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Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model
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We present results obtained in the calculation of nuclear ground-state properties in relativistic Hartree
approximation using a Lagrangian whose QCD-scaled coupling constants are allnatural ~dimensionless and of
order one!. Our model consists of four-, six-, and eight-fermion point couplings~contact interactions! together
with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the
corresponding mesonic interactions. The coupling constants have been determined in a self-consistent proce-
dure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear
least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground-state proper-
ties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants
are allnatural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.
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I. INTRODUCTION

Relativistic mean-field~RMF! models are quite successf
in describing ground-state properties of finite nuclei a
nuclear matter properties. They describe the nucleus
system of Dirac nucleons that interact in a relativistic co
riant manner via mean meson fields@1–9# or via mean
nucleon fields@10,11# whose explicit forms sometimes de
rive solely from the meson field approaches@12#. The meson
fields are of finite range~FR! due to meson exchang
whereas the nucleon fields are of zero range@contact inter-
actions or point couplings~PCs!# together with derivative
terms that simulate finite-range meson exchanges. There
a number of attractive features in the RMF-FR and RMF-
approaches. These include the facts that the combined m
and/or nucleon fields account for the effective central pot
tials that are used in Schro¨dinger approaches and that th
physically correct spin-orbit potential occurs naturally w
magnitudes comparable to the~empirical! ad hocspin-orbit
interactions required in Schro¨dinger approaches. Equally a
tractive is the fact that for relatively few parameters (.10) a
vast amount of information is obtained: the Dirac sing
particle wave functions and corresponding energy eigen
ues, the ground-state mass, the baryon and charge den
together with their moments, and the properties of satura
nuclear matter. Furthermore, these quantities are obtaine
multaneously in the same self-consistent relativistic Hart
~or Hartree-Fock! calculation.

In this work we use mean nucleon fields constructed w
contact interactions~point couplings! to represent the system
of interacting Dirac nucleons. We choose this approach
the following reasons.

~a! The possible physical constraints introduced by
plicit use of the Klein-Gordon approximation to descri
mean meson fields, in particular, that of the~fictitious! s
meson, are avoided and instead the effects of the var
incompletely understood and higher-order processes are
sumed to be lumped into appropriate coupling constants
terms of the Lagrangian, as explained in Ref.@10#.

~b! The use of point couplings allows not only~standard!
0556-2813/2002/65~4!/044308~23!/$20.00 65 0443
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relativistic Hartree calculations to be performed, but a
relativistic Hartree-Fock calculations@13,14# by use of Fierz
relations~up to fourth order@15#!.

~c! The use of point couplings, because of their succes
the Nambu-Jona-Lasino model for the low-momentum d
main of QCD@16#, is perhaps the best way to test fornatu-
ralnessof the coupling constants in the seminal Weinbe
expansion@17# highlighting the role of power counting an
chiral symmetry in weakeningN-body forces. That is, two-
nucleon forces are stronger than three-nucleon forces, w
are stronger than four-nucleon forces, etc., resulting in a
quence making nuclear physics tractable. If the dimensi
less coupling constants of the corresponding Lagrangian
of order one~natural! then QCD scaling and chiral symme
try apply to finite nuclei.

~d! Finally the RMF-PC model allows one to investiga
its relationship to nonrelativistic point-coupling approach
like the Skyrme-Hartree-Fock~SHF! approach and the
RMF-FR approach to contrast the importance and roles
the different features these models have, as well as to ob
new insights.

Concerning point~c!, the aim of this paper is to determin
whether QCD scaling and chiral symmetry apply to fin
nuclei and, by their application, to construct a state-of-the
parametrization of the relativistic mean-field point-coupli
Lagrangian. In the following we will use the term RM
model for both, the version having finite range due to mes
exchange, which we call RMF-FR, and the point-coupli
~contact interaction! version that we denote by RMF-PC.

Concerning point~d!, it is important to note here that on
can also view RMF-PC as an approach that lies in betw
the RMF-FR approach and the nonrelativistic SHF approa
which is also a well-developed self-consistent mean-fi
model that performs very well~for a review see@18#!.
Whereas SHF is based upon density-dependent contact i
actions with extensions to gradient terms, kinetic terms,
the spin-orbit interaction, RMF-FR is based upon a coup
field theory of Dirac nucleons and effective meson fie
treated at the mean-field level, where density dependenc
modeled by nonlinear meson self-couplings, and the role
©2002 The American Physical Society08-1
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gradient terms is taken over by the finite ranges of the m
sons. The kinetic and spin-orbit terms are automatically c
ried in both RMF models@5#. Thus, a comparison o
RMF-PC and SHF addresses the differences between
medium Dirac and Schro¨dinger nucleons, that is, in kineti
and spin-orbit components, whereas a comparison
RMF-PC and RMF-FR addresses the absence vs presen
finite range and the different treatments of density dep
dence. Herein we will perform these comparisons using p
cisely the same fitting strategy as in recent SHF a
RMF-FR adjustments@19,4,20# except that here we will in
addition be guided by considerations of QCD scaling a
chiral symmetry, that is, naturalness.

We regard the present work with contact interactions a
refined relativistic point-coupling model in comparison
our earlier work@10,11,21,22# for the following three rea-
sons. First, initial work in determining coupling constants
RMF-PC approaches@10,12# found a high correlation amon
the ground-state observables used to determine them,
ticularly the total binding energy and the root-mean-squ
charge radius. Given this fact and the presence of quadr
cubic, and quartic terms in the various densities appearin
the Lagrangian~representing two-, three-, and four-body i
teractions! results in very delicate cancellations among t
corresponding many-body forces. This means that dete
nation of the coupling constants using a nonlinear lea
squares adjustment algorithm with respect to the corresp
ing measured ground-state observables is fraught w
difficulty because the coupling constants are generally un
determined. Consequently, the search for the minimum in
chi-squared hypersurface results in the location of many
cal minima from which erroneous conclusions can be dra
Herein we address this problem more completely by app
ing two different nonlinear least-squares adjustment al
rithms and, finally, developing a combined adjustment al
rithm that is used to determine our present results. Secon
our initial work we considered only spherical even-ev
closed-shell nuclei or closed-subshell nuclei in both pro
numberZ and neutron numberN because, due to explici
omission of the pairing interaction, we allowed only orbit
occupation probabilities of 0 or 1. Here, we introduce orb
occupation probabilities for both protons and neutro
through a standard BCS approach in which the proton
neutron pairing strengths are simultaneously determined
the coupling constants in the adjustment algorithm. Th
most of our earlier work addressed the question of natu
ness after the fact, that is, without consideration of the co
plete set of ten possible Lorentz invariants that may oc
~scalar, vector, pseudoscalar, axial vector, tensor, and
same coupled to isospintW ) and without consideration of th
QCD mass-scale ordering of the terms of the Lagrang
The former consideration is neccessary to properly pur
the question of naturalness while the latter considera
leads to, among other things, classification of the~allowed!
terms of the Lagrangian according to their relative streng
which, of course, assists in its construction in the first pla
We address, and remain cognizant, of both of these con
erations in the various approaches presented here.

The paper is structured as follows. The Lagrangian of
04430
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relativistic point-coupling model, together with its variant
is given in Sec. II. Included are the corresponding relativis
Hartree equations, expressions for the various densities
potentials appearing, and expressions for the calculated
servables that are to be used in determining the coup
constants of the Lagrangian. The approximations that we
voke are also stated here. In Sec. III we describe the de
mination of the coupling constants using four different lea
squares adjustment algorithms with respect to well-measu
ground-state observables and the external constraint o
ways obtaining reasonable calculated values of the prope
of saturated nuclear matter. A relatively new approach to
x2 minimization has been developed and we explain h
and why. Our results are given in Sec. IV. First, we pres
comparisons of calculation and experiment for nuclei who
measured observables were used to determine the cou
constants. Second, we present comparisons of predicted
measured observables for nuclei not used in determining
coupling constants. Third, we compare our results to thos
other RMF approaches. Then we give our final nuclear m
ter predictions and we mention initial results obtained in c
culating fission potential energy surfaces and properties
superheavy nuclei. We address the role of QCD scaling
chiral symmetry in Sec. V, where we test our final sets
coupling constants for naturalness and present the co
sponding evidence obtained that QCD and chiral symme
apply to finite nuclei. Our conclusions and intentions for f
ture work are given in Sec. VI.

II. THE MODEL

A. The Lagrangian

The elementary building blocks of the point-coupling ve
tices are two-fermion terms of the general type

~ c̄OtGc!, OtP$1,t i%, GP$1,gm ,g5 ,g5gm ,smn%
~1!

wherec is the nucleon field,t i are the isospin matrices, an
G is one of the 434 Dirac matrices. There thus is a total o
ten such building blocks characterized by their transform
tion character in isospin and in spacetime.

The interactions are then obtained as products of s
expressions to a given order. The products are coupled
course, to a total isoscalar-scalar term. By ‘‘order’’ we me
the number of such terms in a product, so that a second-o
term corresponds to a four-fermion coupling, and so on.
second order only the ten elementary currents squared
contracted to scalars may contribute, but at higher ord
there is a proliferation of terms because of the various p
sible intermediate couplings.

