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Interplay of pairing and multipole interactions in a simple model

Alexander Volya*
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321

~Received 25 October 2001; published 21 March 2002!

The interplay of pairing and other interactions is addressed in this work using a simple single-j model. We
show that enhancements in pairing correlations, observed through studies of the spectra of deformed systems,
moments of inertia, changes in transitional multipole amplitudes, and direct calculations of the pairing com-
ponent in the wave function, indicate that even without explicit matrix elements responsible for pairing, a
paired state can still appear from the kinematic coupling of pairing to deformation and from other geometrical
restrictions that are of extreme importance in mesoscopic systems. Furthermore, we demonstrate that macro-
scopic transitions such as oblate to prolate shape changes can lead to strong dynamic enhancements of pairing
correlations. In this work we emphasize that the pairing condensate has an important dynamic and kinematic
effect on other residual interactions.
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I. INTRODUCTION

The fact that a large number of nuclei in their ground st
or in their low-lying excited states are paired is supported
an overwhelming amount of experimental evidence. This
cludes the observation of odd-even mass differences, the
pearance of a gap in the spectra, a reduction of the mom
of inertia, and an analog of the Josephson effect in pair tra
fer reactions. In this work, by ‘‘pairing’’ we imply the attrac
tive interaction between pairs of nucleons on time-conjug
orbitals. It is widely accepted that the pairing interaction
responsible for creating a superconducting paired state; h
ever, the realistic interaction is much more diverse than b
pairing. The complex interplay of all interactions that st
leads to a paired state is far from being understood. Co
ence between the pairs or even larger groups of nucleons
be formed in different quantum states; furthermore, coh
ence may appear in the particle-hole (p-h) channel with
other components of interaction contributing to collective e
citations ~shape vibrations and giant resonances in nuc!
and deformation of the mean field. All these effects are
pected to dynamically and/or kinematically effect the pair
state. There are also incoherent components of the inte
tions that introduce the stochastization of dynamics, but
can be influenced by the presence of collective feature
dynamics.

The appearance of a paired state is traditionally attribu
to the strong short-range residual interactions between nu
ons. However, in realistic nuclear systems all interaction m
trix elements are correlated. There is no pure pairing in
action. This is well known in the theory of superconductivi
and in applications to nuclear structure it was shown by
lyaev @1# a long time ago, that an interaction with only pa
ing matrix elements would contradict the fundamental pr
ciple of gauge invariance. Recent studies of systems w
two-body random interactions@2,3# indicated that the sur
vival of collective phenomena such as pairing in realis
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systems may hinge on these correlations between diffe
types of matrix elements. These studies showed that
paired ground state does not appear in systems governe
two-body random interactions; furthermore, even weak
uncorrelated interactions of nonpairing type are very destr
tive with respect to the pairing state.

The mesoscopic nature is yet another important prop
of nuclear systems. It has a strong effect on the kinema
and geometry of collective modes, and the interplay betw
different excitations and phase transitions. Finiteness was
gued to be one of the main reasons for the existence of
superconducting state in realistic nuclei@4#.

In this work we show that observed pairing effects
nuclei do not result just from strong pairing matrix elemen
A paired state appears from a very complex interplay of
residual interactions and their dynamic and kinematic beh
iors. Throughout this work we use a simple single-j -level
model with only one species of particle in order to discu
this interplay. This model provides strong kinematic co
straints, and shows the clearly pronounced role of antisy
metry requirements. The pairing problem can be solved
actly in a single-j level, and the treatment of all othe
interactions is substantially simpler.

In Sec. II we introduce and discuss the kinematics of
teractions in the single-j -level model. The main results o
this work are presented in Sec. III, where we investigate
dynamics of paired systems, and, using a perturbative tr
ment of nonpairing interactions in the basis of paired sta
@5#, discuss the renormalizing effects of the pairing cond
sate, on other residual interactions, consider the stability
the pairing condensate, and evaluate the applicability of
pairing-based treatment. We emphasize that a single-j system
is very kinematically constrained, and for a number of ind
pendent choices of interactions the seniority, the numbe
unpaired particles, remains conserved. The interplay of p
ing and quadrupole forces is studied in the ‘‘pairing pl
quadrupole’’ (P1Q) model. We introduce an important con
cept of kinematic pairing as specific pairing effects that a
pear from kinematic restrictions present in a mesosco
many-body system; they also contribute to the dynamics
nucleon-phonon interaction@4,6,7#. With numerical studies
0
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ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
we show that those effects, ignored in the standard P1Q
model, result in a significant enhancement of pairing, a
directly influence the observable quantities, such as en
spectra, moments of inertia, and intensities of multipole tr
sitions. For systems with a nearly half-occupied shell, wh
the transition from oblate to prolate deformation takes pla
pairing can be further enhanced due to the fact that on
average the spherical shape tends to be restored in thi
gion.

II. KINEMATICS OF RESIDUAL INTERACTIONS

The mean field is recognized as one of the most effec
approaches in study of quantum many-body systems. Al
with the shape and symmetry properties of the aver
many-body potential, the mean field also determines
quantum numbers of elementary excitations: quasipartic
Low-lying states in the system, as well as the respons
external perturbations, can be understood in terms of
quasiparticles and their interactions, which in the lowest
der are just pairwise collisions; see Fig. 1.

A spherical symmetry of the mean field is present in ma
nuclei throughout the Periodic Table. With the use of
spherical basis we guarantee the exact angular momen
conservation, avoiding approximate projections. Althou
further discussion can be presented in a general form,
limit our consideration to a single-j level, that is,V52 j
11-fold degenerate. The general rotationally invariant tw
body interaction Hamiltonian in a single-j shell,

H5(
L

VL(
L

PLL
† PLL , ~1!

defines the scattering of nucleon pairs coupled to the ang
momentumL:

PLL
† 5

~2 !L2L

A2
(

m1m2

A2L11S j L j

m1 2L m2
D a1

†a2
† .

Rotational symmetry and Pauli antisymmetry here resul
the limitation thatL is even; otherwise the scattering amp

FIG. 1. Schematic diagram showing the two-body scatter
process. Two channels, particle-particle (s channel! and particle-
hole (t channel!, are indicated by the horizontal arrow with th
matrix elementVL and by the vertical arrow with the amplitud

ṼK , respectively, whereL andK are total angular momenta in co
responding channels.
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tudesVL can be arbitrary. TheL50 term is responsible for
pairing the interaction of pairs on time-conjugate orbita
u1&5u jm& and u1̃&5(2) j 2mu j 2m&. The strength of pairing
is determined byV0.

A. Interactions in the particle-hole channel

The interaction in Eq.~1! was given in the particle-
particle (p-p) channel. The interaction can also be presen
in the particle-hole (p-h) channel. The nucleon hole can b
defined via a canonical transformationĈ:

Ĉajm
† Ĉ215~2 ! j 2maj 2m and

ĈajmĈ215~2 ! j 2maj 2m
† . ~2!

The multipoles, particle-hole pair states coupled to a parti
lar angular momentumK, are defined as

MKk5 (
m1m2

~2 ! j 2m1S j K j

2m1 k m2
D a2

†a1 ,

with the property (MKk)†5(2)kMK2k . The lowest multi-
pole operators withK50 and 1 are related to the constan
of motion, number of fermionsN, and components of angu
lar momentum operatorJk ,

M005
N

AV
, M1k5

Jk

Aj ~ j 11!V
, ~3!

whereV52 j 11.
The algebra of pair operators on one level is given by

following equations:

@PL8L8 ,PLL
†#5dLL8dLL812~2 !LA~2L11!~2L811!

3(
Kk

~2K11!H L L8 K

j j j J
3S L L8 K

2L L8 k DM Kk
† , ~4!

@MKk ,PLL
†#522~2 !LA~2L11! (

L8L8
A2L811

3H L8 K L

j j j J S L8 K L

L8 k 2L
D PL8L8

† ,

~5!

