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Microscopic framework for dynamical supersymmetry in nuclei
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We discuss and explore new aspects of the generalized Dyson mapping of nuclear collective superalgebras
composed of an arbitrary fermion-pair algebra and a set of single-fermion creation/annihilation operators. It is
shown that a direct consequence of the particular mapping procedure is the conservation of the total number of
ideal particles in the resulting boson-fermion system. This provides a microscopic framework for the phenom-
enological supersymmetric models based on the U(6/2V) dynamical superalgebras. Attention is paid to the
mapping of single-fermion creation and annihilation operators whose detailed form cannot be determined on
the phenomenological level. We derive the general expansion of the single-fermion images that result from the
similarity transformation employed to ensure nonredundant bosonization in the ideal space. The method is then
illustrated in an application to the SO~4! collective algebra, a natural extension of the SU~2! seniority model.
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I. INTRODUCTION

It is well documented that low-energy collective states
even-even nuclei can be successfully described using th
teractings-, d-boson models, the so-called IBM@1#. The dy-
namical groups of these models are bosonic unitary gro
either UB(6), or itsextension UBp(6)^ UBn(6) if proton and
neutron collective degrees of freedom are to be treated s
rately. Similarly, the odd-A and odd-odd nuclei are describe
by the interacting boson-fermion models~IBFM! @2# with
dynamical groups of the type UB(6)^ UF(2V) and UBp (6)
^ UFp (2Vp) ^ UBn (6)^ UFn (2Vn), where 2V is the capac-
ity of the valence proton or neutron shell and UF(2V) the
corresponding fermionic unitary group. As a natural gen
alization of these approaches, the above product bo
fermionic groups can be embedded into the U(6/2V) or
Up(6/2Vp) ^ Un(6/2Vn) supergroups@3–5#. The immediate
consequence of this step is the possibility of a simultane
description of a given even-even nucleus with its odd-A and
odd-odd neighbors—a consequence that was recently
fied experimentally@6–8# in the quartet of 194,195Pt and
195,196Au nuclei.

A crucially important question imposed by the wid
ranging success of all these phenomenological algebraic
proaches@9# concerns their microscopic foundation. A var
ety of methods@10# have been developed with the aim
map the original fermionic problem of an even number
particles into the bosonic language. To understand the na
of the supersymmetric boson-fermion models, however,
mapping must be extended to cover also the odd-ferm
degrees of freedom. In spite of numerous technical diffic
ties it seems now that a basic understanding arises abou
link between the underlying fermionic interactions and tho
appearing on the boson-fermion level~see, e.g., Refs.@11–
15#!, as well as the reason why the U(6/2V)-based dynami-
cal supersymmetry is relevant in atomic nuclei@16–19#. A
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particularly promising approach, based on a superalgeb
extension of the so-called Dyson mapping of fermion alg
bras @10#, was pioneered by Dobaczewski and co-worke
see Refs.@17–19#. Among the main advantages of the tec
nique proposed there belongs the direct relation of the res
ing bosons to real fermionic pairs and the conservation
two-body character of the model Hamiltonian. The meth
achieves its nonredundant bosonization as a two-s
process—no simpler construction is so far known—wh
requires the utilization of a particular similarity transform
tion and leads to typical Dyson-like non-Hermitian stru
tures.

The aim of the present paper is to review and extend
main methodological aspects of the generalized Dyson m
ping @17–19# of nuclear collective superalgebras, emphas
ing those features that are directly related to phenomenol
cal supersymmetric models. In particular, we show that
conservation of the total number of bosons plus fermions
phenomenological models is a direct consequence of
mapping procedure. We also discuss the general structu
single-fermion transfer operators that cannot be deduce
detail on the phenomenological level. Concrete new res
are derived for the mapping of the SO~4! collective algebra
that had been used in the first attempt@16# to investigate a
possible microscopic justification for the phenomenologi
supersymmetry in nuclei.

The plan of the paper is as follows: Notation and t
general collective superalgebra of fermion operators are
troduced in Sec. II. In Secs. III and IV we sketch the meth
of the fermion-boson mapping and subsequent simila
transformations. The structure of the mapped Hamilton
and properties of the single-fermion images are then
cussed in Secs. V and VI. In Sec. VII we finally turn to som
examples, based on a simplified single-j shell model, in par-
ticular, to the mapping of SU~2! and SO~4! collective supe-
ralgebras. We show how matrix elements for the sing
particle transfer~relevant to the experimental identificatio
of supersymmetry in nuclei@6–8#! can be calculated in the
ideal boson-fermion space.
©2002 The American Physical Society13-1
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II. COLLECTIVE SUPERALGEBRA

Let us consider a fermionic system~atomic nucleus! with
the Hilbert space generated by a successive application
finite number of single-fermion creation operatorsam to the
physical vacuumu0&. We assumem51•••2V, enumerating
the available single-particle states~their number is even due
to the Kramers degeneracy! and denote the correspondin
single-fermion annihilation operators asam[(am)1. Any
physical observable can then be obtained in terms of op
tors of the following form:

An1•••nn

m1•••mm[am1
•••amman1

•••ann
, ~1!

wherem,n50,1,2 . . . As fermionic operators satisfy the fa
miliar anticommutation relations,

$am,an%5dn
m , $am,an%5$am ,an%50, ~2!

the algebraic structure formed by the operators~1! is clearly
not an ordinary dynamical algebra@20#. However, by divid-
ing the set of these operators to two subsets,evenandodd,
according to whether the differencem2n of the number of
creation and annihilation operators inAn1•••nn

m1•••mm is even or

odd, respectively, we get the following schematic relatio
for commuting and anticommuting operators from the t
sectors:

@even, even#5even, @even, odd#5odd,

$odd, odd%5even. ~3!

This means that the operators in Eq.~1! define asuperalge-
bra @21,22#. Indeed, the mathematics of supergroups mus
naturally involved in any fermionic many-body problem
treated in the algebraic framework@20#.

The superalgebra of operators in Eq.~1! can be reduced to
an ordinary dynamical algebra if one deals only witheven
numbers~N! of particles. Any initial state is then represent
by an appropriate superposition of termsAm1•••mNu0& and
transition operators may only contain terms withm2n
50,2,4 . . . ~the many-body self Hamiltonian is composed
terms withm2n50). Only the even sector of the set in E
~1! is thus invoked. Yet further crucial simplifications can
achieved if stronger restrictions are imposed on the dynam
of the system. In nuclear physics, the most important te
of the Hamiltonian and transition operators are often
pressed via a certain limited set of fermion pairs, brie
bifermions. We assume these pairs being represented by
following most general creation operators:

Ai5
1

2
xmn

i aman ~4!

( i 51•••M ; Greek indices occurring twice are subject
summation over the whole range from 1 to 2V), where the
coefficients satisfy natural conditionsxmn

i 52xnm
i 5(x i

mn)* .
@The bifermion annihilation operators then read asAi

[(Ai)15 1
2 x i

mnanam .# According to the concrete set of pai
we choose, the operatorsAi and Ai belong to a particular
04431
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collective algebraof the specific nuclear model. Note tha
although we usually assume that the dynamics selects a
ited set of relevant pairs only, we can, in principle, consid
all possible pairs,M5V(2V21), with i °(m,n), Amn

5aman. The bifermion algebra is then identified wit
SO(2V) @17,18#.

The bifermion statesAi u0& and Aj u0& are assumed to be
orthogonal and normalized to a common factor,

1

2
x i

mnxmn
j 5gd i

j , ~5!

as typically follows from a diagonalization of the two
particle problem. This condition ensures the closure relati
for the collective algebra formed by the set of bifermio
creation and annihilation operators,Aj andAi , and by their
commutators,

@Ai ,Aj #5gd i
j2xsm

j x i
snaman , ~6!

with i , j 51•••M . ~Note that @Ai ,Aj #5@Ai ,Aj #50.! The
closure relations read as follows~the summation convention
is used for Latin indices!:

†@Ai ,Aj #,Ak‡5†@Ai ,Aj #,A
k
‡

15cik
j l Al , ~7!

