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Interplay of pairing and multipole interactions in a simple model
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The interplay of pairing and other interactions is addressed in this work using a simple jsmokgel. We
show that enhancements in pairing correlations, observed through studies of the spectra of deformed systems,
moments of inertia, changes in transitional multipole amplitudes, and direct calculations of the pairing com-
ponent in the wave function, indicate that even without explicit matrix elements responsible for pairing, a
paired state can still appear from the kinematic coupling of pairing to deformation and from other geometrical
restrictions that are of extreme importance in mesoscopic systems. Furthermore, we demonstrate that macro-
scopic transitions such as oblate to prolate shape changes can lead to strong dynamic enhancements of pairing
correlations. In this work we emphasize that the pairing condensate has an important dynamic and kinematic
effect on other residual interactions.
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[. INTRODUCTION systems may hinge on these correlations between different
types of matrix elements. These studies showed that the
The fact that a large number of nuclei in their ground statepaired ground state does not appear in systems governed by
or in their low-lying excited states are paired is supported bytwo-body random interactions; furthermore, even weak but
an overwhelming amount of experimental evidence. This inuncorrelated interactions of nonpairing type are very destruc-
cludes the observation of odd-even mass differences, the afive with respect to the pairing state.
pearance of a gap in the spectra, a reduction of the moment The mesoscopic nature is yet another important property
of inertia, and an analog of the Josephson effect in pair tranf nuclear systems. It has a strong effect on the kinematics
fer reactions. In this work, by “pairing” we imply the attrac- and geometry of collective modes, and the interplay between
tive interaction between pairs of nucleons on time-conjugataifferent excitations and phase transitions. Finiteness was ar-
orbitals. It is widely accepted that the pairing interaction isgued to be one of the main reasons for the existence of the
responsible for creating a superconducting paired state; hovsuperconducting state in realistic nudléj.
ever, the realistic interaction is much more diverse than bare In this work we show that observed pairing effects in
pairing. The complex interplay of all interactions that still nuclei do not result just from strong pairing matrix elements.
leads to a paired state is far from being understood. CoheA paired state appears from a very complex interplay of all
ence between the pairs or even larger groups of nucleons caesidual interactions and their dynamic and kinematic behav-
be formed in different quantum states; furthermore, coheriors. Throughout this work we use a simple singlievel
ence may appear in the particle-holp-if) channel with  model with only one species of particle in order to discuss
other components of interaction contributing to collective ex-this interplay. This model provides strong kinematic con-
citations (shape vibrations and giant resonances in npcleistraints, and shows the clearly pronounced role of antisym-
and deformation of the mean field. All these effects are eximetry requirements. The pairing problem can be solved ex-
pected to dynamically and/or kinematically effect the pairedactly in a singlej level, and the treatment of all other
state. There are also incoherent components of the interamteractions is substantially simpler.
tions that introduce the stochastization of dynamics, but still In Sec. Il we introduce and discuss the kinematics of in-
can be influenced by the presence of collective features iteractions in the singlg-level model. The main results of
dynamics. this work are presented in Sec. lll, where we investigate the
The appearance of a paired state is traditionally attributedlynamics of paired systems, and, using a perturbative treat-
to the strong short-range residual interactions between nuclenent of nonpairing interactions in the basis of paired states
ons. However, in realistic nuclear systems all interaction maf5], discuss the renormalizing effects of the pairing conden-
trix elements are correlated. There is no pure pairing intersate, on other residual interactions, consider the stability of
action. This is well known in the theory of superconductivity, the pairing condensate, and evaluate the applicability of the
and in applications to nuclear structure it was shown by Bepairing-based treatment. We emphasize that a sipgiestem
lyaev[1] a long time ago, that an interaction with only pair- is very kinematically constrained, and for a number of inde-
ing matrix elements would contradict the fundamental prin-pendent choices of interactions the seniority, the number of
ciple of gauge invariance. Recent studies of systems witluinpaired particles, remains conserved. The interplay of pair-
two-body random interactionf2,3] indicated that the sur- ing and quadrupole forces is studied in the “pairing plus
vival of collective phenomena such as pairing in realisticquadrupole” (P-Q) model. We introduce an important con-
cept of kinematic pairing as specific pairing effects that ap-
pear from kinematic restrictions present in a mesoscopic
*Present address: Physics Division, Argonne National Lab., 9700nany-body system; they also contribute to the dynamics of
S. Cass Ave., Argonne, IL 60439. nucleon-phonon interactiopt,6,7]. With numerical studies
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tudesV, can be arbitrary. Th& =0 term is responsible for

1
g pairing the interaction of pairs on time-conjugate orbitals:
K ~ .
|1)=|jm) and|1)=(—)'"™j —m). The strength of pairing
is determined by,

A. Interactions in the particle-hole channel

The interaction in Eq.(1) was given in the particle-
particle (p-p) channel. The interaction can also be presented
in the particle-hole |¢-h) channel. The nucleon hole can be

defined via a canonical transformati@n

2

FIG. 1. Schematic diagram showing the two-body scattering
process. Two channels, particle-particke ¢hannel and particle-
hole (t channel, are indicated by the horizontal arrow with the

Cal,C*=(-) Ma;_, and

matrix elementV, and by the vertical arrow with the amplitude éajméﬂ:(—)j_maf,m. (2)
Vy , respectively, wheré andK are total angular momenta in cor-
responding channels. The multipoles, particle-hole pair states coupled to a particu-

lar angular momenturK, are defined as
we show that those effects, ignored in the standaitdQP
model, result in a significant enhancement of pairing, and : J J
directly influence the observable quantities, such as energy M= 2 (—)’_ml( m m
spectra, moments of inertia, and intensities of multipole tran- M2 1K 2
sitions. For systems with a nearly half-occupied shell, where

i T_(_\« P
the transition from oblate to prolate deformation takes placeW'th the property My,) '=(—)"My_ . The lowest multi

pairing can be further enhanced due to the fact that on thgOIe operators witfk =0 and 1 are related to the constants

average the spherical shape tends to be restored in this r, f motion, number of fermiond, and components of angu-
gion. ar momentum operataf, ,

aja;,

II. KINEMATICS OF RESIDUAL INTERACTIONS M :l :L 3
00 ©)

y Mye=—= :
o) MG

The mean field is recognized as one of the most effective
approaches in study of quantum many-body systems. Along/hereﬂ= 2 +1
with the shape and symmetry properties of the averag L L
many-body potential, the mean field also determines thi ”The_.\ algebrat_of pf";ur operators on ane level is given by the
guantum numbers of elementary excitations: quasiparticle oflowing equations:
Low-lying states in the system, as well as the response to t A -
external perturbations, can be understood in terms of the [PLar.Pua’l1=ddan +2(=)"(2L+1)(2L" +1)

quasiparticles and their interactions, which in the lowest or- L L' K
der are just pairwise collisions; see Fig. 1. XE (2K+1)y . . . ]
A spherical symmetry of the mean field is present in many Ki b
nuclei throughout the Periodic Table. With the use of a L L K
spherical basis we guarantee the exact angular momentum % )MT , 4)
conservation, avoiding approximate projections. Although -A Ak K

further discussion can be presented in a general form, we
limit our consideration to a singlg-level, that is, Q) =2j ‘ N .
+1-fold degenerate. The general rotationally invariant two- [Mkx:PLa'l1==2(=)"J(2L+1) > VeL'+1

body interaction Hamiltonian in a singjeshell, LA
[L’ K L|/L" K L ot
H=2> V.2 PLPLs, M I N
_ _ _ 5
defines the scattering of nucleon pairs coupled to the angular
momentumL: oy
( )L A . . [MKK7MK’K’]:Qq [1_(_) - +Q](2Q+1)(_)q
) J J
Pl =—T—— V2L+1 ala).
NG} m%z m —A 192 {K K’ Q](K K’ Q)M
X
. . . f _ Qq-
Rotational symmetry and Pauli antisymmetry here result in A q
the limitation thatlL is even; otherwise the scattering ampli- (6)
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It follows from the last expression that the odd multipolarity The condition that alV, with odd L vanish is equivalent to
multipole operators form a closed subalgebra. Another SUb@VL—VL, S,m”aﬂy, in thep-h channel, Eq(13) is equiva-
algebra relevant to pairing is formed by operatBgg, POO, lent toOVK—
and M,; it will be discussed in detail in Sec. Il A.