In analogy to the nonrelativistic Skyrme-force mode
one goes one step beyond zero range and complement
point-coupling model by derivative terms in the Lagrangia
e.g.,]nc̄tW iG j

mc. The derivative is understood to act on bo

c̄ and c. The derivative terms simulate to some extent t
effect of finite range and there may be genuine gradi
terms from a density functional mapping, as appears, e.g
electronic systems@23#.
8-2
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NUCLEAR GROUND STATE OBSERVABLES AND QCD . . . PHYSICAL REVIEW C65 044308
In the present work we consider the following fou
fermion vertices:

isoscalar-scalar: ~ c̄c!2 ~[s field!,

isoscalar-vector: ~ c̄gmc!~c̄gmc! ~[v field!,

isovector-scalar: ~ c̄tWc!•~ c̄tWc! ~[d field!,

isovector-vector: ~ c̄tWgmc!•~ c̄tWgmc! ~[r field!

and their corresponding gradient couplings]n(•••)]n(•••).
These constitute a complete set of second-order scalar

vector currents whose coupling strengths in the correspo
ing Lagrangian we wish to test for naturalness. All of the
except for the derivative term for isovector-scalar coupl
have appeared in previous RMF-PC work@10–12,21,22#,
however, the isovector-scalar interaction (d-meson ex-
change! has been found not to improve the description
nuclear ground-state observables in RMF-FR work@5,7#. We
therefore ask whether the insensitivity of the RMF-FR c
culations to the absence or presence of delta-meson exch
is due to cancellations, other missing terms, unnaturalnes
a symmetry, and we will investigate this same insensitivity
our RMF-PC work here. That is, no RMF-PC calculation h
yet included simultaneously the four-fermion coupling pl
corresponding derivative for the isovector-scalar field,
we will include it here. We postpone tensor couplin
and third- and/or fourth- order mixed coupling

@(c̄c)(c̄gmc)(c̄gmc), for example# to our next work,
which will use the results from this work as the starti
point. For that work it is important to note that where
tensor couplings have had little effect in RMF-FR calcu
tions @5# they do have noticable effects in recent RMF-P
calculations@12#. Finally, the pseudoscalar channel (p me-
son! is not included here because it does not contribute at
Hartree level.

In this work we begin with a set of higher-order terms th
are common to existing RMF-FR and RMF-PC studi
These are the familiar nonlinear terms in the scalar coupl
(c̄c)3 and (c̄c)4, as well as a nonlinear vector term

@(c̄gmc)(c̄gmc)#2 as used in some RMF-FR@24# and
RMF-PC@10# models. Finally, of course, the electromagne
field and the free Lagrangian of the nucleon field must
included.

Combining all of these terms, we obtain the Lagrangian
the point-coupling model as

L5L free1L 4f1L hot1L der1L em, ~2!

L free5c̄~ igm]m2m!c,

L 4f52 1
2 aS~ c̄c!~c̄c!2 1

2 aV~ c̄gmc!~c̄gmc!

2 1
2 aTS~ c̄tWc!•~ c̄tWc!2 1

2 aTV~ c̄tWgmc!•~ c̄tWgmc!,

L hot52 1
3 bS~ c̄c!32 1

4 gS~ c̄c!42 1
4 gV@~ c̄gmc!~c̄gmc!#2,
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L der52 1
2 dS~]nc̄c!~]nc̄c!2 1

2 dV~]nc̄gmc!~]nc̄gmc!

2 1
2 dTS~]nc̄tWc!•~]nc̄tWc!

2 1
2 dTV~]nc̄tWgmc!•~]nc̄tWgmc!,

L em52eAmc̄@~12t3!/2#gmc2 1
4 FmnFmn.

Note that we use the nuclear physics convention for the
spin where the neutron is associated witht3511 and the
proton witht3521.

As it stands this Lagrangian contains the eleven coup
constantsaS , aV , aTS, aTV , bS , gS , gV , dS , dV , dTS,
and dTV . The subscripts indicate the symmetry of the co
pling: S stands for scalar,V for vector, andT for isovector,
while the symbols refer to the additional distinctions:a re-
fers to four-fermion terms,d to derivative couplings, andb
andg to third- and fourth-order terms, respectively.

The model thus contains one or two free parameters m
than analogous RMF-FR models. This happens because
RMF-FR models make the tacit assumption that the mas
in thev andr field can be frozen at the experimental valu
of the really existing mesons. The assumption is justified
the extent that the actual fits to observables are not ov
sensitive to these masses. In the RMF-PC model, howe
experience will still have to show whether the derivativ
term coefficients can be eliminated in a similar way, so t
for the present work all parameters are regarded as ad
able.

B. The mean-field and no-sea approximations

Similar to the RMF-FR approach, we consider t
RMF-PC approach as an effective Lagrangian for nucl
mean-field calculations at the Hartree level without an
nucleon states~no-sea approximation!. We thus obtain the
mean-field approximation

c̄OtGc→ (
«a.0

waf̄aOtGfa , ~3!

where thewa are occupation weights to be determined
pairing, see Sec. II E, thefa are the Dirac four-spinor
single-particle wave functions with upper and lower comp
nents g and f, and the«a are the corresponding single
particle energies. The ‘‘no-sea’’approximation is embodi
in the restriction of the summation to positive single-partic
energies. All interactions in the Lagrangian, Eq.~2!, are then
expressed in terms of the corresponding local densities,

isoscalar-scalar: rS~rW !5(
a

f̄a~rW !fa~rW !, ~4!

isoscalar-vector: rV~rW !5(
a

f̄a~rW !g0fa~rW !,

isovector-scalar: rTS~rW !5(
a

f̄a~rW !t3fa~rW !,
8-3
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isovector-vector: rTV~rW !5(
a

f̄a~rW !t3g0fa~rW !,

proton: rC~rW !5 1
2 @rV~rW !2rTV~rW !#.

C. Equations of motion

Following the mean-field approximation, the singl
particle wave functionsfa remain as the relevant degrees
freedom. Standard variational techniques@25# with respect to
f̄a yield the coupled equations of motion for the set$fa%.
We are interested here in the stationary solution for wh
the field equations read

g0«afa5S igW •]W1m1VS1VVg01VTSt31VTVt3g0

1VC

12t3

2
g0Dfa ,

VS5aSrS1bSrS
21gSrS

31dSDrS ,

VV5aVrV1gVrV
31dVDrV ,

VTS5aTSrTS1dTSDrTS,

VTV5aTVrTV1dTVDrTV ,

VC5eA0 , DA0524prC , ~5!

with the local densities as given in Eq.~4!.

D. Relation to Walecka-type RMF models

The coupling between two nucleon densities is media
by a finite-range propagator in the RMF-FR approach.
can expand the propagator into a zero-range coupling
gradient corrections in a standard manner. This gives,
example, in the equation of motion for the isoscalar-sca
coupling @see Eq.~2.10b! of Ref. @5##,

~6!

The identification with the corresponding parameters of
RMF-PC approach is obvious by inspection of Eqs.~10!–
~11!. The reverse relations read

ms
25aS /dS , gs

252aS
2/dS . ~7!

Let us have a preview of what parameters to expect. Tak
for example, the set NL-Z2@26# from the RMF-FR approach
we havegs510.1369 andms5493.150 MeV. This yields
an expected aS524.225231024 MeV22 and dS
521.737431029 MeV24. We will see in Sec. III G how
the optimized RMF-PC parametrizations compare with th
We shall also consider the similar relations belonging to
v, d, andr meson, which are
04430
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aV5
gv

2

mv
2

, dV5
gv

2

mv
4

, ~8!

aTS5
gd

2

md
2

, dTS5
gd

2

md
4

, ~9!

aTV5
gr

2

mr
2

, dTV5
gr

2

mr
4

. ~10!

E. Pairing and the center-of-mass correction

In order to describe deformed and non-closed-shell nu
reasonably, pairing has to be involved. Since in this pa
nuclei close to the drip lines will not be considered, the pa
ing model can be kept simple. For reasons of better comp
son, we use precisely the same pairing recipe as in for
RMF-FR calculations@27#. Thus we employ BCS pairing
with a d force and use a smooth cutoff given by a Fer
function in the single-particle energies. The occupation a
plitudesua ,va are determined by the gap equation

va
25

1

2 S 12
ea2eF

A~ea2eF!21Da
2 D , va

21ua
251, ~11!

where the Fermi energyeF is to be adjusted such that th
correct particle number is obtained. The single-particle g
Da are state dependent and are determined as

Da5E d3xfa* ~xW !D~xW !fa~xW !, ~12!

whereD(xW ) is the pair potential. The occupation weights f
the densities~4! are then given bywa5va

2 . The pairing pre-
scription introduces the pairing strength parametersVP and
VN for protons and neutrons, respectively. These are fitte
experimental data simultaneously with the coupling co
stants appearing in the Lagrangian. The contribution to
energy of the nucleus emerging from pairing will be deno
by Epair.

A further important ingredient is the center-of-mass c
rection and it was shown@28# that the actual recipe for tha
correction has an influence not only on the predictions
light nuclei, but also on the predictions for exotic nucle
Thus we use here the microscopic estimate

Ecm5
^P̂2&
2M

, ~13!

where P̂ is the total momentum andM is the total mass of
the nucleus. Again, we take care that the same recipe is
in the RMF-FR forces to which we compare.

F. Observables

The determination of the coupling constants included
the model is based upon a fit to experimental data, wh
requires precise numerical comparison of calculated and
perimentally observed quantities. For mean-field models,
most natural quantities are bulk observables such as the b
8-4
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ing energy and the moments of the various density distri
tions, while other properties such as the single-particle sp
trum cannot be related to experiment in a similarly prec
way. In the following we discuss the calculation of the o
servables used in our present study.

1. Binding energy

The binding energy for a nucleus withZ protons andN
neutrons is computed according to

EB5Zmp1Nmn2EL2Epair2Ecm. ~14!

The most crucial part is the energyEL from the mean-field
Lagrangian. It is computed in standard manner asEL

5(ava
2ea2*d3x^FuLuF& with uF& being the BCS ground

state. It can be rewritten in terms of the local densities a

EL5(
a

va
2ea2E d3x@ 1

2 aSrS
21 1

2 aVrV
21 1

2 aTSrTS
2

1 1
2 aTVrTV

2 1 2
3 bSrS

31 3
4 gSrS

41 3
4 gVrV

41 1
2 dSrSDrS

1 1
2 dVrVDrV1 1

2 dTSrTSDrTS1 1
2 dTVrTVDrTV

1 1
2 rCVC#. ~15!

