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Regular spectra in the vibron model with random interactions
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The phenomenom of emerging regular spectral features from random interactions is addressed in the context
of the vibron model. A mean-field analysis links different regions of the parameter space with definite geo-
metric shapes. The results that are, to a large extent, obtained in closed analytic form provide a clear and
transparent interpretation of the high degree of order that has been observed in numerical studies.
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[. INTRODUCTION many-body systems whose eigenstates have real energies and
good angular momentum and parity. It has been shown that

Random matrix theory was developed to describe statistithe observed spectral order is a robust property that does not
cal properties of nuclear spectra, such as average distrib@epend on the specific choice of tfieo-body ensemble of
tions and fluctuations of peaks in neutron-capture experitandom interaction$4,6,7,19, the time-reversal symmetry
ments [1,2]. In this approach, the Hamiltonian matrix [6], or the restriction of the Hamiltonian to one- and two-
elements are chosen at random, while keeping some glob&pdy interactiong8]. These results suggest that an explana-
symmetries, e.g., the matrix should be Hermitean, and b#on of the origin of the observed regular features has to be
invariant under time reversal, rotations, and reflections. Spesought in the many-body dynamics of the model space
cific examples include the Gaussian orthogonal ensembl@nd/or the general statistical properties of random interac-
(GOE) of real-symmetric random Hamiltonian matrices in tions.
which the many-body interactions are uncorrelated, and the The purpose of this paper is to investigate the origin of
two-body random ensembl@BRE) in which the two-body the regular features that emerge from random interactions in
interactions are taken from a distribution of random number& simple exactly solvable model. Hereto we use the vibron
[3]. For two particles, the two ensembles are identical but fomodel, which is mathematically simpler than the IBM, but
more than two particles, unlike the case of GOE, in TBRE€Xxhibits many of the same qualitative features. A preliminary
the many-body matrix elements are correlated. As a consexccount of this work has been published in R&6]. In Sec.
quence, also the energy eigenvalues of states with differeft we present a review of the vibron model by studying a
quantum numbers are strongly correlated, since they arisgchematic Hamiltonian with an arbitrary strength parameter.
from the same Hamiltonian. In Sec. Il we discuss the spectral properties of an ensemble

The latter aspect was investigated recently in shell modedf random one- and two-body interactions, which are inter-
calculations for even-even nuclei in tisel shell and thepf ~ preted in Sec. IV in a mean-field analysis. Finally, in Sec. V
shell[4]. An analysis of the energy spectra of an ensemble ofve present our summary and conclusions.
random two-body Hamiltonians showed a remarkable statis-
tical preference for ground states with angular momentum
and parityLP=0", despite the random nature of the two- II. VIBRON MODEL

body matrix elements, both in sign and relative magnitude. A The vibron model was introduced in 1981 to describe the
similar preponderance of'0ground states was found in an yotational and vibrational excitations of diatomic molecules
analysis of the interacting boson mod#M) with random  [20] and has also found applications in nuclear cluster mod-
interactiong 5]. In addition, in the IBM evidence was found g|g [21] and meson spectroscopg?]. In general terms, it
for both vibrational and rotational band structures. Accordingpro\,ideS an algebraic treatment to describe the relative mo-
to the conventional ideas in the field, the occurrenceof tion in two-body problems. The algebraic approach consists
=0 ground states and the existence of vibrational and rotgn quantizing the relative coordinates and momenta with vec-

tional bands are due to the very specific form of the interacior hoson operators with angular momentum and parfy
tions. Therefore these unexpected and surprising results have -

sparked a large number of investigations to explain and fur-
ther explore the properties of random nudlg+19|.