@MKk ,MK8k8#5(
Qq

@12~2 !K1K81Q#~2Q11!~2 !q

3H K K8 Q

j j j J S K K8 Q

k k8 2qDMQq .

~6!

g

1-2
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INTERPLAY OF PAIRING AND MULTIPOLE . . . PHYSICAL REVIEW C 65 044311
It follows from the last expression that the odd multipolar
multipole operators form a closed subalgebra. Another s
algebra relevant to pairing is formed by operatorsP00, P00

† ,
andM00; it will be discussed in detail in Sec. III A.

The original Hamiltonian@Eq. ~1!# can be expressed i
terms of interacting multipoles:

H5(
L

VL(
L

PLL
† PLL5eN2(

K

ṼK

2 (
k

M Kk
† MKk .

~7!

The transformation formulas between thep-p andp-h chan-
nels on one level are

ṼK5~2K11!(
L

~2L11!H j j L

j j K J VL , ~8!

VL5(
K

H j j K

j j L J ṼK , ~9!

e5
1

2V (
K

ṼK . ~10!

This transformation, often attributed to Pandya@8#, was first
seriously discussed from the viewpoint of underlying phys
and practically used by Belyaev@9#; also see Refs.@10,11#.
Schematically the transformation from thep-p channel to the
p-h channel is shown in Fig. 1.

Fermionic antisymmetry requires that pairs of fermio
on one level couple to even angular momentum; theref
interaction~1! is defined byj 11/2 independent paramete
VL with L50,2, . . . 2j 21. This fact is obscured in the
Hamiltonian in thep-h channel, where the particle and ho
can couple to any angular momentum. The number of in
pendent parameters is still the same; however, instead
simple limitationsVL50 for L51,3, . . . 2j in the p-h chan-
nel, the constraints forṼK are given by linear conditions

ṼK5~2K11!(
K8

~2 !K1K8H j j K 8

j j K J ṼK8 . ~11!

Analogous relations are known in the macroscopic Fer
liquid theory.

It is convenient to introduce a projection operatorQ̂ that,
acting onVL , projects out only its physical component:

Q̂VL5
11~2 !L

2
VL . ~12!

A similar operator also exists in the space ofṼK , which is
just a linearly transformed set of interaction parameters;
Eq. ~8!. However, it is no longer diagonal:

Q̂ṼK5
1

2
ṼK1

1

2
~2K11!(

K8
~2 !K1K8H j j K 8

j j K J ṼK8 .

~13!
04431
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The condition that allVL with odd L vanish is equivalent to
Q̂VL5VL ; similarly, in thep-h channel, Eq.~13! is equiva-
lent to Q̂ṼK5ṼK .

Equation~11! can be viewed as an eigenvalue equatio
where the kernel can be brought to a symmetric form b
simple rescaling ofṼK by (2K11)1/2. This eigenvalue prob-
lem can be resolved by separating the 6-j symbol in the
kernel with the recoupling technique. This, though, does
lead to anything new, because as a result one obtains
among 2j 11 eigenvalues there arej 11/2 eigenvalues tha
are zero and the same number of eigenvalues equal t
which is a consequence of this operation being a project
Any physical eigenmode for the set ofṼ corresponds to one
particularVL , and can be constructed using Eq.~8!, since the
projection operator is diagonal in thep-p channel.

The special cases of Eqs.~11! and ~8! result in

(
K

ṼK5(
L

~2L11!VL52VṼ0 ,

(
K

~2 !KṼK52VV0 , ~14!

and the effective single-particle energy in Eq.~10! can be
written as

e5
1

2V (
L

~2L11!VL52
Ṽ0

2
5

1

2V (
K

ṼK . ~15!

These constraints are usually not addressed in nuclear m
els, because the Hamiltonian given in thep-h form is still
good even if they are not satisfied; it merely contains
components that identically vanish in any fermionic man
body state, and still onlyj 11/2 independent combinations o
parameters determine the interaction. The arbitrary amo
of these components make thep-h form of the Hamiltonian
expressing the same interaction not unique. The unique f
can be reached if all nonphysical components are remo
with projection operators~12! or ~13!. After projection the
interaction remains physically identical to the original on
but the new parameters satisfy Eq.~11!.

The situation can be illustrated by an example of mon
pole interaction, where all nucleon pairs interact with iden
cal strengthVL51 for all evenL:

H5 (
L50,2, . . . 2j 21

(
L

PLL
† PLL . ~16!

This interaction is very simple because its effect is only
counting the number of particle pairs in the system; the
fore, all states have the same energy:

E5
N~N21!

2
. ~17!

Going to thep-h channel@Eq. ~8!#, we rewrite Eq.~16! in
the form of interacting multipoles,
1-3
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ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
H5eN2(
K

ṼK

2 (
k

M Kk
† MKk , ~18!

where

ṼK52
V

2 S dK02
2K11

V D and e5
V21

4
. ~19!

All components of this interaction respect the Pauli princip
and Eq.~11! is fulfilled. However, it is not obvious that th
action of this Hamiltonian is equivalent to counting the p
ticle pairs. In order to gain a simpler form, we add to th
Hamiltonian a nonacting part

H85H1 (
L51,3, . . . 2j

(
L

PLL
† PLL . ~20!

TransformingH8, where allVL51,L50,1,2, . . . 2j , to the
p-h channel, we obtain

ṼK52VdK0 and e52
1

2
. ~21!

Thus only the monopole term is present in this interacti
and

H85
N~N21!

2
. ~22!

Although HamiltoniansH andH8 have very different forms
in the p-h channel, they are identical in their action on
physical state. Despite the fact that the introduction of in
tive components may allow for a simpler form of the Ham
tonian, the form where Eq.~11! is satisfied is preferred, no
only because it allows one to define interaction in the uniq
way, but also because it explicitly shows couplings betwe
different physicalp-h excitations by virtue of Eq.~11!.

The role that each interaction parameterVL or ṼK plays in
determining the state of a many-body system is very co
plex, and generally for realistic systems these parameters
correlated by their common physical origin~such as core
polarization or meson exchange, for example! beyond the
previously discussed kinematic restrictions. In realistic s
tems there are someVL and ṼK , and possibly their certain
linear combinations, that have a significant tendency to fo
nuclear states with special coherent properties and sym
tries. The pairing matrix elementV0 is known to be respon
sible for collective and macroscopic coherent effects sim
to superconductivity and superfluidity in large many-bo
fermionic systems. Similarly, in the particle-hole channel,Ṽ2
plays an important role for the formation of collective vibr
tions and quadrupole deformation.

B. Particle-hole symmetry

Residual interactions can be formulated in the hole-h
(h-h) channel. With the transformation in Eq.~2! pair opera-
tors transform as
04431
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ĈPLL
† Ĉ215PL2L~2 !12L and

ĈM Kk
† Ĉ215~2 !11KM Kk

† , KÞ0. ~23!

The number operator transforms as

ĈNĈ215V2N. ~24!

With the help of the identity

(
L

@PLL ,PLL
†#5~2L11!S 12

2N

V D , ~25!

the Hamiltonian in Eq.~1! can be transformed to the hole
hole representation

ĈHĈ215(
L

VL(
L

PLL
† PLL2Ṽ0~V22N!. ~26!

Since the number of particles~or holes! is a constant of mo-
tion, thep-p to h-h transformation simply results in a con
stant shift of energy, while leaving the interaction invaria
The same result can be traced using the multipole-multip
(p-h) representation of interactions. Here all multipole term
with KÞ0 are invariant, and any changes are due to
monopole and single-particle terms. Particle-hole invaria
results in important consequences@12#: an expectation value
of any odd multipole moment of theN-particle system is
equal to the multipole moment of the corresponding state
the V2N system; any even multipole moment is equal
magnitude but has an opposite sign in the correspond
states of thep-h conjugate system. In particular, the particl
hole symmetry requires that expectation values of all e
multipole moments identically vanish in the half-occupi
shell. Therefore, a half-occupied shell cannot be deform
As we further show, this effect turns out to be helpful f
preserving a paired state. This kinematic suppression of
formation is a result of a phase transition on the mean-fi
level from oblate to prolate deformation. Similar to the pa
ing phase transition, the mesoscopic nature of the sys
smoothens the sharp changes, thus extending the regio
large fluctuations and suppressed deformations.

