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We discuss and explore new aspects of the generalized Dyson mapping of nuclear collective superalgebras
composed of an arbitrary fermion-pair algebra and a set of single-fermion creation/annihilation operators. It is
shown that a direct consequence of the particular mapping procedure is the conservation of the total number of
ideal particles in the resulting boson-fermion system. This provides a microscopic framework for the phenom-
enological supersymmetric models based on the Ugg/Bynamical superalgebras. Attention is paid to the
mapping of single-fermion creation and annihilation operators whose detailed form cannot be determined on
the phenomenological level. We derive the general expansion of the single-fermion images that result from the
similarity transformation employed to ensure nonredundant bosonization in the ideal space. The method is then
illustrated in an application to the $@ collective algebra, a natural extension of the(seniority model.
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I. INTRODUCTION particularly promising approach, based on a superalgebraic
extension of the so-called Dyson mapping of fermion alge-
It is well documented that low-energy collective states inbras[10], was pioneered by Dobaczewski and co-workers
even-even nuclei can be successfully described using the igee Refs[17—19. Among the main advantages of the tech-
teractings-, d-boson models, the so-called IBM]. The dy-  nique proposed there belongs the direct relation of the result-
namical groups of these models are bosonic unitary groupsag bosons to real fermionic pairs and the conservation of
either LP(6), or itsextension §7(6)© UP"(6) if proton and  two-body character of the model Hamiltonian. The method
neutron collective degrees of freedom are to be treated sepgehieves its nonredundant bosonization as a two-step
rately. Similarly_, the oddA and qdd—odd nuclei are desqribed process—no simpler construction is so far known—uwhich
by the interacting boson-fermion moge(llsBFM) [2] With  requires the utilization of a particular similarity transforma-
dyn?mmal groups of the éype%)@)u (20) and P7(6)  ion and leads to typical Dyson-like non-Hermitian struc-
®U™(2Q,)0U"(6)oU™(2Q),), where Z) is the capac- oo

ity of the valence proton or neutron shell and(20) the The aim of the present paper is to review and extend the

cqrresponding fermionic unitary group. As a natural generinain methodological aspects of the generalized Dyson map-
alization of these approaches, the above product boson-

fermionic groups can be embedded into the U(Ey2or ping [17-19 of nuclear collective superalgebras, emphasiz-
U™(6/20,)® U”(6/2),) supergroup$3—5]. The immediate ing those features that are directly related to phenomenologi-

consequence of this step is the possibility of a simultaneougal supersymmetrlc models. In particular, we show that the
description of a given even-even nucleus with its ddend conservation of the total number of bosons plus fermions in

odd-odd neighbors—a consequence that was recently vefgh€nomenological models is a direct consequence of the
fied experimentally[6—§] in the quartet of 1%41%pt and Mapping pr'ocedure. We also discuss the general structure 'of
195,196\, nuclei. single-fermion transfer operators that cannot be deduced in
A crucially important question imposed by the wide- detail on the phenomeno_log|cal level. Concrete new results
ranging success of all these phenomenological algebraic agte derived for the mapping of the & collective algebra
proached9] concerns their microscopic foundation. A vari- that had been used in the first attenipé] to investigate a
ety of methodq10] have been developed with the aim to Possible microscopic justification for the phenomenological
map the original fermionic problem of an even number ofsupersymmetry in nuclei.
particles into the bosonic language. To understand the nature The plan of the paper is as follows: Notation and the
of the supersymmetric boson-fermion models, however, thgeneral collective superalgebra of fermion operators are in-
mapping must be extended to cover also the odd-fermiotroduced in Sec. Il. In Secs. Il and IV we sketch the method
degrees of freedom. In spite of numerous technical difficul-of the fermion-boson mapping and subsequent similarity
ties it seems now that a basic understanding arises about ttransformations. The structure of the mapped Hamiltonian
link between the underlying fermionic interactions and thoseand properties of the single-fermion images are then dis-
appearing on the boson-fermion levske, e.g., Ref§11—  cussed in Secs. V and VI. In Sec. VIl we finally turn to some
15]), as well as the reason why the U(&/p-based dynami- examples, based on a simplified singlehell model, in par-
cal supersymmetry is relevant in atomic nudl&6—19. A ticular, to the mapping of S(2) and S@4) collective supe-
ralgebras. We show how matrix elements for the single-
particle transfer(relevant to the experimental identification
*Electronic address: pavel.cejnar@mff.cuni.cz of supersymmetry in nucldi6—8]) can be calculated in the
"Electronic address: hbg@sun.ac.za ideal boson-fermion space.
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Il. COLLECTIVE SUPERALGEBRA collective algebraof the specific nuclear model. Note that
although we usually assume that the dynamics selects a lim-
ited set of relevant pairs only, we can, in principle, consider
&h possible pairs,M=Q(2Q—-1), with i—=(u,v), A*”
=a*a”. The bifermion algebra is then identified with
SO(200) [17,18. _ _

The bifermion state#\'|0) and A/|0) are assumed to be
orthogonal and normalized to a common factor,

Let us consider a fermionic syste@tomic nucleuswith
the Hilbert space generated by a successive application of
finite number of single-fermion creation operatersto the
physical vacuum0). We assumg.=1- - - 2Q), enumerating
the available single-particle statéheir number is even due
to the Kramers degenergcgnd denote the corresponding
single-fermion annihilation operators @E(aﬂ)*. Any
physical observable can then be obtained in terms of opera-

1 . .
tors of the following form: EX{”)(J#fgéf : (5)
AP Pm=gpri. . gHtmg ... 1 . . L
vy 8 &y By @ as typically follows from a diagonalization of the two-

particle problem. This condition ensures the closure relations
for the collective algebra formed by the set of bifermion
creation and annihilation operato&, andA;, and by their

{a#;av} = 5’; ’ {a/J-'aV} :{ap, !av} = 0! (2) CommUtatorS’

wherem,n=0,12... Asfermionic operators satisfy the fa-
miliar anticommutation relations,

the algebraic structure formed by the operatdjsis clearly [AA]=gdl— X} .x7"a"a,, (6)
not an ordinary dynamical algebf20]. However, by divid- o A B
ing the set of these operators to two subsetenandodd, ~ With i,j=1---M. (Note that[A',A’']=[A; ,Aj]=0. The

according to whether the difference—n of the number of closure relations read as followhe summation convention

. S el is used for Latin indic
creation and annihilation operators m‘:l”_fm is even or &
1

n

odd, respectively, we get the following schematic relations [TA ,Aj],Ak]z[[Ai,Aj],AkT=C{LA|, (7)
for commuting and anticommuting operators from the two _ . _
sectors: [[A AL[AGATI=cL AL AT -Gl AR AL (8)
[even, evei=even, [even, odd=odd, where the structure constants
{odd, odd=even. 3 L1 ) .
_ _ _ = XX XE X 50 )
This means that the operators in Ed) define asuperalge- g

bra[21,22. Indeed, the mathematics of supergroups must be _,. .
; . e - Satisfy symmetry relations
naturally involved in any fermionic many-body problem if
treated in the algebraic framewofRO0]. =il = cll = (ciky* (10)
The superalgebra of operators in Ef). can be reduced to LU S
an ordinary dynamical algebra if one deals only wétven  Nte that according to E¢8) the commutatorg6) form a
numbers(N) of particles. Any initial state is then represented ¢ subalgebra of the collective algebra.
by an appropriate superposition of terrAg:*#N[0) and Of course, the use of the above collective algebra as the
transition operators may only contain terms with—n  gpproximate nuclear dynamical algebra can only be possible
=0,24... (the many-body self Hamiltonian is composed of for even nuclei. In the general case one has to consider also
terms withm—n=0). Only the even sector of the set in EQ. some odd operators. In the following, we keep the collective
(1) iS thUS inVOked. Yet further Crucial Simplifications can be a|gebra Of the above bifermion operators and extend |t by
achieved if stronger restrictions are imposed on the dynamicgonsidering the single-fermion creation and annihilation op-
of the system. In nuclear physics, the most important termgrators that give rise to single-fermion transfer operators be-
of the Hamiltonian and transition operators are often ex{ween even and odd systems. The algebra of collective op-
pressed via a certain limited set of fermion pairs, brieflyerators forms the even sector of the resulting superalgebra
bifermions We assume these pairs being represented by thghile the single-fermion creation and annihilation operators
following most general creation operators: belong to the odd sector. Indeed, in agreement with the gen-
eral superalgebraic ruldé8), we have