2. Charge radius

The starting point for all observables of the charge dis
bution is the charge form factor defined by

Fch~q!5E d3x exp~ iq•x!rch~x!. ~16!

It is a function of the momentum transferq5uqu for spheri-
cally symmetric charge distributions. Note that the cha
density is to be obtained from folding the proton and neut
densities with the intrinsic charge~and current! distributions
of protons and neutrons. We use here the same recipe
previously@19,5#. The various bulk properties of the charg
distributions are deduced in the standard manner@29#. We
calculate the rms charge radius then as

r rms
ch 5A2

3

Fch~0!
lim
q→0

d2Fch~q!

dq2
. ~17!

3. Diffraction radius

The diffraction radius is obtained by comparison with
square-well distribution having total chargeQ,

rbox
R 5H QS 4p

3
R3D 21

, r<R

0, r .R.

~18!

Its form factor is given by

Fbox
R ~q!53Q

j 1~qR!

qR
~19!
04430
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( j 1 is the spherical Bessel function!. The diffraction radiusR
is determined such that the first rootq0 of the actual form
factor coincides with the first root of the box form facto
This is the case whenq0R is equal to the first rootx0 of
j 1(x). We obtain thus the diffraction radius as

Rdms5
x0

q0
5

4.493 409 5

q0
. ~20!

4. Surface thickness

The height of the first extremum forq.0 of the charge
form factor can be used to obtain information about the ch
acteristic surface thicknesss of the charge distribution. It
can be calculated by comparing the charge form factor t
distribution that is obtained by folding a boxlike distributio
rbox

R (r ) over a Gaussianrg
s(r ) with width s. The form factor

Fbg(q) of the resulting density distribution is simply th
product of the single form factors,

Fbg
R,s~q!5Fbox

R ~q!Fg
s~q!5Fbox

R ~q! expS 2
1

2
s2q2D .

~21!

The parameters is determined in such a way that the orig
nal charge form factor andFbg

R,s(q) have the same value a
the first extremumqe of Fbox

R (q). For R, the diffraction ra-
dius as obtained in the preceding section is used. The fi
result for the surface thickness reads

s5
1

qe
A2 lnS Fbox

Rdms~qe!

Fch~qe!
D ~22!

@qe is given by xe /Rdms, xe being thex value at the first
extremum ofj 1(x)/x#.

G. Comments on the numerical solution

The coupled mean-field equations of the RMF-PC a
RMF-FR models are solved on a grid in coordinate sp
employing derivatives as matrix multiplications in Fouri
space. The solution that minimizes the energy of the sys
is obtained with thedamped gradient iterationmethod@30#
that has been successfully applied in the solution of s
problems.

III. DETERMINATION OF COUPLING CONSTANTS

A. The task

The RMF-PC model as presented above contains 11 c
pling constants that have to be determined in a fit to exp
mental data. We do this by aleast-squares fit, i.e., minimi-
zation of

x25(
i

~Oi
th2Oi

expt!2

~DOi !
2

, ~23!

where Oi
expt are the experimental data andOi

th denote the
calculated values.DOi are the assumed errors of the obse
8-5
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ables, which empirically express the demands on the a
racy of the model for the respective observables. They ar
some cases~for example, for binding energies! larger than
the experimental errors. The observables chosen for the
justment of the coupling constants are discussed below,
Sec. III C. The global minimum ofx2 should correspond to
the optimal set of coupling constants. Finding the glo
minimum is, however, a nontrivial and nonstraightforwa
task. To have a good chance to find the optimal set of c
pling constants, two different fitting algorithms have be
combined.

B. The fitting algorithms

The fitting of the model parameters is done with a co
bination of a stochastic method and a direct method. T
direct method is theBevington curved step@31#, which had
been successfully applied in many previous fits within
RMF model @32# and in the Skyrme-Hartree-Fock mod
@19,20#. It consists of theLevenberg-Marquardtmethod@33#
with an additional trial step in parameter space. The nei
borhood of the supposed minimum is modeled by a parab
expansion. Close to the minimum this expansion metho
used, while further away the method switches to slid
down along the gradient in parameter space. This method
proved to be the most effective one for the given probl
and has been used for the final minimization.

This fitting algorithm searches in each step for a low
value ofx2. Thus it will walk towards the minimum, which
is closest to the initial configuration in parameter space. T
often lets it get stuck in a local minimum. One way out is
start the algorithm several times with different initial co
figurations. In this work, a different way out has been cho
usingSimulated Annealing~SA! @33#. This Monte Carlo al-
gorithm does random steps in parameter space. For
step, depending on an externally controlled temperature,
new configuration is accepted or refused. At high tempe
tures, steps that increasex2 have a nonzero probability to b
accepted. The more the system is cooled down~we used
exponential cooling!, the smaller the probabilities get for ac
ceptance of a configuration that would increasex2. If the
cooling is tuned to be sufficiently slow, the routine can e
cape shallow minima and settle down in the global mi
mum. Additionally, inspired by the techniques ofDiffusion
Monte Carlo@34#, a population of solution vectors~walkers!
has been used. Each walker, if unsuccessful in terms ofx2,
has a finite probability to die, while on the other hand su
cessful walkers can give birth to additional walkers that s
their random walk from that parent configuration.

Figure 1 demonstrates a sample run~the set of observ-
ables for this run is set 1 as shown below!. The maximum
number of walkers was set to four. The two upper figu
show the population walking through parameter space in
directionsaS ~left! and aV ~right!. The strong correlations
among these two parameters are nicely illustrated in co
lated movements of the walkers. The figures below show
x2 for the different configurations as well as the extern
temperature and the number of walkers. Due to failures
some walkers, the population decreases~walkers die after
04430
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around 1600 iterations!. This information is fed back into the
algorithm, so that at later times the chance for new walk
to be born increases again: after additonal 900 iterations
walkers are born.

Using that population of walkers~two runs with a maxi-
mum number of four walkers were performed! increases the
chance to find the desired minimum ofx2. Simulated anneal-
ing is, however, quite slow compared to the other routine a
needs considerably more iterations than the direct metho

To get the best from both classes of fitting algorithms,
following mixed fitting procedure was used to determine t
coupling constants: Two populations of parameter vect
were propagated through parameter space with simulated
nealing, using the smaller set of observables denoted be
as set 1. After the system had been cooled down sufficien
these parameter vectors were used as starting points fo
Bevington curved stepprocedure using the larger set 2
observables.

TABLE I. Observables and chosen errorsDO for set 1 of nuclei
used for the SA fitting procedure.EB denotes the binding energy
r rms

ch the rms charge radius ande ls
p and e ls

n the proton and neutron
spin-orbit splittings of one selected level. A1 indicates an observ-
able contributing to the totalx2. For the experimental values se
Ref. @10#.

Observable Error 16O 88Sr 208Pb

EB 0.15% 1 1 1

r rms
ch 0.2% 1 1 1

e ls
p 5.0% 1 1 1

e ls
n 5.0% 1 1 1

FIG. 1. The upper two figures show the positions of the walk
in parameter space inaS andaV direction. For each walker, a dot i
printed. The figure below on the left side shows the correspond
x2 values. The other two figures indicate the size of the popula
and the external temperature.
8-6
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TABLE II. Observables and chosen errorsDO for set 2 of nuclei used for the Bevington fitting procedure.Rdiffr denotes the diffraction
radius,s the surface thickness, andDp andDn are the proton and neutron pairing gaps. A1(2) indicates an observable contributing~not
contributing! to the totalx2. For the experimental values see Ref.@26#.

Observable Error 16O 40Ca 48Ca 56Ni 58Ni 88Sr 90Zr 100Sn 112Sn 120Sn 124Sn 132Sn 136Xe 144Sm 202Pb 208Pb 214Pb

EB 0.2% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

Rdiffr 0.5% 1 1 1 2 1 1 1 2 1 1 1 2 2 2 2 1 2

s 1.5% 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 1 2

r rms
ch 0.5% 2 1 1 1 1 1 1 2 1 2 1 2 2 2 1 1 1

Dp 0.05 MeV 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2

Dn 0.05 MeV 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2
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C. The choice of observables

Two different sets of observables were employed due
the different aim of the minimization procedures. To explo
the parameter space for minima with SA, set 1 was us
which is identical to the set of observables used for the
termination of the coupling constants in Ref.@10# ~see Table
I for the observables and weights!. Since the idea here was t
locate basins around minima, that set of observables pro
to be sufficient to indicate these areas.

For the final minimization, however, the larger set 2~see
Table II! was used. The pairing strengths were adjusted
multaneously, which is important in order to obtain a set
coupling constants with predictive power comparable
other mean-field approaches. This set of observables
successfully been applied before to fit the parametriza
NL-Z2 for the RMF model@26# ~the only exception being
that the pairing strengths for NL-Z2 used for the calculatio
in the present work were adjusted with a larger set of e
pirical gaps, see Ref.@35#!.

D. The force PC-F1

Our first RMF-PC calculation is that corresponding
RMF-FR approaches, which treat exchange of thes, v, and
r mesons. Thus we have three linear terms together w
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three corresponding derivative terms and three higher-o
terms. The set of nine coupling constants emerging from
fitting procedure with the lowest value ofx2 is called PC-F1
and is shown in Table III.