†@Ai ,Aj #,@Ak ,Al #‡5ckm
l j @Ai ,Am#2cki

lm@Am ,Aj #, ~8!

where the structure constants

cik
j l 5

1

g
x i

abxbg
j xk

gdxda
l ~9!

satisfy symmetry relations

cik
j l 5cki

j l 5cik
l j 5~cjl

ik!* . ~10!

Note that according to Eq.~8! the commutators~6! form a
core subalgebra of the collective algebra.

Of course, the use of the above collective algebra as
approximate nuclear dynamical algebra can only be poss
for even nuclei. In the general case one has to consider
some odd operators. In the following, we keep the collect
algebra of the above bifermion operators and extend it
considering the single-fermion creation and annihilation o
erators that give rise to single-fermion transfer operators
tween even and odd systems. The algebra of collective
erators forms the even sector of the resulting superalge
while the single-fermion creation and annihilation operat
belong to the odd sector. Indeed, in agreement with the g
eral superalgebraic rules~3!, we have

@Ai ,am#5@am,Ai #
15xnm

i an, ~11!

@Ai ,am#5@am ,Ai #
150, ~12!

†@Ai ,Aj #,am
‡5@am ,@Aj ,Ai ##15x i

msxsn
j an. ~13!

Equations~2!, ~7!, ~8!, and ~11!–~13! define the superal-
gebra subject to study in this paper. In fact, it is a combi
3-2
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MICROSCOPIC FRAMEWORK FOR DYNAMICAL . . . PHYSICAL REVIEW C 65 044313
tion of the above collective algebra with the Heisenbe
Weyl superalgebra@21#. We will call it the collective
superalgebra.

III. FERMION-BOSON MAPPING

The superalgebraic nature of a general fermionic ma
body problem can be made explicit in terms of the us
bosonic and fermionic degrees of freedom by using fermi
boson mapping techniques@10#. In this way, the actual~real!
fermionic Hilbert space is mapped onto an ‘‘ideal’’ space th
describes a system of a certain number ofbosonsand so-
called ideal fermions. To accomplish this task, a variety o
different approaches have been employed in the literature
this paper, we use a mapping technique that utilizes the
called Usui operator@17,23,24#, which is closely related to
the use of coherent and supercoherent states@17#.

The Usui operatorT acts on theproduct spaceH5Hr
^ H i of the real and ideal Hilbert spaces. It transforms a
real state vectoruc& ^ u0) ~containing the ideal vacuum! into
a corresponding ideal state vectoru0& ^ uc) ~with the real
vacuum!. If P05u0&^0u ^ 1 andP051^ u0)(0u are projec-
tors onto the real and ideal vacua, respectively, one can
fine thereal andideal subspacesof the product Hilbert space
as P0H and P0H ~they are isomorphic with the origina
spacesHr and H i) . ~The rest ofH is of no interest.! In the
general case, the Usui operator does not have to map the
subspace onto the entire ideal subspace. The image o
real subspace,TP0H,P0H, forms the physical subspace
while the rest of the ideal subspace containsspurious states.

It seems reasonable to expect that any physically plaus
mapping should conserve scalar products, i.e., must be
tary within the real and physical subspaces. We will s
however, that this condition can be relaxed without rea
loosing physical meaning of the mapping@10,25,26#. Let us
consider the mapping of physical operators,O°Ō, defined
through the requirementŌT5TO, or equivalently

Ō5TOT21, ~14!

where Ō[1^ Ō is the ideal image of the real operatorO
[O^ 1 andT21 is the inverse Usui operator in the physic
subspace. It is clear that any set of operators within the
subspace is transformed into a set of images acting in
ideal subspace, all the algebraic relations~such asAB5C,
A1B5C, @A,B#5C, $A,B%5C•••) being preserved in the
physical subspace~or in the overlap of definition ranges o
the operators involved with the physical subspace!. If T is
nonunitary, the mapping does not preserve properties rel
to the Hermitian conjugation. In particular, ideal images
general physical operators will be non-Hermitian. Nevert
less, becauseT21 must exist within the physical subspac
~this condition cannot be relaxed!, all operator images re
main isospectral with the respective real operators and
eigenvectors are related byT. Let us briefly recall that non-
Hermitian operators have two sets of generally differ
eigenvectors, left and right:Ōuc i

R)5oi uc i
R) and (c j

LuŌ
5(c j

Luoj and different eigenspaces are not orthogonal
04431
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Luc i

R)50 for ojÞoi . The nonunitarity of
the mapping thus only induces the need to treat separa
right and left images of the physical states according to
prescription

ucR)5Tuc&, ~cLu5^cuT21,

~cRu5^cuT1, ucL!5~T21!1uc&. ~15!

Note the Hermitian conjugate of the Usui operatorT1 maps
the physical subspace back to the real space, but it is
identical withT21 and, similarly, (T21)1 goes from the real
to physical space but does not coincide withT.

It should be stressed that to keep the mapping proced
meaningful under these conditions, the proper distinction
tween the physical and spurious subspaces is essentia
fact, any operator that keeps the physical subspace inva
has an inverse image in the real subspace while there ma
no real counterpart of operators acting within the entire id
subspace.

Consider as the most trivial example a mapping that d
nothing but renames particles. We start with a set of r
fermions ~created by $am%m51

2V ) and bosons~created by
$bi% i 51

M ) and wish to end with a set of ideal fermion
($am%m51

2V ) and ideal bosons ($Bi% i 51
M ). The Usui operator

then reads

T5P0 exp~Bibi1amam!P0 . ~16!

It is important to realize that the formal independence
physical and ideal particles translates into the fact that
boson operator commutes with all the other boson and
mion operators while the real- and ideal-fermion operat
anticommutewith each other. It is not difficult to see tha
under the operator in Eq.~16! any vector describing a stat
with fixed numbers of real particles of the given types tra
forms into a vector with the same numbers of the cor
sponding ideal particles. It means that the real subspac
mapped onto the entire ideal subspace, keeping all sc
products conserved and leaving no spurious states. The m
ping ~16! is thus unitary within the real and ideal subspac
while vectors orthogonal to the real subspace are annihila
by T. The operator mapping corresponding to Eq.~16! is
trivial: bi°Bi ,bi°Bi ,am°am,am°am . This enables one
to construct the ideal image of any real observable, con
vation of the hermicity being guaranteed.

It is clear that the fermion-boson mapping we intend
perform is not as trivial as the mapping in the previous e
ample. First, the role of physical bosons is not be played
some actual bosons but by fermion pairs from Eq.~4!, whose
annihilation and creation operators do not really commute
the bosonic way, see Eq.~6!. Second, as bifermions are no
independent of single fermions, their operators do not co
mute with fermion operators, see Eqs.~11! and~13!. In spite
of these difficulties, one still can keep the form of the Us
operator from the previous example,

T5P0 exp~BiAi1amam!P0 , ~17!
3-3
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although some of its key properties differ from those d
cussed above. In particular, the spurious sector of the i
subspace can no longer be avoided andT ceases to be unitar
even within the real and physical subspaces. In fact, the
tual justification of Eq.~17! comes from the use of so-calle
supercoherent states@27# in both the real and ideal sub
spaces, uC,f&[exp(CiA

i1fmam)u0& and uC,f)[exp(CiB
i

1fmam)u0) ~where Ci and fm are complex and Grassma
variables, respectively!. Any stateuc& in the real space can
be represented by a functionf c(C,f)[^C,fuc& and simi-
larly any uc) in the ideal space yieldsgc(C,f)[(C,fuc).
It can be shown that the Usui operator from Eq.~17! con-
serves functional representations of the associated real
ideal states@17#. @It should be stressed that not every fun
tion f (C,f) represents a real stateuc& and those functiona
representationsg(C,f) in the ideal space that have no cou
terpart in the real space constitute the spurious sector. As
real and ideal supercoherent states span the whole rea
ideal spaces, respectively,T does not map the real and ide
supercoherent states to each other.#

Using the Baker-Campbell-Hausdorf formulas for co
muting the physical operators through the exponential in
~17!, one can derive the following operator mapping@17#:

Ai°A i1gBi2
1

2
cjl

ikBjBlBk2xms
i x j

nsBjaman

5A i1@Aj ,A i #Bj2
1

2
cjl

ikBjBlBk , ~18!