Al=_y' a*a’ 4 - i
2w “ A 3= (%A = X8 (1
(i=1---M; Greek indices occurring twice are subject to [Ai,a,u]:[a A]T=0, (12)
summation over the whole range from 1 t6 p, where the .
coefficients satisfy natural conditiong,,= — x},,= (x{"")*. [[AA],a*]=[a, [A AT =x oy ar (13

[The bifermion annihilation operators then read As
=(A)*= %X{”a,,a# .] According to the concrete set of pairs  Equations(2), (7), (8), and (11)—(13) define the superal-
we choose, the operato’s and A; belong to a particular gebra subject to study in this paper. In fact, it is a combina-
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tion of the above collective algebra with the Heisenberg-biorthogonal (1//]-L|1//iR):O for o;#0;. The nonunitarity of

Weyl superalgebra[21]. We will call it the collective the mapping thus only induces the need to treat separately

superalgebra right and left images of the physical states according to the
prescription

IIl. FERMION-BOSON MAPPING
YR =Tly), (PH=(IT7 1,

The superalgebraic nature of a general fermionic many-
body problem can be made explicit in terms of the usual
bosonic and fermionic degrees of freedom by using fermion-

boson mapping techniqués0]. In this way, the actualreal) h . . f th . 5
fermionic Hilbert space is mapped onto an “ideal” space that\Ot€ the Hermitian conjugate of the Usui operalor maps

describes a system of a certain numberbotonsand so- the physical subspace back to the real space, but it is not

Hant S . —1y+

calledideal fermions To accomplish this task, a variety of identical withT~= and, similarly, T ~) " goes from the real
different approaches have been employed in the literature. ([ Physical space but does not coincide with

this paper, we use a mapping technique that utilizes the so- !t Should be stressed that to keep the mapping procedure

called Usui operatof17,23,24, which is closely related to meaningful under these conditions, the proper distinction be-
the use of coherent and supercoherent st@s tween the physical and spurious subspaces is essential. In
The Usui operatofl acts on theproduct spaceH=H, fact, any operator that keeps the physical subspace invariant

®H; of the real and ideal Hilbert spaces. It transforms any@S an inverse image in the real subspace while there may be
real state vectoly)® |0) (containing the ideal vacuuninto no real counterpart of operators acting within the entire ideal
a corresponding ideal state vect@® ®|) (with the real subspace. . .
vacuum. If Py=|0%(0]®1 andP,=1®|0)(0| are projec- Cpn5|der as the most tr!V|aI example a mapping that does
tors onto the real and ideal vacua, respectively, one can d _oth!ng but renames partlz%les. We start with a set of real
fine thereal andideal subspacesf the product Hilbert space '"MONS (created by{a“},~;) and bosons(created by
as PoH and PoH (they are isomorphic with the original 1P }i=215)) and wish to end with 2 set of ideal fermions
spacesH, andH;). (The rest ofH is of no interesi. In the ~ ({a*},=;) and ideal bosons{B'};~,). The Usui operator
general case, the Usui operator does not have to map the rdfen reads
subspace onto the entire ideal subspace. The image of the '
real subspaceTPy,HCPyH, forms the physical subspace T=PoexpB'bi+a*a,)Py. (16)
while the rest of the ideal subspace contapsarious states

It seems reasonable to expect that any physically plausiblg is important to realize that the formal independence of
mapping should conserve scalar products, i.e., must be unphysical and ideal particles translates into the fact that any
tary within the real and physical subspaces. We will seeboson operator commutes with all the other boson and fer-
however, that this condition can be relaxed without reallymion operators while the real- and ideal-fermion operators
loosing physical meaning of the mappif0,25,28. Let us  anticommutewith each other. It is not difficult to see that
consider the mapping of physical operatd®s>0O, defined under the operator in Eq16) any vector describing a state

through the requireme®T=TO, or equivalently with fixed numbers of real particles of the given types trans-
forms into a vector with the same numbers of the corre-
sponding ideal particles. It means that the real subspace is
mapped onto the entire ideal subspace, keeping all scalar
_ _ products conserved and leaving no spurious states. The map-
whereO=1®0 is the ideal image of the real operatdr  ping (16) is thus unitary within the real and ideal subspaces
=0®1 andT ' is the inverse Usui operator in the physical while vectors orthogonal to the real subspace are annihilated

Subspace. It is clear that any set of Operators within the reaiy T. The Operator mapp|ng Corresponding to EI]G) is

subspace is transformed into a set of images acting in thgjvial: b'—B' b,— B, ,a*—>a* a,—>a,. This enables one

ideal subspace, all the algebraic relatidgesch asAB=C, o construct the ideal image of any real observable, conser-
A+B=C, [A,B]=C, {A,B}=C- ) being preserved in the vation of the hermicity being guaranteed.

physical subspacéor in the overlap of definition ranges of |t is clear that the fermion-boson mapping we intend to
the operators involved with the physical subspateT is  perform is not as trivial as the mapping in the previous ex-
nonunitary, the mapping does not preserve properties relategmple. First, the role of physical bosons is not be played by
to the Hermitian conjugation. In particular, ideal images ofsome actual bosons but by fermion pairs from &), whose
general physical operators will be non-Hermitian. Neverthegnnihilation and creation operators do not really commute in
less, becaus@ ~* must exist within the physical subspace the bosonic way, see E¢6). Second, as bifermions are not
(this condition cannot be relaxgdall operator images re- independent of single fermions, their operators do not com-
main isospectral with the respective real operators and thgute with fermion operators, see E¢$1) and(13). In spite
eigenvectors are related Ay Let us briefly recall that non-  of these difficulties, one still can keep the form of the Usui
Hermitian operators have two sets of generally differentoperator from the previous example,

eigenvectors, left and rightO[y)=0;|¢f) and (|0

=(¢//]-L|0j and different eigenspaces are not orthogonal but T=Pyq exp{B‘Aﬁa“aM)Po, (17)

GR=ITT [y =(T"H ). (15

O=TOT}, (14)
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although some of its key properties differ from those dis-which can be obtained either by mapping the right-hand side
cussed above. In particular, the spurious sector of the idedths) of Eq. (6), or—in a simpler way—by commuting the
subspace can no longer be avoided @rases to be unitary images of bifermion operators in Eq48) and(19). Also the
even within the real and physical subspaces. In fact, the a@nticommutation relations of real and mapped single-fermion
tual justification of Eq(17) comes from the use of so-called operators are identical. This means that E48)—(22) in-
supercoherent statg27] in both the real and ideal sub- deed define an equivalent ideal boson-fermion realization of
spaces, |C,¢)=expCA+¢,a")|0) and |C,¢)=expCB  the real-fermion superalgebra from Sec. II.

