1, N.

In Figs. 7 and 8 we show the contribution of each one
the equilibrium configurations to the probability distributio
P(R) of the energy ratioR of Eq. ~24! for N519 andN
520, respectively. For both cases, the spherical shape~solid
line! contributes almost exclusively to the peak atR52, and
similarly the deformed shape~dashed line! to the peak atR
53, which confirms the vibrational and rotational charac
of these maxima. The occurrence of a peak at small value
R for N520 corresponds to a level sequenceL50, 2, 1. It is
related to thep-boson condensate solution~dotted line!,
which has angular momentaL5N,N22, . . . ,0. Thefirst ex-
citedL51 state belongs to a different band and has a hig
excitation energy. For odd values ofN the p-boson conden-
sate has no state withL50, and hence the peak atR50 is
absent.

V. SUMMARY AND CONCLUSIONS

We have investigated the origin of the regular featu
that have been observed in numerical studies of nuc
structure models with random interactions. The obser
spectral order is a robust property that arises from a m
larger class of Hamiltonians than is usually thought. It can
be explained by the time-reversal symmetry of the Ham
tonian, the choice of a specific ensemble of random inte
tions, or the restriction to at most two-body interactions.

FIG. 8. As in Fig. 7, but forN520.
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In this paper, we have carried out an analysis of the vib
model, which is an exactly solvable model to describe
relative motion in two-body problems. A numerical study
the vibron model with random interactions shows the em
gence of ordered features, such as the dominance of gro
states withL50 and the occurrence of vibrational and rot
tional band structures. In a mean-field analysis, it was fou
that different regions of the parameter space can be ass
ated with particular intrinsic vibrational states, which in tu
correspond to definite geometric shapes: a spherical sh
(;40%), a deformed one (;20%), and a condensate o
dipole bosons (;40%). Since the spherical shape only h
L50, and the deformed shape and thep-boson condensate
with an even number of bosonsN in about half the number
of cases, one finds anL50 ground state in approximatel
70% of the cases forN even and 50% forN odd. The spheri-
cal shape gives rise to the occurrence of vibrational struct
and the deformed shape to rotational bands. Qualitativ
these results are very similar to those obtained in closed
lytic form for a schematic vibron Hamiltonian which inte
polates between the harmonic oscillator@or U(3) limit# and
the Morse oscillator@or SO(4) limit#.

In summary, the present results show that a mean-fi
analysis provides a clear and transparent interpretation o
regular features that have been obtained in numerical stu
of the vibron model with random interactions. In Ref.@16#
we have applied similar methods to the IBM. Since the str
ture of the model space of the IBM is more complicated th
that of the vibron model, the analysis becomes more diffic
but the final results are qualitatively the same. The fact t
these properties are shared by different models seems to
clude an explanation solely in terms of the angular mom
tum algebra, the connectivity of the model space, or
many-body dynamics of the model, as has been sugge
before. The present analysis points, at least for system
interacting bosons, to a more general phenomenon that
not depend so much on the details of the angular momen
coupling, but rather on the occurrence of definite, robust g
metric phases such as spherical and deformed shapes. T
shapes are a reflection of an intrinsic geometry~or topology!
associated to the many-body dynamics of the model sp
which is sampled by the statistical nature of the random
teractions, but which is quite independent of them.

For the nuclear shell model the situation is less cle
Although a large number of investigations to explain a
further explore the properties of random nuclei have sh
light on various aspects of the original problem, i.e., t
dominance of 01 ground states, in our opinion, no defini
answer is yet available, and the full implications for nucle
structure physics are still to be clarified.
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