Ai°Bi , ~19!

am°am1x j
mnBjan5am1@Aj ,am#Bj , ~20!

am°am ~21!

( i 51, . . . ,M and m51, . . . ,2V). Here we introduced ideal
bifermion operatorsA i5 1

2 xmn
i aman. Note that—in agree-

ment with the above discussion—the ideal images of r
creation and annihilation operators are not Hermitian con
gated. The mapping is nonunitary. In fact, the ideal-ferm
and boson creation operators,am and Bi , have no inverse
image in the real subspace~the existence of these invers
images,X, would require the fulfillment of the contradictor
relationsX̄P05P0X with X̄5Bi or am). Formulas~18! and
~19! can be compared to those derived by mapping only
collective algebra without the odd sector@28#. It turns out
that the reduced Usui operatorT5P0 exp(BiAi)P0 leads to
exactly the same images of the bifermion operatorsAi andAi
except that terms associated with the ideal fermions are m
ing.

To complete the mapping of the whole fermionic super
gebra, we need also images of the commutators of the b
mion operators. These are given by the following formula

@Ai ,Aj #°gd i
j2cik

j l BkBl2xms
j x i

nsaman

5@Ai ,A j #2cik
j l BkBl , ~22!
04431
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which can be obtained either by mapping the right-hand s
~rhs! of Eq. ~6!, or—in a simpler way—by commuting the
images of bifermion operators in Eqs.~18! and~19!. Also the
anticommutation relations of real and mapped single-ferm
operators are identical. This means that Eqs.~18!–~22! in-
deed define an equivalent ideal boson-fermion realization
the real-fermion superalgebra from Sec. II.

IV. SIMILARITY TRANSFORMATIONS

A. Hermitization

It was stressed above that the mapping in Eqs.~18!–~22!
is not unitary so that the ideal images of real observables
generally non-Hermitian. On the other hand, we know t
within the physical subspace the spectra of these images
real valued, identical with the spectra of physical operato
For any particular physical ideal-image operatorŌ it should,
therefore, be possible to find a similarity transformati
Ō°Ō85SHŌSH

21 such thatŌ8 is Hermitian. If uc i
R) and

(c j
Lu are sets of right and left eigenvectors ofŌ, the operator

SH must satisfy (c j
LuSH

1SHuc i
R)5d j i , or, equivalently,

SH
1SHŌ5Ō1SH

1SH . Indeed, one can take, for example,SH

5(TT1)21/2, where T15P0 exp(AiBi1amam)P0 @cf. Eq.
~17!#. However, as shown by Kim and Vincent@29#, it is
often favorable to exploit the ambiguity of the hermitizatio
transformation—it is determined up to an arbitrary unita
transformation—to set constraints upon the image of one
the observables, e.g., the HamiltonianH̄. Namely, ifSH0 her-
mitizes the Hamiltonian, then

SH5~SH0TT1SH0
1 !21/2SH0 ~23!

hermitizes, within the physical subspace, all physical obse
ables, while retaining the prescribed form of the Ham
tonian,SHH̄SH

215SH0H̄SH0
21 . This is very important since we

naturally require that the hermitization does not spoil so
important features of the mapped Hamiltonian, for instan
its one- plus two-body character.

Hermitization transformations preserving the two-bo
character of the Hamiltonian were indeed described in so
particular cases@29#, but no general algorithm is known. On
direct approach is simply to guess the desired Hermitian
erator H̄8 isospectral withH̄ and to construct a consisten
similarity transformation. This is possible, under some s
cific conditions, using the following expression:

SH0
215 (

k50

` S 1

Ĉ2C
PD

`

k

, ~24!

where P5H̄2H̄8 and C is any operator satisfying@C,P#

5@H̄8,P#. In Eq.~24! we introduce the notation in which th
mark ‘‘ `’’ indicates the position where the operator with h
~the firstC) is to be evaluated. The derivation of this formu
and the positional operator formalism are sketched in App
dix. It is important to stress that Eq.~24! holds true
3-4



o
E
s
r

ed
tit

il
s-
ng
ve
te
t

io

ta
en

g
fo
m
p

a

fe
ir
in

e
x-
d

he
in

-
e
m

e
a

med
the
to
no

r
ent

ral
the

er

ans-

dis-
m-

MICROSCOPIC FRAMEWORK FOR DYNAMICAL . . . PHYSICAL REVIEW C 65 044313
only for a nondegenerate spectrum ofH̄, while otherwise
divergence problems can be encountered.

In the majority of cases it is difficult~if not impossible! to
derive explicit expressions for the hermitized images
physical operators using the general transformation in
~23!. At first this difficulty seems to put serious restriction
on the use of the mapping technique described above. Fo
nately, the calculation ofmatrix elementsof physical opera-
tors can be performed without really knowing the hermitiz
images in the operator form, by using the obvious iden

^c1uOuc2&5(c1
LuŌuc2

R) or its modification

^c1uOuc2&5A~c1
LuŌuc2

R!~c2
LuO1uc1

R!* , ~25!

that both directly result from Eqs.~14! and ~15! ~the second
identity is usually favored in practical calculations as we w
see in Sec. VII D!. The evaluation of the hermitization tran
formation is turned here into another nontrivial task—findi
the left and right images of general physical states. Howe
this can already be accomplished for certain sets of sta
namely those generated by some creation operators from
real vacuum, i.e., for states having the formuc&5X1u0&
~where X1 represents, e.g., a sequence of single-ferm
and/or bifermion creation operators!. Then one can write
ucR)5X1u0) and (cLu5(0uX̄ with u0)[u0R)5u0L). In this
way, one can evaluate—using only the ideal images of s
vectors and operators—the complete set of matrix elem
of the given real operator in an appropriate real basis~the
single-particle basis, for instance!. The goal of the mapping
can thus be achieved@26,30,31#.

B. Bosonization

The necessity for a similarity transformation followin
the mapping described in the Sec. III appears even be
considering the hermitization problem. This is evident fro
Eq. ~18! where the ideal image of the real pair creation o
erator contains the ideal pair creation operator,Ai°A i1Ri

with Ri5gBi2 1
2 cjl

ikBjBlBk2xms
i x j

nsBjaman . While all
terms inRi translate the creation of a bifermion in the re
space into the creation of a boson in the ideal space~this can
be accompanied by an interaction with another boson or
mion!, A i just introduces an equivalent ideal fermion pa
The real pairs are thus not truly bosonized by the mapp
In particular, the real-bifermion stateAi u0& is transformed
into a superposition of ideal-bifermion and boson stat
(A i1gBi)u0), and real fermion-fermion interactions are e
actly transmitted to the ideal Hamiltonian, where the ad
tional boson and boson-fermion terms~see Sec. V! only ob-
scure the original problem.

This difficulty can be again overcome with the aid of t
formalism sketched in Appendix. Indeed, when consider
the operatorAjAj and its imageA jBj1RjBj , we see that
the unwanted part containingA j does not affect the spec
trum of the image. This follows from the fact that while th
RjBj operator is diagonal in the basis characterized by nu
bers of ideal bosons and fermions, theA jBj term has an
upper off-diagonal block structure in the same basis. W
therefore, anticipate the existence of a similarity transform
04431
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SB~A i1Ri !SB
215Ri , ~26!

SBBiSB
215Bi . ~27!