Note that these coupling constants have correlated
uncorrelated errors@31#. The uncorrelated error of a param
eter is the allowed variation of that isolated parameter~while
all other parameters are kept fixed!, which enhancesx2 just
by the value 1. The parameters have thus to be given w
enough digits so that the last digit stays below the unco
lated error. This rule is obeyed in the above table. The c
related error of a parameter is its allowed change, i.e., wit
x211, if all the other parameters are readjusted. Correla
and uncorrelated error would be the same if a paramete
completely independent from the others. In practice, the c
related errors are much larger than the uncorrelated o
indicating strong correlations among the parameters.
largest correlations appear betweenaS and aV whose sum
happens to provide the largest contribution to the nucl
shell model potential. The correlated error ofdTV is quite
large and shows that the parameter might as well hav
positive or zero value. It is quite loosely determined by t
fitting strategy. There is an analogous situation for Skry
forces, where some of the isovector terms possess
mns
e. Note
l

TABLE III. The set PC-F1 of coupling constants resulting from the final fitting procedure. In colu
four and five the uncorrelated and correlated errors are shown as originating from the fitting procedur
that the values for the pairing strengths have been rounded according to the error marigins. The totax2, x2

per point, andx2 per degree of freedom arex tot
2 599.1, xpt

2 52.11, andxdf
2 52.75.

Coupling constant Value Dimension Uncorr. error~%! Corr. error~%!

aS 23.8357731024 MeV22 2.631023 8.331021

bS 7.68567310211 MeV25 2.131022 4.73100

gS 22.90443310217 MeV28 7.231022 1.43101

dS 24.1853310210 MeV24 2.031021 2.33101

aV 2.5933331024 MeV22 3.731023 1.23100

gV 23.879310218 MeV28 4.431021 5.43101

dV 21.1921310210 MeV24 6.031021 7.63101

aTV 3.467731025 MeV22 1.23100 1.13101

dTV 24.2310211 MeV24 6.03101 1.73103

VP 2321 MeV fm3 1.33100 2.03100

VN 2308 MeV fm3 1.23100 2.33100
8-7
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FIG. 2. Errors~in %) for the
observables binding energy, dif
fraction radius, surface thickness
and rms charge radius for PC-F
~filled diamonds! and NL-Z2
~open squares! are seen on the
left. The right panels show the ab
solute mean errors for the corre
sponding observables, where th
dashed lines indicate the chose
relative errorsDO in the fitting
procedure.
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loosely determined parameters. The pairing strengths, on
other hand, have small discrepancy between correlated
uncorrelated error. This shows that the fit to pairing is ba
cally independent from the fit of the mean-field propertie

E. Quality of the fit

The totalx2 for PC-F1 is 99.1. Additionally, we conside
thex2 per point,xpt

2 52.11, where the number of points is th
number of observables taken into account in the fitting p
cedure, which is 47 in our case. Thex2 per degree of free-
dom,xdf

2 52.75, where the degrees of freedom are calcula
as the difference between data points and the number of
parameters, also measures the quality of the force obtaine
the fitting procedure. These numbers need a bit more el
dation. To that end, we inspect the~dis!agreement for the
various fit observables in detail. This is done in Fig. 2, wh
demonstrates the performance of the new RMF-PC fo
PC-F1 and compares it to the RMF-FR force NL-Z2. O
sees that the binding energy is described most precisely
an average accuracy of 0.25%. The radii are reprodu
04430
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within about 0.5%. The surface thickness comes last.
mind that the usage of relative errors punishes this quan
which has a comparatively low value of 1 fm. Most actu
errors stay within these error bands. There are a few exc
tions. The energies of40Ca and Ni isotopes seem to hav
trouble and the diffraction radius of112Sn is a bit large.
Comparing the average errors between PC-F1 and NL-
we see slightly different trends. NL-Z2 is superior with r
spect to binding energies and surface thicknesses. It d
however, perform less well concerning radii. The totalx2 of
NL-Z2 is 132.7, which is 34% larger than that for PC-F
The overall performance of the point-coupling thus seems
be a bit better, although the difference is not too dramati

F. Exploring modifications in the isovector channel

The model Lagrangian~2! contains only a bare minimum
of isovector terms. This was chosen in close analogy to
RMF-FR. There are many more terms conceivable alread
the given order of couplings. The problem is that the giv
obervables all gather around the valley of stability and c
8-8
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TABLE IV. The set PC-F2 of coupling constants emerging from the fitting procedure including the l
isovector-scalar term. In columns four and five the uncorrelated and correlated errors are shown as o
ing from the fitting procedure. The totalx2, x2 per point, andx2 per degree of freedom arex tot

2 598.5,
xpt

2 52.10, andxdf
2 52.80.

Coupling constant Value Dimension Uncorr. error~%! Corr. error~%!

aS 23.83582131024 MeV22 1.931023 8.131021

bS 7.6835310211 MeV25 1.631022 4.73100

gS 22.91148310217 MeV28 5.231022 1.33101

dS 24.158310210 MeV24 2.631021 1.83101

aV 2.59351131024 MeV22 2.931023 1.33100

gV 23.8234310218 MeV28 3.431021 5.23101

dV 21.218310210 MeV24 1.73100 6.93101

aTS 2.3431026 MeV22 1.63101 2.43103

aTV 3.24131025 MeV22 1.13100 1.63102

dTV 26.0310211 MeV24 2.53101 3.73102

VP 2321 MeV fm3 8.731021 1.63100

VN 2308 MeV fm3 8.131021 1.33100
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tain only little isovector information. Isovector extensions
the model are thus not so well fixed by the data. Nonethel
it is worth exploring those extensions in order to check t
one is not missing too much in the above standard mode

1. Isovector-scalar terms

We now test the linear isovector-scalar term with coupl
constantaTS @see Eqs.~4! and~5!#. Table IV shows the set o
ten optimized coupling constants, which we call PC-F2. T
correlated errors of the isovector coupling constants
much larger than in PC-F1~see Table III!. The x2 for the
extended set given was reduced by only 0.6% compare
PC-F1. Thus we find that this extension is not well det
mined by the present set of data. It is interesting to note
the sum ofaTS1aTV approximately corresponds to the valu
of aTV in the force PC-F1. This may indicate that the over
04430
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isovector strength has a well-defined value, but the deta
splitting between the two terms is not yet well determine

2. Nonlinearities in the isovector-vector terms

Another obvious extension of the model is the lowe
order nonlinear term in the isovector-vector density,

L TV
hot52

1

4
gTV@~ c̄tWgmc!•~ c̄tWgmc!#2. ~24!

The ten optimized coupling constants, which we call PC-
are shown in Table V. The new coupling constantgTV is
characterized by large uncorrelated and correlated errors,
in addition the uncertainties indTV have increased compare
to the force PC-F1. This hints that the experimental o
servables are unable to pin down the magnitude ofgTV. The
overall quality is x2598.8, which is only 0.3% bette
the
errors
TABLE V. The set PC-F3 of coupling constants emerging from the fitting procedure including
nonlinear term in the isovector-vector density. In columns four and five the uncorrelated and correlated
are shown as originating from the fitting procedure. The totalx2, x2 per point, andx2 per degree of freedom
arex tot

2 598.8, xpt
2 52.10, andxdf

2 52.82.

Coupling constant Value Dimension Uncorr. error~%! Corr. error~%!

aS 23.83579631024 MeV22 2.531023 9.931021

bS 7.6853310211 MeV25 2.031022 5.33100

gS 22.9062310217 MeV28 6.931022 1.73101

dS 24.1797310210 MeV24 2.131021 2.43101

aV 2.59335731024 MeV22 3.531023 1.73100

gV 23.8731310218 MeV28 4.431021 5.93101

dV 21.1997310210 MeV24 6.931021 8.03101

aTV 3.54931025 MeV22 1.23100 7.63100

gTV 25.4310217 MeV28 5.73101 1.83102

dTV 24.0310211 MeV24 1.13102 4.03102

VP 2321 MeV fm3 1.43100 1.73100

VN 2308 MeV fm3 1.23100 1.33100
8-9
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TABLE VI. The set PC-F4 of 11 coupling constants emerging from the fitting procedure including
isovector coupling constants. In columns four and five the uncorrelated and correlated errors are sh
originating from the fitting procedure. The totalx2, x2 per point, andx2 per degree of freedom arex tot

2

598.2, xpt
2 52.09, andxdf

2 52.89.

Coupling constant Value Dimension Uncorr. error~%! Corr. error~%!

aS 23.8356431024 MeV22 2.931023 1.03100

bS 7.6806310211 MeV25 2.031022 5.73100

gS 22.9105310217 MeV28 6.931022 1.93101

dS 24.16057310210 MeV24 2.131021 2.33101

aV 2.59361431024 MeV22 3.531023 1.53100

gV 23.844310218 MeV28 4.431021 6.83101

dV 21.2154310210 MeV24 6.831021 7.63101

aTS 25.9231026 MeV22 7.83100 6.83103

dTS 21.12310210 MeV24 4.13101 8.43102

aTV 3.93731025 MeV22 1.03100 8.93101

dTV 3.0310212 MeV24 1.53103 3.13104

VP 2321 MeV fm3 1.43100 1.53100

VN 2308 MeV fm3 1.23100 1.43100
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than that of PC-F1. This indicates that the extension b
nonlinear isovector term is undetermined at the present s
of the fits.

3. An extended set with 11 coupling constants

As a last test of possible extensions in the isovector ch
nel we performed a fit including the four isovector coupli
constantsaTS,dTS,aTV ,dTV . The emerging set of 11 cou
pling constants is shown in Table VI and is called PC-F
This set has a small negative coupling constant in front of
four-fermion isovector-scalar term leading to a small attr
tion. The sum aTS1aTV leads to a value of'3.3
31025 MeV22, which is quite close to the value obtaine
for aTV in the set PC-F1. This observation underlines
statement we have already made concerning the force PC
where we saw a similar behavior of the extended isove
strength. Due to the large correlated errors, all isovector c
pling constants exceptaTV are compatible with positive o
zero values, showing that the isovector channel of this ef
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tive Lagrangian is not well determined by the data includ
in the fit.