The original Hamiltonian Eq. (1)] can be expressed in
terms of interacting multipoles:

Equation(11) can be viewed as an eigenvalue equation,
where the kernel can be brought to a symmetric form by a

simple rescaling of/, by (2K + 1)Y2. This eigenvalue prob-
lem can be resolved by separating thg 8ymbol in the
H= 2 VLE Pl P y=eN— 2 E ME My, kernel with the recoupling technique. This, though, does not
lead to anything new, because as a result one obtains that
(7)  among 3 +1 eigenvalues there ajet 1/2 eigenvalues that
. are zero and the same number of eigenvalues equal to 1,
The transformation formulas between i andp-h chan-  \yhich is a consequence of this operation being a projection.
nels on one level are Any physical eigenmode for the set Yfcorresponds to one
L particularV, , and can be constructed using E8), since the
]VL’ (8) projection operator is diagonal in theep channel.
K The special cases of Eqd.l) and(8) result in

Y/K=(2K+1); (2L+1) j

o i ]
1 - K
=55 > V. (10 2 () V=V, (14)

This transformation, often attributed to Pand@ was first ~and the effective single-particle energy in EG0) can be
seriously discussed from the viewpoint of underlying physica/Vritten as

and practically used by Belyad®9]; also see Refd.10,11].
Schematically the transformation from thep channel to the
p-h channel is shown in Fig. 1.

Fermionic antisymmetry requires that pairs of fermions
on one level couple to even angular momentum; thereforeThese constraints are usually not addressed in nuclear mod-
interaction(1) is defined byj + 1/2 independent parameters els, because the Hamiltonian given in then form is still
V_ with L=0,2,...3—1. This fact is obscured in the good even if they are not satisfied; it merely contains the
Hamiltonian in thep-h channel, where the particle and hole components that identically vanish in any fermionic many-
can couple to any angular momentum. The number of indebody state, and still only+ 1/2 independent combinations of
pendent parameters is still the same; however, instead of garameters determine the interaction. The arbitrary amount
simple limitationsV, =0 forL=1,3, ... 3 in thep-h chan-  of these components make theh form of the Hamiltonian
nel, the constraints fo"17/K are given by linear conditions expressing the same interaction not unique. The unique form

can be reached if all nonphysical components are removed
" with projection operator§12) or (13). After projection the
K ]VK'- (11D interaction remains physically identical to the original one,
but the new parameters satisfy Ed1).

The situation can be illustrated by an example of mono-
pole interaction, where all nucleon pairs interact with identi-
cal strengthv, =1 for all evenL:

1
:E; (2L+1)V,_=—70= % (15)

=(2K+1)2(—)K+K’[J. J
K’ I

Analogous relations are known in the macroscopic Fermi-
liquid theory.

It is convenient to introduce a projection operafithat,
acting onV,_, projects out only its physical component:
H= > X PP, (16)

. 1+(_)L L=02,...3-1 A

(C] L:TVL. (12)
This interaction is very simple because its effect is only in
- counting the number of particle pairs in the system; there-
A similar operator also exists in the space\gf, which is  fore, all states have the same energy:
just a linearly transformed set of interaction parameters; see

Eq. (8). However, it is no longer diagonal: N(N—1)
E= — a7

e 1.1 S0 KL
®VK=§VK+§(2K+1)Z(—)K+K{J_ j K}VK,.
K/

Going to thep-h channel Eq. (8)], we rewrite Eq(16) in
(13)  the form of interacting multipoles,
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Vi CP,C =P _x(—)*" and
H=EN—§K) > 2 ME My, (18) “A
CM [ Ct=(—)""KMm[. , K=#0. (23
where
The number operator transforms as
~ Q 2K+1 Q- o
Vk==%|dko~—q | and e=—p—. (19 ENC1=0-N. (24)

All components of this interaction respect the Pauli principle With the help of the identity

and Eq.(11) is fulfilled. However, it is not obvious that the

action of this Hamiltonian is equivalent to counting the par- > [PLA.PLATI=(2L+1)
ticle pairs. In order to gain a simpler form, we add to this A

Hamiltonian a nonacting part

ZN)
l_ﬁ , (25

the Hamiltonian in Eq(1) can be transformed to the hole-

hole representation

H'=H+ > > P/,P.4. (20)
L=13,...3 A

CHC 1= v, > P/ \PLA—Vo(Q—2N). (26)
TransformingH’, where allV,=1L=0,1,2 ... 2j, to the iy

p-h channel, we obtain ) ) )
Since the number of particlésr holes is a constant of mo-

- 1 tion, thep-p to h-h transformation simply results in a con-
Vk=—Qd, and e=—3. (21 stant shift of energy, while leaving the interaction invariant.
The same result can be traced using the multipole-multipole

Thus only the monopole term is present in this interaction(P-h) representation of interactions. Here all multipole terms

and with K#0 are invariant, and any changes are due to the
monopole and single-particle terms. Particle-hole invariance

N(N—1) results in important consequendd®]: an expectation value

H'=—%—. (220 of any odd multipole moment of thdl-particle system is

equal to the multipole moment of the corresponding state in

Although HamiltoniansH andH’ have very different forms the {2 =N system; any even multipole moment is equal in
in the p-h channel, they are identical in their action on aMagnitude but has an opposite sign in the corresponding
physical state. Despite the fact that the introduction of inacStates of thep-h conjugate system. In particular, the particle-
tive components may allow for a simpler form of the Hamil- N0le symmetry requires that expectation values of all even
tonian, the form where Eq11) is satisfied is preferred, not multipole moments |dent|cally vanish in the half-occupied
only because it allows one to define interaction in the uniquéhell. Therefore, a half-occupied shell cannot be deformed.
way, but also because it explicitly shows couplings betweef'S We further show, this effect turns out to be helpful for
different physicalp-h excitations by virtue of Eq(11). preserving a paired state. This kinematic suppression of de-

The role that each interaction parametgror V, plays in formation is a result of a phase transition on the mean-field

L ' level from oblate to prolate deformation. Similar to the pair-
determining the state of a many-body system is very com: " .