The form ofSB
21 is given by Eq.~A2! in the Appendix with

O85RjBj and P5A jBj . However, it can be shown@18#
that @O8,P#5@2CF ,P#, whereCF5A lAl is the Casimir op-
erator of the ideal fermion core algebra,@CF ,@Ai ,A j ##50,
conserving the total number of ideal fermions,N5amam . In
agreement with Eqs.~24! and ~A6! we thus arrive at

SB
215 (

k50

kmax S 1

CF2 ĈF

A jBj D
`

k

5expF N2N̂
2~CF2 ĈF!

A jBj G
`

,

~28!

where the upper bound of the sum,kmax, reflects the finite-
ness of the fermionic space. It is clear thatkmax<V and that
the real cutoff depends on the numbersN andNB of the ideal
fermions and bosons present in the state to be transfor
~in this way also the higher-order terms in expansion of
exponential naturally vanish!. Let us stress again that due
the limitations mentioned above and in Appendix, there is
general guarantee that Eq.~28! converges. This is furthe
illustrated in Sec. VII, where the convergence requirem
will set some limits upon the states to be transformed.

In order to obtain the transformed images of gene
physical operators, we also need to determine the form of
inverse similarity transformationSB . As the expansion of
SB

21 in Eq. ~28! consists of terms which increase the numb
of ideal fermions byDN52k50,12,14,16•••, the same
must hold true also for theSB . If we define

Sk5S 1

CF2 ĈF

A jBj D
`

k

, ~29!

i.e., if we rewrite Eq.~28! as

SB
21511S11S21S31•••, ~30!

we find that

SB511S̃11S̃21S̃31••• ~31!

with

S̃k5 (
n51

k

~2 !n (
k11k21•••1kn5k

Sk1
Sk2

•••Skn
. ~32!

In particular, S̃152S1 , S̃252S21S1
2, . . . , cf. Ref. @18#.

These expressions enable one to evaluate the similarity tr
formationSBXSB

21 of an arbitrary operatorX, which changes
the number of ideal fermions by a specific valueDN, as a
series where individual terms correspond toDN, DN12,
DN14, etc. We use these expansions in Sec. VI when
cussing the general form of transformed single-fermion i
ages.
3-5



in
e

-

lo
c
ra
n

e
d
us
os

t
pl

hi
th

or

e
l
e
t

th

rib
i

-
ity
ec
-
ian
y

i-
r-
t
y-

of
al
f
ing

of
the
be
ion
nt
he-
ta
er-
dd,
a
sed

e
re-

ri-
er-
to

g

his

p-
te

us-

the
ebra

to-

g
ot
y
-
s as-

eld
-
an

PAVEL CEJNAR AND HENDRIK B. GEYER PHYSICAL REVIEW C65 044313
V. CONSERVATION OF THE NUMBER OF IDEAL
PARTICLES

One of the most interesting questions immediately aris
from the previous considerations concerns the link to sup
algebras of the type U(M /2V) known from phenomenologi
cal boson-fermion models of nuclear structure@3–5,9#. The
use of these dynamical superalgebras on the phenomeno
cal level is motivated by the fact that they provide a dire
generalization of the unitary bosonic and fermionic algeb
that proved to be relevant and successful in the descriptio
collective states in both even and odd~odd-A or odd-odd!
nuclei @1,2,9#. In fact, generators of the proton-neutron sup
ralgebra Up(6/2Vp) ^ Un(6/2Vn) produce a class of relate
Hamiltonians that seems general enough to simultaneo
describe low-energy spectra in quartets of nuclei wh
nucleon~proton and/or neutron! numbers differ by one@5,9#.

The key feature of the U(M /2V) superalgebras is tha
their generators conserve the total number of bosons
fermions,NBF5NB1N ~whereNB5BiBi). We thus enquire
whether this also holds for the Hamiltonian mapped from
microscopic real-fermion Hamiltonian. Let us stress that t
property cannot be deduced from the conservation of
number of real fermionsN by the original nuclear Hamil-
tonian sinceN corresponds to 2NB1N on the boson-fermion
level, as dictated by the fermion-boson mapping@Eq. ~54!
below#. It is nevertheless clear from Eqs.~18!–~22! that any
fermionic many-body Hamiltonian composed of operat
belonging to the collective algebra, e.g.,

H5u1v i
jAiAj1wj

i @Ai ,Aj #5~u1gwi
i !2~xms

j x i
nswj

i !aman

1S 1

4
xmn

i x j
psv i

j Damanasap ~33!

@where v i
j5(v j

i )* and wi
j5(wj

i )* are arbitrary coefficients
associated with two- and one-body interactions, respectiv
andu5u* is an additive constant#, is mapped onto an idea
Hamiltonian that indeed conserves the total number of id
particles. This conclusion remains unchanged even after
similarity transformation in Eqs.~26! and~27!. The resulting
Hamiltonian keeps the same ideal-fermion mean field as
original real Hamiltonian~33!, but the fermion-fermion in-
teraction is replaced by boson-involving terms that desc
a boson mean field and boson-boson plus boson-fermion
teractions

H°~u1gwi
i !2~xms

j x i
nswj

i !aman1~gv i
j2cil

jkwk
l !BiBj

2S 1

2
ci j

mkvm
l DBiBjBkBl2~xms

k x i
nsvk

j !BiamBjan .

~34!

The image in Eq.~34! is still non-Hermitian in both interac
tion terms, but, as discussed in Sec. IV A, the similar
transformationSH can be chosen such that it does not aff
the particle number conservation.~In the matrix representa
tion connected with fixed particle numbers the Hamilton
has a block-diagonal structure that can be preserved b
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suitably selected transformationSH0 .) This result holds true
for any collective algebra we decide to start with.

The image~34! conserves numbers of bosons and ferm
onsseparately, which is the structure known from the inte
acting boson-fermion model@2#. It seems, therefore, tha
UB(M ) ^ UF(2V) could be equally well chosen as the d
namical algebra on the phenomenological level instead
U(M /2V). Note that the choice of the phenomenologic
dynamical algebra~superalgebra! is more or less a matter o
convenience; it certainly does not result from the mapp
procedure that only constructs a boson-fermion realization
the original collective superalgebra. If, nevertheless,
U(M /2V) dynamical superalgebra is employed, it must
decomposed into the above product of boson and ferm
unitary algebras in the very first step of any releva
dynamical-symmetry chain. This indeed happens in the p
nomenological model@5# used to analyze experimental da
@6–8#. From this point of view, the hitherto discussed sup
symmetric description of neighboring even-even, odd-o
and odd-A nuclei relies just on the use of the IBFM with
single set of parameters, which is a natural expectation ba
on the mapping of the same microscopic Hamiltonian~33!
acting on spaces with various real-fermion numbers~see also
Ref. @19# in this regard!. At the same time we note that th
above considerations are not in contradiction with the
cently proposed possibility @32–34# that a U(n/m)
,U(M /2V) supergroup may in fact constitute a real inva
ance symmetry of the nuclear Hamiltonian, without ref
ence to an underlying dynamical symmetry, giving rise
boson-fermion ‘‘supermultiplets’’ in neighboring nuclei.

We conclude this section by the remark thatgeneralone-
plus two-body Hamiltonians~for instance, those containin
general single-particle terms«m

n aman) do not have to con-
serve the number of ideal particles after the mapping. T
probably misled the authors of Ref.@16# who ascribed the
conservation property to only the Schwinger type of ma
ping while it was alleged to fail for mappings that associa
bosons with fermion pairs. However, from the above disc
sion we see that the ideal-particle numberis indeed con-
served in the generalized Dyson mapping as far as
mapped collective algebra represents the dynamical alg
of the fermionic Hamiltonian@for instance, if the single-
particle terms are given only by the commutators in Eq.~6!#.
An enquiry about the most general set of fermion Hamil
nians ~beyond the preselected dynamical algebra! that con-
serveNBF after the mapping is hampered by the followin
difficulties: ~i! the ideal image of the Hamiltonian does n
have to commute withNBF in the whole ideal space, but onl
in the physical subspace, and~ii ! there are no obvious can
didates for fermion space counterparts to the observable
sociated withNB andN.