G. Comparison with Walecka-type models

In Sec. II D, we estimated expected coupling consta
from a gradient expansion of the finite ranges in t
RMF-FR model. We compare now the values for the vario
coupling constants with values that we can expect from
finite-range RMF model, choosing the interaction NL-Z2 f
our comparisons. Table VII shows the expected values~ex-
cept for the isovector-scalar channel, since the RMF-
model with NL-Z2 has nod meson! together with the values
taken from NL-Z2.

Good agreement can be seen for the coupling const
mainly responsible for the nuclear potential, namely,aS and
aV , which are very similar in each of the RMF-PC force
and are somewhat lower than the corresponding RMF
values.
the
TABLE VII. Coupling constants from the RMF-FR interaction NL-Z2 and corresponding values from
RMF-PC interactions PC-F1 to PC-F4.

Coupling constant Value from NL-Z2 PC-F1 PC-F2 PC-F3 PC-F4

aS (MeV)22 24.22531024 23.83631024 23.83631024 23.83631024 23.83631024

dS (MeV)24 21.73731029 24.185310210 24.158310210 24.180310210 24.161310210

aV (MeV)22 2.73931024 2.59331024 2.59431024 2.59331024 2.59431024

dV (MeV)24 4.502310210 21.192310210 21.218310210 21.120310210 21.215310210

aTV (MeV)22 3.56631025 3.46831025 3.24131025 3.54931025 3.93731025

dTV (MeV)24 6.125310211 24.20310211 26.0310211 24.0310211 3.0310212

aTS (MeV)22 2.3431026 25.9231026

dTS (MeV)24 21.12310210
8-10
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TABLE VIII. Bulk properties of nuclear matter for the forces under consideration.

PC-F1 PC-LA NL-Z2 NL3 SLy6 SkI3

r0 (fm23) 0.151 0.148 0.151 0.148 0.159 0.158
E/A (MeV) 216.17 216.126 216.07 216.24 215.90 215.96
m* /m 0.61 0.575 0.583 0.595 0.690 0.577
K (MeV) 270 264 172 272 230 258
asym (MeV) 37.8 37.194 39.0 37.4 32.0 34.8
ng
s-

o
ec

e
ro

m
a

ar

on
e

bu
o
ts
th

an
on
m
it
n

v
d
e
u

et

d
rc
a

ed
ct
th
i

d
r
i
t
e

he
t of
ies,

ave
of

of
om-
the

ther
rbit
on-
g
-

ic
the
tion

int.
ches
his
e in
stic

f
ller
he
is
f
e

L3
at
de-

r-
or-
int-
By looking at the results for the corresponding coupli
constantsdS anddV , we realize that there are dramatic di
crepancies. In none of the interactions does the sign ofdV
agree with the RMF-FR value. Only in PC-F4 do all signs
the four isovector coupling constants comply with the exp
tations from the estimates@Eqs. ~19! and ~10!#. One has to
keep in mind, however, that these coupling constants, du
their large correlated errors, are not incompatible with ze
The values foraTV agree well with the expected value fro
NL-Z2, reflecting about the same asymmetry energy that
RMF-FR forces deliver~see the discussion about nucle
matter properties in the following section!.

One may be suspicious that the different mapping of n
linearities spoils the comparison. To countercheck, we p
formed one more fit including the 11 coupling constants,
settinggV to zero in order to address the different signs
aV and dV , which appear in all sets of coupling constan
studied. The resulting set of coupling constants still has
same signs, which shows that the negative value ofdV is not
related to having nonlinearities in the isoscalar-vector ch
nel of the effective Lagrangian. We thus are led to the c
clusion that the gradient terms in the RMF-PC model e
body obviously more than just a compensation for the fin
range. This may indicate that the present RMF-PC Lagra
ian is incomplete.

Altogether, all isovector extensions turned out to impro
the fits only very little. Even a detailed analysis of the tren
along isotopic chains did not show any significant improv
ment. Thus, we did not consider additional forces in o
present study because they do not appear to be well d
mined with existing observables. Additionally, thex2 per
degree of freedom is larger for the extended sets compare
PC-F1, showing that at the present stage the extended fo
do not incorporate real physical improvements. This m
change for larger sets of observables, which include d
cated isovector data. The large uncertainties in the isove
coupling constants in the three extended models show
there is indeed sufficient freedom to accommodate new
ovector observables.

IV. RESULTS

A. Comparisons

We now check the predictive power of the newly fitte
force PC-F1. We do this by looking at the performance fo
variety of test cases and observables, which were not
cluded in the fit. We compare the model both to experimen
data and to three other relativistic mean-field approach
namely, the older point-coupling model PC-LA@10#, and the
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two sets NL3@36# as well as NL-Z2@26# from the family of
RMF-FR models. NL-Z2 had been fitted with precisely t
same set of data as PC-F1. PC-LA employed a smaller se
data as discussed above. NL3 was fitted to binding energ
charge radii, and neutron rms radii of the nuclei16O, 40,48Ca,
58Ni, 90Zr, 116,124,132Sn, and 208Pb. Additionally, nuclear
matter properties entered into the fit (E/A5216 MeV,r0

50.153 fm23, K5250 MeV, asym533 MeV). NL-Z2
and NL3 are two state-of-the-art mean-field forces that h
been tested in a variety of applications. So this selection
forces will give us a well-balanced picture of the quality
modern relativistic mean-field forces. In some cases we c
pare also with state-of-the-art Skryme forces, namely,
forces SLy6@37# and SkI3 @20#. SLy6 aims at describing
extremely neutron-rich systems up to neutron stars toge
with normal nuclear matter and nuclei. SkI3 has a spin-o
force that in its isovector properties is analogous to the n
relativistic limit of the RMF-FR model and was fitted usin
the strategy of Ref.@20#, which is much similar to the strat
egy and input data used here.

B. Nuclear matter

Table VIII shows the bulk properties of symmetr
nuclear matter as predicted by the different forces. Like
other RMF approaches, PC-F1 has a rather low satura
density of aroundr050.15 fm23 while the Skyrme forces
produce the largerr050.16 fm23 ~which is close to the
commonly accepted value@38#!. Additionally, all RMF
forces favor a larger binding energy at the saturation po
These are systematic differences between the two approa
apparent for both types of RMF as compared to SHF. T
indicates that these trends are not due to a finite rang
RMF-FR but must have other reasons related to relativi
kinematics.

The incompressibilityK of PC-F1 is comparable to that o
PC-LA and NL3, whereas NL-Z2 produces a much sma
value. The larger value of 270 MeV is much closer to t
commonly accepted 240 MeV while the value of NL-Z2
far too small. It is interesting to note that the large value oK
was aimed at in the fit of NL3 while it just emerged from th
fits for PC-F1 and PC-LA. It is also to be remarked that N
achieves this largeK at the price of producing a somewh
too small surface thickness. PC-F1, on the other hand,
scribes surface thickness as well as NL-Z2~see Fig. 2! and
has a much largerK than NL-Z2. We see here a clear diffe
ence of the point coupling versus finite range. This is c
roborated by the fact that the SHF models are also po
8-11
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FIG. 3. The left panel shows
the energy per particle versus th
vector density for the forces as in
dicated. On the right side, the ef
fective nucleon mass~upper fig-
ure! and the scalar and vecto
mean-field potentials~lower fig-
ure! are drawn as emerging from
the calculations.
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coupling models and do also tend to predict incompressib
ties in the range of 250 MeV.

The symmetry energyasym has the same large value in a
RMF models while SHF results stay closer to the commo
accepted values ('30 MeV). This is a systematic discrep
ancy between RMF and SHF. It is most probably connec
to the rather rigid parametrization of the isovector channe
RMF.

The effective mass is consistently small in all RMF mo
els while SHF can cover a broad range of values up
m* /m51 and even a bit larger, see, e.g.,@39#. The value of
m* /m in the RMF is directly related to the strength of th
vector and scalar fields which, in turn, determines the sp
orbit splitting. There is thus little freedom to tamper with th
effective mass in RMF unless one alternative means to t
the spin-orbit force~as, e.g., a tensor coupling!.

Figure 3 shows several features of symmetric nucl
matter as a function of densityr. The results are about sim
lar for NL-Z2, NL3, and PC-F1 while PC-LA shows dra
matic deviations, particularly forr.0.17 fm23. The effec-
tive potentialV5VS2VV and the effective massm* play a
crucial role to determine the spectra of finite nuclei. Thus
have to expect somewhat unusual spectral features for
LA. At second glance, we see also slight differences betw
the other parametrizations coming up slowly at larger de
ties. The equation of stateE/A is less rigid for PC-F1~cor-
related with a slightly smaller potentialV and less suppresse
m* ). This is a consequence of the fact that the density
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pendence is parametrized differently in point-coupling a
finite-range models.

C. Neutron matter

Neutron matter is a most critical probe for the isovec
features. It has been exploited extensively in the adjustm
of the SHF forces@37#. There are, of course, no direct me
surements. But neutron matter is well accessible to mic
scopic many-body theory such that there exist several r
able calculations of its properties. Figure 4 shows
equation of state for the four RMF forces and SLy6. T
crosses correspond to data from@40#. We confine the com-
parison to low densities, which are relevant for nuclear str
ture physics. It is obvious that all RMF models show a sim
lar trend, which, however, differs significantly from th
‘‘data’’ and from SLy6. This is a systematic discrepanc
which, again, is related to the rather sparse parametriza
in the isovector channel.

D. Binding energies

1. Isotopic and isotonic chains

In Figs. 5 and 6, we show the systematics of relat
errors on binding energies along isotopic and isotonic cha
for the two RMF-PC forces and the RMF-FR forces d
cussed here. All nuclei in these figures are computed as b
spherical. Note that the scales are different for each fig
As a guideline we indicate by horizontal dotted lines t
average error of the models for this observable.
8-12
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NUCLEAR GROUND STATE OBSERVABLES AND QCD . . . PHYSICAL REVIEW C65 044308
Larger errors show up sometimes for light nuclei in t
isotopic chains, see Fig. 5. The case40Ca is notoriously dif-
ficult for PC-F1 and light Ni isotopes are a problem for
RMF models. The underbinding of40Ca may be excused b
a missing Wigner energy@41#. But 56Ni is already overbound
and a Wigner energy would worsen the situation. The r
sons for the deviation have to be searched somewhere
probably it is again an isovector mismatch.