I ing phase transition, the mesoscopic nature of the system
plex, and generally for realistic systems these parameters are

correlated by their common physical origisuch as core smoothens the sharp changes, thus extenqhng the region of
o large fluctuations and suppressed deformations.

polarization or meson exchange, for exampbeyond the

previously discussed kinematic restrictions. In realistic sys-

tems there are somé, andV, and possibly their certain
linear combinations, that have a significant tendency to form A. Pairing interactions and degenerate model
nuclear states with special coherent properties and symme-
tries. The pairing matrix element, is known to be respon-

sible for collective and macroscopic coherent effects Sim"a(/eloped their powerful BCS methdd3] in 1957. The de-
to superconductivity and superfluidity in large m"’“W'b()dygenerate model involves a single degenerate single-particle

fermionic systems. Similarly, in the particle-hole chanMel,  |evel. The algebraic properties involvin®=Pg,, P’

plays an important role for the f_ormation of collective vibra- — Pgo, and M= M, operators on one level are particularly
tions and quadrupole deformation.

Ill. PAIRING AND OTHER INTERACTIONS

The first steps toward understanding the nucleon pairing
were taken even before Bardeen, Cooper, and Schrieffer de-

simple
B. Particle-hole symmetry 2(—)~
. : . , [M,,PT]= —=P{_, (27)
Residual interactions can be formulated in the hole-hole VQ(2K+1)
(h-h) channel. With the transformation in E@) pair opera-
tors transform as for evenkK, and
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[Mg.,PT]=0 (28)
for odd K, when
[PLa.PT1=6106h0 %MLA- (29)
The important. =0 case,
[P,PT]=1—LM=1—§, (30)
JQ Q

shows that the zero spin set of operatols P', and M)
form the SU2) algebra[14]. By defining a quasispiit,

No . o, o
£ZZE_Z' L= EP, L = 5P’ (31)

PHYSICAL REVIEW C 65 044311

malization of such a state can be obtained using the momen-
tum algebra, or iteratively with the help of the commutation
relations

(N=s,s|P"(PT)"|N=s,s)

_ [(Q/2)—s]!n!
C(Q2)(Q/2)—n—s]!

(N=s,s|N=s,s). (36)

The seniority formalism is useful because it takes all un-
paired statefs,s) as a foundation upon which all other states
are uniquely built by adding a paired condensate. The sim-
plest lowest nonzero seniority states are #el state|N
=1,1(jm))=a/,|0) and thes=2 state P, .o,)"0)=|2s
=2(LA)), both of which are normalized to unity with our
definitions.

B. Pairing-based treatment on nonpairing residual interactions

we can satisfy the above commutation relations. The pure |n this subsection we will assume that the system is
pairing interaction preserves the quasispin; this can be corpaired, the ground state has seniosty 0 (assuming even
verted into a conservation of seniority, the number of un-N), and the lowest excited state hss 2. Using the paired

paired particles. This is the cornerstone of Kermar'$5]
method, and the exact pairifigP) algorithm[5] of the exact

states we will evaluate the contribution of all residual inter-
actions to the energy, the EP plus monopole metfsid

solution of the pairing problem for the realistic level scheme.ysing the states wits=2 we will discuss the behavior of

The eigenvalues of, and [22=£(£+ 1) are related to the
particle numbeiN and senioritys according to

(32

N 0 Q0
4 4

Le=5— 7

N »

By repeatedly commuting pair operators, we obtain

2n—2 2N 33
0o @

[P,<P*>”]=(P*)“—1n(1—

2n(n—1
[P (P = - D)

2ny2L+1
JO

(PH"2(—)2pl_,

(PHM™ M, L#0,

(34)
and
[Mk,,(PH)"]
2n

={ JO(2K+1)

0, K odd.

(PH"Y(—)*P}_., K even
(35

The last expression results froffiM ,.,PT],PT]=0.
Collective paired state€he condensajecan be built on

two unpaired nucleons in the presence of Me 2 particle
condensate, and address the validity of the initial assumption
that in the presence of all residual interactions the system is
still paired.

In the lowest order of perturbation theory for tke=0
state we have to examine the expectation values of all terms
in the Hamiltonian of Eq(7) for the paired stat¢N,s=0).
Following commutation relation€5), we obtain

2N(Q—N)

T = ‘
2 (NOM M N.O) = e =5

K=24,...,
(37)

where only even multipoles contribute. The=0 case is
proportional to the square of the particle number

N2
<N,0|MTM|N,0>=5. (39
Using Eq.(34) it can be shown that
NOP! PLING = SNZ2) ) Lo (a9
< 1| LA LA| !>_Q(Q_2)! #0. ( )

L =0 corresponds to the solution of pairing in the degenerate
model,

N—s
(N,S|PTP|N,S>=W(Q—N—erZ), (40)

any state|N=s,s) with s unpaired particles by the simple where the number of particles in the statdis 2n+s. This

action of the pair creation operatoBT()”|s,s), resulting in a
state withn pairs in a condensatéN=2n+s,s). The nor-

expression is valid for any seniority The expectation value
of the Hamiltonian in the paired state is thus
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N.OH|N,0) = o NN
(NOHIN.O= 2 S

N(N—2)
+Q(Q_2) ; (2L+1)V,

PHYSICAL REVIEW C65 044311

(N,s|X|N’,s") can be related to a quasi-spin-reduced matrix
element(s||X||s’) using the Wigner-Eckart theorem. These
procedures were discussed in detail by Tltrél]. From the

previously discussed commutation relations, it follows that
(4)  for oddL, M, , is a quasispin scalar, while the everpair
operatordDIA, P_a, and M, , can be combined in compo-
The same result can be obtained in the multipole channehents of quasispin vectors; far=0 they define quasispin via
Result(41) is of particular interest, since here the exact ex-Eq. (31) Hamiltonian(7) is a mixture of scalar, vector, and
pectation value of the full Hamiltonian on the paired wavesecond rank tensors in quasispin space:
function is just the sum of the pairing and monopole con-
tributions. The treatment of energy within the “exact pairing H=Ho+Hi+H,.

plus monopole” (ER-Mo) approximation is therefore the \wjth the aid of the multipole expansion, the components of
lowest-order perturbation treatmef]. It is also important  the Hamiltonian can be explicitly extracted. Due to the sym-
to mention thats=4 is the lowest seniority mixed wits  metry properties, the product of two identical vectors cannot
=0 by the nonpairing part of the Hamiltonian. This is relatedhaye a vector component, because the cross product of two
to the conservation of angular momentum. The state of tW@qual vectors is identically zero. Therefokd | My, with
unpaired particles cannot have spin zero, since two particle§ynzero even values @€, contain no quasi\'/(ector compo-

on a singlef level have only one spin-zero state which be-pant Thys the quasivector part is fully contained in ke
longs to seniority zero. =0 terms

To consider the states of higher seniority it is convenient
to utilize the quasispin group properties. All states with a
given seniority have the same expectation value éf and
the number of particles in the paired condensate is reflected
only in the quasispin projectiof,. With the help of the The quasispin-quadrupole parts, that are only present in
SU(2) quasispin group, all operators can be classified byerms M LKMKK with evenK, can be separated by decom-
their seniority selection rules, and any expectation valugosing the product, for example,

_VoN(Q-N) _ N(N-2)

2 a-2 VYog=3

- Q -
H1=—V0(N—§ = —2V,L,. (42

(0’)2:%[2(52)% e+t +é[4(£~’)2— - ct.