VI. SINGLE-FERMION IMAGES

While the action of the similarity transformation~28! on
the bifermion images is by construction guaranteed to yi
the compact results~26! and ~27!, the expressions for trans
formed single-fermion images can only be determined in
expanded form, using Eqs.~29!–~32!. Denoting the ‘‘bare’’
3-6
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single-fermion images appearing in Eqs.~20! or ~21! by X,
one can write

SBXSB
215X1X11X21X31•••, ~35!

where individual terms are determined by

Xk5@X,Sk#1 (
n52

k

~2 !n21

3 (
k11k21•••1kn5k

Sk1
Sk2

•••Skn21
@X,Skn

#, ~36!

or recursively from

X15@X,S1#, X25@X,S2#2S1X1, . . . ,

Xk5@X,Sk#2S1Xk212S2Xk222•••2Sk21X1 . ~37!

In the expressions aboveX can, in principle, be any physica
operator. WithX5am the termXk changes the number o
ideal fermions by DN52k21, while with X5am

1x j
mnBjan[X81X9 we haveDN52k11 for Xk8 and DN

52k21 for Xk9 . The transformed images of both annihil
tion and creation operators thus contain terms withDN5
21,11,13,15••• @18#.

The series~35! for transformed single-fermion image
comprises~i! the operators contained in the bare sing
fermion images, i.e.,am or am andx i

mnBian , and~ii ! those
in the similarity transformationsSB

21 andSB , i.e.,A iBi and

(CF2 ĈF). In any term of the series, there can be only o
operator from~i! and an arbitrary combination~no restric-
tions to multiplicity! of operators from~ii !. To determine the
physical interpretation of these expressions by inspection
first commute (CF2 ĈF) from all places of its occurrence t
the respective positional marks and then to the right-h
side in all terms of the series. It then turns out that the
sulting formulas can be decomposed into building bloc
representing some elementary processes:~a! Processes corre
sponding to the ideal-fermion creation,

@CF ,@CF•••@CF ,am#•••#•••#n ,

@CF ,@CF•••@CF ,x i
mnBian#•••#•••#n n50,1,2 . . . .

~38!

Here, then50 terms emerge as justam and x i
mnBian , the

n51 terms asx i
mnA ian andx i

mnxsn
j asA jB

i , etc. These ex-
pressions can be interpreted as processes that encom
single-fermion creation, coupling of the created fermion in
a pair, and the bifermion–boson transformations~all fermi-
ons of course being of the ideal type!. ~b! Processes corre
sponding the ideal-fermion annihilation,

@CF ,@CF•••@CF ,am#•••#•••#n n50,1,2 . . . , ~39!

which appear just as the Hermitian conjugate of the fi
commutator in Eq.~38! and receive analogous diagramma
interpretations.~c! Background processes accompanying~a!
and ~b!,
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@CF ,@CF•••@CF ,A iBi #•••#•••#n n50,1,2 . . . , ~40!

that denote various forms of the boson decomposition i
ideal fermions and bifermions; forn50 we have justA iBi ,
while the n51 term isxnp

i x j
nsA japasBi , etc. While ex-

pressions from Eq.~38! or ~39! Appear only once in each
term of the series, those from Eq.~40! generally have a mul-
tiple occurrence.

We have already seen that the most general transfor
images of the single-fermion creation and annihilation ope
tors contain terms that change the number of ideal fermi
by DN521,11,13,15•••. In view of the elementary pro-
cesses~a!–~c!, the actual value ofDN in a given term is
determined by the number of repetitions of the backgrou
processes~40!. Relative weights appearing with increasin
DN are expected to decrease according to the increa
power of the denominator in Eq.~29! @cf. Eqs.~65! and~69!
below#. In addition, terms corresponding to largeDN are not
likely to play a significant role in matrix elements for low
energy nuclear states as the decomposition of bosons
separate noncollective fermions is associated with higher
ergy excitations. As argued in Ref.@18#, it may be plausible
to cut off the terms withDN>13. We will see in Sec. VII
that for some algebras these terms can vanish identic
Even with the restrictionDN<11, however, the most gen
eral formula built of terms from Eqs.~38!–~40! comprises an
infinite series~terms with all n’s!. The situation is much
simplified if CF is just a function ofN ~or number operators
associated with some fermionic subspaces!. Then, evaluating
only theDN561 terms, one gets

SBamSB
215am1xmn

i anBi1A iamBiF~N!1•••, ~41!

SB~am1x i
mnBian!SB

215x i
mnBian1am1x i

mnxns
j asBiBj

1x i
mnA ianF8~N!

1x i
mnA janBiBjF~N!1•••,

~42!

where F(N) and F8(N) are some functions of the idea
fermion number~s! that are directly related to the formCF
5 f (N). This general result is illustrated by specific e
amples in Sec. VII C.

It is clear that even after the transformation~35! the im-
ages of real-fermion creation and annihilation operators
not Hermitian conjugated; cf. Eqs.~41! and~42!. As the gen-
eral hermitization transformation, Eq.~23!, of the single-
fermion images in an operator form seems intractable
least in the general case, one has to turn to the evaluatio
the single-fermion matrix elements in a specific basis by
method described in Sec. IV A, see Eq.~25!. This step, of
course, critically depends on the concrete form of sing
fermion images after the bosonization transformation. E
amples are given in Sec. VII D.

We conclude this section by noting that the general res
discussed here may suggest expressions suitable for the
termination of single-nucleon transfer amplitudes within t
phenomenological superalgebraic models. In fact, on
3-7
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phenomenological level only very general consideratio
such as tensorial properties and effective particle num
properties, relate to this question, as the transfer opera
are beyond the U(M /2V) superalgebra. A link to micro-
scopic models is thus essential. For instance, we can re
the formula fitted to experimental data in Refs.@6,7# and
compare it with the most general form discussed above.
see immediately that although the image of the sing
fermion creation operator given by Eq.~3! in Ref. @6# con-
tains terms describing plausible processes withDN511,
some other possibly relevant terms are missing.

VII. EXAMPLES: SU „2… AND SO„4… MAPPINGS

A. Definition of the algebras

In this section, we illustrate the general considerations
the previous sections by simple examples concerning fe
ons in a single shell with total angular momentumj ~half
integer!. Accordingly we consider a set of 2V52 j 11
single-particle states created byam[aj m

† with m52 j •••
1 j . We will deal with the simplest algebras based on th
operators, namely, the SU~2! seniority algebra@35# and the
extended SO~4! algebra@16,36#.

In the SU~2! case we introduce only one type of fermio
pair, namely,

A1[S†5
1

2 (
m

~2 ! j 2mama2m. ~43!

SO~4! contains the pair~43! and another one given by

A25
1

2 S (
umu<V/2

~2 ! j 2mama2m2 (
umu.V/2

~2 ! j 2mama2mD .

~44!

In the notation of Eq.~4! we can write

xmn
1 5H ~2 ! j 2m for n52m

0 for nÞ2m,
~45!

xmn
2 5H ~2 ! j 2m for n52m,umu<V/2

2~2 ! j 2m for n52m,umu.V/2

0 for nÞ2m

~46!

and from Eq.~5! we getg5V.
A1 and A1 together with the commutator@A1 ,A1#5V

2N ~whereN5amam is the real-fermion number operato!
close the SU~2! algebra with the only structure constantc11

11

52. In the extended case we introduce an operator

Q5sn
manam , ~47!

wheresn
m56dn

m with the upper~lower! sign valid for umu
<V/2 (umu.V/2). The bifermion operators together withN
and Q then close the SO~4! algebra, @A1 ,A1#5@A2 ,A2#
5V2N,@A1 ,A2#52Q, with the following structure con-
stants:
04431
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c11
115c22

225c22
115c11

225c12
125c21

215c21
125c12

2152,

c11
125c22

215c22
125c11

215c12
115c21

225c21
115c12

2250. ~48!