III. PAIRING AND OTHER INTERACTIONS

A. Pairing interactions and degenerate model

The first steps toward understanding the nucleon pair
were taken even before Bardeen, Cooper, and Schrieffer
veloped their powerful BCS method@13# in 1957. The de-
generate model involves a single degenerate single-par
level. The algebraic properties involvingP[P00, P†

[P00
† , andM[M00 operators on one level are particular

simple

@MKk ,P†#5
2~2 !k

AV~2K11!
PK2k

† ~27!

for evenK, and
1-4
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INTERPLAY OF PAIRING AND MULTIPOLE . . . PHYSICAL REVIEW C 65 044311
@MKk ,P†#50 ~28!

for odd K, when

@PLL ,P†#5dL0dL02
2A2L11

AV
MLL . ~29!

The importantL50 case,

@P,P†#512
2

AV
M512

2N

V
, ~30!

shows that the zero spin set of operators (P, P†, andM)
form the SU~2! algebra@14#. By defining a quasispinLW ,

Lz5
N

2
2

V

4
, L 15AV

2
P†, L 25AV

2
P, ~31!

we can satisfy the above commutation relations. The p
pairing interaction preserves the quasispin; this can be c
verted into a conservation of seniority, the number of u
paired particless. This is the cornerstone of Kerman’s@15#
method, and the exact pairing~EP! algorithm@5# of the exact
solution of the pairing problem for the realistic level schem
The eigenvalues ofLz andLW 25L(L11) are related to the
particle numberN and senioritys according to

Lz5
N

2
2

V

4
, L5

V

4
2

s

2
. ~32!

By repeatedly commuting pair operators, we obtain

@P,~P†!n#5~P†!n21nS 12
2n22

V
2

2N

V D , ~33!

@PLL ,~P†!n#52
2n~n21!

V
~P†!n22~2 !LPL2L

†

2
2nA2L11

AV
~P†!n21MLL , LÞ0,

~34!

and

@MKk ,~P†!n#

5H 2n

AV~2K11!
~P†!n21~2 !kPK2k

† , K even

0, K odd.

~35!

The last expression results from†@MKk ,P†#,P†
‡50.

Collective paired states~the condensate! can be built on
any stateuN5s,s& with s unpaired particles by the simpl
action of the pair creation operators (P†)nus,s&, resulting in a
state withn pairs in a condensateuN52n1s,s&. The nor-
04431
re
n-
-

.

malization of such a state can be obtained using the mom
tum algebra, or iteratively with the help of the commutati
relations

^N5s,suPn~P†!nuN5s,s&

5
@~V/2!2s#!n!

~V/2!n@~V/2!2n2s#!
^N5s,suN5s,s&. ~36!

The seniority formalism is useful because it takes all u
paired statesus,s& as a foundation upon which all other stat
are uniquely built by adding a paired condensate. The s
plest lowest nonzero seniority states are thes51 stateuN
51,1(jm)&5ajm

† u0& and thes52 state (PLÞ0L)†u0&5u2,s
52(LL)&, both of which are normalized to unity with ou
definitions.

B. Pairing-based treatment on nonpairing residual interactions

In this subsection we will assume that the system
paired, the ground state has senioritys50 ~assuming even
N), and the lowest excited state hass52. Using the paired
states we will evaluate the contribution of all residual inte
actions to the energy, the EP plus monopole method@5#;
using the states withs52 we will discuss the behavior o
two unpaired nucleons in the presence of theN22 particle
condensate, and address the validity of the initial assump
that in the presence of all residual interactions the system
still paired.

In the lowest order of perturbation theory for thes50
state we have to examine the expectation values of all te
in the Hamiltonian of Eq.~7! for the paired stateuN,s50&.
Following commutation relations~35!, we obtain

(
k

^N,0uM Kk
† MKkuN,0&5

2N~V2N!

V~V22!
, K52,4, . . . ,

~37!

where only even multipoles contribute. TheK50 case is
proportional to the square of the particle number

^N,0uM †MuN,0&5
N2

V
. ~38!

Using Eq.~34! it can be shown that

^N,0uPLL
† PLLuN,0&5

N~N22!

V~V22!
, LÞ0. ~39!

L50 corresponds to the solution of pairing in the degener
model,

^N,suP†PuN,s&5
N2s

2V
~V2N2s12!, ~40!

where the number of particles in the state isN52n1s. This
expression is valid for any senioritys. The expectation value
of the Hamiltonian in the paired state is thus
1-5



ne
x

ve
n
g

e

ed
tw
cl
e

en
a

ct

b
lu

trix
e

at

-

d

of
m-
not
two

-

t in
-

ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
^N,0uHuN,0&5
V0

2

N~V2N!

V22
1

N~N22!

V~V22! (
L

~2L11!VL

5
V0

2

N~V2N!

V22
2Ṽ0

N~N22!

V22
. ~41!

The same result can be obtained in the multipole chan
Result~41! is of particular interest, since here the exact e
pectation value of the full Hamiltonian on the paired wa
function is just the sum of the pairing and monopole co
tributions. The treatment of energy within the ‘‘exact pairin
plus monopole’’ (EP1M0) approximation is therefore th
lowest-order perturbation treatment@5#. It is also important
to mention thats54 is the lowest seniority mixed withs
50 by the nonpairing part of the Hamiltonian. This is relat
to the conservation of angular momentum. The state of
unpaired particles cannot have spin zero, since two parti
on a single-j level have only one spin-zero state which b
longs to seniority zero.

To consider the states of higher seniority it is conveni
to utilize the quasispin group properties. All states with
given seniority have the same expectation value ofL 2, and
the number of particles in the paired condensate is refle
only in the quasispin projectionLz . With the help of the
SU~2! quasispin group, all operators can be classified
their seniority selection rules, and any expectation va
l.
-

-

o
es
-

t

ed

y
e

^N,suXuN8,s8& can be related to a quasi-spin-reduced ma
element^siXis8& using the Wigner-Eckart theorem. Thes
procedures were discussed in detail by Talmi@16#. From the
previously discussed commutation relations, it follows th
for odd L, MLL is a quasispin scalar, while the even-L pair
operatorsPLL

† , PLL , andMLL can be combined in compo
nents of quasispin vectors; forL50 they define quasispin via
Eq. ~31! Hamiltonian~7! is a mixture of scalar, vector, an
second rank tensors in quasispin space:

H5H01H11H2 .

With the aid of the multipole expansion, the components
the Hamiltonian can be explicitly extracted. Due to the sy
metry properties, the product of two identical vectors can
have a vector component, because the cross product of
equal vectors is identically zero. ThereforeM Kk

† MKk , with
nonzero even values ofK, contain no quasivector compo
nent. Thus the quasivector part is fully contained in theK
50 terms

H152Ṽ0S N2
V

2 D522Ṽ0Lz . ~42!

The quasispin-quadrupole parts, that are only presen
termsM Kk

† MKk with evenK, can be separated by decom
posing the product, for example,
fore,

by the

lar and
~43!

Therefore,

H25
1

3 (
L

S VL1
2ṼL

2L11
D(

L
PLL

† PLL2
V012Ṽ0

3 S V

4
2ND , ~44!

and the remaining part is a quasiscalar:

H05
2

3 (
L

S VL2
ṼL

2L11
D(

L
PLL

† PLL1
V0

3 S V

4
2ND1

Ṽ0

3
~N2V!. ~45!

The quasivector part is proportional toLz , and can act only within a multiplet, generating no change in seniority. There
in all transitions generated by the Hamiltonian and leading to a change in seniority the quadrupole partH2 is the only active
component, changing seniority by either two or four units. Using the Wigner-Eckart theorem for transitions generated
second-rank tensor in seniority, we obtain

^N,suHuN,s24&

^s,suHus,s24&
5

1

2
A~N2s14!~N2s12!~V2N2s12!~V2N2s14!

2~V22s12!~V22s14!
, ~46!