+¢Ma“)|0) (where C; and ¢, are complex and Grassman
variables, respectivelyAny state|) in the real space can
be represented by a functid(C,$)=(C, ¢|¢) and simi-
larly any[¢) in the ideal space yieldg,(C,¢)=(C,a|y). A. Hermitization

It can bfe sh_ownlthat the US”.' operfat?]r from Eﬁ_ﬂﬂ) (;:on- | It was stressed above that the mapping in Efj8)—(22)
isde;;ieZtaliggtig?zi[l triﬁgeuslgnkﬁtg?zs(s)eé ﬁ];szgf':\tlzr r?a ari? not unitary so that the ideal images of real observables are
) ' y func- generally non-Hermitian. On the other hand, we know that
tion f(C,qS)_represents_ a re?' statgs) and those functional within the physical subspace the spectra of these images are
representationg(C, ¢) in the ideal space that have no coun- real valued, identical with the spectra of physical operators.

terpart in the real space constitute the spurious sector. As the icular phvsical ideal-i it should
real and ideal supercoherent states span the whole real apg" @ny particular physical ideal-image operaibit should,

ideal spaces, respectively,does not map the real and ideal tnerefore, be E’?SSible to find a similarity traniformation
supercoherent states to each other. O0—0'=S,0S," such thatO’ is Hermitian. If |¢7) and
Using the Baker-Campbell-Hausdorf formulas for com-(z,b}'| are sets of right and left eigenvectors@f the operator

muting the physical operators through the exponential in Eqs,, must satisfy (/ij|S§SH|1,0iR)= 8, or, equivalently,

IV. SIMILARITY TRANSFORMATIONS

(17), one can derive the following operator mappiig]: S,jSH6= 6+S§SH. Indeed, one can take, for exampg,
1 =(TT") "2 where T*="P, exp@B;+a‘a,)Py [cf. Eq.
AiHAiJrgBi__C}erjBlBk_Xi ijBjaﬂa (17)]. However, as shown by Kim and Vincef29], it is

2 O v

often favorable to exploit the ambiguity of the hermitization
1 transformation—it is determined up to an arbitrary unitary
=Ai+[Aj L ABI— —c}'l‘BjB'Bk, (18  transformation—to set constraints upon the image of one of
2 the observables, e.g., the HamiltonidnNamely, if Sy her-
mitizes the Hamiltonian, then
A—B;, (19
Si=(SoT T~ o)~ *Suo (23
at—at+ x1'Bla,= o +[ A, a*]Bl, (20)
hermitizes, within the physical subspace, all physical observ-
a,—~a, (22 ables, while retaining the prescribed form of the Hamil-
tonian,SyHS, '= S, HS,g - This is very important since we
(i=1,...M andu=1,...,20). Here we introduced ideal- naturally require that the hermitization does not spoil some
bifermion operatorsA'= 3y, ,a*a”. Note that—in agree- important features of the mapped Hamiltonian, for instance,
ment with the above discussion—the ideal images of reaits one- plus two-body character.
creation and annihilation operators are not Hermitian conju- Hermitization transformations preserving the two-body
gated. The mapping is nonunitary. In fact, the ideal-fermioncharacter of the Hamiltonian were indeed described in some
and boson creation operatorg)’ and B', have no inverse particular casef29], but no general algorithm is known. One
image in the real subspacéhe existence of these inverse direct approach is simply to guess the desired Hermitian op-
images,X, would require the fulfillment of the contradictory eratorH’ isospectral withH and to construct a consistent
relationsXPy= P X with X=B' or a*). Formulas(18) and  similarity transformation. This is possible, under some spe-
(19 can be compared to those derived by mapping only theific conditions, using the following expression:
collective algebra without the odd sect@8]. It turns out

that the reduced Usui operatdr= P, expB'A)P, leads to % 1 k

exactly the same images of the bifermion opera#drandA, Sd=> |—P]| ., (24)
except that terms associated with the ideal fermions are miss- k=0\C-C |,

ing.

To complete the mapping of the whole fermionic superal- - . o
gebra, we need also images of the commutators of the bifeWhere P=H—H" and C is any operator satisfyingC,P]
mion operators. These are given by the following formula: =[H’,P]. In Eq.(24) we introduce the notation in which the
mark “ A" indicates the position where the operator with hat

[A All—>gdl - chB B — X, x| " a, (the firstC) is to be evaluated. The derivation of this formula
4 il ok and the positional operator formalism are sketched in Appen-
=[A, A']-c}B"By, (22)  dix. It is important to stress that Eq24) holds true
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only for a nondegenerate spectrum laf while otherwise tion Sg with the following properties:
divergence problems can be encountered.

In the majority of cases it is difficuliif not impossible to Se(A'+R)S; T =R, (26)
derive explicit expressions for the hermitized images of 1
physical operators using the general transformation in Eq. SgBiSg"=B,. (27)

(23). At first this difficulty seems to put serious restrictions 1. ) o
on the use of the mapping technique described above. Fortd"€ form of Sz~ is given by Eq.(A2) in the Appendix with
nately, the calculation ofatrix element®f physical opera- O'=R'B; and P=A'B;. However, it can be showfl8]
tors can be performed without really knowing the hermitizedthat[O’,P1=[ —C¢,P], whereCe=A'A, is the Casimir op-

images in the operator form, by using the obvious identityerator of the ideal fermion core algebfa [.A; ,.41]]=0,

(1|0l i) = (#4|0] #) or its modification conserving the total number of ideal fermioné= a*a,, . In

agreement with Eqg24) and (A6) we thus arrive at

(yalOlw2) =V (WAOlyB) (w507 9D, (29) i o\ Ne
. St=2 —A'B;| =exg———A'B;| ,
that both directly result from Eq$14) and(15) (the second k=0 \ Cg—Cr N 2(Ce—Cp) N
identity is usually favored in practical calculations as we will (29)

see in Sec. VII D. The evaluation of the hermitization trans-

formation is turned here into another nontrivial task—findingwhere the upper bound of the suky,.,, reflects the finite-
the left and right images of general physical states. Howeveness of the fermionic space. It is clear that, < and that
this can already be accomplished for certain sets of statethe real cutoff depends on the numbafgndNg of the ideal
namely those generated by some creation operators from tiermions and bosons present in the state to be transformed
real vacuum, i.e., for states having the fofg)=X"|0) (in this way also the higher-order terms in expansion of the
(where X* represents, e.g., a sequence of single-fermiorexponential naturally vanighLet us stress again that due to
and/or bifermion creation operatgrsThen one can write the limitations mentioned above and in Appendix, there is no
|,/,R):x_+|o) and (¢L|:(O|Ywith |0)=|0R)=]|0%). In this ~ general guarantee that ER8) converges. This is further
way, one can evaluate—using only the ideal images of stat#lustrated in Sec. VII, where the convergence requirement
vectors and operators—the complete set of matrix elementill set some limits upon the states to be transformed.

of the given real operator in an appropriate real bétis In order to obtain the transformed images of general
single-particle basis, for instancérhe goal of the mapping Physical operators, we also need to determine the form of the
can thus be achievd@®6,30,3]. inverse similarity transformatioisg. As the expansion of
Sgl in Eq. (28) consists of terms which increase the number
B. Bosonization of ideal fermions byAN=2k=0,+2,+4,4+6- - -, the same