The heavier systems perform much better. They are
scribed within an error of about 0.4%, with few exception

FIG. 4. Energy per particle versus neutron density for four RM
forces and the Skyrme force SLy6. The crosses mark data from
@40#.
04430
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We also see that NL-Z2 performs best in most cases. S
slopes and kinks are also apparent in these plots for
forces. They indicate yet unresolved isotopic and isoto
trends. Another interesting observation can be made:
structure of the curves is, with differences in detail, simi
for NL-Z2 and PC-F1 in almost all cases~this is most strik-
ing for the Sn isotopes!. It shows that the fitting strategy~i.e.,
the choice of nuclei and observables! has direct conse-
quences for the trends of the errors.

A well-visible feature manifests itself in the form of kink
of the errors that appear at magic shell closures. These k
indicate that the jump in separation energies at the shell
sure is too large~typically by about 1–2 MeV!. This, in turn,
means that the magic shell gap is generally a bit too la
Some SHF forces solve this problem by using effective m
m* /m51. This option does not exist in RMF as we ha
seen above. But there are other mechanisms active aro
shell closures. The strength and form of the pairing can h
an influence on the kink~i.e., shell gap!. Moreover, ground-
state correlations will also act to reduce the shell gap of
mere mean-field description. This is an open point for futu
studies.

Figure 6 shows the relative errors of binding along is
tonic chains, assuming again all spherical nuclei. Aga
there are larger fluctuations for the small nuclei,N520 and
N528, while the heavier nuclei,N550 and N582, stay
nicely within the error bounds. But the heaviestN5126
chain grows again out of bounds at its upper end. Isoto
chains are a sensitive test of the balance between the C
lomb field and the isovector channel of the effective L
grangian. All effective forces discussed here produce lar
errors compared to the experimental isotonic chains, wh
shows the need for further investigations of this property
the RMF models.
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FIG. 5. Deviation ~in %) of
the calculated energies from th
experimental values in spherica
calculations of isotopic chains
Note that the scales are differen
for each figure. The dotted line
indicate the accuracy that can b
demanded from the models. Th
experimental errors are smalle
than the size of the symbols use
in the figure.
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FIG. 6. Deviation ~in %) of
the calculated energies from th
experimental values in spherica
calculations of isotonic chains
Note that the scales are differen
for each figure. The dotted line
indicate the accuracy demande
for energies. The experimental e
rors are smaller than the size o
the symbols used in this figure.
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2. Superheavy elements

The upper panel of Fig. 7 shows the relative errors
binding energies for the heaviest even-even nuclei w
known experimental masses~compare with a similar figure
in Ref. @42#!. The lower panel delivers as complementi
information the ground-state deformations expressed
terms of the dimensionless quadrupole momentb2. The cal-
culations were performed by allowing axially symmetric d
formation assuming reflection-symmetric shapes. The ag
ment is remarkable. All forces~with some exceptions for the
PC-LA model! produce only small deviations that stay we
within the given error band. This is a gratifying surpri
because we are here 40–50 mass units above the la
nucleus included in the fit. It is to be noted that most S
forces do not perform so well and have a general tendenc
underbinding for superheavy nuclei@42#. There are also
~small but! systematic differences between the RMF mode
NL3 generally overbinds a little while NL-Z2 and PC-F
tend to underbind. All forces show yet unresolved isovec
trends. The increase of the binding energy with increas
neutron number is too small. These trends were already
parent for known nuclei~see the discussion above!. The rea-
sons for all these trends are not yet understood. Finally,
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tice the kinks visible for theZ598 andZ5100 isotopes at
neutron numberN5152, which hint at a small~deformed!
shell closure there.

All forces predict strong prolate ground-state deform
tions for these superheavy nuclei (b2'0.2620.31). The
trends look similar for all forces. The largest deformatio
appear atN5148 and/orN5150. But there are systemati
differences in detail: NL-Z2 has always larger ground-st
deformations than the other forces, while PC-F1, PC-L
and NL3 show much similar deformations. The difference
probably related to the surface energy: NL-Z2 has a low
surface energy than NL3. The symbol with error bars
Z/N5102/152 in Fig. 7 corresponds to the measur
ground-state deformation of254No @43,44#. This deformation
is overestimated by all forces, PC-LA and NL3 stay with
the error bars, though. The error ranges from 6% to 13
which is still acceptable.

E. Fission barrier of 240Pu

Figure 8 shows the fission barrier of240Pu computed in
axial symmetry allowing for reflection asymmetric shap
~for a discussion of the numerical methods, see Ref.@45#!.
8-14
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FIG. 7. Deviation~in %) of the calculated energies from the experimental values~upper figure! and ground-state deformations~lower
figure! in axially deformed and reflection symmetric calculations. The errors for the binding energies are smaller than the size of the
used in this figure. The symbol with error bars indicates the measured ground-state deformation, together with its uncertainty,254No
@43,44#.
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The experimental values for ground-state deformation, b
rier, and isomer energy are taken from Refs.@46–49#. All
forces predict the same ground-state deformation, in ag
ment with the experimental value, and they all show
typical double humped structure of the fission barrier. A
the first barrier~which corresponds to reflection-symmetr
shapes! is very similar but too large as compared to expe
ment. That may be a defect of symmetry restrictions. Triax
degrees of freedom can decrease the calculated barrie
about 2 MeV@45#, which would bring the curves closer t
the experimental value. Moreover, the~yet to be calculated!
zero-point energy corrections will also lower the barrie
somewhat@50#.

Larger differences develop towards the second minim
and further out~where also the asymmetric shapes ta
04430
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over!. This can be related to the surface properties of
different forces. Forces with a high surface energy place
isomeric state higher up than forces with lower surface
ergy. All forces, however, underestimate the experimen
value for the energy difference of the ground-state and
isomeric state, which is 2.3 MeV. Vibrational zero-point e
ergies may still help in case of NL3. But the minima for th
other three forces are so deep that those small correct
could not bridge the gap.

F. Observables of the density

1. Charge radius, diffraction radius, and surface thickness

In this section we take a look at the observables that
related to the nuclear charge distribution, the rms and diffr
8-15
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FIG. 8. Fission barrier of240Pu in axially and reflection asym
metric calculations with the forces as indicated. The experime
values for the ground-state deformation, the barrier height, and
energy of the second minimum are indicated, respectively, with
arrow, a symbol with error bars, and three lines indicating the va
and its errors. The data are taken from Refs.@46–49#.
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tion radii, as well as the surface thickness~see Sec. II F!. In
Fig. 9 we show results for Sn and Pb isotopes. The exp
mental data are taken from Refs.@29,51,52#.

The rms and diffraction radii are described genera
good. The PC-LA model yields large diffraction radii in S
isotopes. NL-Z2 produces a bit too large radii in Pb isotop
But note that all forces reproduce the trends of the rms r
in lead with its pronounced kink at the magicN5126. It is a
known feature that RMF-FR models perform very well
that respect@53,20# and we see here that the point-couplin
models maintain this desirable feature. Larger discrepan
are observed for the surface thickness~lowest panel in Fig.
9!. All forces have a tendency to underestimate the surf
thickness. This is a common feature of the RMF mode
NL-Z2 and PC-F1 included that observable in the fit and i
then no surprise that they yield a more acceptable agreem
with data. The two other forces produce too small a surf
thickness. The deviation ranges up to 10%. This is outs
the range that could be explained by possible ground-s
correlation effects.

2. Density profiles and form factors

Figure 10 shows the baryon densitiesrV(rW) in Eq. ~4! for
the nuclei 48Ca and100Sn. They all display the typical pat
tern of a boxlike distribution with a smoothened surface a
oscillations on top@29#. The oscillations are an unavoidab
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FIG. 9. Surface thicknesse
~lower figure!, diffraction radii
~middle!, and rms charge radi
~upper figure! for Sn ~left! and Pb
~right! isotopes emerging from
spherical calculations. Note tha
the radii have been divided by
A1/3 to eliminate the liquid drop
trend with mass number. The
experimental data are from
@29,51,52#. Their errors are
smaller than the symbols used i
this figure.
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FIG. 10. Total baryon densities
of the nuclei 48Ca and 100Sn
emerging from spherical calcula
tions for the four RMF forces un-
der consideration.
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consequence of shell structure.100Sn shows, in addition, the
suppression of central density due to the repulsive Coulo
force. All forces produce about the same bulk properties,
the overall extension, central density, and surface profile.
there are sizeable differences for the amplitude of the s
oscillations. RMF-FR produces more than factor of 2 larg
oscillations than RMF-PC~and even that is still a bit large
than the experimentally observed oscillations!. The reason is
that the finite-range folding is more forgiving as far as the
oscillations are concerned. It seems that the final nuc
potential is determined by the data to have in all cases a
the same profile with not too large oscillations. The amp
tude of oscillations in the density carries fully through to t
potentials in case of point coupling. Thus the model need
curb down the initial amplitude. In finite-range models, ho
ever, the densities are smoothened by folding with the me
propagator, which gives more leeway for oscillations of t
density. Comparison with experimental oscillations cou
help to decide between finite-range and zero-range mod
But just this observable of shell oscillations is heavily mo
fied by all sorts of ground-state correlations@54#. These have
first to be fully understood before drawing conclusions
the range of the effective Lagrangian.

