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We present results obtained in the calculation of nuclear ground-state properties in relativistic Hartree
approximation using a Lagrangian whose QCD-scaled coupling constants aatuadll (dimensionless and of
order ong. Our model consists of four-, six-, and eight-fermion point couplif@stact interactionsogether
with derivative terms representing, respectively, two-, three-, and four-body forces and the finite ranges of the
corresponding mesonic interactions. The coupling constants have been determined in a self-consistent proce-
dure that solves the model equations for representative nuclei simultaneously in a generalized nonlinear
least-squares adjustment algorithm. The extracted coupling constants allow us to predict ground-state proper-
ties of a much larger set of even-even nuclei to good accuracy. The fact that the extracted coupling constants
are allnatural leads to the conclusion that QCD scaling and chiral symmetry apply to finite nuclei.
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I. INTRODUCTION relativistic Hartree calculations to be performed, but also
relativistic Hartree-Fock calculation43,14] by use of Fierz
Relativistic mean-fieldfRMF) models are quite successful relations(up to fourth ordef15]).
in describing ground-state properties of finite nuclei and (c) The use of point couplings, because of their success in
nuclear matter properties. They describe the nucleus as the Nambu-Jona-Lasino model for the low-momentum do-
system of Dirac nucleons that interact in a relativistic cova-main of QCD[16], is perhaps the best way to test fuatu-
riant manner via mean meson fiel§&—9] or via mean ralnessof the coupling constants in the seminal Weinberg
nucleon fields[10,11 whose explicit forms sometimes de- expansion17] highlighting the role of power counting and
rive solely from the meson field approactiég]. The meson chiral symmetry in weakeniniy-body forces. That is, two-
fields are of finite rangeFR) due to meson exchange nucleon forces are stronger than three-nucleon forces, which
whereas the nucleon fields are of zero rafigentact inter-  are stronger than four-nucleon forces, etc., resulting in a se-
actions or point couplingsPC9g] together with derivative quence making nuclear physics tractable. If the dimension-
terms that simulate finite-range meson exchanges. There aless coupling constants of the corresponding Lagrangian are
a number of attractive features in the RMF-FR and RMF-PCof order one(natural) then QCD scaling and chiral symme-
approaches. These include the facts that the combined mesow apply to finite nuclei.
and/or nucleon fields account for the effective central poten- (d) Finally the RMF-PC model allows one to investigate
tials that are used in Schdimger approaches and that the its relationship to nonrelativistic point-coupling approaches
physically correct spin-orbit potential occurs naturally with like the Skyrme-Hartree-FocKSHF) approach and the
magnitudes comparable to titempirica) ad hocspin-orbit RMF-FR approach to contrast the importance and roles of
interactions required in Schdnger approaches. Equally at- the different features these models have, as well as to obtain
tractive is the fact that for relatively few parametersi0) a new insights.
vast amount of information is obtained: the Dirac single- Concerning pointc), the aim of this paper is to determine
particle wave functions and corresponding energy eigenvalwhether QCD scaling and chiral symmetry apply to finite
ues, the ground-state mass, the baryon and charge densitimsclei and, by their application, to construct a state-of-the-art
together with their moments, and the properties of saturatedarametrization of the relativistic mean-field point-coupling
nuclear matter. Furthermore, these quantities are obtained diagrangian. In the following we will use the term RMF
multaneously in the same self-consistent relativistic Hartreenodel for both, the version having finite range due to meson
(or Hartree-Fockcalculation. exchange, which we call RMF-FR, and the point-coupling
In this work we use mean nucleon fields constructed with(contact interactionversion that we denote by RMF-PC.
contact interaction§point couplingg to represent the system  Concerning pointd), it is important to note here that one
of interacting Dirac nucleons. We choose this approach focan also view RMF-PC as an approach that lies in between
the following reasons. the RMF-FR approach and the nonrelativistic SHF approach,
(&) The possible physical constraints introduced by ex-which is also a well-developed self-consistent mean-field
plicit use of the Klein-Gordon approximation to describe model that performs very wel(for a review see[18)).
mean meson fields, in particular, that of tffectitious) ¢ Whereas SHF is based upon density-dependent contact inter-
meson, are avoided and instead the effects of the variousctions with extensions to gradient terms, kinetic terms, and
incompletely understood and higher-order processes are athe spin-orbit interaction, RMF-FR is based upon a coupled
sumed to be lumped into appropriate coupling constants anfield theory of Dirac nucleons and effective meson fields
terms of the Lagrangian, as explained in R&D]. treated at the mean-field level, where density dependence is
(b) The use of point couplings allows not onlgtandardd  modeled by nonlinear meson self-couplings, and the role of