. L . . must hold true also for th8;. If we define
The necessity for a similarity transformation following

the mapping described in the Sec. Il appears even before ( k

1
AAJBJ-) , (29)

considering the hermitization problem. This is evident from Si=
Ce—Ce A

Eq. (18) where the ideal image of the real pair creation op-
erator contains the ideal pair creation operator>.A'+R'
with R'=gB'—3c{B'B'By— x|, ,x/'Bla*a,. While all ie., if we rewrite Eq.(28) as
terms inR' translate the creation of a bifermion in the real
space into the creation of a boson in the ideal sggtis can
be accompanied by an interaction with another boson or fer-
mion), A' just introduces an equivalent ideal fermion pair. we find that
The real pairs are thus not truly bosonized by the mapping. ~ =
In particular, the real-bifermion stat&'|0) is transformed Sg=1+5 5+ St
into a superposition of ideal-bifermion and boson states, ...
(A'+gB")|0), and real fermion-fermion interactions are ex-
actly transmitted to the ideal Hamiltonian, where the addi- k
tional boson and boson-fermion terrfisee Sec. Yonly ob- 5= E (—=)" 2 S.S. - -S. (32
scure the original problem. n=1 kptkot - tko=k 1 7 "

This difficulty can be again overcome with the aid of the - -
formalism sketched in Appendix. Indeed, when consideringn particular, $;=—S;, S,=—S,+ Si, ..., cf. Ref.[18].
the operatorAlA; and its imageA/B;+R/B;, we see that These expressions enable one to evaluate the similarity trans-
the unwanted part containing! does not affect the spec- formationSgXS;* of an arbitrary operatoX, which changes
trum of the image. This follows from the fact that while the the number of ideal fermions by a specific valtg/, as a
R/B; operator is diagonal in the basis characterized by numseries where individual terms correspondAd/, AN+ 2,
bers of ideal bosons and fermions, tWeB; term has an AN+4, etc. We use these expansions in Sec. VI when dis-
upper off-diagonal block structure in the same basis. Wegussing the general form of transformed single-fermion im-
therefore, anticipate the existence of a similarity transformaages.

Sgl=1+S,+S,+ S5+ - -, (30)

(31)
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V. CONSERVATION OF THE NUMBER OF IDEAL suitably selected transformati@®,.) This result holds true
PARTICLES for any collective algebra we decide to start with.

One of the most interesting questions immediately arising '€ iMage(34) conserves numbers of bosons and fermi-

from the previous considerations concerns the link to Supergns_,separatelywhlqh is the structure known from the inter-
algebras of the type W(/2Q) known from phenomenologi- athmg bosFon-fermlon moddl2]. It seems, therefore, that
cal boson-fermion models of nuclear structiBe-5,9. The U (M)®U (2€2) could be equally well ghosen as the dy-
use of these dynamical superalgebras on the phenomenologi2ZMical algebra on the phenomenological level instead of
cal level is motivated by the fact that they provide a direct (M/ZQ)' Note that the ch0|c_e of the phenomenological
generalization of the unitary bosonic and fermionic algebradynamical algebrésuperalgebrais more or less a matter of

that proved to be relevant and successful in the description onvenience; it certainly does not result from the mapping
collective states in both even and ottd-A or odd-odd procedure that only constructs a boson-fermion realization of

nuclei[1,2,9. In fact, generators of the proton-neutron Supe_the original collective superalgebra. If, nevertheless, the

ralgebra U(6/2Q) ) ® U”(6/2Q),) produce a class of related U(M/20) dynamica;]l superalgebra is erfnployed, it meSt t_)e
Hamiltonians that seems general enough to simultaneous§ECOMPOsed into the above product of boson and fermion

describe low-energy spectra in quartets of nuclei whos&nitary algebras in the very first step of any relevant
nucleon(proton and/or neutrgmumbers differ by ong5,9]. dynamlcal-gymmetry chain. This indeed happe_ns in the phe-
nomenological mod€l5] used to analyze experimental data

L[@—8]. From this point of view, the hitherto discussed super-

fermions,Nge= Ng + hereN.=BIB.). We thus enquire symmetric desc_riptipn Qf neighboring even-even, odd—odd,
lons, Neg=Ng + A (W B ) . au and oddA nuclei relies just on the use of the IBFM with a

whether this also holds for the Hamiltonian mapped from &~ | ¢ hich i | ion based
microscopic real-fermion Hamiltonian. Let us stress that thi>ing'e set of parameters, which s a natural expectation base

property cannot be deduced from the conservation of th&" .the mapping of.the same microsco.pic Hamiltoriag)
number of real fermion®N by the original nuclear Hamil- acting on spaces with various reaI-ferrmon numieee also
tonian sinceN corresponds to 95+ A\ on the boson-fermion Ref. [19] in t.h's re_gard. At the same time we note that the
level, as dictated by the fermion-boson mappliggy. (54) above considerations are not in contradiction with the re-

below]. It is nevertheless clear from Eq4.8)—(22) that any cently ~proposed possibility_[32—34 th‘f"t a up/ T“) .
fermionic many-body Hamiltonian composed of operatorsCU(M/ZQ) supergroup may in fact constitute a real invari-
belonging to the collective algebra, e.g. ance symmetry of the nuclear Hamiltonian, without refer-

ence to an underlying dynamical symmetry, giving rise to
boson-fermion “supermultiplets” in neighboring nuclei.

We conclude this section by the remark tiganeralone-
plus two-body Hamiltoniangfor instance, those containing
ata’asa, (33 general single-particle terms,a“a,) do not have to con-

serve the number of ideal particles after the mapping. This
[wherevi'=(v})* and Wf=(W})* are arbitrary coefficients probably misled the authors of R4fL6] who ascribed the
associated with two- and one-body interactions, respectivelfpnservat'qn property to only.the Schw[nger type of map-
andu=u* is an additive constahtis mapped onto an ideal ping wh|le_ It was _aIIege_d to fail for mappings that associate
Hamiltonian that indeed conserves the total number of ideal?.oSons with fermion pairs. Howe_ver, from_th_e above discus-
particles. This conclusion remains unchanged even after thgon we see that the |_deal-part|cle numb@rmdeed con-
similarity transformation in Eqg26) and(27). The resulting served in the .generallzed Dyson mapping as _far as the
Hamiltonian keeps the same ideal-fermion mean field as thgwapped col!ecyve aIg(.abra' represents the dynammgl algebra
original real Hamiltonian(33), but the fermion-fermion in- of the fermionic Hamntonlar{for instance, if the' single-
teraction is replaced by boson-involving terms that describ article terms are given only by the commutators in .

a boson mean field and boson-boson plus boson-fermion i AN enquiry ahout the most general set of fermion Hamilto-
teractions nians (beyond the preselected dynamical algeliteat con-

serveNge after the mapping is hampered by the following
difficulties: (i) the ideal image of the Hamiltonian does not
have to commute witiNgg in the whole ideal space, but only
1 o o in the physical subspace, afid) there are no obvious can-
- (Ec{}‘kv'm) B'B'B\B,— ()(':wxi”v{()B'a”Bja,,. didates for fermion space counterparts to the observables as-
sociated withNg and.\.