The basic ingredients of the numerical simulations, both 1 d
for the nuclear shell model and for the IBM, are the structure IO,FE( M= o
of the model space, the ensemble of random Hamiltonians,
the order of the interactionne- and two-body and the
global symmetries, i.e., time-reversal, Hermiticity, and rota- 3
tion and reflection symmetry. The latter three symmetries of p =—(r + _) (1
the Hamiltonian cannot be modified, since we are studying . a w
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and adding an auxiliary scalar boson witH'=0". The o=N,N—2,...,1 or O,
building blocks of the vibron model are then given by

ST,DL (n=-1,0,1. 2) L=01,...p0. (8)

Sometimes, the scalar and vector bosons are also called v-ll--he corresponding energy spectrum is given by
brons. The 16 bilinear products of creation and annihilation 1 N+ 1 v
operators are the generators of the Lie algebra of U(4) E=+————(N—0)(N+o+2)==+ N= 10( 1 )

T T4(N-1) CON+1
s's,s'p,.pLs.plp,  (m,v=—-1,01). 3 €)

The Hamiltonian and all other physical operators of interestvhere the+ (—) sign corresponds tg= /2 (3w/2). The
are expressed in terms of the generators. Therefore the totdfound state band has=(N—o0)/2=0 for y=m/2 andv
number of vibrons, =[N]/2 for y=3n/2.

N=sTs+ E prw (4) B. Geometric shapes
s The schematic Hamiltonian of Ed5) exhibits various
is a conserved quantity. The presence of the scalar bosdffoMetric shape@as well as the phase transitions mbgtween
9 y b them) which are relevant for the subsequent studies with ran-

makes it possible to consider, in addition to the three-

dimensional harmonic oscillator, also situations in which thedom interactions. The connection between the vibron model,

oscillator shells are mixed. In addition to the total number ofp_o_tennal energy surfa_ces, geometric shapes, and phase tran-
bosonsN, the eigenfunctions have good angular momentu itions can be investigated by means of standard Hartree-

L and parityP. For a more detailed discussion of the vibron . ose megn-ﬁeld .methoc[§4—26. For the v!brqn mOdel’ It
model see Refl23] and references therein. is convenient to introduce a coherent, or intrinsic, state ex-

pressed as a condensate of deformed bosons with axial sym-

_ o metry,
A. A schematic Hamiltonian
For the study of random interactions, it is convenient to 1 o N
first consider a schematic Hamiltonian which contains the N, @)= \/W(COS“S +sina po)™|0), (10
basic features of the modg24], '
siny with O==a=<m/2. The potential energy surface is then given
H=—cosyp'-p+————(s's"—p' p") by the expectation value of the Hamiltonian in the coherent
4(N-1) state,
X (ss=p-Pp), 5

- - EE(a)=E(N,a|H|N,a)=COS)(SiI’T26v+ESin)(COS?Za.
with s=s and pﬂ=(—1)1‘“p_ﬂ. The dots denote a scalar N N 4
product with respect to the rotation group. The range of the 1D
angley is that of a full period— 7/2< y<3/2, such that all
possible combinations of attractive and repulsive interaction
are included.

For x=0, 7 the Hamiltonian has a U(3) dynamic sym-
metry. The spectrum is that of a three-dimensional harmonic

g’he equilibrium configuration is characterized by the value
a= ag for which the potential energy surface attains its mini-
mum value,

oscillator, i.e., a series of oscillators shells with 10E(a) = 1 aZE(a)>0 12
N Jda "N ga?
n=0,1,...N,
The solutions can be divided into three different classes or
L=n,n—-2,...,1 or O. (6) phases:
; B (_1\"—(_1\L
The parlty_ of _the states iP=(—1)"=(—1)-. The energy ay=0, —ml2<y<l4,
spectrum is given by
E==+n, 7) Cos 2ng=coty, w/4<y=<3mwl4,
where the+ (—) sign corresponds tg=0 (). ag=7l2, 3mld<y<37/2, (13

For x=/2, 3mw/2 the Hamiltonian has an SO(4) dy-
namic symmetry. In this case, the harmonic oscillator shellsvhich correspond to as-boson or spherical condensate, a
are mixed by the Hamiltonian. The spectrum is that of adeformed condensate, and paboson condensate, respec-
deformed or Morse oscillator, which consists of a series otively (see Fig. 1. The nature of the phase transitions at the
rotational bands labeled by critical points y.= 7/4, 3w/4, and 37/2 can be investigated
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os b ' ' ' '] 2N sirfay

" cos 20pSiny (16

The ordering of the rotational energy levels is then deter-
s | | mined by the sign of the moment of inertia. In the following,
e we examine each one of the equilibrium configurations in
more detail.