^N,suHuN,s22&

^s,suHus,s22&
5

V22N

V22s
A~N2s12!~V2N2s12!

2~V22s12!
. ~47!

The situation with the diagonal in seniority contribution is somewhat more difficult, since both components, quasisca
second-rank tensor in quasispin space, are active in this case:

^N,s~j!uHuN,s~j8!&5^s,s~j!uHus,s~j8!&2Ṽ0~N2s!djj82
6~N2s!~V2N2s!

~V22s!~V22s22!
^s,s~j!uH2us,s~j8!&. ~48!

044311-6
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INTERPLAY OF PAIRING AND MULTIPOLE . . . PHYSICAL REVIEW C 65 044311
j here denotes all other quantum numbers not related
quasispin which are needed to identify the state. It can
convenient to extract a quadrupole component using
states in the quasispin multiplet: a state with no paired p
ticles and a state with the same seniority but with one c
densate pair. It can then be shown@16# that

^N,s~j!uH2uN,s~j8!&5
V22s

12
„^s12,s~j!uHus12,s~j8!&

2^s,s~j!uHus,s~j8!&12Ṽ0djj8….

~49!

The previously obtained formula for thes50 case@Eq.
~41!# results from the following conditions:

^N50,s50uHuN50,s50&50,

^N50,s50uH2uN50,s50&52
V~V012Ṽ0!

12
. ~50!

The s51 expression follows directly from Eq.~48! supple-
mented with

^1,1~ jm!uHu1,1~ jm!&50,

^1,1~ jm!uH2u1,1~ jm!&52
~V24!~V012Ṽ0!

12
, ~51!

^N,1~ jm!uHuN,1~ jm!&5
N21

V22 S ~V2N21!
V0

2

2~N21!Ṽ0D . ~52!

The answer here contains only the pairing and monop
terms. An extra particle influences the pairing condens
only through the Pauli blocking.

Two unpaired particles above the pairing condensate
have differently, and their interaction is strongly renorm
ized. For thes52 case we obtain

^N,2~JM!uHuN,2~JM!&

5VJ2~N22!Ṽ01
~N22!~V2N22!

~V26!~V24!

3H ~V28!S V0

2
1Ṽ0D22VJ2

4ṼJ

2J11J . ~53!

This equation shows that unpaired particles interact in
channel with angular momentumL with a reduced strength

VL85VLS 122
Np~V2Np24!

~V26!~V24! D , Np5N2s, ~54!

because of the presence of theNp-particle condensate. Th
reduction is proportional to the expectation value ofP†P and
has a parabolic dependence onNp , resulting in the maxi-
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mum weakening of the pair interaction by about a factor
1/2. The addition of two unpaired particles implies an ex
blocking of the pairing, and therefore requires more ene
as compared to the case of the two particles being pai
The additional energy comes from a two-quasiparticle ex
tation, and is proportional toV0. The nontrivial contribution
from other interactions also enters through the monopole
ṼJ terms.

To investigate the stability of the paired state we consi
the separation energy of a particle pair from the conden
S5E(N,s50)2E(N,s52). In the approximation of large
V andNp , Eqs.~41! and ~53! give

S5V02VL12S VL1
2ṼL

2L11
D Np

V S 12
Np

V D
5V02VL814

ṼL

2L11

Np

V S 12
Np

V D . ~55!

The self-consistency of this treatment based on pairing
quires that pairing be stable andS,0. Equation~55!, as a
function of the condensate sizeNp /V, has three extremum
points. The two points at the edges of occupancy,Np /V
50 andNp /V51, are equivalent due to particle-hole sym
metry and result in the obvious condition

V0,VL for any LÞ0. ~56!

A nontrivial condition appears in the third point of extre
mum, for the half-filled shellNp /V51/2, where

V0,
VL

2
2

ṼL

2L11
for any evenLÞ0. ~57!

The quenching of residual matrix elements in thep-p
channel, according to Eq.~54!, is an important phenomenon
which can prevent nonpairing interactions, especially o
that are incoherent with respect to the mean-field deform
tion, from destructing the paired state. However, as can
seen from Eq.~57!, multipole-multipole correlations can
damage the pairing state, and the above pairing-based t
ment may become inappropriate. In Sec. IV we will contin
the discussion of interplay of pairing and coherent multip
modes.

C. Seniority conservation and kinematics of interactions

The one-level model is very restrictive kinematically, a
constraints somewhat favor pairing. Although the interact
on a single level is defined with the explicit use ofj 11/2
independent parameters, such asVL with evenL, there are
only a few independent linear combinations that result in
seniority mixing interaction. Besides an obvious pairi
componentV0, it is also possible to find a number of inte
actions that produce no quadrupole partH250. It follows
from Eq.~44! that this will happen if for an arbitrary evenL:

VL1
2ṼL

2L11
50. ~58!
1-7
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ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
This condition results in a linear equation

(
L8

KLL8VL850, where

KLL85dLL81~2L811!H j j L 8

j j L J . ~59!

Since

K 253K, ~60!

the kernelK has only two different eigenvalues, 3 and 0. A
eigenvectors corresponding to the zero eigenvalue ofK are
independent solutions of Eq.~58!. Solutions of Eq.~58! can
be obtained as

VL5S j j L

m 2m 0D 2

, L50,2, . . . 2j 21. ~61!

The corresponding parameters in thep-h channel are

ṼK5
2K11

2 H ~2 !KS j j K

m 2m 0 D 2

2S j j K

m m 22mD 2J , K50,1, . . . 2j . ~62!

In the above equation the second term in the brackets id
tically vanishes for all even values ofK. It is clear that Eq.
~58! is satisfied by Eqs.~61! and~62!. Not all solutions gen-
erated byj 11/2 different values ofm51/2,3/2, . . .j are lin-
early independent; this in general allows for existence
some independent linear combinations of interaction par
etersVL that result in seniority mixing Hamiltonians. Th
number of linearly independent solutions of Eq.~58! is 2k
112d r0, wherek and r are determined asj 11/253k1r ,
where r 50,1,2 is the residue. Equation~61! generates all
these solutions; they correspond to the zero eigenvalue o
kernelK, and result in Hamiltonians that preserve senior
Furthermore, since the quasiscalarH0 and quasivectorH1
parts of the interaction result in a trivialN dependence of the
spectra as follows from Eq.~48!,

E„N,s~j!…5E„N5s,s~j!…2Ṽ0~N2s!, ~63!

the relative spacings between states of the same qua
numbers including seniority are independent ofN for inter-
actions that satisfy Eq.~58!.

As a remark we note that thed-interaction can be gener
ated by Eq.~61! with m51/2, and thus conserves seniori
@12#. In addition to all these (2k112d r0) choices, there is
one trivial and linearly independent~for j .1/2) freedom of
selecting V0 that also results in a seniority-conservin
Hamiltonian. To emphasize these kinematic limitations
just mention that forj <7/2 any interaction conserves senio
ity, and, as recently noted in Ref.@17# for j 519/2, for ex-
ample, out of nine possible independent choices of par
eters only two lead to seniority nonconservation. In the lim
04431
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of large j only about one-third of the parameters result
seniority-mixing Hamiltonians. Finally, for the linearly inde
pendents sets of interaction parameters corresponding to
eigenvalue 3, the resulting Hamiltonian is almost pure
quadrupole in quasispin:

H25H2V0S V

4
2ND , H052

V0V

4
. ~64!

The fact that it is possible to find nonzero sets of interact
parameters that result in a vanishing quadrupole in the q
sispin component of the Hamiltonian is nontrivial. Furthe
more, it is interesting that the number of independent po
bilities is large. This is a result of a very restrictiv
kinematics of interactions on a single-j level.