H=u+u]AA+W[A Al]=(u+gw) - (x)x/"W))a"a,

T, ]

1 i
+ ZX,quJ Uj

Hi= (u+ W) = (xLox! W) a*a, + (gv] - clfw)B'B

(34)
The image in Eq(34) is still non-Hermitian in both interac- VI- SINGLE-FERMION IMAGES
tion terms, but, as discussed in Sec. IV A, the similarity While the action of the similarity transformatid@8) on
transformationSy can be chosen such that it does not affectthe bifermion images is by construction guaranteed to yield
the particle number conservatiofin the matrix representa- the compact result®6) and (27), the expressions for trans-
tion connected with fixed particle numbers the Hamiltonianformed single-fermion images can only be determined in an
has a block-diagonal structure that can be preserved by expanded form, using Eq§29)—(32). Denoting the “bare”
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single-fermion images appearing in Eq20) or (21) by X,
one can write
SeX S5 =X+ X+ Xp+ Xgt - - -, (35)

where individual terms are determined by
k
Xi=[X,8d+ 2, (-)"?

x >

SSq, S [X.S 1 (39
Ky+kot - +ky=k

or recursively from

X]_:[X,Sl], XZZ[X!SZ]_SZLXL ey

Xi=[X,S]=Si1Xk-1= S Xk o= - =S 1Xy. (37

In the expressions abovécan, in principle, be any physical
the termX, changes the number of

operator. WithX=a,
ideal fermions by AN=2k—1, while with X=a*
+x{"Bla,=X"+X" we haveAN=2k+1 for Xy and AN

PHYSICAL REVIEW C 65 044313

[Ce[Cr - [Cr A'Bi]---]--+]n n=0,12..., (40)
that denote various forms of the boson decomposition into
ideal fermions and bifermions; far=0 we have just4'B; ,
while then=1 term isx,,x|"A'a"a,B;, etc. While ex-
pressions from Eq(38) or (39) Appear only once in each
term of the series, those from E@0) generally have a mul-
tiple occurrence.

We have already seen that the most general transformed
images of the single-fermion creation and annihilation opera-
tors contain terms that change the number of ideal fermions
by AN=-1,+1,4+3,+5---. Inview of the elementary pro-
cesseqa)—(c), the actual value oAN in a given term is
determined by the number of repetitions of the background
processeg40). Relative weights appearing with increasing
AN are expected to decrease according to the increasing
power of the denominator in E¢R9) [cf. Egs.(65) and(69)
below]. In addition, terms corresponding to lar§e\ are not
likely to play a significant role in matrix elements for low-
energy nuclear states as the decomposition of bosons into
separate noncollective fermions is associated with higher en-
ergy excitations. As argued in R¢flL8], it may be plausible

=2k—1 for X]. The transformed images of both annihila- to cut off the terms witlAN=+3. We will see in Sec. VI

tion and creation operators thus contain terms witN=
-1,+1,+3,+5--- [18].

that for some algebras these terms can vanish identically.
Even with the restrictiod V< + 1, however, the most gen-

The series(35) for transformed single-fermion images eral formula built of terms from Eq$38)—(40) comprises an
comprises(i) the operators contained in the bare single-infinite series(terms with alln’s). The situation is much

fermion images, i.e.q, or a* andy“'B'a,, and(ii) those
in the similarity transformationsgl andSg, i.e., A'B; and

(Ce—Cp). In any term of the series, there can be only one

operator from(i) and an arbitrary combinatiofno restric-
tions to multiplicity) of operators fronii). To determine the

simplified if Cr is just a function ofA/ (or number operators
associated with some fermionic subspac&hken, evaluating
only the AN=+1 terms, one gets

Spa,Sgt=a,+x),a'Bi+ Ala,BFN)+- -, (41)

physical interpretation of these expressions by inspection, we

first commute C=—Cr) from all places of its occurrence to
the respective positional marks and then to the right-hand
side in all terms of the series. It then turns out that the re-
sulting formulas can be decomposed into building blocks
representing some elementary proces&@<rocesses corre-
sponding to the ideal-fermion creation,

[Ce.[Ce - [Cera®]- -1 1,

[Ce[Cr - -[Crx"Bia,]--1---]n n=012....
(39)

Sp(a+ x[""Bla,)Sg ' = x"Bla, + a*+ x[""x,,a"B'B
+xt"Ala,F (V)
+xt Ala, BBF(N)+- -+,
(42

where F(N) and F'(N) are some functions of the ideal-
fermion numbe(s) that are directly related to the forit:
=f(N). This general result is illustrated by specific ex-
amples in Sec. VII C.
It is clear that even after the transformati@b) the im-
Here, then=0 terms emerge as just* and x/“"B'a,, the ~ 2ges of real-fermion creation and annihilation operators are
' not Hermitian conjugated; cf. Eq&tl) and(42). As the gen-

n=1 terms as(}"A'a, andx/"x},,a”A;B', etc. These ex- | hermitizati ¢ X ¢ the singl
pressions can be interpreted as processes that encomp?é@l ermitization transformation, E¢23), of the single-

single-fermion creation, coupling of the created fermion into/€/MiON images in an operator form seems intractable, at
a pair, and the bifermion—boson transformaticat fermi-  '€ast in the general case, one has to tum to the evaluation of
ons of course being of the ideal typeh) Processes corre- the smgle-fermmn matrix elements in a spemﬂp basis by the
sponding the ideal-fermion annihilation, method described in Sec. IV A, see H5). This step, of

course, critically depends on the concrete form of single-
[Ce[Cr - [Criay]-- -1+ ]n €S al
amples are given in Sec. VII D.

fermion images after the bosonization transformation. Ex-
which appear just as the Hermitian conjugate of the first We conclude this section by noting that the general results
commutator in Eq(38) and receive analogous diagrammatic discussed here may suggest expressions suitable for the de-

n=0,12..., (39

interpretations(c) Background processes accompanyiay
and(b),

termination of single-nucleon transfer amplitudes within the
phenomenological superalgebraic models. In fact, on the
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phenomenological level only very general considerations,
such as tensorial properties and effective particle number
properties, relate to this question, as the transfer operators
are beyond the WI/2Q)) superalgebra. A link to micro-
scopic models is thus essential. For instance, we can recall It is evident that by dividing the fermionic space into two
the formula fitted to experimental data in Ref§,7] and  subspaces, the first one spanned by single-fermion states
compare it with the most general form discussed above. Waiith |u|</2 and the other by states withu|>Q/2, the

see immediately that although the image of the singleSQ(4) algebra can be decomposed into a tensor product of

122 11 22 12 21 12 21
C11= C55= €= C11= C15= C51= C51=C15= 2,

12 21 12 21 11_ .22 11 22
C17= C3;=C35=C11=C13=C31=C31=C15=0. (49

fermion creation operator given by E) in Ref. [6] con-
tains terms describing plausible processes with=+1,
some other possibly relevant terms are missing.