(i) For ap=0, the equilibrium configuration has spherical
symmetry, and hence can only hake-0. The moment of

or . . . . inertia isZ=0.
05 0 0.5 1 15 (ii) For 0<ag<m/2, the equilibrium shape is deformed.
X The intrinsic state is a condensate fdeformed bosons,

which are superpositions of monopole and dipole bosons
with cos 2yy=coty and w/4< y<3m/4. The ordering of the
rotational energy levels =0,1, ... N is determined by the

. _sign of the moment of inertia,
by examining the Hartree-Bose ground state energy and its

derivates. The ground state energy itself is a continuous N(siny—cosy)

FIG. 1. Equilibrium configurations of the schematic Hamil-
tonian of Eq.(5) as a function ofy.

function of y, Sin YCoSy 17)
s Esinx - For w/4<y<m/2 the moment of inertia is positive and
4 hence the ground state has angular momentumoO,
1 1 coy whereas for form/2< y<3w/4 it is negative corresponding
—E(x)={ =zCoSy— — A< y<3ml4 (14) to a ground state with =N.
N 2 4siny (iii) For ag=m/2, the coherent state is a condensat&lof
1 dipole orp bosons. The angular momentum content is that of
\ cosy + 25X 3mld=x=3m/2. a three-dimensional harmonic oscillator shell witlguanta:

L=N,N—2,...,1 or O forN odd or even, respectively. The

The first derivative ofE(y) shows a discontinuity af, Mmoment of inertia is
=3m/2, and hence the phase transition between the spheri- ON
cal, ors-boson, condensate and thdooson condensate is of I=—— (18

first order. The phase transitions involving the deformed con- siny’

densate are of second order, since the second derivative % ibri h _ for mA<v<3m/2. F
the ground state energy is discontinuousyat w/4 and IS “equilibrium Shape arises 1or#eas y=omiz. For
37/4. 3wld< y<m, the moment of inertia is negative and the

ground state has angular momentum=N. For m<y
<3m/2, the moment of inertia is positive and the angular
momentum of the ground state is=0 for N even andL
In the previous section, we investigated the equilibrium=1 for N odd.
configurations of the schematic Hamiltonian of ). Each In summary, the schematic Hamiltonian of E§) gives
one of them corresponds to an intrinsic ground state bantse to three different equilibrium configurations or geomet-
IN,aq), whose angular momentum content depends on thgc shapes, which are separated by phase transitions. An
value of . The rotational energies can be obtained by apanalysis of the angular momentum content of the corre-
plying standard many-body techniques]. sponding condensate combined with the sign of the moment
In the coherent, or intrinsic, state of E(LO), the rota-  of inertia yields transparent results for the ground state an-
tional symmetry is spontaneously broken. In random phasgular momentum. The results of Table | were obtained by
approximation the corresponding spurious excitations are deassuming a constant probability distribution fpron the in-
coupled from the physical ones and lie at zero energy. Théerval — w/2<y<3mw/2. The ground state is most likely to
collective or rotational energies are then determined by théave angular momentum=0: in 75% of the cases fdN
inertial parameter associated with the spurious motion, even and in 50% foN odd. In 25% of the cases, the ground
state has the maximum value of the angular momenitum
E =iL(L+1) (15) =N. The only other value of the ground state angular mo-
o7 ' mentum isL=1 in 25% of the cases fdd odd. The fluctua-
tion in theL=0 andL=1 percentages is due to the contri-
where the moment of inertiais obtained from the Thouless- bution of thep-boson condensate. The sum of the 0 and
Valatin formula. The general procedure is described in RefL=1 percentages is constaiftc%) and does not depend on
[25] and applied to systems of interacting bosons in Refthe total number of vibronsil.
[26]. For the Hamiltonian of Eq(5), we find that the mo- An exact analysis in which the Hamiltonian of E&) is
ment of inertia is given by diagonalized numerically for different values gf yields