For a random choice of the two-body interaction, ev
with all of the above kinematic constraints the probability
getting a seniority-preserving Hamiltonian is negligible
well as the conditions of condensate stability@Eq. ~57!# are
not necessarily satisfied. Thus, although random systems
hibit trends similar to those encountered in realistic nuc
with pairing @18,19#, numerical studies show no enhanc
ment of pairing in the low-lying states of random Hamilt
nians. It was demonstrated@2# that in the ground-state wav
function of a random Hamiltonian on a single-j level, thes
50 pairing component appears on a statistical level, i
with the same probability as any other component allow
by symmetries. Therefore it was argued that the presenc
regular pairing, a prominent part of realistic physics, is n
reproduced in randomly interacting systems@3#. The intrinsic
feature of interactions describing realistic systems is
presence of correlations between different interaction par
eters. These correlations, along with kinematic features, s
as discussed above and other dynamic couplings, is w
makes the pairing effects survive and even dominate in
low-lying states of many realistic nuclei.

IV. PAIRING PLUS QUADRUPOLE MODEL

As discussed above, the most general Hamiltonian can
separated into three parts: quasiscalar, quasivector, a
second-rank tensor in quasispin. The perturbation the
based on pairing treats exactly all quasiscalar and quasi
tor components. Since all odd multipoles are quasiscal
only those nonpairing interactions that can be expresse
terms of the multipole operators of an even order, start
from K52, are of interest as the most orthogonal to pairin
This leads to the Hamiltonian

H5GP†P2 (
K52,4 . . .

xK

2 (
k

M Kk
† MKk . ~65!

The lowest possibleK52 multipole is responsible for
quadrupole deformations, and is usually the most energ
cally favorable. Thus we will further concentrate on the pa
ing plus quadrupole (P1Q) Hamiltonian as defined below:

H5GP†P2
x2

2 (
k

M 2k
† M2k . ~66!
1-8
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INTERPLAY OF PAIRING AND MULTIPOLE . . . PHYSICAL REVIEW C 65 044311
The physically relevant parameters correspond to attrac
pairing G,0 and attraction in the quadrupole channel,x2
.0. This Hamiltonian is interesting for a number of reaso
it accounts for both short- and long-range parts of the
sidual interaction of nucleons through pairing and quad
pole parts, respectively, and consists of two very differ
components. Each of them separately is known to be res
sible for collective phenomena; however, acting simul
neously, they lead to an interesting interplay. The study
pairing versus deformation within P1Q model is usually
carried out with Hartree-Bogoliubov~HB! technique@23#. In
fact the model is often defined as an arena for application
the HB method@20#, ignoring exchange terms and previous
discussed kinematic limitations. Studying the P1Q model
beyond the HB approximation will be our further goal.

A. Kinematic pairing

The interaction parameters of Hamiltonian~66! do not
satisfy Eq. ~11! and, as previously discussed, this Ham
tonian contains a nonphysical part. As a result the fact
the quadrupole part contributes to pairing as well as to
other components in thep-p or p-h channel, and that pairing
makes a contribution to the quadrupole part is not seen
plicitly. In order to observe these kinematic couplings w
will reduce the form of Hamiltonian~66! with projection
operators to a unique form where conditions~11! are satis-
fied. We rewrite Hamiltonian~66! in following form

H5eN1(
L

VL(
L

PLL
† PLL52(

K

ṼK

2 (
k

M Kk
† MKk ,

~67!

removing the unphysical part with the projection operatio

ṼK5Q̂Kx22~2 !K~2K11!
G

V
. ~68!

Thus

ṼK5
x2

2
dK21~2K11!~2 !KS x2

2 H j j 2

j j K J 2
G

V D .

~69!

In particular, the monopole part is

Ṽ052
x212G

2V
, ~70!

and there is a renormalization of the quadrupole stren
which in the largeV limit behaves as

Ṽ25
x2

2
25

x212G

2V
. ~71!

In the particle-particle channel we have

VL5dL0G1x2H j j 2

j j L J , e52
x2

2V
. ~72!
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Equation ~72! shows thatV05G2x2 /V, which indicates
that even a pure attractive quadrupole interaction (G50)
generates an attractive pairing with the strength of the or
of ;1/V. Furthermore, as follows from the properties of 6j
symbols, even in the case ofG50 pairing is still the most
attractive residual two-body force,V0,VLÞ0. Therefore, in
this model the pure attractive quadrupole-quadrupole Ham
tonian has a paired ground state (s50 andJ50) for nearly
magic configurationsN52 andN5V22. This effect was
also observed in other studies of nucleon-phonon interact
@4#. Typical behaviors ofVL andṼK as a function ofL andK,
respectively, are shown in Fig. 2.

In the limit of large j the 6j symbol, such as one in Eq
~72!, can be approximated by a Legendre polynomial. In t
limit the contributionVL(K) from the multipole-multipole
interaction with even angular momentumK and correspond-
ing strengthxK @Eq. ~65!#, to the particle-particle interaction
with angular momentumL, can be approximately given b
the following expression:

VL~K !'2
xK

V
PL~cosu!, where

cosu5
L~L11!22 j ~ j 11!

2 j ~ j 11!
. ~73!

For small evenL the cosu'21, which leads to an attractive
force. The Legendre polynomialPL here expresses a facto
relevant to a macroscopic geometry@21#; the same argu-
ments can be applied in the problem of random but rotati
ally invariant interactions@2#.

FIG. 2. Interaction parameters in the particle-particle chan
~upper plot! and particle-hole channel~lower plot! for a pure
quadrupole-quadrupole interaction,x251 andG50, in the model
spacej 515/2, are plotted as a function of multipolarity. Note th
different scales on the two panels.
1-9
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ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
Although the discussion here is concentrated aro
particle-particle correlations in the pairingL50 channel, our
results @Eq. ~72! and Fig. 2# indicate that kinematic con
straints influence all angular momentum channels
nucleon-nucleon interaction, and thus may result in the
hanced correlation of quasibosonic pairsPLL with the lowest
LÞ0. These effects can be studied via nucleon pair tran
reactions@21,22#.

The above expression indicates that ifV is very large then
only V0'G andṼ2'x2/2 do not scale as 1/V, which leads
to the usual P1Q model @23# with effectively decoupled
quadrupole and pairing modes. This is not surprising,
cause kinematic pairing as well as other kinematic coupli
have a mesoscopic geometry of nuclear systems as a so

Our discussion here uses the shell-model space, w
bare interactions between quasiparticles drive the dynam
of the system, and we have in mind that the shell-mo
diagonalization provides a full solution to the many-bo
problem. In the presence of collective vibrational modes,
instance such as determined by the random phase app
mation, it is advantageous to consider the picture with
explicit inclusion of collective degrees of freedom and effe
tive particle-vibration coupling. Particle-particle interactio
mediated by the collective modes would effectively appea
this picture as a second-order process@7,21#. Unlike this, the
kinematic particle-particle pairing discussed above sho
still be present as a correction needed to preserve the P
principle and to reflect the nonbosonic nature of collect
modes@21#.

In the P1Q model the condition for stability of pairing in
a nearly full or nearly empty shell@Eq. ~56!# is fulfilled even
without any explicit pairing componentG50, since, as dis-
cussed above,V0,VLÞ0. However, an instability with the
origin in the quadrupole channel appears in the middle of
shell, where Eq.~57! leads to the following inequality in the
limit of large V:

G1
x2

10
,0. ~74!

For the general case of Hamiltonian~65!, condition~74! be-
comes

G1
xK

2~2K11!
,0, K even. ~75!

From the properties of the 6j symbols it follows that the
kinematic pairing resulting from any attractive multipol
multipole~even multipolarity! interaction is always attractive
and is the strongest two-body componentV0,VLÞ0 in the
p-p channel. The above result also indicates that lower m
tipoles (K52 is the lowest one! are more likely to destroy
pairing because of the suppression factor 1/(2K11).