VII. EXAMPLES: SU (2) AND SO(4) MAPPINGS

A. Definition of the algebras

In this section, we illustrate the general considerations of

two independent S(2) algebras. Accordingly define the fol-
lowing transformation of bifermion operators:

A<=E(A1+A2)=E (—)"rakta~r, (49
2 2 mgn/z ’

A>=1(A1—A2)=1 (—)~*ata~*.  (50)
2 2 mgﬂfz '

the previous sections by simple examples concerning fermi-

ons in a single shell with total angular momentynthalf
integey. Accordingly we consider a set of (P=2j+1
single-particle states created lay‘zaf# with u=—j---

Both A< and A~ are just theS'-type bifermions in the re-
spective subspaces, cf. Eg3). We have[ A_ ,A<]=(Q/2
—N.), [A. ,A”]=(Q/2—N.), and[A_. ,A"]=0, where

+j. We will deal with the simplest algebras based on thesdN~ and N-. are fermion number operators associated with

operators, namely, the $2) seniority algebrd35] and the
extended SQ@) algebra[16,36.

both the subspacedN_.=(N-+Q)/2, N.=(N—Q)/2. The
only nonzero structure constants are==cZ2=2. Let us

In the SU2) case we introduce only one type of fermion note that the new bifermion states are not generally normal-

pair, namely,
1 .
At=ST=2 2 (=) rara . 43
o

SQO4) contains the paif43) and another one given by

A2=E< ; (_)j_Ma#a_M_ ; (—)j_”a“a‘”.
2\ |uf=0r2 lu>0r

(44)
In the notation of Eq(4) we can write

(=)i=# for v=—p
1 _ 4
Xpv |0 for v#—u, (45)
(=) for v=—pu,|u|/<Q/r2

X,ZWZ — (=) for v=—u,|u|>QR2  (46)

0 for v#—u

and from Eq.(5) we getg={).
Al and A, together with the commutatdrA;,Al]=Q

—N (whereN=a*a, is the real-fermion number operator

close the SIR) algebra with the only structure constzﬂﬁ
=2. In the extended case we introduce an operator
Q=o%a’a,, (47)
where o= = §% with the upper(lower) sign valid for | u|
<Q/2 (|u|>Q12). The bifermion operators together with
and Q then close the S@) algebra,[A;,A]=[A,,A?]

=0—N,[A;,A?]=—Q, with the following structure con-
stants:

ized to a common factoKO|A_A<|0)=Q_, (0|A-A"|0)
=0. with Q_=Q0_-=Q/2 for Q even, butQ_=(Q
+1)/2,Q.=(Q—1)/2 forQ odd. Acommon normalization
for odd Q2 would introduce some additional factors that we
skip here for the sake of simplicity.

B. Mapping of the even sector

By the straightforward application of Eq&l8) and (26)
we get

Al—B(Q—Ngp) (52)

for the SU2) algebra and
Al—B(Q—Ngp)—B?(Q+B'B;/), (52
A?—B*(Q—Ngp) —BY(Q+B'B;)), (53)

for the SA4) algebra. Here we introduce boson creation and
annihilation operator§i andB; with i=1 for SU?2) andi
=1,2 for SA4). We also defineNg=B'B;, N'=a*qa,,
Nge=Ng+ N, andQ=o0"%a"a,. In the SQ4) case the sum-
mation convention is used such tHaiB;, stands forBB,
+B2B,. From Eq.(22) it follows that

N— N+ 2Ng (54)
for both the SW2) and S@4), and
Q—Q-2B'B; (55)

for the SQ4).
Instead ofA! and A2 we can also map the bifermions
from Egs.(49) and(50). The result is then

A~—>B= (/2= Ngeo), (56)
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A”—>B”(Q/2—Ngg-), (57)  The operatorss, in Eq. (29) thus read as
No—N_+2Ng_, (58 1 k(Q—N— k)!
Sk:kT(AlBl) RO (65
N-—>N-+2Ng- , (59 ) ( :

where Ng.=B~B., Ng==B"B., No=(N+Q)/2, N> which is equivalent to the known expressid®]

=(N—9Q)/2, Ngpo=Ng-+N_, and Ngg.=Ng-+N-.

Both SQ4) results, Eqs(52)—(55) and (56)—(59), can be .

combined using the bosonic counterpart of the transforma- (Q— N+N
-1

tion in Egs.(49) and(50), 2
Ss =—equlBl)A (66)
B<:Bl+ BZ, B>:Bl_BZ, (Q N)

[cf. Eq. (A5) in AppendiX. It is instructive to note that the

above expressions for the similarity transformation converge

under limited conditions only. Consider the caseN6& ().

which results from the linearity of mapping. It should be Then we see that the expression in E8f) diverges for()

noted that the new boson creation and annihilation operators N+ 1<k<Ng (the upper limit follows from the fact that

in Eq. (60), unlike B' andB; with i=1,2, are not related by S, gives just zero if it attempts to annihilate too many

the Hermitian conjugation—a result of nonunitarity of the bosong. So the divergence problems are avoided if

mapping. If, in contraryB® andBe, where® denotes<

and >, were chosen to be Hermitian conjugated, the same N+ N

would not hold forB' andB; . N+Ng= <Q. (67)
The mapping of the most general one- plus two-body 2

Hamiltonian(33), evaluated for the two algebras under dis-

1 1
B<:_(Bl+82), B>:_(Bl_Bz), (60)
2 2

cussion, yields Beyond the validity of Eq(67) the forms(65) and (66) of
the similarity transformation is invalid and another deriva-
He(u+Qw;) ~wWiN+ (v1—2wp)Ng+uiNg(Q — Negg) tion would be requiredsee the remark below Eg4A1) in

(61)  Appendix.
In the S@4) case the construction of a similarity transfor-
mation turns out to be more difficult as the denominator in
Eq. (28) cannot be expressed as a function/af We can,
however, use the SU(Z)SU(2) type of mapping, Egs.
+(v!,+2W’:,)B‘Bi,+va‘B-(Q—NBF)—(v%BlBl (56)—(60), for which the analogy with the single $2) case
can be fully exploited. The Casimir operatéy=2(A~A_
+v2B?B,+v1B?B,;+v5B'B,)(Q+B'B;)) (62  +.47.A.) then reads as a sum of two terms of the fdf8).
Again, seniorities corresponding to both subspaces are not
for the SA4). We note that whereas the mapped (3U affected by A'Bi=2(A~B_-+.4”B-) and the following
Hamiltonian is manifestly Hermitian, the $9 Hamiltonian  substitution can be used within E@8):
is not, because of its last term.

for SU(2) and

Hi (u+ Ow) WA~ w}, O+ (v}~ 2w!)Ng

C. Similarity transformations and mapping of the odd sector Cp—ap—>(N<—N<) Q_+1— %M) +(N>—./V>)
Let us finally focus on the form of single-fermion images

for both algebras. The similarity transformati@8) depends No+ AL

on the form of the Casimir operatGg. For the SW2) alge- Xl Qo +1- — | (68)

bra we can introduce the seniority quantum numidB5]

such that
From this expression we find that

CFEA1A1=%[(Q—v)(Q+2—v)—(Q—N)(Q+2—/\/)]
(63) Sc=

in the seniority eigenbasis. BecaudéB; does not change

ko L=k K<Tks '(A Bo)*<(A”B.)"

(Q<_N<_k<)!(ﬂ>_N>_k>)!

(the number of fermionsot coupled in pairs the first term (69)
in Eq. (63) does not contribute in Eq28) and one get§19] (D= N)NH(Q=—N2)! ’
5 1 N N+ N with the summation going frork. ,k. =0 to k. In analogy
Ce=Crm g W= M) 041 = — ) ©®4  ith Eq. (66) we also have
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A A - Qe—N
‘# !( ) B, + ot
Sgl= - . exp(A~B_
(Q—N)! (Q-—NM)! 4% Q¢ —Ngre 76
+A7B)A - (70) “(Qet+1-Neg)(Qeg—Ne)'

where the bulle® stands for> or <, depending on which
subspaceu belongs to. Equationé75) and (76) are direct
analogues of the single-fermion images in the@ldase, cf.
Eqgs.(73) and (74).

For N_<Q_ and N.<Q. the convergence of Eq69)
requires, in analogy with Eq(67), Ng-<Q_—N_ and
NB>$Q> _N> .