For the nucleus48Ca, for which experimental data ar
available, we compare the charge form factor with the p
dictions of our models. The experimental data are taken fr
Ref. @55#, where the charge density is parametrized by
Fourier-Bessel series with the coefficients determined
rectly from the data. This density is then Fourier transform
to obtain the form factor. We show it in Fig. 11, together w
the RMF predictions, in the momentum range covered by
original analysis. Of special importance are the first root a
the height of the first maximum for finite momentum tran
fer, as they correspond to the diffraction radius and the
face thickness. We see that all forces overestimate some
the first root of the form factor, leading to a slightly too sm
diffraction radius. They reproduce well the following min
mum, which leads to an accurate prediction of the surf
thickness. Note, however, that both observables were pa
the fitting procedure for the forces PC-F1 and NL-Z2. Goi
to higher momentum transfer, we see that all forces rep
duce the second zero of the form factor and that the
RMF-PC forces agree nicely with experiment concerning
04430
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following maximum, while the two RMF-FR forces overe
timate it somewhat. This indicates that the momentum
pansion of the RMF-PC model appears to work well in th
respect up to momentum transferq'3.0 fm21.

G. Spin-orbit splittings

Figure 12 shows the relative errors for a selection of sp
orbit splittings in 16O, 132Sn, and208Pb. We have taken car
to choose splittings that can be deduced reliably from spe
of neighboring odd nuclei@56#. All RMF forces, except for
the PC-LA force, perform very well. It was shown in
former study that RMF-FR forces perform much better
that respect than many Skyrme forces@26#. We see now that
the well-fitted point-coupling model PC-F1 does as well
the RMF-FR model. The ability to describe the spin-or
force correctly is thus a feature of the relativistic approac

FIG. 11. Form factor of the charge density of the nucleus48Ca
for the four RMF forces under consideration. The experimen
data, which are taken from Ref.@55#, are plotted in the momentum
transfer rangeq50.3523.55 fm21, as in the original analysis.
8-17
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FIG. 12. The percentage erro
in ls splittings for protons~left!
and for neutrons~right!. The ex-
perimental errors are smaller tha
the size of the symbols used i
these figures. The lines serve t
guide the eye.
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The force PC-LA falls clearly below the others except f
16O. The poor performance is related to the very weak fie
at large densities, see Fig. 3 and related discussion. The
ample demonstrates that one needs a sufficiently large s
observables to pin down the nuclear mean field sufficien
well. The argument is corroborated by Fig. 13, where
have a quick glance at the effective spin-orbit potenti
}“(2mN2VS2VV)21.

The three well-performing models have all very simil
potentials whereas the PC-LA model has a 10% stron
spin-orbit potential, which is shifted a little bit to larger rad
This difference yields the observed mismatch in the sp
orbit splittings. In turn, this figure shows that the allow

FIG. 13. The neutron spin-orbit potential~upper figure! and ef-
fective mass~lower figure! in 208Pb for the forces under discussio
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variations on the mean fields~here the spin-orbit potential!
are rather small.

H. Magic numbers for superheavy nuclei

The prediction of new magic shell closures in superhea
elements varies amongst the mean-field models@57#. For
protons one has a competition betweenZ5114, 120, and
126. For neutrons one findsN5172 and 184. The RMF-FR
models agree in predicting a doubly magic292120172. Pre-
cisely the same result emerges from the PC-F1 model. T
doubly magic nucleus is thus a common feature of relativ
tic models. For the density profile of292120172, we observe a
central depression in accordance with other mean-field
proaches@26,58,59#.

In deformed calculations done in the way as described
Ref. @42#, we obtain, again in agreement with other relat
istic models, deformed shell closures atZ5104 for the pro-
tons andN5162 for the neutrons. The nuclei in that regio
of the nuclear chart have deformations withb2'0.220.3.
Thus also in the deformed case, these different types of R
models agree well concerning their predictions of shell str
ture for superheavy elements.

V. QCD SCALES AND CHIRAL SYMMETRY

QCD is widely believed to be the underlying theory of th
strong interaction. However, a direct description of nucle
structure properties in terms of thenatural degrees of free-
dom of that theory, quarks and gluons, has proven elus
The problem is that at sufficiently low energy, thephysical
degrees of freedom of nuclei are nucleons and~intranuclear!
pions. Nevertheless, QCD can be mapped onto the latter
bert space and the resulting effective field theory is capa
in principle, of providing a dynamical framework for nuclea
structure calculations. This framework is usually called c
ral perturbation theory (xPT) @17#.

Two organizing principles govern thexPT: ~1! ~broken!
chiral symmetry~which is manifest in QCD! and ~2! an ex-
8-18
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pansion in powers of (Q/L), where Q is a general intra-
nuclear momentum or pion mass andL is a generic QCD
large-mass scale (;1 GeV), which in a loose sense ind
cates the transition region between quark-gluon degree
freedom and nucleon-pion degrees of freedom. Chiral s
metry is a direct consequence of the~approximate! conser-
vation of axial vector currents. This symmetry provides
crucial constraint in the construction of interaction terms
the nuclear many-body Lagrangian: a general term has
structure; (Q/L)N and N > 0 is mandated. Higher-orde
constructions in perturbation theory~loops! will involve
higher powers of (Q/L) that will, consequently, be smalle
This mapping fromnatural to effectivedegrees of freedom
results in an infinite series of interaction terms whose co
ficients are unknown and must be determined.

In 1990, Weinberg@17# introducedxPT into nuclear phys-
ics and showed that Lagrangians with~broken! chiral sym-
metry predict the suppression ofN-body forces. He accom
plished this by constructing the most general possible ch
Lagrangian involving pions and low-energy nucleons as
infinite series of allowed derivative and contact interact
terms and then using QCD energy~mass! scales and dimen
sional power counting to categorize the terms of the se
according to (Q/L)N. He choseL equal to ther-meson
mass of 770 MeV. This led to a systematic suppression
N-body forces, that is, two-nucleon forces are stronger t
three-nucleon forces, which are stronger than four-nucl
forces, and so forth. Thus, the infinite series of interact
terms is not physically infinite.

Following Manohar and Georgi@60# we can scale a ge
neric Lagrangian term of the physical series as

L;2clmnF c̄c

f p
2 L

G lF pW

f p
GmF]m,mp

L Gn

f p
2 L2, ~25!

wherec andpW are nucleon and pion fields, respectively,f p

and mp are the pion decay constants, 92.5 MeV, and p
mass, 139.6 MeV, respectively,L5770 MeV is the
r-meson mass as discussed above, and (]m,mp) signifies
either a derivative or a power of the pion mass. Dirac ma
ces and isospin operators~we usetW here rather thantW ) have
been ignored. Chiral symmetry demands@61#

D5 l 1n22>0, ~26!

such that the series contains onlypositivepowers of 1/L. If
the theory is natural@60,62#, the Lagrangian should lead t
dimensionless coefficientsclmn of order unity. Thus, all in-
formation on scales ultimately resides in theclmn . If they are
natural, QCD scaling works.

An explicit pionic degree of freedom is absent in t
RMF. It has been tacitly eliminated in favor of an effectiv
Hartree theory, where the pion effects contribute to the v
ous effective couplings. But various many-body effects
encompassed in the model parameters as well and may m
the underlying chiral structure. Nonetheless, it is worthwh
to classify the actual RMF-PC model according to natur
ness. Without pions, Eq.~25! reduces to
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L;2clnF c̄c

f p
2 L

G lF]m

L Gn

f p
2 L2 ~27!

and the chiral constraint Eq.~26! remains unchanged.
Our test of naturalness does not care whether a partic

clmn orcln coefficient has the value 0.5 or 2.0 or some oth
value near 1. Changing~refining! the model by adding terms
would changeall of the clmn orcln , but the same test o
naturalness still applies. Adding new terms would simp
change a specific coefficient by an amount;1 ~or less!. That
is, testing naturalness is largely and uniquely independen
the details, such as adding pions or performing more sop
ticated nuclear calculations, provided the framework is giv
by Eqs. ~25!–~27! while the physics is introduced via th
measured observables of nuclei.

The early RMF-PC parametrization of@10# was tested for
naturalness in@21#. The nine empirically fitted coupling con
stants as such span 13 orders of magnitude~ignoring dimen-
sions!. Scaling them in accordance with the QCD-based L
grangian of@60# using Eq.~27!, and taking into account the
role of chiral symmetry in weakeningN-body forces@17,61#
using Eq.~26!, yields that six of the nine scaled couplin
constants arenatural. Later work @22# refitting the model
using the same Lagrangian ansatz as before resulted in
additional solutions where seven of the nine coupling c
stants are natural. These results provide evidence thatQCD
scaling and chiral symmetry apply to finite nucleiand, there-
fore, may assist in the selection of physically admissa
nuclear structure interactions. However, one also conclu
that the Nikolaus-Hoch-Madland Lagrangian@10# may re-
quire more and/or different interaction terms, and this co
clusion has led to our present study. It is important to n
that the work summarized above did not test QCD, or ch
symmetry, but rathereffective Lagrangianswhose construc-
tion is constrainedby QCD and chiral symmetry.

A more extended RMF-PC adjustment was perform
later @12#. This work also found naturalness and dimensio
power counting to be extremely useful concepts in constru
ing realistic chiral effective Lagrangian expansions. Th
expansions are based upon the relativistic mean-field me
models of quantum hadrodynamics~QHD! @3,7#. Thus, each
term in their Lagrangian corresponds to the leading-or
expansion of that appearing in an appropriate@7# QHD-based
meson-nucleon Lagrangian. Accordingly, their RMF-PC L
grangian contains nucleon densities of isoscalar-sca
-vector, -tensor, isovector-vector, and -tensor character, w
each tensor term appearing only as a product with its co
sponding vector term. No isovector-scalar terms appear
to their absence in the various QHD approaches. In th
fourth-order truncation, the best-fit set~16 coupling con-
stants, unconstrained search! contained 14 natural and 2 un
natural coupling constants, whereas the worst-fit set~14 cou-
pling constants, constrained search! is the one set containing
all natural coupling constants. Note, however, that the c
pling constants of the derivative terms were constrained
the appropriate meson masses, as described in Sec.
Nevertheless, their study concludes thatnaturalness and di-
mensional power counting are compatible with and impli
8-19
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TABLE IX. QCD-scaled coupling constants for four relativistic point-coupling interactions.