(43
scalar quadrupole
Therefore,
1 2V, R Vo+2V, (O
H2_§2 Vit o1 ; PLaPia=——=—|7-NJ, (44)
and the remaining part is a quasiscalar:
2 A ; Vo[ Q Vo
Ho=3 2 (VL—m 2 PLPLt 5| 7 N[+ 5 (N-Q). (45)

The quasivector part is proportional £y, and can act only within a multiplet, generating no change in seniority. Therefore,

in all transitions generated by the Hamiltonian and leading to a change in seniority the quadrup@le isatte only active
component, changing seniority by either two or four units. Using the Wigner-Eckart theorem for transitions generated by the
second-rank tensor in seniority, we obtain

(N,s|H|N,s—4) 1 [(N—s+4)(N=s+2)(Q—N—-s+2)(Q—N—s+4)

(s,s|H|s,s—4) 2 2(Q—2s+2)(Q—2s+4) ’ (46)
(N,s|H|N,s—2)_Q—2N\/(N—s+2)(Q—N—s+2)
(s,s|H|s,s—2) Q-2s 2(Q—2s+2) : @7

The situation with the diagonal in seniority contribution is somewhat more difficult, since both components, quasiscalar and
second-rank tensor in quasispin space, are active in this case:

~ 6(N—s)(0—N-—5)
<N’S(§)|H|N!S(§,)>:<S1S(§)|H|SIS(§,)>_VO(N_S)6§§’_ (Q_ZS)(Q_ZS_Z) <S,S(§)|H2|S,S(§,)>. (48)
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¢ here denotes all other quantum numbers not related tmum weakening of the pair interaction by about a factor of
quasispin which are needed to identify the state. It can b&/2. The addition of two unpaired particles implies an extra
convenient to extract a quadrupole component using twdlocking of the pairing, and therefore requires more energy
states in the quasispin multiplet: a state with no paired paras compared to the case of the two particles being paired.
ticles and a state with the same seniority but with one conThe additional energy comes from a two-quasiparticle exci-

densate pair. It can then be shoyr®] that
Q

—2s
(N.S(&)[HzN,S(¢")) = —5— (s+2s(§)|H[s+25(£))

—(s,S(&)|H|s,5(&"))+2V5:41).
(49)

The previously obtained formula for the=0 case[Eq.
(41)] results from the following conditions:

(N=05=0[H|N=0,5=0)=0,

Q(Vo+2Vy)

(N=0,5=0|H,/N=0,s5=0)=— 1

(50

The s=1 expression follows directly from E@48) supple-
mented with

(1,2(jm)[H[1,1(jm))=0,

(Q—4)(Vo+2Vy)

(1,2(jm)[H|1,2(jm)) = — 7 , (51
. . -1 Vo
(NG HIN 2Gm) = 3 (@ -N-1) 2
—(N—l)\~/o). (52

tation, and is proportional t&'y. The nontrivial contribution
from other interactions also enters through the monopole and
V, terms.

To investigate the stability of the paired state we consider
the separation energy of a particle pair from the condensate
S=E(N,s=0)—E(N,s=2). In the approximation of large
Q andN,, Egs.(41) and(53) give

S=V,—V, +2|V —ZVL —Npl Np

Vo Vit rorrr/ e\t
vv’4\~/LNp1|\Ip 55
“VorVithrialt el ®9

The self-consistency of this treatment based on pairing re-
quires that pairing be stable al®<0. Equation(55), as a
function of the condensate si2¢,/(), has three extremum
points. The two points at the edges of occuparidy/()
=0 andN,/Q =1, are equivalent due to particle-hole sym-
metry and result in the obvious condition

Vo<V, forany L#0. (56)
A nontrivial condition appears in the third point of extre-
mum, for the half-filled shelN,/Q=1/2, where

Y Vi Vi
0N Tol+1

for any evenL #0.

(57)

The quenching of residual matrix elements in the

The answer here contains only the pairing and monopol€hannel, according to E¢54), is an important phenomenon,
terms. An extra particle influences the pairing condensat#hich can prevent nonpairing interactions, especially ones

only through the Pauli blocking.

that are incoherent with respect to the mean-field deforma-

Two unpaired particles above the pairing condensate beiion, from destructing the paired state. However, as can be
have differently, and their interaction is strongly renormal-seen from Eq.(57), multipole-multipole correlations can

ized. For thes=2 case we obtain
(N,2(IJM)[H|N,2(IM))
(N=2)(Q2—N-2)

=V;—(N=2)V,+

(Q-6)(Q2—4)
Vo - VAVA
X[(Q—S) ?‘FVO —2V3—m . (53

damage the pairing state, and the above pairing-based treat-
ment may become inappropriate. In Sec. IV we will continue
the discussion of interplay of pairing and coherent multipole
modes.

C. Seniority conservation and kinematics of interactions

The one-level model is very restrictive kinematically, and
constraints somewhat favor pairing. Although the interaction
on a single level is defined with the explicit use jof 1/2

This equation shows that unpaired particles interact in théndependent parameters, such\gswith evenL, there are

channel with angular momentumwith a reduced strength

Np(Q—N,—4)

Vi=Vi (Q—6)(Q—4)

1-2 (54)

, Np=N—s,

because of the presence of tNg-particle condensate. The
reduction is proportional to the expectation value*dP and
has a parabolic dependence Ng, resulting in the maxi-

only a few independent linear combinations that result in a
seniority mixing interaction. Besides an obvious pairing
componentV, it is also possible to find a number of inter-
actions that produce no quadrupole paff=0. It follows
from Eq.(44) that this will happen if for an arbitrary even

2V,

Vit o=

0. (59)
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This condition results in a linear equation of largej only about one-third of the parameters result in
seniority-mixing Hamiltonians. Finally, for the linearly inde-
pendents sets of interaction parameters corresponding to the
eigenvalue 3, the resulting Hamiltonian is almost purely
quadrupole in quasispin:

2 Ky V=0, where
L!

L
Kio=6+2L"+1)). . . 59 Q Q
L=t )[j j L ’ 59 H2=H—V0(Z—N), Ho=———. (64)

since The fact that it is possible to find nonzero sets of interaction
K2=3K, (60) parameters that result in a vanishing quadrupole in the qua-
sispin component of the Hamiltonian is nontrivial. Further-
the kernel has only two different eigenvalues, 3 and 0. All more, it is interesting that the number of independent possi-
eigenvectors corresponding to the zero eigenvalug efre  bilities is large. This is a result of a very restrictive
independent solutions of E¢G8). Solutions of Eq(58) can  kinematics of interactions on a singjdevel.

be obtained as For a random choice of the two-body interaction, even
with all of the above kinematic constraints the probability of
j j L\?2 getting a seniority-preserving Hamiltonian is negligible as
Vi= m -m 0/ L=02,...3-1. (6 well as the conditions of condensate stabi[iBg. (57)] are
not necessarily satisfied. Thus, although random systems ex-
The corresponding parameters in i channel are hibit trends similar to those encountered in realistic nuclei
with pairing [18,19, numerical studies show no enhance-
-~ 2K+1 K j i K\? ment of pairing in the low-lying states of random Hamilto-
V= 2 1m -m o nians. It was demonstrat¢d] that in the ground-state wave

function of a random Hamiltonian on a singldevel, thes
i K \2 =0 pairing component appears on a statistical level, i.e.,
_( ) ] K=01,...3. (62  wijth the same probability as any other component allowed
by symmetries. Therefore it was argued that the presence of

In the above equation the second term in the brackets iderfi€gular pairing, a prominent part of realistic physics, is not
tically vanishes for all even values f It is clear that Eq. feproduced in randomly interacting systef@$ The intrinsic

(58) is satisfied by Eqs(61) and(62). Not all solutions gen- feature of interactio_ns describing .realistig systems is the
erated byj + 1/2 different values om=1/2,3/2, .. j are lin-  Presence of correlatlpns between _d|ffe_rent interaction param-
early independent; this in general allows for existence ofters. These correlations, along with km_ematlc fgature;, such
some independent linear combinations of interaction paran@s discussed above and other dynamic couplings, is what
etersV, that result in seniority mixing Hamiltonians. The Makes the pairing effects survive and even dominate in the
number of linearly independent solutions of E§8) is 2k  1ow-lying states of many realistic nuclei.