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gradient terms is taken over by the finite ranges of the merelativistic point-coupling model, together with its variants,
sons. The kinetic and spin-orbhit terms are automatically caris given in Sec. Il. Included are the corresponding relativistic
ried in both RMF models[5]. Thus, a comparison of Hartree equations, expressions for the various densities and
RMF-PC and SHF addresses the differences between ifpotentials appearing, and expressions for the calculated ob-
medium Dirac and Schdinger nucleons, that is, in kinetic servables that are to be used in determining the coupling
and spin-orbit components, whereas a comparison ogonstants of the Lagrangian. The approximations that we in-
RMF-PC and RMF-FR addresses the absence vs presence\sike are also stated here. In Sec. lll we describe the deter-
finite range and the different treatments of density depenmination of the coupling constants using four different least-
dence. Herein we will perform these comparisons using presquares adjustment algorithms with respect to well-measured
cisely the same fitting strategy as in recent SHF andround-state observables and the external constraint of al-
RMF-FR adjustment§19,4,2q except that here we will in ways obtaining reasonable calculated values of the properties
addition be guided by considerations of QCD scaling andf saturated nuclear matter. A relatively new approach to the
chiral symmetry, that is, naturalness. x? minimization has been developed and we explain how
We regard the present work with contact interactions as @nd why. Our results are given in Sec. IV. First, we present
refined relativistic point-coupling model in comparison to comparisons of calculation and experiment for nuclei whose
our earlier work[10,11,21,22 for the following three rea- measured observables were used to determine the coupling
sons. First, initial work in determining coupling constants inconstants. Second, we present comparisons of predicted and
RMF-PC approachd40,12 found a high correlation among measured observables for nuclei not used in determining the
the ground-state observables used to determine them, pagoupling constants. Third, we compare our results to those of
ticularly the total binding energy and the root-mean-squaréther RMF approaches. Then we give our final nuclear mat-
charge radius. Given this fact and the presence of quadratitgr predictions and we mention initial results obtained in cal-
cubic, and quartic terms in the various densities appearing iaulating fission potential energy surfaces and properties of
the Lagrangiar(representing two-, three-, and four-body in- superheavy nuclei. We address the role of QCD scaling and
teraction$ results in very delicate cancellations among thechiral symmetry in Sec. V, where we test our final sets of
corresponding many-body forces. This means that determioupling constants for naturalness and present the corre-
nation of the coupling constants using a nonlinear leastsponding evidence obtained that QCD and chiral symmetry
squares adjustment algorithm with respect to the corresponé@pply to finite nuclei. Our conclusions and intentions for fu-
ing measured ground-state observables is fraught witture work are given in Sec. VI.
difficulty because the coupling constants are generally under-
determined. Consequently, the search for the minimum in the Il. THE MODEL
chi-squared hypersurface results in the location of many lo-
cal minima from which erroneous conclusions can be drawn.
Herein we address this problem more completely by apply- The elementary building blocks of the point-coupling ver-
ing two different nonlinear least-squares adjustment algotices are two-fermion terms of the general type
rithms and, finally, developing a combined adjustment algo-
rithm that is used to determine our present results. Second, in (¢O,I'y), O,e{l7n}, T'e{ly,.v5,¥5Yu 0}
our initial work we considered only spherical even-even
closed-shell nuclei or closed-subshell nuclei in both proton ) i _ _ )
numberZ and neutron numbeN because, due to explicit Wherey is the nucleon fields; are the isospin matrices, and
omission of the pairing interaction, we allowed only orbital I' is one of the &4 Dirac matrices. There thus is a total of
occupation probabilities of 0 or 1. Here, we introduce orbitalten such building blocks characterized by their transforma-
occupation probabilities for both protons and neutrongion character in isospin and in spacetime.
through a standard BCS approach in which the proton and The |.nteract|ons. are then obtained as products of such
neutron pairing strengths are simultaneously determined witgXPressions to a given order. The products are coupled, of
the coupling constants in the adjustment algorithm. ThirdCourse, to a total isoscalar-scalar term. By “order” we mean
most of our earlier work addressed the question of naturaithe number of such terms in a product, so that a second-order
ness after the fact, that is, without consideration of the comt€rm corresponds to a four-fermion coupling, and so on. In
plete set of ten possible Lorentz invariants that may occufecond order only the ten elementary currents squared and
(scalar, vector, pseudoscalar, axial vector, tensor, and tHeontracted to scalars may contribute, but at higher orders