Coupling constant cln(PC-F1) cln(PC-F2) cln(PC-F3) cln(PC-F4) Order inL

aS 21.641 21.641 21.641 21.641 L0

bS 1.443 1.443 1.443 1.442 L21

gS 22.695 22.701 22.696 22.700 L22

dS 21.061 21.054 21.060 21.055 L22

aV 1.109 1.109 1.109 1.109 L0

gV 20.360 20.355 20.359 20.357 L22

dV 20.302 20.309 20.304 20.308 L22

aTS 0.040 20.101 L0

dTS 21.134 L22

aTV 0.593 0.555 0.607 0.674 L0

gTV 280.470 L22

dTV 20.422 20.612 20.404 0.026 L22

Numbercln 9 10 10 11
Number natural 9 9 9 9
umaxu/uminu 8.92 67.5 264.7 103.8

xd f
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s
a

s

-
IX
e

ou
n

al
re
u
f
et
en
ts
he
m
-

in
r
o

n
r
e
n
m

D-
the
ts

n-
ured

of
in

e-
ly

ss,
if

rac-
ill
n.

er-
rm,
s
all
d-

ing
ess
l
the

at
r-
by the measured ground-state properties of finite nuclei.
We now turn to these same considerations for the set

coupling constants determined in our present study that
tabulated in Sec. III. Applying Eqs.~26! and~27! to the sets
of dimensioned coupling constants in Tables III–VI, and u
ing Weinberg’s@17# choice of ther-meson mass~770 MeV!
for the QCD large-mass scaleL, we obtain the correspond
ing sets of QCD-scaled coupling constants listed in Table
together with the additional information of expansion ord
in L, number of coupling constants, number of natural c
pling constants amongst them, and ratio of maximum a
minimum scaled coupling constants in the set. The table
shows thex2 per degree of freedom. The sets are orde
according to increasing values of this quantity. For o
present work we require a more quantitative definition o
natural set of coupling constants than the various interpr
tions of the usual phrase ‘‘of order one,’’ which have be
applied@7,9,21,22#: a set of QCD-scaled coupling constan
is natural if their absolute values are distributed about t
value 1and the ratio of the maximum value to the minimu
value is less than 10. We now discuss each set of QCD
scaled coupling constants appearing in Table IX.

A. Interaction PC-F1

The PC-F1 interaction is the most physically realistic
teraction that we have found. It reproduces the measu
observables used to determine its coupling constants m
exactly than any of our other interactions, as can be see
inspection of thexdf

2 values in Table IX. Its predictive powe
is also better than that of the other interactions as has b
shown in Sec. IV. The nine QCD-scaled coupling consta
are all natural and the ratio of the maximum to the minimu
04430
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is 8.92, thus satisfying our definition of a natural set of QC
scaled coupling constants. So far as we are aware, this is
first complete set of natural QCD-scaled coupling constan,
with order up toL22, that has been obtained with unco
strained least-squares parameter adjustment to meas
ground-state observables.

B. Interaction PC-F2

The form of the PC-F2 interaction is identical to that
PC-F1 except for the addition of the isovector-scalar term
Eq. ~2!. The most likely corresponding isovector-scalar m
son is thed meson with a mass of 983 MeV and a relative
weak coupling constant,gd;2, according to Machleidt@63#.
Thus, its contribution is expected to be small. Neverthele
the QCD-scaled coupling constant should be of order 1
d-meson exchange has a physical role in the strong inte
tion occurring in finite nuclei in the ground-state. We w
return to this topic in our discussion of the PC-F4 interactio
Nine of the ten QCD-scaled coupling constants of this int
action are natural whereas that of the isovector-scalar te
aTS52.3431026 MeV22, is very small and unnatural, a
one would expect from the above discussion. This sm
value is responsible for the relatively large ratio of 67.5 lea
ing to the conclusion that this QCD-scaled set of coupl
constants is not natural. This deviation from naturaln
~here and for the following two forces! can have severa
reasons. There may be a yet undiscovered symmetry or
minimization procedure has found only a local minimum.

C. Interaction PC-F3

The form of the PC-F3 interaction is also identical to th
of PC-F1 except for the addition of the quartic isovecto
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vector term, Eq.~24!. This was done in hopes of producing
sign change in either of the two other isovector-vector ter
aTV or dTV , so that their ratio would be positive, thus sat
fying expectations based upon the first-order expansion
the propagator for ther meson, as discussed in Sec. II D
The sign change, however, did not occur. Again, nine of
ten QCD-scaled coupling constants of this interaction
natural whereas that of the quartic isovector-vector te
gTV525.4310217 MeV28, is very large and unnatura
This large value is responsible for the very large ratio
264.7, again leading to the conclusion that this QCD-sca
set of coupling constants is not natural.

D. Interaction PC-F4

The PC-F4 interaction is built from the PC-F1 interacti
by the addition of isovector-scalar terms that are quadr
and the derivative of quadratic in the corresponding dens
This continues the attempt with the PC-F2 interaction to
dress the role of thed meson by including both terms that a
necessary to simulate the propagator. While only nine of
11 QCD-scaled coupling constants are natural, a
umaxu/uminu is a factor of;10 worse than that of the PC-F
interaction, it is very interesting to observe that the signs
the two new terms are identical and thus they correctly sim
late the expansion of the propagator for thed meson. Not
only that, but the corresponding signs for ther meson are,
for the first time in the present study, also identical. Thus,
expansions of the propagators for the two isovector mes
appearing in the PC-F4 interaction have the correct rela
signs. Nevertheless, the maximum ratio is yet large, 10
leading again to the conclusion that this QCD-scaled se
coupling constants is not natural. We believe, however,
the PC-F4 interaction should be studied further.

We conclude this section by noting that the PC-F1 int
action is one that leads to a physically admissable Lagra
ian from the simultaneous points of view of~a! predictability
and ~b! naturalness. We have therefore demonstrated
QCD scaling and chiral symmetry apply to finite nuclei.

VI. CONCLUSIONS

We have investigated the properties and applicability o
relativistic point-coupling model for nuclear structure calc
lations. To answer the question whether the point-coup
model can reach a predictive power comparable to o
state-of-the-art mean-field approaches, like the RMF-FR
SHF models, we have carefully performed ax2 minimization
combining two different search algorithms, and have be
guided by expectations of naturalness in physically reali
extracted coupling constants. The resulting set of coup
constants is the PC-F1 model in Table III. It has been use
test the predictive power of the RMF-PC model in a varie
of applications ranging from saturated symmetric nucl
and neutron matter and binding energies in isotopic and
tonic chains to form-factor- and shell-structure-related
servables~rms charge radii, diffraction radii, surface thick
nesses, and spin-orbit splittings! and the fission barrier o
240Pu. The net result is that the RMF-PC model with PC-
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actually has reached the quality of competing approaches
some of these comparisons we discovered the influenc
finite versus zero range in the models. For example, the d
sity profiles of the RMF-PC model are generally smooth
than those in RMF-FR model. Like the SHF model, t
point-coupling model naturally leads to a rather high inco
pressibility in nuclear matter,K5260 MeV. And like the
established RMF-FR forces, point coupling forces exhi
some unresolved isovector trends and a rather high sym
try energy in nuclear matter. The model performs well
deformed calculations. Also, the spin-orbit splittings are
produced in a manner comparable to the finite-range mod
showing that the relativistic framework is important he
rather than the finite range.

Attempts to extend the effective Lagrangians utilizing a
ditional isovector terms proved to be elusive: the additio
coupling constants can only be loosely determined with
existing set of experimental observables. Thus the prob
remains the same as in RMF-FR and SHF approac
namely, that the experimental observables are very hig
correlated with respect to the values of the coupling c
stants. This means that highly accurate experimental obs
ables corresponding to large isospin are required to de
mine the isovector properties of the model more complet

We have been guided by naturalness in the extraction
our sets of coupling constants and have found that thos
the set PC-F1 are all natural. In fact, so far as we are aw
PC-F1 is the first complete set of natural coupling consta
that have been determined in an unconstrained search.
result, together with the predictability of PC-F1, demo
strates that QCD scaling and chiral symmetry apply to fin
nuclei. It appears, from the sets PC-F2 and PC-F4, that ei
d-meson exchange is not natural and is not required fo
viable description of the strong interaction in finite nuclei,
there exists an as yet undiscovered symmetry. We th
however, that the PC-F4 interaction requires further stu
including possible extensions beyond 11 coupling consta
~especially following new measurements on high-isospin
clei! because the extracted isovector coupling constants
have the right signs to satisfy expectations from the exp
sions of their propagators.

The point-coupling model discussed here may be view
as amissing linkbetween the established SHF and RMF-F
models. With it, one can separately investigate the influe
of finite range versus zero range and relativistic framew
versus nonrelativistic framework. This is important becau
as we have learned, there are differences in the predict
from the two model classes, which cannot easily be map
onto the separate features of the two classes. We believe
future work should include more detailed studies of the
ovector components of the relativistic effective Lagrangia
and, perhaps more importantly, the influence of the Fo
terms via the Fierz relations. Systematic studies of relativ
tic Hartree-Fock calculations using the RMF-PC model w
provide further linkages, on the one hand, with relativis
Hartree calculations using the RMF-FR model, and on
other hand, with nonrelativistic Hartree-Fock calculations
ing SHF. Work in these directions is in progress.
8-21



y

the
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