+1-— 6,9, Wwherek andr are determined ap+ 1/2=3k+r,

wherer=0,1,2 is the residue. Equatidil) generates all IV. PAIRING PLUS QUADRUPOLE MODEL

these solutions; they correspond to the zero eigenvalue of the
kernel IC, and result in Hamiltonians that preserve seniority.
Furthermore, since the quasiscaldp and quasivectof,
parts of the interaction result in a trivitl dependence of the
spectra as follows from Ed48),

As discussed above, the most general Hamiltonian can be
separated into three parts: quasiscalar, quasivector, and a
second-rank tensor in quasispin. The perturbation theory
based on pairing treats exactly all quasiscalar and quasivec-
tor components. Since all odd multipoles are quasiscalars,
only those nonpairing interactions that can be expressed in
terms of the multipole operators of an even order, starting

the relative spacings between states of the same quantuﬁfrﬂm |K= d2’ arehof mterﬁst as the most orthogonal to pairing.
numbers including seniority are independent\ofor inter- | NiS 1eads to the Hamiltonian

actions that satisfy Eq58).

E(N,s(¢))=E(N=s,s(¢))—Vo(N—s), (63)

As a remark we note that th&interaction can be gener- H=GP'/P— > XK D ML My, . (65)
ated by Eq.(61) with m=1/2, and thus conserves seniority K=24.. 2 % "
[12]. In addition to all these (R+1— &,() choices, there is ) . ) )
one trivial and linearly independeffor j>1/2) freedom of The lowest possibl&K=2 multipole is responsible for

selecting V, that also results in a seniority-conserving quadrupole deformations, and is usually the most energeti-

Hamiltonian. To emphasize these kinematic limitations wecally favorable. Thus we will further concentrate on the pair-
just mention that foj < 7/2 any interaction conserves senior- iNg plus quadrupole (PQ) Hamiltonian as defined below:

ity, and, as recently noted in Refl7] for j=19/2, for ex-
ample, out of nine possible independent choices of param- H=GP'P— X2 2 Ml My, . (66)
eters only two lead to seniority nonconservation. In the limit 2 % 2K
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The physically relevant parameters correspond to attractive 0.04 - ' ' ]
pairing G<<0 and attraction in the quadrupole channgj, 0.02 - |:| ]
>0. This Hamiltonian is interesting for a number of reasons: 0.00 ] |:|
it accounts for both short- and long-range parts of the re- . o2 |:| |:| - |:r
sidual interaction of nucleons through pairing and quadru- > '
pole parts, respectively, and consists of two very different —0.04 ]
components. Each of them separately is known to be respon- -0.08 1
sible for collective phenomena; however, acting simulta- -0.08 - ]
neously, they lead to an interesting interplay. The study of -0.10 6 2 "1 é é 1‘0 1'2 1‘4
pairing versus deformation within 4£Q model is usually L
carried out with Hartree-BogoliuboiHB) techniqug23]. In N I
fact the model is often defined as an arena for application of 04 - ]
the HB method 20], ignoring exchange terms and previously 0.2 - D DDDDD ]
discussed kinematic limitations. Studying the-® model 0.0 -= DDDD=D 0 1
beyond the HB approximation will be our further goal. o 02T .
0.4 - -
A. Kinematic pairing -06 .
The interaction parameters of Hamiltoni&é6) do not -08 1 ]
satisfy Eq.(11) and, as previously discussed, this Hamil- 10T T T e 8 10 12 14
tonian contains a nonphysical part. As a result the fact that K

the quadrupole part contributes to pairing as well as to all

other components in the-p or p-h channel, and that pairing FIG. 2. Interaction parameters in the particle-particle channel
makes a contribution to the quadrupole part is not seen exupper plo} and particle-hole channeflower ploy for a pure
plicitly. In order to observe these kinematic couplings weduadrupole-quadrupole interactiop,=1 andG=0, in the model
will reduce the form of Hamiltoniar(66) with projection spacej=15/2, are plotted as a function of multipolarity. Note the
operators to a unique form where conditiofld) are satis-  different scales on the two panels.

fied. We rewrite Hamiltoniari66) in following form . o
Equation (72) shows thatVy=G— x,/{, which indicates

that even a pure attractive quadrupole interacti@~Q0)
generates an attractive pairing with the strength of the order
of ~1/Q. Furthermore, as follows from the properties gf 6
symbols, even in the case &=0 pairing is still the most
attractive residual two-body forc®,,<V| .o. Therefore, in

this model the pure attractive quadrupole-quadrupole Hamil-
tonian has a paired ground state<0 andJ=0) for nearly
magic configurationdN=2 andN=—2. This effect was
also observed in other studies of nucleon-phonon interactions

[4]. Typical behaviors o¥/, andV as a function of. andK,
respectively, are shown in Fig. 2.

In the limit of largej the 6 symbol, such as one in Eq.
(72), can be approximated by a Legendre polynomial. In this
limit the contributionV (K) from the multipole-multipole
interaction with even angular momentutnand correspond-
ing strengthyk [Eq. (65)], to the particle-particle interaction
with angular momentunk, can be approximately given by
the following expression:

%
HeeN+ 3 V3 PP == 55 5 M{ M,
(67)
removing the unphysical part with the projection operation:

~ N G
Vk=0xo—(—)“(2K+1

P (68)

Thus

v, _(xefb 12 G
V=% dcat+ (2K+1)( )(2{1' okl al

In particular, the monopole part is

o 20

(70

XK
V| (K)=~— —-P_(cosb), here
and there is a renormalization of the quadrupole strength L(K) QPL( s), W

which in the largeQ) limit behaves as
L(L+1)—2j(j+1)

< X2 _X2t2G cosf= e (73)
—xz_ j+1)
V, 5 5 50 (71
) ) For small everl the cos#~—1, which leads to an attractive
In the particle-particle channel we have force. The Legendre polynomid, here expresses a factor
P2 relevant to a macroscopic geomef®1]; the same argu-
_ _ X ments can be applied in the problem of random but rotation-
= + =— . . T :
VL= 000Gt X i L]’ 720 (72 ally invariant interaction$2].
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Although the discussion here is concentrated around 0.4
particle-particle correlations in the pairihg=0 channel, our
results[Eqg. (72) and Fig. 3 indicate that kinematic con- 03

straints influence all angular momentum channels of
nucleon-nucleon interaction, and thus may result in the en-
hanced correlation of quasibosonic pd#s, with the lowest
L+#0. These effects can be studied via nucleon pair transfer
reactiong 21,22, =0y

The above expression indicates tha®iiis very large then
only Vo=~G andV,~ x»/2 do not scale as &/, which leads
to the usual P-Q model [23] with effectively decoupled
qguadrupole and pairing modes. This is not surprising, be- 012
cause kinematic pairing as well as other kinematic couplings ’
have a mesoscopic geometry of nuclear systems as a source.