Now we can evaluate the similarity transformation of the
images of single-fermion annihilation and creation operators.
We already know that in general the resulting series contains
terms changing the number of ideal fermions &y/=—1, To demonstrate the utility of the results derived above, we
+1,4+3,.... In the SW2) case, however, all terms with calculate matrix elements of single-fermion and fermion-pair
AN= +3 vanish. Indeed, it can be shown that wghfrom  transfer operators using the ideal boson-fermion images. We
Eq. (65) we have start with the SW2) case, where we consider the following

three normalized fermionic states:

| o) = Co(AHYN?|0),

D. Fermion and bifermion transfer matrix elements

[a,,S]—S-1la,,$:]=0 (71)

for k=2,3,...,which together with Eq.(37) implies that
X=0 for k=2 with X=a, being the bare image of the
annihilation operator. In the bare image of the creation op-

(77)
erator, X=a*+Ba,=X'+X", where a,=(—) "*a_, _ _
the first term changes the ideal-fermion numbeHb;z and (N or N+2 are even numbers of paired fermiarihe ma-
the second by—1. The condition for the cancellation of trix elements of the single-fermion and fermion-pair transfer

J\/> +8 terms in the transformed image, therefore, reads agperators between these states depend just on the normaliza-
Xi=—X!.,, ie., tion constantC,, C,, andC, and one readily finds

|¢1)=Cra*(AHN?0),

|2) = Co(AHYN2 2| 0)

[, S]+[Ba, S 1]-S{B"a,.S]=0 (72

fork=1,2,3 ... .Again, it can be proven from E¢65) that
Eq. (72) is valid. For the transformed 3B) single-fermion
images we finally obtaif19]

~ 1 1
yn 1

a,~a,ta BlQ—N+A Bla“(ﬂ-l—l—./\/)(ﬂ—./\/)’

(73
~ Q_NBF ~ Q_NBF

7 1 m _ 11

a*“—B a,ta O-N aM(Q+1_M(Q_M.
(74)

[In analogy toa, we definea®=(—)"*“a ~]
To derive the single-fermion images in the @Dcase,

one first shows that Eqg$71) and (72) are again fulfilled

with S, from Eq. (69), if B! in Eq. (72) is replaced byB®
=B~ or B~ according to whethefu|<Q/2 or |u|>Q/2,

respectively. This means that the series for the transformed

single-fermion imagesSga,, SB and Sg(a“+B®a )SB
both terminate at the terms with/ /= + 1. We thus obtaln

aHa-i—aB.Q N
[ ] [

1

+A.B.a“(90+1—No)(Qo_No) ’

(79

20—-N
V2q ®

%\/(ZQ—N)(N+2).

(79

(Yala*|gho) = (whola,|p1) = C—O =
(ol AY o) = (ol Asltho) = C_°:

The results given in Eqg78) and(79) are reproduced in
the ideal space, using E(S5) with the single-fermion and
fermion-pair imagesa,, from Eq. (73), a* from Eq. (74),
Al—Bl, andA! from Eq.(51). The left and right ideal states
corresponding to Eq.77) read as follows:

| 4R) =Co(AHN?|0)=CF(BHN?0),

(5= (0[(A)2CE = (0| (By)VCE,
|yf)=Cra*(AHN?0)=CRa*(BHN?0),
(5] =(0|(Ap)V?a,C% =(0|(B

l) N/2aﬁci .
(80)

(the images of ,) are analogous to the ones|afy)). It is

clear that the coefficien8} andC} carry information on the
specific construction of the images in E§0) from the real
states, in particular, information on the fermionic normaliza-
tion constants. This seems to undermine the practical imple-
mentation of the mapping procedure because once the map-
ping of a particular algebra has been established, one
certainly wants to be able to perform all the calculations
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solely on the ideal boson-fermion level. Here we come to theéus numbers of type-1 and type-2 bosdiesly the total
reason why Eq(25) is more convenient from the phenom- boson number being constant
enological viewpoint than the seemingly simpler identity

(1| Ol ) = (45O 45): with Eq. (25) the results depend
just on the product€FCR (with i=1,2) that can be easily
determined using only thiegosonic(ideal) normalization con- We investigated various aspects of the generalized Dyson
dition (4-|yR)=1. We see, therefore, that the matrix ele- mapping that transforms fermionic shell-model superalge-
ments(78) and(79) can be calculated on the purgipenom-  bras into the ideal boson-fermion spddg-19. The main
enologicallevel—i.e., using only ideal boson-fermion states motivation for this review was the recent experimental veri-
with no explicit reference to their real-fermionic ancestors—fication [6—8] of the phenomenological boson-fermion su-
provided that we know microscopically based ideal imagegersymmetric moddb] and the resulting renewed interest in
of (bi)fermion creation and annihilation operators. This againits microscopic foundations. Along with presenting some
emphasizes the importance of the construction carried out iRarticular new results we found it useful also to summarize
Secs. VI and VII C. in a compact form the main principles of the underlying
In the S@4) case one can proceed in a close analogy witHnathematical formalism and the hurdles that remain.

SU(2). It turns out that it is much easier to work in the  While in the standard Dyson mapping only the collective
collective basis created by paifs~ and A~ rather thanA® algebra of fermion-pair operators is transformed into the

andAZ. We thus define fermionic states ideal space, yielding a set of purely bosonic images, the gen-
eralized Dyson mapping transforms also the single-fermion

creation and annihilation operators, i.e., the whole superalge-
bra defined in Sec. Il. As a result, ideal-fermion operators
enter the images of physical observables in addition to the
boson operators. The mapping procedure outlined here
makes use of the generalized Usui operdiah, which has

the advantage of providing in a relatively straightforward

VIIl. CONCLUSIONS

|h0) = Co(A™)N2-K(A=)X 0),
|1)=Cra*(A™)N2"K(A=)K|0),

|42y = Co(AT)NZTH(AS)K ),

|42)=Co(A7)V2 (AT 0). (81)
Note that we now have two possibilitielsy,) and|;), of
building a paired K+ 2)-fermion states fromij,). With the
aid of the left and right ideal states corresponding to (Bd)

[similar to those in Eq(80)] and the operator images in Egs.

(56), (57), (75), and(76), it is now simple to verify that Eq.
(25) yields

(g1l o)

<'7[/O|a,u|(/ll>
Q_—k
Q.

20N+
29>—N2k for |u|>Q/2,
2Q

>

_ (Q—2K)(k+1)
(Wl A= [i0) = (ol A< )= \| ————— (83

1
(W2l A~ 90} = (ol A= rz) = SV (Q = N+2K) (N = 2k+2),
(84)

(ol A= o) = (ol A<l ) = (o A” [ho) = (thol A= | 4h2) TS%)

for |u|<Q/2
(82)

and

manner a first set of simple formulas—E@$8)—(22)—for

the images of the operators involved in the superalgebra.
However, it turns out that some additional transformations
are needed to accomplish the physically motivated bosoniza-
tion and unitarity of the mapping. The general form of these
transformations was discussed in Sec. IV, while in Appendix
we provided technical insight into the formalism used for
their derivation.

We studied, in particular, the “bosonization” similarity
transformations, see Eq8)—(32). Without these transfor-
mations, the main aim of the mapping—replacement of the
fermionic correlations by simpler bosonic correlations—
would not be achieved, since all fermion-fermion interac-
tions would be exactly reproduced in the ideal-particle space.
The action of the bosonization similarity transformation on a
general operator was determined in the expanded form of
Egs. (35)—(37). These expressions represent a new result
compared to previous work on this subject. However, to use
them in general for deriving closed expressions might still be
elusive unless the Casimir operaiy of the ideal-fermion
core algebra turns out to depend solely on the nunberf
ideal fermions in the whole space or its specific subspaces. If
this condition is fulfilled, the calculations can be carried out
further and one derives, e.g., the explicit form of transformed
single-fermion images in Eq$41) and (42). These results
are already of importance to hint at suitable expressions for
nucleon transfer operators in phenomenological supersym-
metric models.