It is evident that by dividing the fermionic space into tw
subspaces, the first one spanned by single-fermion st
with umu<V/2 and the other by states withumu.V/2, the
SO~4! algebra can be decomposed into a tensor produc
two independent SU~2! algebras. Accordingly define the fol
lowing transformation of bifermion operators:

A,5
1

2
~A11A2!5

1

2 (
umu<V/2

~2 ! j 2mama2m, ~49!

A.5
1

2
~A12A2!5

1

2 (
umu.V/2

~2 ! j 2mama2m. ~50!

Both A, and A. are just theS†-type bifermions in the re-
spective subspaces, cf. Eq.~43!. We have@A, ,A,#5(V/2
2N,), @A. ,A.#5(V/22N.), and @A, ,A.#50, where
N, and N. are fermion number operators associated w
both the subspaces:N,5(N1Q)/2, N.5(N2Q)/2. The
only nonzero structure constants arec,,

,,5c..
..52. Let us

note that the new bifermion states are not generally norm
ized to a common factor:̂0uA,A,u0&5V, , ^0uA.A.u0&
5V. with V,5V.5V/2 for V even, but V,5(V
11)/2, V.5(V21)/2 for V odd. A common normalization
for odd V would introduce some additional factors that w
skip here for the sake of simplicity.

B. Mapping of the even sector

By the straightforward application of Eqs.~18! and ~26!
we get

A1°B1~V2NBF! ~51!

for the SU~2! algebra and

A1°B1~V2NBF!2B2~Q1BiBi 8!, ~52!

A2°B2~V2NBF!2B1~Q1BiBi 8!, ~53!

for the SO~4! algebra. Here we introduce boson creation a
annihilation operatorsBi and Bi with i 51 for SU~2! and i
51,2 for SO~4!. We also defineNB5BiBi , N5amam ,
NBF5NB1N, andQ5sn

manam . In the SO~4! case the sum-
mation convention is used such thatBiBi 8 stands forB1B2
1B2B1. From Eq.~22! it follows that

N°N12NB ~54!

for both the SU~2! and SO~4!, and

Q°Q22BiBi 8 ~55!

for the SO~4!.
Instead ofA1 and A2 we can also map the bifermion

from Eqs.~49! and ~50!. The result is then

A,°B,~V/22NBF,!, ~56!
3-8
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A.°B.~V/22NBF.!, ~57!

N,°N,12NB, , ~58!

N.°N.12NB. , ~59!

where NB,5B,B, , NB.5B.B. , N,5(N1Q)/2, N.

5(N2Q)/2, NBF,5NB,1N, , and NBF.5NB.1N. .
Both SO~4! results, Eqs.~52!–~55! and ~56!–~59!, can be
combined using the bosonic counterpart of the transfor
tion in Eqs.~49! and ~50!,

B,5B11B2, B.5B12B2,

B,5
1

2
~B11B2!, B.5

1

2
~B12B2!, ~60!

which results from the linearity of mapping. It should b
noted that the new boson creation and annihilation opera
in Eq. ~60!, unlike Bi andBi with i 51,2, are not related by
the Hermitian conjugation—a result of nonunitarity of th
mapping. If, in contrary,Bd and Bd , whered denotes,
and ., were chosen to be Hermitian conjugated, the sa
would not hold forBi andBi .

The mapping of the most general one- plus two-bo
Hamiltonian~33!, evaluated for the two algebras under d
cussion, yields

H°~u1Vw1
1!2w1

1N1~v1
122w1

1!NB1v1
1NB~V2NBF!

~61!

for SU~2! and

H°~u1Vwi
i !2wi

iN2wi 8
i Q1~v i

i22wi
i !NB

1~v j 8
j

12wj 8
j

!BiBi 81v i
jBiBj~V2NBF!2~v2

1B1B1

1v1
2B2B21v1

1B2B11v2
2B1B2!~Q1BiBi 8! ~62!

for the SO~4!. We note that whereas the mapped SU~2!
Hamiltonian is manifestly Hermitian, the SO~4! Hamiltonian
is not, because of its last term.

C. Similarity transformations and mapping of the odd sector

Let us finally focus on the form of single-fermion imag
for both algebras. The similarity transformation~28! depends
on the form of the Casimir operatorCF . For the SU~2! alge-
bra we can introduce the seniority quantum numberv @35#
such that

CF[A 1A15
1

4
@~V2v !~V122v !2~V2N!~V122N!#

~63!

in the seniority eigenbasis. BecauseA 1B1 does not changev
~the number of fermionsnot coupled in pairs!, the first term
in Eq. ~63! does not contribute in Eq.~28! and one gets@19#

CF2 ĈF→
1

2
~N2N̂!S V112

N1N̂
2

D . ~64!
04431
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The operatorsSk in Eq. ~29! thus read as

Sk5
1

k!
~A 1B1!k

~V2N2k!!

~V2N!!
, ~65!

which is equivalent to the known expression@19#

SB
215

S V2
N1N̂

2
D !

~V2N̂!!
exp~A 1B1!` ~66!

@cf. Eq. ~A5! in Appendix#. It is instructive to note that the
above expressions for the similarity transformation conve
under limited conditions only. Consider the case ofN<V.
Then we see that the expression in Eq.~65! diverges forV
2N11<k<NB ~the upper limit follows from the fact tha
Sk gives just zero if it attempts to annihilate too man
bosons!. So the divergence problems are avoided if

N1NB5
N1N

2
<V. ~67!

Beyond the validity of Eq.~67! the forms~65! and ~66! of
the similarity transformation is invalid and another deriv
tion would be required@see the remark below Eq.~A1! in
Appendix#.

In the SO~4! case the construction of a similarity transfo
mation turns out to be more difficult as the denominator
Eq. ~28! cannot be expressed as a function ofN. We can,
however, use the SU(2)̂SU(2) type of mapping, Eqs
~56!–~60!, for which the analogy with the single SU~2! case
can be fully exploited. The Casimir operatorCF52(A ,A,

1A .A.) then reads as a sum of two terms of the form~63!.
Again, seniorities corresponding to both subspaces are
affected byA iBi52(A ,B,1A .B.) and the following
substitution can be used within Eq.~28!:

CF2 ĈF→~N,2N̂,!S V,112
N,1N̂,

2
D 1~N.2N̂.!

3S V.112
N.1N̂.

2
D . ~68!

From this expression we find that

Sk5 (
k,1k.5k

1

k,!k.!
~A ,B,!k,~A .B.!k.

3
~V,2N,2k,!! ~V.2N.2k.!!

~V,2N,!! ~V.2N.!!
, ~69!

with the summation going fromk, ,k.50 to k. In analogy
with Eq. ~66! we also have
3-9
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SB
215

S V,2
N,1N̂,

2
D !

~V,2N̂,!!

S V.2
N.1N̂.

2
D !

~V.2N̂.!!
exp~A ,B,

1A .B.!` . ~70!

For N,<V, and N.<V. the convergence of Eq.~69!
requires, in analogy with Eq.~67!, NB,<V,2N, and
NB.<V.2N. .