Our discussion here uses the shell-model space, where FIG. 3. The spectrum of lowest even-spin states relative to the
bare interactions between quasiparticles drive the dynamidgwest spin-zero state in the system of six particles an=d5/2
of the system, and we have in mind that the shell-modeprbital for the P-Q interaction as a function o&. Two dashed
diagonalization provides a full solution to the many-bodyStraight lines that correspond to perturbation the@y; Eo=—G
problem. In the presence of collective vibrational modes, for” B2 @nd Es—Eq=—G—B,, are plotted for comparisofin this
instance such as determined by the random phase approfi°de!B,=0.031 and8,=—0.074). The quadrupole strength is set
mation, it is advantageous to consider the picture with thétx2=1-
explicit inclusion of collective degrees of freedom and effec- . L
tivg particle-vibration coupling. Igarticle-particle interactions Here B, is independent oG (J#0), and is given by equa-
mediated by the collective modes would effectively appear i lon
this picture as a second-order procEg21]. Unlike this, the v
kinematic particle-particle pairing discussed above should By=—V;—(N-2)=+
still be present as a correction needed to preserve the Pauli 2
principle and to reflect the nonbosonic nature of collective 2x
modes[21]. X1 (Q—8)Y+4V,+ ——

02 r

—Eig

-03 -02 -041

(N—2)(Q—N-2)
(Q—6)(Q—4)

In the P+ Q model the condition for stability of pairing in 2J+1
a nearly full or nearly empty shelEq. (56)] is fulfilled even
without any explicit pairing componer@=0, since, as dis- - m(Q—ZM—Z),
cussed abovey <V, ..o. However, an instability with the
origin in the quadrupole channel appears in the middle of th%\/here
shell, where Eq(57) leads to the following inequality in the
limit of large Q: 1
Y=g . 2 x=G-Vo, (77)
X2 K=246...
G+ 75<0- (74)
andV; are determined as
For the general case of Hamiltoni&b), condition(74) be- K
comes V= 385G+ > XK[ oo ]
K jo) 0 d
G+-—K 0 K even (75) N - - -
2(2K+1) : With pairing as the only interaction, the lowest excited

state in the system with seniorigy= 2 is at two-quasiparticle
From the properties of thej6symbols it follows that the excitation energy, which i& in this case. Other interactions
kinematic pairing resulting from any attractive multipole- can lower this energy by a constaB} which is mainly ef-
multipole (even multipolarity interaction is always attractive fected by the termy,/(2J+1). Since we are dealing with
and is the strongest two-body compon&ht<V, ., in the the zeroth-order perturbation theory, this gap between the
p-p channel. The above result also indicates that lower mulground state and a lowest excited state of a given spin be-
tipoles (K=2 is the lowest oneare more likely to destroy haves linearly with the pairing strength. For example, in the
pairing because of the suppression factor K/¢21). P+ Q model(see Fig. 3the stateJ=2 is the lowest excited

For completeness we present an exact equation for thetate in the paired region.

separation energy of a pair from the condensate which is the The pairing-based description for the system of six par-
minus excitation energy of the first" state with seniority ticles on thej=15/2 level becomes unstable f@&=—0.1

s=2 for the model defined by Hamiltoniga65): (negativeG corresponds to attraction in the pairing channel
as predicted by Eq(74) with y,=1; this agrees well with
S=G+B;. (76)  the comparison presented in Figj. However, in the region
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FIG. 4. One-level systems with=15/2 and 21/2(upper and FIG. 5. Properties of the system of six particles pa15/2

lower plots, respective)yare considered with a pure quadrupole- orpital with the P-Q interaction are studied as a function of the
quadrupole interactios=0. The wave function of the spin-zero parametefs; the quadrupole strength is setygt=1. The upper plot
ground state is overlapped with the spin-zero ground state of @hows the overlap of all six=0 eigenstates in this system with the
paired system@=—1 and x,=0), i.e., with the senioritys=0  s=0 pairing state, which is defined as a ground-state wave function
state, that is unique for a singjdevel system. The square of this for the pairing interactions5=—1 and y,=0. The lower plot
overlap is plotted by a solid line as a function of a particle numbershows the ratio €;_,— E;_q)/(E;_,— E;_o) as a function ofG,

This result is compared to the statistical expectation of pairing fronhereE;_, , , are the energies of the lowest states with spins 4, 2,
random interactions, shown by a dashed curve. The statistical exnd 0, respectively.

pectation is defined here as an inverse number of spin zero states in

the systenj2]. B. Pairing and deformation

, . In this subsection we will investigate the interplay of pair-
where unperturbed paired states can not be used to descripg, and deformation in the-PQ model. Rotational bands in

the system, such as the extreme case of no explicit pairingne |ow end of the spectrum, and the Alaga intensity rules
G=0, the effects of kinematic pairing are still quite strong. || serve us as tools in this study. The lower part of Fig. 5
In order to emphasize this, the numerical values of overlapghows that an indication of a rotational band near the “no
between the ground states of-R) systems with no explicit pairing” region, G=0. Here, judging by the excitation en-
pairing (G=0,x,=1) and paired systems5=—1,x,=0) ergy, the lowest states with=0, 2, and 4 are forming a
are shown in Fig. 4. These results indicate significant pairingcollective rotational band. As is clear from the figure, this
that greatly exceeds the statistical prediction relevant to rarregion is very small. Thus, for the most part, here we will
dom interaction$2], shown in the figure by dashed lines. concentrate on a pure quadrupole-quadrupole interaction
The enhancement of pairing in the middle of the shell,
observed in both plots of Fig. 4, is related to another kine- __X2 i
matic feature. As discussed, exactly in the middle of the H 2 2 Mo Mo (78
shell, due to the particle-hole symmetry the deformation

must disappear, which allows for more pairing correlationsyhich, as we have shown above, is still significantly influ-

In Sec. IV B we will discuss this issue further. enced by the kinematic pairing, with the bandhdadD state
The same result is seen from the upper plot of Fig. Sdominated by thes=0 pairing component.

which shows that the pure quadrupole-quadrupole interac- We note that although singlemodel is very limited, an

tion, the region ofG=0, has a ground state dominated by theexact rotational spectrum can still be formed using

s=0 pairing component. Only in the region where kinematic

pairing is explicitly balancedthis pointVy=0 is shown by

the dashed vertical lineby the repulsive explicit pairing H=X12 MIKM1K=

given via positiveG, the preference te=0 pairing compo- K

nent disappears, and al=0 states have almost the same

overlap withs=0 wave function. The lower plot of Fig. 5 which is seniority conserving and, according to E®). can

addresses the low-lying properties of the spectrum in thée defined in thep-p channel with the aid of the set of

same region of parameters; it will be discussed in Sec. IV Bparameters

X1

2
iGroa’ (79
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Vi=L(L+1)—-2j(j+21)cxy . (80) kinematic terms ignored in the model, the true ground state is
J a superposition of oblate and prolate forms in the region of a