For completeness we present an exact equation for
separation energy of a pair from the condensate which is
minus excitation energy of the firstJ1 state with seniority
s52 for the model defined by Hamiltonian~65!:

S5G1BJ . ~76!
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HereBJ is independent ofG (JÞ0), and is given by equa
tion

BJ52VJ2~N22!
Y

2
1

~N22!~V2N22!

~V26!~V24!

3H ~V28!Y14VJ1
2xJ

2J11J
2

NY

2~V22!
~V22N12!,

where

Y5
1

V (
K52,4,6 . . .

xK5G2V0 , ~77!

andVJ are determined as

VJ5dJ0G1(
K

xKH j j K

j j J J .

With pairing as the only interaction, the lowest excite
state in the system with senioritys52 is at two-quasiparticle
excitation energy, which isG in this case. Other interaction
can lower this energy by a constantBJ which is mainly ef-
fected by the termxJ /(2J11). Since we are dealing with
the zeroth-order perturbation theory, this gap between
ground state and a lowest excited state of a given spin
haves linearly with the pairing strength. For example, in
P1Q model~see Fig. 3! the stateJ52 is the lowest excited
state in the paired region.

The pairing-based description for the system of six p
ticles on thej 515/2 level becomes unstable forG>20.1
~negativeG corresponds to attraction in the pairing chann!
as predicted by Eq.~74! with x251; this agrees well with
the comparison presented in Fig. 3 . However, in the region

FIG. 3. The spectrum of lowest even-spin states relative to
lowest spin-zero state in the system of six particles on aj 515/2
orbital for the P1Q interaction as a function ofG. Two dashed
straight lines that correspond to perturbation theory,E22E052G
2B2 and E42E052G2B4, are plotted for comparison~in this
modelB250.031 andB4520.074). The quadrupole strength is s
at x251.
1-10
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where unperturbed paired states can not be used to des
the system, such as the extreme case of no explicit pair
G50, the effects of kinematic pairing are still quite stron
In order to emphasize this, the numerical values of overl
between the ground states of P1Q systems with no explicit
pairing (G50,x251) and paired systems (G521,x250)
are shown in Fig. 4. These results indicate significant pair
that greatly exceeds the statistical prediction relevant to
dom interactions@2#, shown in the figure by dashed lines.

The enhancement of pairing in the middle of the sh
observed in both plots of Fig. 4, is related to another ki
matic feature. As discussed, exactly in the middle of
shell, due to the particle-hole symmetry the deformat
must disappear, which allows for more pairing correlatio
In Sec. IV B we will discuss this issue further.

The same result is seen from the upper plot of Fig
which shows that the pure quadrupole-quadrupole inte
tion, the region ofG50, has a ground state dominated by t
s50 pairing component. Only in the region where kinema
pairing is explicitly balanced~this pointV050 is shown by
the dashed vertical line! by the repulsive explicit pairing
given via positiveG, the preference tos50 pairing compo-
nent disappears, and allJ50 states have almost the sam
overlap withs50 wave function. The lower plot of Fig. 5
addresses the low-lying properties of the spectrum in
same region of parameters; it will be discussed in Sec. IV

FIG. 4. One-level systems withj 515/2 and 21/2~upper and
lower plots, respectively! are considered with a pure quadrupol
quadrupole interactionG50. The wave function of the spin-zer
ground state is overlapped with the spin-zero ground state
paired system (G521 and x250), i.e., with the senioritys50
state, that is unique for a single-j-level system. The square of thi
overlap is plotted by a solid line as a function of a particle numb
This result is compared to the statistical expectation of pairing fr
random interactions, shown by a dashed curve. The statistica
pectation is defined here as an inverse number of spin zero sta
the system@2#.
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B. Pairing and deformation

In this subsection we will investigate the interplay of pa
ing and deformation in the P1Q model. Rotational bands in
the low end of the spectrum, and the Alaga intensity ru
will serve us as tools in this study. The lower part of Fig.
shows that an indication of a rotational band near the ‘
pairing’’ region, G50. Here, judging by the excitation en
ergy, the lowest states withJ50, 2, and 4 are forming a
collective rotational band. As is clear from the figure, th
region is very small. Thus, for the most part, here we w
concentrate on a pure quadrupole-quadrupole interaction

H52
x2

2 (
k

M 2k
† M2k , ~78!

which, as we have shown above, is still significantly infl
enced by the kinematic pairing, with the bandheadJ50 state
dominated by thes50 pairing component.

We note that although single-j model is very limited, an
exact rotational spectrum can still be formed using

H5x1(
k

M 1k
† M1k5

x1

j ~ j 11!V
J2, ~79!

which is seniority conserving and, according to Eq.~9! can
be defined in thep-p channel with the aid of the set o
parameters

a

r.

x-
in

FIG. 5. Properties of the system of six particles onj 515/2
orbital with the P1Q interaction are studied as a function of th
parameterG; the quadrupole strength is set atx251. The upper plot
shows the overlap of all sixJ50 eigenstates in this system with th
s50 pairing state, which is defined as a ground-state wave func
for the pairing interactionsG521 and x250. The lower plot
shows the ratio (EJ542EJ50)/(EJ522EJ50) as a function ofG,
hereEJ54,2,0 are the energies of the lowest states with spins 4
and 0, respectively.
1-11
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ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
VL5L~L11!22 j ~ j 11!}H j j L

j j 1J . ~80!

This interaction remarkably satisfies the Alaga intensity ru
well; see below, for reasonably largej and N. In the model
with random interactions@2,24#, contributions ~80! deter-
mine the effective statistical moment of inertia. Similar
this example, other odd-multipolarity multipoles can be us
to create seniority conserving interactions; this is anot
way of finding solutions to Eq.~58!.

The main hint for the presence of deformation com
from the mean-field approximation@23# ~with exchange
terms ignored by definition of the model, this is in fact
Hartree approximation!. For axially symmetric deformation
the average values of the multipole moments are

^M20&5(
m

2~3m22 j ~ j 11!!

AV~V221!~V222!
nm , ~81!

in terms of the occupation numbersnm5^am
† am& in the in-

trinsic frame with thez axis oriented along the symmetr
axis, and

^M222&5^M22&50.

The single-particle energies in the body-fixed frame can
obtained via the usual self-consistency requirement

em52x2

2~3m22 j ~ j 11!!

AV~V221!~V222!
^M20&. ~82!

This problem can be solved exactly@23#. The minimum en-
ergy corresponds to the Fermi occupation of theN lowest
pairwise degenerate orbitalsumu51/2,3/2, . . . (N21)/2 for
prolate shapes orumu5 j , j 21, . . . j 2(N22)/2 for oblate
shapes. The corresponding quadrupole moment is then g
as

^M20&52
1

4

N~V22N2!

AV~V221!~V224!
~83!

for prolate deformation and

^M20&5
1

4

N~2V2N!~V2N!

AV~V221!~V224!
~84!

for oblate deformation. The deformation energy, defined

Edeformation52
x2

2
u^M 20&u2, ~85!

shows that oblate deformation is preferred forN,V/2 and
prolate correspondingly forN.V/2. In the middle of the
shell there is a phase transition from prolate to oblate de
mation. In this region energies associated with prolate
oblate deformations become equal. The average quadru
moments at this point do not vanish; they are opposite in s
for prolate and oblate deformations. Because of this ph
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transition, the mesoscopic nature of the system, and all o
kinematic terms ignored in the model, the true ground stat
a superposition of oblate and prolate forms in the region o
half-occupied shell. At the exact point of half-occupancy t
particle-hole symmetry requireŝM20&50 for the true
ground state of the system. The oblate-to-prolate transi
turns out to be advantageous to pairing, as can be seen
Fig. 4. The content of pairing, thes50 component in the
wave function, is slightly enhanced in the middle of th
shell. This enhancement, being accompanied by strong
fects of kinematic pairing near both limitsN50 andN5V,
is largely responsible for the presence of pairing correlati
throughout the entire region within a single shell.

The moment of inertia in the cranking approximation, th
will be of use in our further discussion, is given by the fo
lowing expression:

I52 (
mm8

nm2nm8

em2em8

u j xu2. ~86!