C. Rotations
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TABLE I. Probabilities of ground states with=0, 1, andN, 100

obtained in a mean-field analysis of the vibron Hamiltonian of Eq.
(5). 80 |

Shape L=0 L=1 L=N H 60

S
ao=0 38 38 0 0 S ol
O<ap<ml2 U4 158 0 1/8 =
ag=ml2 3/8 1/4 0 1/8 N=2k 5o [
3/8 0 1/4 1/8 N=2k+1
_ 0 / \\‘/’I ‘\'/ ‘\\/’l \\«’// \
Total 1 3/4 0 1/4 N=2k 0 ” ” 6 8 %
1 1/2 1/4 1/4 N=2k+1 N

FIG. 2. Percentage of ground states with angular momermtum

identical results for the distribution of the ground state angu~0 (solid line), L=1 (dashed ling andL=N (dotted ling in the
lar momenta as are obtained from the mean-field analysis. vVibron model with random one- and two-body interactions obtained
for 10=N=20 and 100 000 runs.

I1l. RANDOM INTERACTIONS . .
=N ground states as a function of the total number of vi-
In this section, we discuss the properties of the vibronbrons N. The vibron model shows a dominance b0

model with random interactions, or more precisely, with oneground states. For even valuesNfthe ground state hds
and two-body interactions with random strengths. We con—=0 in ~71% of the cases, and for odd values-i54% of
sider the most general one- and two-body Hamiltonian of thehe cases. Similarly, the percentage of ground states lwith
form =1 shows an oscillation betweenl% for even values dfl
and~18% for odd values. In-24% of the cases the ground

H=% H,+ Nile , (19) s_tal\tle has the maximum value of the angular momentum
. . For the cases with B=0 ground state, it is of interest to
whereH; contains the boson energies study the probability distribution of the ratio of excitation
b~ b~ energies,
Hi=es'-s—¢€,p'-p, (20
andH, consists of all possible two-body interactions, R— E21_ E01 (24)
E, —Ep '’
1 1

HZ:uOE(sTx sH©. (sx5) O+ uy(sTx p"H®. (px5)® _ _ _
2 which constitutes a measure of the spectral properties of the
1 vibron Hamiltonian. The energy rati® has characteristic
+ 2 = (ptxphHM. (pxp® values ofR=2 for the vibrational or U(3) limifharmonic
\S02 2 oscillator, see Eq(7)], andR=3 in the rotational or SO(4)

1 limit [Morse oscillator, see Eq15)]. Figures 3 and 4 show
oty AR (0) (2T (0 that, both for odd and even values Mf the probability dis-
+v°2\/§[(p xphH©@.(sx'5)@+H.cl. (21) tribution P(R) has two pronounced peaks, one at the vibra-

tional value ofR=2 and one at the rotational value Bf
We have scaleddH; by N andH, by N(N—1) in order to
remove theN dependence of the matrix elements. The seven
parameters of the Hamiltonian, altogether denoted by 4r

[SX]
T

()Z)E(fsyfp,UO,U1,C0,021U0)' (22

are taken as independent random numbers on a Gaussian § 51
distribution,

P(x) =€ %" g \2m, (23) "
with zero mean and widtlr. In this way, the interaction 0

terms are arbitrary and equally likely to be attractive or re-

pulsive. The spectral properties of each Hamiltonian are ana-

lyzed by exact numerical diagonalization. The results dis- FIG. 3. Probability distributiorP(R) of the energy raticR of

cussed in this section are based on 100000 runs. Eq. (24) in the vibron model with random one- and two-body inter-
In Fig. 2 we show the percentageslof 0, L=1, andL actions obtained foN=19 and 100 000 runs.
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>a,