This interaction remarkably satisfies the Alaga intensity ruled1@l-occupied shell. At the exact point of half-occupancy the
well; see below, for reasonably larg@ndN. In the model ~Particle-hole symmetry requiregMpp=0 for the true
with random interactiong2,24], contributions (80) deter- ground state of the system. The oplate—to-prolate transition
mine the effective statistical moment of inertia. Similar to {UNS out to be advantageous to pairing, as can be seen from

this example, other odd-multipolarity multipoles can be used™'9- 4- The content of pairing, the=0 component in the

to create seniority conserving interactions; this is anothelV@ve function, is slightly enhanced in the middle of the

way of finding solutions to Eq(58). shell. This enhancement, being accompanied by strong ef-
The main hint for the presence of deformation comeg©Cts of kinematic pairing near both limité=0 andN=0,

from the mean-field approximatiofi23] (with exchange IS largely responsible for the presence of pairing correlations

terms ignored by definition of the model, this is in fact a throughout the entire region within a single shell.

Hartree approximation For axially symmetric deformation, The moment of inertia in the cranking approximation, that

the average values of the multipole moments are will be of use in our further discussion, is given by the fol-
lowing expression:

L} transition, the mesoscopic nature of the system, and all other
1

C < 2@m*—j(j+1)
(Mag)=2 T S

mm’ Gm_ Gmr

n _n ’
NG (86)

in terms of the occupation numbens,=(a’a,,) in the in-
trinsic frame with thez axis oriented along the symmetry
axis, and

With a sharp Fermi surface only four terms in the siim),
=|m’| =1 will work. Utilizing Egs. (82) and(3), we obtain

<M2_2>:<M22>:0. Q(Qz_l)(ﬂz_4)
Iprolate: >
6X2N

The single-particle energies in the body-fixed frame can be

obtained via the usual self-consistency requirement (02— 1)(07—4)

2(3m?—j(j+1)) O g a(Q—N)?
— . 82
X2 m(m_l)(m_z)Wz& (82)

(87

Elliot’s SU(3) model has a clear rotational structure, and
This problem can be solved exacf§3]. The minimum en- can serve as a link for understanding a macroscopic defor-

ergy corresponds to the Fermi occupation of thdowest mation and its micrqscopic descriptipn. In the quadrupole-
pairwise degenerate orbital|=1/2,3/2 . .. (N—1)/2 for guadrupole Hamiltonian under consideration, the(3al-

prolate shapes ofm|=j,j—1,...j—(N—2)/2 for oblate gebra is bro_k_en iph such a kinemfatri]c wa;zj thatI boosts
shapes. The corresponding quadrupole moment is then givé%?mpet'ng pairing. The commutator of the quadrupole opera-
as tors, according to Eq(6), consists of vector and octupole
components:
1 N@Q°-N9 2 2 1)({2 2 1
Mogy=——+ 83
M= T Dz a) ®3 (Mo Mz, ]=63) (—)“[j P ]( o _q)Mlq
for prolate deformation and 2 2 3
+14Y, (—)Q{. . ]
M >_1 N(2Q—N)(Q—N) -, q R
24 007-1)(07-4) 2 2 3
X , Maq. (89
K K —q

for oblate deformation. The deformation energy, defined as
The octupole component is what breaks the(3lalgebra;
E getormation= — ?|<M20)|2, (85) ignoring this term, and, S|m|larly to Ed3), introducing a

quadrupole operator according to

shows that oblate deformation is preferred fox(2/2 and Qq
prolate correspondingly foN>Q/2. In the middle of the Mog=——, (89
shell there is a phase transition from prolate to oblate defor- V5j(j+1)Q

mation. In this region energies associated with prolate and btai S lgebra in the standard f
oblate deformations become equal. The average quadrupo‘ﬂée obtain an SUB) algebra in the standard forms
moments at this point do not vanish; they are opposite in sign 1+’

for prolate and oblate deformations. Because of this phase [‘]Q’JQ’]:_\/EClq,lq’ a+q’ > (90
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3000

2 ’
[Qqn\]q’]:_\/gczgzgr Qq+q’ y (91) exact
——= SU(3) model Fas
1 +q, -~--~- Cranking model 1/ \‘
[Qq.Qq1=3V10C5 50 g - (92) oo
The quadrupole-quadrupole Hamiltonian can be expressed e
via the bilinear Casimir operator of this group: -
C=Q-Q+3J.J. (93) 00 -7 T
The expectation value of this invariant operator depends only /\/\
on quantum numbers and u that label representations; see, ‘ . . ‘ ‘ . .
for example[25], % 2 4+ 6 8 10 12 14
N
(C)=4(N>+ pu2+ N u+3N+3pu). (94)

FIG. 6. Moments of inertia obtained using different models and
For a given representatior\ {), whereA=pu, the angular  from fitting the low-lying states in the exact spectrum are compared

momentum can be as a function of a number of particles. The pure quadrupole-
quadrupole interaction is useg{=1 andG=0) for the system on
K, K+1K+2,...K+\, K#0 a singlej =15/2 level. The solid line corresponds to the moment of

(95 inertia coming from fitting the exact spectrum, the short-dashed line
corresponds to the moment of inertia from the mean-field treatment,
and the long dashed line is for the @Y model; the latter predicts

an N-independent value.

L= laA=2...1 or 0, K=0,

where an integeK takes valueX=pu,u—2,... (1 or 0.
Assuming a deformed band based on the ground d$fate
=0 we chooseu=0 and\ =N( —N)/2 where\ coincides
with the maximum possible value of angular momentum in Q=(IM=J[ My IM=1J). (98)
the system. Thus in the approximation of @WUsymmetry

the expectation value of the quadrupole-quadrupole HamilThe B(E2) transition strength is defined as

tonian becomes

2x2N(Q—N)(NQ —N2+6) B(E2)= 2 [(IM{| My, JIM[2. (99
(N)[HIN(D)=— > Mix
50(0°-1)
The Alaga intensity rules are then expressed via the relation
N 6x2d(J+1) (96) [26,21]
50(0%-1)
Q2 4

The SU3) model results in exact rotational bands with the B(E2) 49 (100
N-independent moment of inertia:

50(02-1) Within the pairing-based treatment of interactions which

(97 implies no seniority mixing, this ratio can be calculated ana-
Iytically. We assume that the lowedt=2 state has a pure

In Fig. 6 the moments of inertia obtained from E¢&7) senioritys=2. Due to the seniority .conservation, this is the
and (97), and from fitting theJ=0, 2, and 4 states in the only state that can dlrectly decay into th(—_} ground state_, as-
spectra obtained from exact diagonalization, are compare§umed here to have=0, via ankE2 transition. The ampli-

In a view of the previous discussion it is not surprising thattude of this transition is given by

observed moments of inertia are significantly lower than
ones predicted by both of the considered models. This effect t \/ 2N(Q—=N)
should be attributed to pairing, which is mainly of a kine- (s=2Kk| My, |s=0)= (2K+1)Q(Q—2)’
matic origin. (101