With a sharp Fermi surface only four terms in the sum,umu
5um8u61 will work. Utilizing Eqs. ~82! and ~3!, we obtain

Iprolate5
V~V221!~V224!

6x2N2
,

Ioblate5
V~V221!~V224!

6x2~V2N!2
. ~87!

Elliot’s SU~3! model has a clear rotational structure, a
can serve as a link for understanding a macroscopic de
mation and its microscopic description. In the quadrupo
quadrupole Hamiltonian under consideration, the SU~3! al-
gebra is broken in such a kinematic way that boo
competing pairing. The commutator of the quadrupole ope
tors, according to Eq.~6!, consists of vector and octupol
components:

@M2k ,M2k8#56(
q

~2 !qH 2 2 1

j j j J S 2 2 1

k k8 2qDM1q

114(
q

~2 !qH 2 2 3

j j j J
3S 2 2 3

k k8 2qDM3q . ~88!

The octupole component is what breaks the SU~3! algebra;
ignoring this term, and, similarly to Eq.~3!, introducing a
quadrupole operator according to

M2q5
Qq

A5 j ~ j 11!V
, ~89!

we obtain an SU~3! algebra in the standard forms

@Jq ,Jq8#52A2C1q,1q8
1q1q8Jq1q8 , ~90!
1-12
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@Qq ,Jq8#52A6C2q,1q8
2q1q8Qq1q8 , ~91!

@Qq ,Qq8#53A10C2q,2q8
1q1q8Jq1q8 . ~92!

The quadrupole-quadrupole Hamiltonian can be expres
via the bilinear Casimir operator of this group:

C5Q•Q13J•J. ~93!

The expectation value of this invariant operator depends o
on quantum numbersl andm that label representations; se
for example@25#,

^C&54~l21m21lm13l13m!. ~94!

For a given representation (lm), wherel>m, the angular
momentum can be

L5H K,K11,K12, . . .K1l, KÞ0

l,l22 . . . ~1 or 0!, K50,
~95!

where an integerK takes valuesK5m,m22, . . . ~1 or 0!.
Assuming a deformed band based on the ground statK
50 we choosem50 andl5N(V2N)/2 wherel coincides
with the maximum possible value of angular momentum
the system. Thus in the approximation of SU~3! symmetry
the expectation value of the quadrupole-quadrupole Ha
tonian becomes

^N~J!uHuN~J!&52
2x2N~V2N!~NV2N216!

5V~V221!

1
6x2J~J11!

5V~V221!
. ~96!

The SU~3! model results in exact rotational bands with t
N-independent moment of inertia:

I5
5V~V221!

12x2
. ~97!

In Fig. 6 the moments of inertia obtained from Eqs.~87!
and ~97!, and from fitting theJ50, 2, and 4 states in th
spectra obtained from exact diagonalization, are compa
In a view of the previous discussion it is not surprising th
observed moments of inertia are significantly lower th
ones predicted by both of the considered models. This ef
should be attributed to pairing, which is mainly of a kin
matic origin.

Static deformation of a nucleus manifests itself via re
tions ~the so-called Alaga intensity rules! between the diag-
onal expectation values of multipole moments and o
diagonal, transitional amplitudes corresponding to the sa
K band. Here we consider a quadrupole moment of the l
est excitedJ52 state and theE2 transition between this
state and theJ50 ground state. In a single-level model th
quadrupole operator must be proportional toM2k as it is the
only particle-hole operator with the correct rotational pro
erties. We define quadrupole moment of the state as
04431
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Q5^JM5JuM20uJM5J&. ~98!

The B(E2) transition strength is defined as

B~E2!5 (
M fk

u^JMf uM2kuJMi u2. ~99!

The Alaga intensity rules are then expressed via the rela
@26,21#

Q 2

B~E2!
5

4

49
. ~100!

Within the pairing-based treatment of interactions whi
implies no seniority mixing, this ratio can be calculated an
lytically. We assume that the lowestJ52 state has a pure
senioritys52. Due to the seniority conservation, this is th
only state that can directly decay into the ground state,
sumed here to haves50, via anE2 transition. The ampli-
tude of this transition is given by

^s52,KkuM Kk
† us50&52A 2N~V2N!

~2K11!V~V22!
;

~101!

therefore, in the limit of strong pairing,

B~E2!5
2N~V2N!

V~V22!
. ~102!

The rate of this transition is maximized for a half-occupi
system. The corresponding quadrupole moment in theJ52
ands52 state can be determined from

FIG. 6. Moments of inertia obtained using different models a
from fitting the low-lying states in the exact spectrum are compa
as a function of a number of particles. The pure quadrupo
quadrupole interaction is used (x251 andG50) for the system on
a singlej 515/2 level. The solid line corresponds to the moment
inertia coming from fitting the exact spectrum, the short-dashed
corresponds to the moment of inertia from the mean-field treatm
and the long dashed line is for the SU~3! model; the latter predicts
an N-independent value.
1-13
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^N,s52,~JM!uMK0uN,s52,~JM!&

52~2J11!
2N2V

V24
~2 !MS J K J

M 0 2M D
3H J K J

j j j J . ~103!

Application to a quadrupoleK52 results in the following
expression:

Q5
4

7

~2N2V!~V14!

AV~V221!~V224!
. ~104!

The quadrupole moment goes to zero for the half-occup
shell, as required by the particle-hole symmetry.

In general, the paired state is not deformed and thus
B(E2) transition probability in Eq.~102! and the quadrupole
moment @Eq. ~104!# do not satisfy the intensity rule@Eq.
~100!#. With the quadrupole-quadrupole interaction pr
sented, a deformation can appear and Alaga intensity r
can be fulfilled. In Fig. 7 for the systemj 515/2 andN56,
the quadrupole moment, theB(E2) transition strength, and
the ratioQ 2/B(E2) are presented as a function of the pa
ing strengthG. Dashed lines show the results for the stro
pairing limit, obtained using Eqs.~102! and ~104!.

Figure 8 compares the behavior of the ratioQ2/B(E2) as
a function of the pairing strengthG in different systemsN
52, 4, 6, 8, and 10, withj 521/2. There are two specia
cases. ForN52 ~the same is true forN5V22) the ground

FIG. 7. The quadrupole characteristics of the first excited1

state, the diagonal quadrupole momentQ @Eq. ~98!# ~middle panel!
and the reduced transition probability to the ground state,B(E2)
@Eq. ~99!#, ~upper panel! in the P1Q model for the singlej 515/2
level and N56, as a function of pairing strengthG. The long
dashed line on all plots indicates the results from pairing ba
description. The lower plot shows the prediction of the Alaga int
sity rule Q2/B(E2)54/49 ~short dashed line!.
04431
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state is paired, and the Alaga ratio is determined exactly
Eqs.~102! and~104!. The second case is forN5V/2, where,
due to particle-hole symmetryQ2/B(E2)50. For all other
situations Alaga intensity rules are fulfilled to a sufficie
degree of accuracy for the pure quadrupole-quadrup
HamiltonianG50. As the pairing strength increases, the
tio Q2/B(E2) moves away from the Alaga value toward th
limit determined by pairing, which is shown by thin dash
lines. Curves corresponding to systems with a number
particles close toN52 (N5V22) or N5V/2 converge to
the pairing limit significantly faster. This fact is yet anoth
manifestation of the preference for pairing correlations
these systems.

V. CONCLUSIONS

The pairing interaction is a very important part of th
general residual interaction. However, the fact that many
clei are paired in their ground or low-lying exited states is
result of a nontrivial interplay of pairing matrix elements a
other parts of the residual interaction, as well as kinema
constraints. It was shown earlier through a number of
merical studies that the realistic interaction is different fro
an arbitrary-symmetry preserving random interaction. T
difference lies in the correlations between the interaction
rameters that exist even in the truncated shell model sp
reflecting the overall properties of the nuclear medium.
teractions that permit paired states and allow for deform
tions produce very correlated sets of residual two-body m
trix elements. Apart from the dynamic correlations, there
kinematic couplings between different collective modes, t
mainly appear from the geometrical restrictions imposed
collective excitations.