FIG. 4. As in Fig. 3, but foN=20. FIG. 5. Equilibrium configurations in the,a, plane:(l) spheri-
cal shape ¢,>0,a,>—a,), (Il) deformed shape<{2a,<a,<0),
=3. Moreover, for even values ™ there is a maximum at and (1) p-boson condensate. The dashed curve corresponds to the
R=0, which is absent for odd values. schematic Hamiltonian of Eq(5), and is characterized bg,
These numerical results are very similar to those found=siny anda,=cosy—siny with — m/2<y<3/2.

for the IBM in nuclear physic§5], although there are some
differences as well. Despite the random nature of the intergoefficientsa, anda,. Just as for the schematic Hamiltonian
actions both in sign and relative magnitude, the spectrapf Eq. (5), the parameter space can be divided into different
properties show a surprisingly large degree of order. In regreas according to the three possible equilibrium configura-
cent studies, the tridiagonal form of the Hamiltonian matrixtjons,
in the U(3) basis of the vibron model was used to establish
a connection with random polynomiaJ42]. However, in
general the Hamiltonian matrix is not of this form, and one
has to look for alternative methods to understand the origin
of these regular properties in an analytic and more intuitive ;
way. In thegnext s?ec’ﬁon, we apply theysame mean-field tech- Sifao=—a,/2a;, —28,<2,<0,
nigues that were used in Sec. Il, to the general one- and
two-body vibron Hamiltonian of Eq$19)—(21) with random a,<0,2a,<—a,

. . =a/2, . 2
interaction strengths. Fo= a,<—a,<0 @9

CYOZO, a2>0,a4>—a2,

IV. MEAN-FIELD ANALYSIS
. . . In Fig. 5, the three regions in ttea, plane are labeled by |
The potential energy surface_ assomated with the genergl tr?e s-boson or sp%erical c?r?déngateo(: 0), by Ii fo?l
one- and two-body vibron Hamiltonian of Eq49)~(21)is  yhe geformed condensate <Qvy<7/2), and by Ill for the
?1|\(/)()an by its expectation value in the coherent state of Eqp—boson condensateng= 7/2). They are separated by the
' separatricesa,=0, a,>0 for I-ll, a,=—2a,, a,>0 for
E(a)=a,sina+ a,sirfa+a,. 25y -l and a,=—a,, a,<0 for lll-l. The dashed curve cor-
responds to the schematic Hamiltonian of Ef), and is
The coefficients; are linear combinations of the parameterscharacterized by, =siny anda,=cosy—siny with — 7/2

of the Hamiltonian, <x=3w/2. In the previous section, we showed that this
Hamiltonian exhibits three phase transitions: second order
.1 1 1 1 transitions aty.= w/4 and .= 3w/4, and a first order tran-
A= X=Z Ut Ut g Cot 3CoF Bl sition aty.=3/2. The intersections of the dashed curve and

the separatrices occurs exactly at the critical poigts
=l4, 3w/4 and 3r/2. To study the nature of the phase
transitions for the case of the general Hamiltonian of Egs.
(19—(21) we take an arbitrary ellipse in the,a, plane that
encloses the origin as its center. It is straightforward to show
- - 1 that the order of the phase transitions does not depend on the
A=t X= €t 5 Uo. (26 orientation nor the eccentricity of the ellipse. In other words,
the phase transitions are independent of the angle under
For random interaction strengths, the trial wave function ofwhich the separatrices are crossed.
Eq. (10) and the energy surface of E@5) provide informa- The distribution of shapes for an ensemble of Hamilto-
tion on the distribution of shapes that the model can acquirenians depends on the joint probability distribution of the co-
The value ofa that characterizes the equilibrium configu- efficients a, and a, which, for the Gaussian distribution
ration of the potential energy surface only depends on th@(x;) of Eq.(23), is given by a bivariate normal distribution,
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TABLE Il. Percentages of ground states with=0, 1, andN, 100
obtained in a mean-field analysis of the vibron Hamiltonian of Egs.
(19-(21). 80 |
Shape L=0 L=1 L=N H 60
S
ao=0 39.6% 39.6% 0.0%  0.0% S ol
O<ag<mw/2 21.6% 133% 0.0% 8.3% =
ag=7l2 38.8% 17.9% 0.0% 20.9% N=2k 50 | ]
0.0% 17.9% 20.9% N=2k+1 \ /
Total 100.0% 70.8% 0.0% 29.2% N=2k PPy ——.
52.9% 17.9% 29.2% N=2k+1 N