Static deformation of a nucleus manifests itself via rela-
tions (the so-called Alaga intensity rulebetween the diag-
onal expectation values of multipole moments and off-
diagonal, transitional amplitudes corresponding to the same IN(Q—N)
K band. Here we consider a quadrupole moment of the low- B(E2)= —————.
est excited)=2 state and th&2 transition between this Q(Q-2)
state and thd=0 ground state. In a single-level model the
quadrupole operator must be proportionalMty, as itis the  The rate of this transition is maximized for a half-occupied
only particle-hole operator with the correct rotational prop-system. The corresponding quadrupole moment inJth@
erties. We define quadrupole moment of the state as ands=2 state can be determined from

12)(2

therefore, in the limit of strong pairing,

(102
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g 006 ] FIG. 8. RatioQ?%/B(E2) for systems with different numbers of
& 004} ] particlesN on a singlej =21/2 level is plotted with solid lines as a
© 0.02 - N T function of pairing strengti®. Thin dashed lines, with correspond-
Es—r——g—co—c o= ing values ofN marked on the right, indicate the intensity ratios for
-01 0 01 02 03 04 corresponding systems in the limit of validity of pairing perturba-
-G tion theory. All results should be compared wigif/B(E2)=4/49

FIG. 7. The quadrupole characteristics of the first excitéd 2 ~0.082, the Alaga intensity ratio of a rotating rigid body.

state, the diagonal quadrupole moméntEq. (98)] (middle panel . . o ) ]
and the reduced transition probability to the ground SBEE2) state is paired, and the Alaga ratio is determined exactly via

[Eq. (99)], (upper panglin the P+ Q model for the singlg = 15/2 Eqgs.(102 and(104). The second case is fof= /2, where,
level andN=6, as a function of pairing strengt®. The long  due to particle-hole symmetr®?/B(E2)=0. For all other
dashed line on all plots indicates the results from pairing base@ituations Alaga intensity rules are fuffilled to a sufficient
description. The lower plot shows the prediction of the Alaga inten-degree of accuracy for the pure quadrupole-quadrupole

sity rule Q%/B(E2)=4/49 (short dashed line HamiltonianG=0. As the pairing strength increases, the ra-
tio Q%/B(E2) moves away from the Alaga value toward the

(N,5=2,(IM)| Mo|N,5=2,IM)) limit determined by pairing, which is shown by thin dashed
lines. Curves corresponding to systems with a number of

2N-Q I K particles close ttN=2 (N=Q—2) or N=(/2 converge to
=2(2J+1) O—4 (= M 0 —M the pairing limit significantly faster. This fact is yet another
manifestation of the preference for pairing correlations in
J K J these systems.

V. CONCLUSIONS

Application to a quadrupol& =2 results in the following L o )
The pairing interaction is a very important part of the

expression: ! ! )
general residual interaction. However, the fact that many nu-
4 (2N-Q)(Q+4) clei are paired in their ground or low-lying exited states is a
== . (104) result of a nontrivial interplay of pairing matrix elements and
700 -1)(Q%-4) other parts of the residual interaction, as well as kinematic

constraints. It was shown earlier through a number of nu-
The quadrupole moment goes to zero for the half-occupiegherical studies that the realistic interaction is different from
shell, as required by the particle-hole symmetry. an arbitrary-symmetry preserving random interaction. The
In general, the paired state is not deformed and thus thgifference lies in the correlations between the interaction pa-
B(E2) transition probability in Eq(102) and the quadrupole rameters that exist even in the truncated shell model space,
moment[Eq. (104)] do not satisfy the intensity rultEq.  reflecting the overall properties of the nuclear medium. In-
(100]. With the quadrupole-quadrupole interaction pre-teractions that permit paired states and allow for deforma-
sented, a deformation can appear and Alaga intensity rulesons produce very correlated sets of residual two-body ma-
can be fulfilled. In Fig. 7 for the system=15/2 andN=6, trix elements. Apart from the dynamic correlations, there are
the quadrupole moment, ti#&(E2) transition strength, and kinematic couplings between different collective modes, that
the ratioQ?/B(E2) are presented as a function of the pair-mainly appear from the geometrical restrictions imposed on
ing strengthG. Dashed lines show the results for the strongcollective excitations.
pairing limit, obtained using Eq$102) and(104). In many realistic systems pairing is relatively weak com-
Figure 8 compares the behavior of the ra@&@B(E2) as  pared to the critical value of phase transition defined by
a function of the pairing strengt® in different systems\ BCS. However, as shown by numerous authors, pairing cor-
=2, 4, 6, 8, and 10, withj =21/2. There are two special relations in mesoscopic systems extend far beyond the BCS
cases. FON=2 (the same is true foN=( —2) the ground phase transition. This makes the exact treatment of pairing a
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necessary component in the study of a sensitive interplaprolate-oblate phase transition taking place in this region; it
between pairing and other interactions. weakens deformation, thus allowing for more pairing. A
The simple single-level systems considered in this worknumber of calculations was performed to emphasize the dis-
served as an excellent testing ground. TheZdjuasispin  cussed aspects, and the results were compared to the predic-
algebra allows for an exact solution of the pairing problemtions of the mean-field approximation and Elliot's &V
and perturbation theory, based on the paired $ttecan be  model. Direct overlaps with the=0 paired wave function,
further developed with ease. This makes it possible to adthe excitation spectrum, the intensities of transitions, and the
dress important questions of the stability of the paired statenoments of inertia all indicate the appearance of pairing,
as well as to investigate dynamic renormalizations of two-consistent with the kinematic constraints.
body interactions in the presence of the pairing condensate. The simple model used in this work is only a very limited
The interaction parameters for a one-level system in th@pproximation of the situation in nuclear systems. However,
particle-particle and particle-hole channels can be related tthe observed effects of pairing enhancement via kinematic or
each other, revealing kinematic constraints in a simple formdynamic interplay with other interactions have to exist to
Additional restrictions on the behavior of the system comesome extent in realistic systems. The situation in the realistic
from the exact particle-hole symmetry. As a result of thisshell model becomes much more diverse as it is complicated
symmetry, all multipole moments of even multipolarity are by an increasingly large number of interaction parameters, a
identically zero for a half-occupied shell. These constraintsveakening of antisymmetry requirements and other kine-
turned out to be very important for the preservation of pair-matic restrictions, and a diversity of collective modes. Pair-
ing in the presence of deformation. The interplay of pairinging itself becomes different: isovector and isoscalar pairing
and deformation was discussed using the@® model. The modes can compete, and the pairing state of the lowest total
particular case of this model, the pure quadrupole-senioritys=0 is not unique and can involve coherent and
qguadrupole interaction with no explicit pairing, was ad-incoherent pair vibrationg27] which, under effects of other
dressed in detail. This interaction was expected to be the onateractions, may result in a paired condensate that is differ-
most “orthogonal” to pairing; however, strong evidence of ent from the prediction of the regular BCS model. These
pairing correlations was found even in this case. We haveuestions, along with many others that can be raised in the
shown that the pairing is the strongest attractive componerdontext of this work including the observable geometrical
in the quadrupole-quadrupole interaction when the latter i®ffects on pair correlations in the coordinate or momentum
converted from thep-h channel to thep-p channel. This representatior28,29, present exciting avenues for future
means that for any attractiv@.e., favoring deformation research.
guadrupole-quadrupole interaction on a singlevel, the
ground state of a two particle or two-hole system is a paired ACKNOWLEDGMENTS
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