In many realistic systems pairing is relatively weak co
pared to the critical value of phase transition defined
BCS. However, as shown by numerous authors, pairing
relations in mesoscopic systems extend far beyond the B
phase transition. This makes the exact treatment of pairin

d
-

FIG. 8. RatioQ2/B(E2) for systems with different numbers o
particlesN on a singlej 521/2 level is plotted with solid lines as
function of pairing strengthG. Thin dashed lines, with correspond
ing values ofN marked on the right, indicate the intensity ratios f
corresponding systems in the limit of validity of pairing perturb
tion theory. All results should be compared withQ2/B(E2)54/49
'0.082, the Alaga intensity ratio of a rotating rigid body.
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necessary component in the study of a sensitive interp
between pairing and other interactions.

The simple single-level systems considered in this w
served as an excellent testing ground. The SU~2! quasispin
algebra allows for an exact solution of the pairing proble
and perturbation theory, based on the paired state@5#, can be
further developed with ease. This makes it possible to
dress important questions of the stability of the paired s
as well as to investigate dynamic renormalizations of tw
body interactions in the presence of the pairing condens

The interaction parameters for a one-level system in
particle-particle and particle-hole channels can be relate
each other, revealing kinematic constraints in a simple fo
Additional restrictions on the behavior of the system co
from the exact particle-hole symmetry. As a result of th
symmetry, all multipole moments of even multipolarity a
identically zero for a half-occupied shell. These constrai
turned out to be very important for the preservation of pa
ing in the presence of deformation. The interplay of pairi
and deformation was discussed using the P1Q model. The
particular case of this model, the pure quadrupo
quadrupole interaction with no explicit pairing, was a
dressed in detail. This interaction was expected to be the
most ‘‘orthogonal’’ to pairing; however, strong evidence
pairing correlations was found even in this case. We h
shown that the pairing is the strongest attractive compon
in the quadrupole-quadrupole interaction when the latte
converted from thep-h channel to thep-p channel. This
means that for any attractive~i.e., favoring deformation!
quadrupole-quadrupole interaction on a single-j level, the
ground state of a two particle or two-hole system is a pai
state (J50 ands50). The same is in fact true for a mor
general Hamiltonian containing any attractive multipo
multipole interaction of even multipolarity. This results
enhanced pairing correlations in near-magic configuratio
An additional enhancement of pairing was observed in
systems close to the half-filled shell. This is related to
.I.

n,
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prolate-oblate phase transition taking place in this region
weakens deformation, thus allowing for more pairing.
number of calculations was performed to emphasize the
cussed aspects, and the results were compared to the pr
tions of the mean-field approximation and Elliot’s SU~3!
model. Direct overlaps with thes50 paired wave function,
the excitation spectrum, the intensities of transitions, and
moments of inertia all indicate the appearance of pairi
consistent with the kinematic constraints.

The simple model used in this work is only a very limite
approximation of the situation in nuclear systems. Howev
the observed effects of pairing enhancement via kinemati
dynamic interplay with other interactions have to exist
some extent in realistic systems. The situation in the reali
shell model becomes much more diverse as it is complica
by an increasingly large number of interaction parameter
weakening of antisymmetry requirements and other ki
matic restrictions, and a diversity of collective modes. Pa
ing itself becomes different: isovector and isoscalar pair
modes can compete, and the pairing state of the lowest
seniority s50 is not unique and can involve coherent a
incoherent pair vibrations@27# which, under effects of othe
interactions, may result in a paired condensate that is dif
ent from the prediction of the regular BCS model. The
questions, along with many others that can be raised in
context of this work including the observable geometric
effects on pair correlations in the coordinate or moment
representation@28,29#, present exciting avenues for futur
research.

ACKNOWLEDGMENTS

The author wishes to thank B. A. Brown, D. Mulhall, an
V. Zelevinsky for motivating discussions and useful cri
cism. Without their help this work would not be possibl
The NSF support of this research, Grant No. PHY-00709
is greatly appreciated.
v.

ys.
@1# S.T. Belyaev, Yad. Phys.4, 936 ~1966! @Sov. J. Nucl. Phys.4,
671 ~1967!#; Phys. Lett.28B, 365 ~1969!.

@2# D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.85,
4016 ~2000!.

@3# M. Horoi, B.A. Brown, and V. Zelevinsky, Phys. Rev. Lett.87,
062501~2001!.

@4# S.G. Kadmenskii, P.A. Luk’yanovich, Yu.I. Remesov, and V
Furman, Yad. Fiz.45, 942 ~1987! @Sov. J. Nucl. Phys.45, 585
~1987!#.

@5# A. Volya, B.A. Brown, and V. Zelevinsky, Phys. Lett. B509,
37 ~2001!.

@6# S.G. Kadmenskii and P.A. Luk’yanovich, Yad. Fiz.49, 384
~1989! @Sov. J. Nucl. Phys.49, 238 ~1989!#.

@7# F. Barranco, R.A. Broglia, G. Gori, E. Vigezzi, P.F. Bortigno
and J. Terasaki, Phys. Rev. Lett.83, 2147~1999!.

@8# S.P. Pandya, Phys. Rev.103, 956 ~1956!.
@9# S.T. Belyaev, Zh. E´ksp. Teor. Fiz.39, 1387~1962! @Sov. Phys.

JETP12, 963 ~1962!#.
@10# A. de-Shalit and I. Talmi,Nuclear Shell Theory~Academic,
New York, 1963!.

@11# G. F. Bertsch,The Practitioner’s Shell Model~North-Holland,
Amsterdam, 1972!.

@12# R. D. Lawson,Theory of the Nuclear Shell Model~Clarendon,
Oxford, 1980!.

@13# J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev.108,
1175 ~1957!.

@14# G. Racah, Phys. Rev.62, 438 ~1942!; 63, 367 ~1943!.
@15# A.K. Kerman, R.D. Lawson, and M.H. Macfarlane, Phys. Re

124, 162 ~1961!.
@16# I. Talmi, Simple Models of Complex Nuclei~Harwood Aca-

demic, Chur, 1993!.
@17# D.J. Rowe and G. Rosensteel, Phys. Rev. Lett.87, 172501

~2001!.
@18# C.W. Johnson, G.F. Bertsch, D.J. Dean, and I. Talmi, Ph

Rev. C61, 014311~2000!.
@19# I. Talmi, Nucl. Phys.A686, 217 ~2001!.
1-15



-

ALEXANDER VOLYA PHYSICAL REVIEW C 65 044311
@20# P. Ring and P. Schuck,The Nuclear Many-Body Problem
~Springer-Verlag, New York, 1980!.

@21# A. Bohr and B. Mottelson,Nuclear Structure~Benjamin, New
York, 1974!, Vol. 2.

@22# R.A. Broglia, O. Hansen, and C. Riedel, Adv. Nucl. Phys.6,
287 ~1973!.

@23# M. Baranger and K. Kumar, Nucl. Phys.62, 113 ~1965!.
@24# V. Zelevinsky, D. Mulhall, and A. Volya, Yad. Phys.63, 579

~2001! @Phys. At. Nucl.64, 525 ~2001!#.
04431
@25# J. P. Elliot, Selected Topics in Nuclear Theory~International
Atomic Energy Agency, Vienna, 1963!.

@26# V. Zelevinsky,Introduction to Nuclear Theory~Niels Bohr In-
stitute, University of Copenhagen, 1995!, lecture course.

@27# A. Volya, V. Zelevinsky, and B.A. Brown, nucl-th/0109022.
@28# R. Bengtsson and P. Schuck, Phys. Lett.89B, 321 ~1980!.
@29# L. Ferreira, R. Liotta, C.H. Dasso, R.A. Broglia, and A. Win

ther, Nucl. Phys.A426, 276 ~1984!.
1-16