Now we can evaluate the similarity transformation of t
images of single-fermion annihilation and creation operato
We already know that in general the resulting series cont
terms changing the number of ideal fermions byDN521,
11,13, . . . . In the SU~2! case, however, all terms wit
DN>13 vanish. Indeed, it can be shown that withSk from
Eq. ~65! we have

@am ,Sk#2Sk21@am ,S1#50 ~71!

for k52,3, . . . , which together with Eq.~37! implies that
Xk50 for k>2 with X5am being the bare image of th
annihilation operator. In the bare image of the creation
erator, X5am1B1ãm[X81X9, where ãm5(2) j 2ma2m ,
the first term changes the ideal-fermion number by11 and
the second by21. The condition for the cancellation o
DN>13 terms in the transformed image, therefore, read
Xk852Xk119 , i.e.,

@am,Sk#1@B1ãm ,Sk11#2Sk@B1ãm ,S1#50 ~72!

for k51,2,3, . . . .Again, it can be proven from Eq.~65! that
Eq. ~72! is valid. For the transformed SU~2! single-fermion
images we finally obtain@19#

am°am1ãmB1

1

V2N 1A 1B1am

1

~V112N!~V2N!
,

~73!

am°B1ãm1am
V2NBF

V2N 2A 1ãm

V2NBF

~V112N!~V2N!
.

~74!

@In analogy toãm we defineãm5(2) j 2ma2m.#
To derive the single-fermion images in the SO~4! case,

one first shows that Eqs.~71! and ~72! are again fulfilled
with Sk from Eq. ~69!, if B1 in Eq. ~72! is replaced byBd

[B, or B. according to whetherumu<V/2 or umu.V/2,
respectively. This means that the series for the transform
single-fermion imagesSBamSB

21 and SB(am1Bdãm)SB
21

both terminate at the terms withDN511. We thus obtain

am°am1ãmBd

1

Vd2Nd

1A dBdam

1

~Vd112Nd!~Vd2Nd!
, ~75!
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am°Bdãm1am
Vd2NBFd

Vd2Nd

2A dãm

Vd2NBFd

~Vd112Nd!~Vd2Nd!
, ~76!

where the bulletd stands for. or ,, depending on which
subspacem belongs to. Equations~75! and ~76! are direct
analogues of the single-fermion images in the SU~2! case, cf.
Eqs.~73! and ~74!.

D. Fermion and bifermion transfer matrix elements

To demonstrate the utility of the results derived above,
calculate matrix elements of single-fermion and fermion-p
transfer operators using the ideal boson-fermion images.
start with the SU~2! case, where we consider the followin
three normalized fermionic states:

uc0&5C0~A1!N/2u0&,

uc1&5C1am~A1!N/2u0&,

uc2&5C2~A1!N/211u0& ~77!

(N or N12 are even numbers of paired fermions!. The ma-
trix elements of the single-fermion and fermion-pair trans
operators between these states depend just on the norm
tion constantsC0 , C1, andC2 and one readily finds

^c1uamuc0&5^c0uamuc1&5
C0

C1
5A2V2N

2V
, ~78!

^c2uA1uc0&5^c0uA1uc2&5
C0

C2
5

1

2
A~2V2N!~N12!.

~79!

The results given in Eqs.~78! and~79! are reproduced in
the ideal space, using Eq.~25! with the single-fermion and
fermion-pair imagesam from Eq. ~73!, am from Eq. ~74!,
A15B1, andA1 from Eq.~51!. The left and right ideal state
corresponding to Eq.~77! read as follows:

uc0
R)5C0~A1!N/2u0)5C0

R~B1!N/2u0),

~c0
Lu5~0u~A1!N/2C0* 5~0u~B1!N/2C0

L ,

uc1
R)5C1am~A1!N/2u0)5C1

Ram~B1!N/2u0),

~c1
Lu5~0u~A1!N/2amC1* 5~0u~B1!N/2amC1

L
•••

~80!

~the images ofuc2& are analogous to the ones ofuc0&). It is
clear that the coefficientsCi

R andCi
L carry information on the

specific construction of the images in Eq.~80! from the real
states, in particular, information on the fermionic normaliz
tion constants. This seems to undermine the practical im
mentation of the mapping procedure because once the m
ping of a particular algebra has been established,
certainly wants to be able to perform all the calculatio
3-10
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solely on the ideal boson-fermion level. Here we come to
reason why Eq.~25! is more convenient from the phenom
enological viewpoint than the seemingly simpler ident

^c1uOuc2&5(c1
LuŌuc2

R): with Eq. ~25! the results depend
just on the productsCi

LCi
R ~with i 51,2) that can be easily

determined using only thebosonic~ideal! normalization con-
dition (c i

Luc i
R)51. We see, therefore, that the matrix el

ments~78! and~79! can be calculated on the purelyphenom-
enologicallevel—i.e., using only ideal boson-fermion stat
with no explicit reference to their real-fermionic ancestors
provided that we know microscopically based ideal imag
of ~bi!fermion creation and annihilation operators. This ag
emphasizes the importance of the construction carried ou
Secs. VI and VII C.

In the SO~4! case one can proceed in a close analogy w
SU~2!. It turns out that it is much easier to work in th
collective basis created by pairsA, andA. rather thanA1

andA2. We thus define fermionic states

uc0&5C0~A.!N/22k~A,!ku0&,

uc1&5C1am~A.!N/22k~A,!ku0&,

uc2&5C2~A.!N/22k~A,!k11u0&,

uc28&5C28~A.!N/22k11~A,!ku0&. ~81!

Note that we now have two possibilities,uc2& and uc28&, of
building a paired (N12)-fermion states fromuc0&. With the
aid of the left and right ideal states corresponding to Eq.~81!
@similar to those in Eq.~80!# and the operator images in Eq
~56!, ~57!, ~75!, and~76!, it is now simple to verify that Eq.
~25! yields

^c1uamuc0&5^c0uamuc1&

55A
V,2k

V,

for umu<V/2

A2V.2N12k

2V.

for umu.V/2,

~82!

and

^c2uA,uc0&5^c0uA,uc2&5A~V22k!~k11!

2
, ~83!

^c28uA
.uc0&5^c0uA.uc28&5

1

2
A~V2N12k!~N22k12!,

~84!

^c28uA
,uc0&5^c0uA,uc28&5^c2uA.uc0&5^c0uA.uc2&50.

~85!

These results can be checked by evaluating the fermi
normalization constants. Let us point out that the calculat
would be much more involved if we chose to use the coll
tive basis created byA1 andA2. Since ideal images of thes
operators contain bothB1 andB2 @see Eqs.~52! and~53!# the
mapped collective states~right images! would combine vari-
04431
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ous numbers of type-1 and type-2 bosons~only the total
boson number being constant!.

VIII. CONCLUSIONS

We investigated various aspects of the generalized Dy
mapping that transforms fermionic shell-model superal
bras into the ideal boson-fermion space@17–19#. The main
motivation for this review was the recent experimental ve
fication @6–8# of the phenomenological boson-fermion s
persymmetric model@5# and the resulting renewed interest
its microscopic foundations. Along with presenting som
particular new results we found it useful also to summar
in a compact form the main principles of the underlyin
mathematical formalism and the hurdles that remain.

While in the standard Dyson mapping only the collecti
algebra of fermion-pair operators is transformed into
ideal space, yielding a set of purely bosonic images, the g
eralized Dyson mapping transforms also the single-ferm
creation and annihilation operators, i.e., the whole supera
bra defined in Sec. II. As a result, ideal-fermion operat
enter the images of physical observables in addition to
boson operators. The mapping procedure outlined h
makes use of the generalized Usui operator~17!, which has
the advantage of providing in a relatively straightforwa
manner a first set of simple formulas—Eqs.~18!–~22!—for
the images of the operators involved in the superalge
However, it turns out that some additional transformatio
are needed to accomplish the physically motivated boson
tion and unitarity of the mapping. The general form of the
transformations was discussed in Sec. IV, while in Appen
we provided technical insight into the formalism used f
their derivation.