FIG. 6. Percentage of ground states with angular momethtum
7 =0 (solid ling), L=1 (dashed ling andL=N (dotted ling in the
P(ay,a,)= f H dx.P(x)8(a,— r. )2) S(a,— S. )Z) yibron modt_el with rand_om one- and two-body interactions obtained
i=1 in a mean-field analysis for EIN<20.

1 1 ay 2
= ——exp — = a4 a2 M_l , - 2Nsi 7))
27T\ detv 4 2 ( ) ap 1= 1 1
(28) 4(N_ 1) ﬁvocogafo_ E(CO_Cz)Sinzao
33
with 33
The moment of inertia depends in a complicated way on the
rr r-s 1 28 —130 parameters in the Hamiltonian, both explicitly as seen in the
M=|_._. .. =—( ) (29 denominator of Eq(33) and implicitly throughea,, which
r-s s-s/ 18\-30 75 determines the equilibrium configuration. For the schematic

Hamiltonian of Eq.(5), it was possible to obtain a closed

The vectors ands are defined in Eq(26). The probability ~ €xpression for the moment of inertia, since in this case all
that the equilibrium shape of an ensemble of Hamiltonians iProperties depend on a single paramgteHowever, this is
Spherica| can be obtained by integratiﬁga‘l’az) over the not the case for the general one- and tWO'bOdy Hamiltonian
appropriate range la,>0,a,> —a,), that we are considering here. Instead we have to solve the
problem numerically.
In Table Il we show the probability distribution of the

Pi= fda4da2P(a4,az)= i T+ 2arcta _|S's+r-s| ground stat_e angular momentum 'as.obtained in the mean-
[ 4 ydetv field analysis. The results are qualitatively the same as those
5 of Table | for the schematic Hamiltonian. There is a statisti-
7 cal preference foL. =0 ground states. This is largely due to
=47 72 arctan\/;s =0.396. B9 he occurrence of a spherical shapéhose angular momen-

tum content is just. =0) for almost 40% of the casgsee
Similarly, the probability for the occurrence of a deformed Ed- (30)]. The deformed shape yields ground states either
shape can be derived by integratiRga,,a,) over the area

” (_2a4<a2<0),
! n\/& 0.216 T
= Zarcta 3— . .

1 ’( 2./detM
a e —

P,=5—arctal =—=——=—=
2 2m S-s+2r-s 2
(3D &2}
Finally, the probability for finding the third solution, a 1t
p-boson condensate, is given by
0 T i
P;=1-P,—P,=0.388. (32 0 1 2 4

R

The angular momentum of the ground state for each of the F|G. 7. Probability distributiorP(R) of the energy raticR ob-
equilibrium configurations can be estimated by evaluatingained forN=19 and 100000 runs for the spherigablid line),
the moment of inertia. Just as in Sec. Il, we adopt thedeformed(dashed ling andp-boson condensat@otted ling equi-
Thouless-Valatin prescription, which leads to the formula librium configurations, respectively.
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In this paper, we have carried out an analysis of the vibron
3t 1 model, which is an exactly solvable model to describe the
relative motion in two-body problems. A numerical study of
the vibron model with random interactions shows the emer-
2 g ] gence of ordered features, such as the dominance of ground
: i states withL =0 and the occurrence of vibrational and rota-
tional band structures. In a mean-field analysis, it was found
that different regions of the parameter space can be associ-
ated with particular intrinsic vibrational states, which in turn
correspond to definite geometric shapes: a spherical shape

P(R)