These results can be checked by evaluating the fermionic A particularly interesting question, related directly to the
normalization constants. Let us point out that the calculatiormicroscopic justification of phenomenological supersymmet-
would be much more involved if we chose to use the collectic models, concerns the conservation of the total number of
tive basis created bjx! andA?. Since ideal images of these ideal particlesfermions plus bosonslt was shown in Sec.
operators contain botR! andB? [see Eqs(52) and(53)]the  V that this number is indeed a natural integral of motion if
mapped collective statésght image$ would combine vari- the even sector of the mapped superalgebra is chosen prop-
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erly, i.e., so that it fully represents the real fermionic Hamil- In general,O does not have to be Hermitian, so that thie)
tonian. From the point of view of the generalized Dysonare not necessarily orthogonal, whi® is Hermitian, im-
mapping, the origin of the phenomenologicalNUf2(2) dy-  plying that its eigenvectorls)) form an orthonormal basis.
namical superalgebra seems to have a sound microscopic bphe transformation connecting the two sets of eigenvectors,
sis. Since numbers of ideal bosons and fermions turn out 18]y ) =), transforms away th@ term of O, i.e., S(O’
be conserved separately, the present method also advocate$>)3*1:or_ This is the property of similarity transforma-
the decomposition of the phenomenological dynamical supejons required in Sec. IV. The form & ! can be determined
ralgebra into the product of bosonic and fermionic algebrasrom the ordinary perturbative series expresging in terms
in the first step of the relevant dynamical-symmetry chaingy |,y (with P treated as a perturbatiprThe isospectrality
[5]. However, the realization of truly supersymmetric predic-.qndition is often guaranteed by the fact tRatas the upper
tions that are not specifically connected with dynamical SYM{jower) off-diagonal block structure in the badia!). In that

metries, as discussed in Ref82-34, is not excluded. / N : :
To illustrate the general technique outlined in this paper,Case< %i|Pl4)=0 and the expansion reads as follows:

we investigated in Sec. VIl concrete examples of mapping o
the SU2) and SQ4) collective superalgebras. The results for )= E
the seniority SWW2) model were derived earligd 9], but we K=
reconsidered them from a more general point of view and to

facilitate the analysis of the S@ case, originally discussed Note that the terms withkk>0 are to be evaluated only in
by Kaup and Ring16]. As the S@4) algebra can also be case of O’,P]+#0, otherwise they are equal to zero. It must
written as the product SU(2)® SU(2)- , it provides an in- be stressed that EqAL) is derived using the perturbation
teresting insight into the link between boson images of theheory for nondegenerated cases. Its applicability is thus not
two different realizations, as, e.g., in E¢60). Both the quite universal and the convergence conditions should be
SU(2) and S@4) models exemplify the relative simplicity of determined in each particular case.

the Dyson mapping that follows from “bare” operator im- In fact, Eq.(A1) defines the action & ! on any vector
ages, while they also point to technical difficulties associatedia its expansion in the eigenbasig’ ). To avoid the explicit
with similarity transformations. For the specific superalge-reference to the basis, the idea of positional operators was
bras studied here the bosonization similarity transformatiofintroduced in Refs[29,37. Eq. (A1) can be rewritten as

leads to the closed expressions for single-fermion images
given in Eqs(73)—(76). In more general cases, however, the

k

L) (A1)

P

1
0;— 0O’

k

transformed images may involve more complicated series, si=> 2 -P | |4 (W]

where convergence becomes an issue. This problem must be k=0 " 10;—0

ovecome for an optimal comparison with the phenomeno- % 1 k

logical framework. Note also that unlike the models consid- => | = , (A2)
ered here, the dynamical definition of collective fermion k=0 \O'—-0' A

pairs(bosons requires attention beyond the algebraic defini-

tions (see, e.g., Ref10]). where the hat above the opera®f means that in the ex-

One of the main remaining obstacles in the quantitativepansion of each term on the rhs of Hé2) this operator
microscopic analysis of phenomenological supersymmetrignust be evaluated at the position indicated by.”
models is associated with the nonunitarity of the generalized One can develop a general calculus suitable for handling
Dyson mapping. While this property obscures some aspectxpressions such as the one in E42). In fact, any hatted
of a direct comparison with phenomenology, we also docugperator is treated as an ordinaspumber during the evalu-
mented that on the matrix-element level the formalism camtion, i.e., it may freely travel to any place as far as its true
already be implemented in a way which closely resemblegosition is marked. Any part o®’ that commutes withP
the phenomenological application. This was iIIustratedcance|S with the corresponding part@f so thatO’ in Eq.
through the use of Eq25) leading to the examples in Sec. (A2) can be replaced by any operétd) that satisfies
VIID. [C,P]=[O’,P]. We thus arrive at Eq.24). With no further

assumption upon commutation relations between the opera-

tors involved, the evaluation of terms such d$é

This work was supported by the S.A. National Research— C)AB, must unavoidably deal with the decomposition of
Foundation under Grant Nos. GUN 2047181 and GUNthe functionf(x) into a series, which usually leads to rather
2044653 and partly by the Grant Agency of Czech Republicomplicated expressions. For example, féx) ==, _,f.x"
under Grant No. 202/99/1718. P.C. would also like to ac-one can derive
knowledge the hospitality and enjoyable working conditions
provided by the ITP at the University of Stellenbosch. . . ” ! n

f(C—C)ABA=f(C—C)A B+ 20 fnkZO (—)”k( k)
Fy =
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APPENDIX: POSITIONAL OPERATOR CALCULUS

k n—k k n—k
Consider an operato®@=0’'+P where O and O’ are X([CLA][B,CT ]+ A[CE,BIC™).
isospectral and denot®|;)=0;|;) and O’| ¢ y=0;| ). (A3)
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However, great simplification can be achievedjB,C con- b .
form to commutation relations such d¢c—C)A=Ag(c ( —z M-N- N) tm a
—C), whereg(x) andf(x) are some interrelated functions s 1= exp(—P (A5)
andc an arbitrary constant. ( _ E—ZN) |m m /A
Let us consider an important special case Witk aN? '

+bN+c, where the operatoN fulfills the condition NP

=P(N+m) (with m a positive integeranda,b,c are con-

tes ofN within the ;;;\Zr:tf%:gn e e S gemeal m” f.e., XIM=X(x—m)(x~2m)---(x mod m) for x>0
max . | m:= < H

represents the fermion-number operator ang, the shell andx!™:=1 for x=0. One may verify Eqs(A4) and (AS5)

capacity, the above condition is satisfiedPifcreatesm fer-  from the relationC—C=(N—N)[a(N+N)+b], commut-
mions andC is a quadratic function oN. The sum in Eq. N9 the first term to the right and the second term to the left.
(A2) terminates akym=|Nmad M. Moreover, for some val- (The constraints o/a ensure that the factorial-like terms

ues of the constants the series can be formally summe&,ontai” only positive numbers; otherwise the above formulas
yielding can be used in a restricted subspace prfgrious specific
realizations of Eqs(A4) and (A5) can be found in Refs.
[18,19,29,37. If C cannot be expressed as a quadratic func-
tion of N, but[C,N]=0 still holds, one obtains

) N-N
S *=exp ——P
m(C—-C)

for b/a< —3k,,,m. Here, M stands for the “factorial over

(Ad)

(A6)

for b/a>0 and A
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