We studied, in particular, the ‘‘bosonization’’ similarit
transformations, see Eqs.~28!–~32!. Without these transfor-
mations, the main aim of the mapping—replacement of
fermionic correlations by simpler bosonic correlations
would not be achieved, since all fermion-fermion intera
tions would be exactly reproduced in the ideal-particle spa
The action of the bosonization similarity transformation on
general operator was determined in the expanded form
Eqs. ~35!–~37!. These expressions represent a new re
compared to previous work on this subject. However, to
them in general for deriving closed expressions might still
elusive unless the Casimir operatorCF of the ideal-fermion
core algebra turns out to depend solely on the numberN of
ideal fermions in the whole space or its specific subspace
this condition is fulfilled, the calculations can be carried o
further and one derives, e.g., the explicit form of transform
single-fermion images in Eqs.~41! and ~42!. These results
are already of importance to hint at suitable expressions
nucleon transfer operators in phenomenological supers
metric models.

A particularly interesting question, related directly to th
microscopic justification of phenomenological supersymm
ric models, concerns the conservation of the total numbe
ideal particles~fermions plus bosons!. It was shown in Sec.
V that this number is indeed a natural integral of motion
the even sector of the mapped superalgebra is chosen p
3-11
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erly, i.e., so that it fully represents the real fermionic Ham
tonian. From the point of view of the generalized Dys
mapping, the origin of the phenomenological U(M /2V) dy-
namical superalgebra seems to have a sound microscopi
sis. Since numbers of ideal bosons and fermions turn ou
be conserved separately, the present method also advo
the decomposition of the phenomenological dynamical su
ralgebra into the product of bosonic and fermionic algeb
in the first step of the relevant dynamical-symmetry cha
@5#. However, the realization of truly supersymmetric pred
tions that are not specifically connected with dynamical sy
metries, as discussed in Refs.@32–34#, is not excluded.

To illustrate the general technique outlined in this pap
we investigated in Sec. VII concrete examples of mapp
the SU~2! and SO~4! collective superalgebras. The results f
the seniority SU~2! model were derived earlier@19#, but we
reconsidered them from a more general point of view and
facilitate the analysis of the SO~4! case, originally discusse
by Kaup and Ring@16#. As the SO~4! algebra can also be
written as the product SU(2), ^ SU(2). , it provides an in-
teresting insight into the link between boson images of
two different realizations, as, e.g., in Eq.~60!. Both the
SU~2! and SO~4! models exemplify the relative simplicity o
the Dyson mapping that follows from ‘‘bare’’ operator im
ages, while they also point to technical difficulties associa
with similarity transformations. For the specific superalg
bras studied here the bosonization similarity transforma
leads to the closed expressions for single-fermion ima
given in Eqs.~73!–~76!. In more general cases, however, t
transformed images may involve more complicated ser
where convergence becomes an issue. This problem mu
ovecome for an optimal comparison with the phenome
logical framework. Note also that unlike the models cons
ered here, the dynamical definition of collective fermi
pairs~bosons! requires attention beyond the algebraic defi
tions ~see, e.g., Ref.@10#!.

One of the main remaining obstacles in the quantitat
microscopic analysis of phenomenological supersymme
models is associated with the nonunitarity of the generali
Dyson mapping. While this property obscures some asp
of a direct comparison with phenomenology, we also do
mented that on the matrix-element level the formalism c
already be implemented in a way which closely resemb
the phenomenological application. This was illustrat
through the use of Eq.~25! leading to the examples in Se
VII D.
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APPENDIX: POSITIONAL OPERATOR CALCULUS

Consider an operatorO5O81P where O and O8 are
isospectral and denoteOuc i&5oi uc i& and O8uc i8&5oi uc i8&.
04431
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In general,O does not have to be Hermitian, so that theuc i&
are not necessarily orthogonal, whileO8 is Hermitian, im-
plying that its eigenvectorsuc i8& form an orthonormal basis
The transformation connecting the two sets of eigenvect
Suc i&5uc i8&, transforms away theP term of O, i.e., S(O8
1P)S215O8. This is the property of similarity transforma
tions required in Sec. IV. The form ofS21 can be determined
from the ordinary perturbative series expressinguc i& in terms
of uc i8& ~with P treated as a perturbation!. The isospectrality
condition is often guaranteed by the fact thatP has the upper
~lower! off-diagonal block structure in the basisuc i8&. In that
case^c i8uPuc i8&50 and the expansion reads as follows:

uc i&5 (
k50

` S 1

oi2O8
PD k

uc i8&. ~A1!

Note that the terms withk.0 are to be evaluated only in
case of@O8,P#Þ0, otherwise they are equal to zero. It mu
be stressed that Eq.~A1! is derived using the perturbatio
theory for nondegenerated cases. Its applicability is thus
quite universal and the convergence conditions should
determined in each particular case.

In fact, Eq.~A1! defines the action ofS21 on any vector
via its expansion in the eigenbasisuc i8&. To avoid the explicit
reference to the basis, the idea of positional operators
introduced in Refs.@29,37#. Eq. ~A1! can be rewritten as

S215 (
k50

`

(
i

S 1

oi2O8
PD k

uc i8&^c i8u

5 (
k50

` S 1

Ô82O8
PD

`

k

, ~A2!

where the hat above the operatorO8 means that in the ex
pansion of each term on the rhs of Eq.~A2! this operator
must be evaluated at the position indicated by ‘‘` . ’’

One can develop a general calculus suitable for hand
expressions such as the one in Eq.~A2!. In fact, any hatted
operator is treated as an ordinaryc-number during the evalu
ation, i.e., it may freely travel to any place as far as its tr
position is marked. Any part ofO8 that commutes withP
cancels with the corresponding part ofÔ8, so thatO8 in Eq.
~A2! can be replaced by any operatorC that satisfies
@C,P#5@O8,P#. We thus arrive at Eq.~24!. With no further
assumption upon commutation relations between the op
tors involved, the evaluation of terms such asf (Ĉ
2C)AB` must unavoidably deal with the decomposition
the functionf (x) into a series, which usually leads to rath
complicated expressions. For example, forf (x)5(n50

` f nxn

one can derive

f ~C2Ĉ!AB`5 f ~C2Ĉ!A`B1 (
n50

`

f n(
k50

n

~2 !n2kS n

kD
3~@Ck,A#@B,Cn2k#1A@Ck,B#Cn2k!.

~A3!
3-12
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However, great simplification can be achieved ifA,B,C con-
form to commutation relations such asf (c2C)A5Ag(c
2C), whereg(x) and f (x) are some interrelated function
andc an arbitrary constant.

Let us consider an important special case withC5aN2

1bN1c, where the operatorN fulfills the condition NP
5P(N1m) ~with m a positive integer! and a,b,c are con-
stants.P is a ladder operator forN and we assume eigenva
ues ofN within the range from 0 tonmax.0. SinceN here
represents the fermion-number operator andnmax the shell
capacity, the above condition is satisfied ifP createsm fer-
mions andC is a quadratic function ofN. The sum in Eq.
~A2! terminates atkmax5 bnmax/mc. Moreover, for some val-
ues of the constants the series can be formally summ
yielding

S215

S 2N̂1
b

aD ! m

S N1N̂1
b

aD ! m

expS 2
a

m
PD

`
~A4!

for b/a.0 and
d

v

e

.

.

04431
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S215

S 2
b

a
2m2N2N̂D ! m

S 2
b

a
22N̂D ! m

expS a

m
PD

`
~A5!

for b/a,23kmaxm. Here, !m stands for the ‘‘factorial over
m,’’ i.e., x! m5x(x2m)(x22m)•••(x mod m) for x.0
and x! m

ª1 for x<0. One may verify Eqs.~A4! and ~A5!

from the relationĈ2C5(N̂2N)@a(N1N̂)1b#, commut-
ing the first term to the right and the second term to the l
~The constraints onb/a ensure that the factorial-like term
contain only positive numbers; otherwise the above formu
can be used in a restricted subspace only.! Various specific
realizations of Eqs.~A4! and ~A5! can be found in Refs.
@18,19,29,37#. If C cannot be expressed as a quadratic fu
tion of N, but @C,N#50 still holds, one obtains

S215expF2
N̂2N

m~Ĉ2C!
PG

`

. ~A6!
s.
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