0 1 2 3 4 (~40%), a deformed one~20%), and a condensate of
R dipole bosons {-40%). Since the spherical shape only has
FIG. 8. As in Fig. 7, but foN=20. L=0, and the deformed shape and fi#oson condensate

with an even number of bosom$in about half the number

of cases, one finds an=0 ground state in approximately
with L=0 for positive values of the moment of inertia ~ 70% of the cases fd¥ even and 50% foN odd. The spheri-
>0, or with L=N for Z<0. The third solution, th@-boson cal shape gives rise to the occurrence of vibrational structure,
condensate, gives rise to ground states witaN and, de- and the deformed shape to rotational bands. Qualitatively,
pending whether the total number of vibrons is even or oddthese results are very similar to those obtained in closed ana-
to L=0 orL=1, respectively. The sum of tHe=0 andL lytic form for a schematic vibron Hamiltonian which inter-
=1 percentages is constant. In Fig. 6 we show the percenpolates between the harmonic oscillafor U(3) limit] and
ages olL.=0, L=1 andL=N ground states, as a function of the Morse oscillatofor SO(4) limif].
the total number of vibron&l. As is clear from the results In summary, the present results show that a mean-field
presented in Table Il, the fluctuations in the percentages ainalysis provides a clear and transparent interpretation of the
L=0 andL=1 ground states witliN are due to the contri- regular features that have been obtained in numerical studies
bution from thep-boson condensate solution. A comparisonof the vibron model with random interactions. In REI6]
with Fig. 2 shows that the mean-field results are in excellenfve have applied similar methods to the IBM. Since the struc-
agreement with the exact ones. The difference observed fagure of the model space of the IBM is more complicated than
the L=N percentage arises from the fact that in the exacthat of the vibron model, the analysis becomes more difficult,
calculations for approximately 5% of the cases, the value opyt the final results are qualitatively the same. The fact that
the ground state angular momentum is different fiom0,  these properties are shared by different models seems to ex-
1, N. ) o clude an explanation solely in terms of the angular momen-

In Figs. 7 and 8 we show the contribution of each one ofy,m, aigebra, the connectivity of the model space, or the

the equilibrium conflguratlons to the probability distribution many-body dynamics of the model, as has been suggested
P(R) of the energy raticR of Eq. (24) for N=19 andN  potre The present analysis points, at least for systems of
= 20, respectively. For both cases, the spherical skapé interacting bosons, to a more general phenomenon that does

“?rﬁ?l Cﬁnt{%buaei arlrr:ogt e;}xc;éswilydto”rt]gi p?ﬁ” at 2|; art;d not depend so much on the details of the angular momentum
simiiarly the delformed shap@ashe 0 he peak a coupling, but rather on the occurrence of definite, robust geo-
=3, which confirms the vibrational and rotational character

of these maxima. The occurrence of a peak at small values c')«?etriC phases such as spheri_cal_ an_d deformed shapes. These
R for N=20 corresponds to a level sequehceO, 2, 1. Itis shapes are a reflection of an intrinsic geométnytopology

related to thep-boson condensate solutiofotted ling associated to the many-body dynamics of the model space
which has angular momenta=N,N— 2 0. Thefirst ex’- which is sampled by the statistical nature of the random in-

citedL=1 state belongs to a different band and has a highetreraCtionS' but which is quite independent of them.

excitation energy. For odd values Nfthe p-boson conden- For the nuclear shell model the situation is less clear.
sate has no state with=0, and hence the peak R=0 is Although a large number of investigations to explain and
absent. further explore the properties of random nuclei have shed

light on various aspects of the original problem, i.e., the
dominance of 0 ground states, in our opinion, no definite
V. SUMMARY AND CONCLUSIONS answer is yet available, and the full implications for nuclear

We have investigated the origin of the regular featuresStructure physics are still to be clarified.
that have been observed in numerical studies of nuclear
structure models with random interactions. The observed
spectral order is a robust property that arises from a much ACKNOWLEDGMENTS
larger class of Hamiltonians than is usually thought. It cannot
be explained by the time-reversal symmetry of the Hamil- This work was supported in part by CONACyT under
tonian, the choice of a specific ensemble of random interacProject Nos. 32416-E and 32397-E, and by DPAGA under
tions, or the restriction to at most two-body interactions.  Project No. IN106400.
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