same coupled to isospif) and without consideration of the there.is a proliferation O.f terms because of the various pos-
QCD mass-scale ordering of the terms of the Lagrangian§Ible intermediate couplings. .
In analogy to the nonrelativistic Skyrme-force models,

The former consideration is neccessary to properly pursuene 0es one sten bevond zero range and complements the
the question of naturalness while the latter consideratiof"'C 99€S Step bey zer 9 P s

leads to, among other things, classification of takowed point—cgtipling model b¥ de.riva.tive terms in the Lagrangian,

terms of the Lagrangian according to their relative strengths€-9-,d,%7I'{"4. The derivative is understood to act on both

which, of course, assists in its construction in the first placeiys and . The derivative terms simulate to some extent the

We address, and remain cognizant, of both of these consiaffect of finite range and there may be genuine gradient

erations in the various approaches presented here. terms from a density functional mapping, as appears, e.g., in
The paper is structured as follows. The Lagrangian of ouelectronic systemfg23].

A. The Lagrangian
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fermiotrr:?/err)trigsaz-m work we consider the following four- Loer=—1 5y ﬁyatﬂ)( (Vzlﬂ)—% S (%Emiﬂ)( 5”@7“1#)

— 3 810, 4TY) - (8 YT

isoscalar-scalar: (Zzp)z (=0 field), . .
=2 STy ) - (9" YTYEY),

isoscalar-vector: (¢y,¢)(gy* ) (=w field), _

L= —eAYL(1= 79)/2]y" Y= F F "
isovector-scalar: (yr)-(yry) (=3 field), Note that we use the nuclear physics convention for the iso-
] — — ] spin where the neutron is associated wit= +1 and the
isovector-vector: (¢ry, ) -(gry*)  (=p field) proton with 3= —1.

As it stands this Lagrangian contains the eleven coupling
C(%nStantSas, ay, ats, ary, Bs, ¥s, Vv, Os, by, Ors,

d 87y. The subscripts indicate the symmetry of the cou-
ling: S stands for scalaly for vector, andT for isovector,
while the symbols refer to the additional distinctionsre-
fers to four-fermion terms§ to derivative couplings, ang
and vy to third- and fourth-order terms, respectively.

The model thus contains one or two free parameters more
than analogous RMF-FR models. This happens because most
RMF-FR models make the tacit assumption that the masses
in the w andp field can be frozen at the experimental values
the really existing mesons. The assumption is justified to

and their corresponding gradient couplingg- - -)d”(- - -).
These constitute a complete set of second-order scalar a
vector currents whose coupling strengths in the correspong;
ing Lagrangian we wish to test for naturalness. All of them
except for the derivative term for isovector-scalar coupling
have appeared in previous RMF-PC wdrk0-12,21,22,
however, the isovector-scalar interactions-rheson ex-
change has been found not to improve the description of
nuclear ground-state observables in RMF-FR wé&K]. We
therefore ask whether the insensitivity of the RMF-FR cal-
culations to the absence or presence of delta-meson exchan

is due to cancellations, other missing terms, unnaturainess, e extent that the actual fits to observables are not overly
a symmetry, and we will investigate this same insensitivity in i

. : sensitive to these masses. In the RMF-PC model, however,
our RMF-PC work here. That is, no RMF-PC calculation has

. . . : experience will still have to show whether the derivative-
yet included simultaneously the four-fermion coupling plusterm coefficients can be eliminated in a similar way, so that
corresponding derivative for the isovector-scalar field, SGor the present work all parameters are regarded z;s adjust-
we will include it here. We postpone tensor couplingsabe
and third- and/or fourth- order mixed couplings

[(4) by, ) (yy*y), for examplg to our next work, . _ —
which will use the results from this work as the starting B. The mean-field and no-sea approximations

point. For that work it is important to note that whereas Similar to the RMF-FR approach, we consider the
tensor couplings have had little effect in RMF-FR calcula-RMF-PC approach as an effective Lagrangian for nuclear
tions [5] they do have noticable effects in recent RMF-PCmean-field calculations at the Hartree level without anti-
calculations[12]. Finally, the pseudoscalar channet fne-  nucleon statesno-sea approximation\We thus obtain the
son is not included here because it does not contribute at thenean-field approximation
Hartree level.

In this work we begin with a set of higher-order terms that EOTF b E WQEQOTF b, 3)
are common to existing RMF-FR and RMF-PC studies. £,>0
These are the familiar nonlinear terms in the scalar coupling,
(Z¢)3 and (Zw)4’ as well as a nonlinear vector term Where thew, are occupation weights to be determined by

- - . iri . IIE, thep, are the Dirac four-spinor
“)]? as used in some RMF-FR24] and Paling, see Sec NI
E&Eﬂg%([f& r{r/%]dels Finally, of course, the elef:gtzro]magneticSmgle'part'de wave functions with upper and lower compo-
: ' ' nentsg and f, and thee, are the corresponding single-

field and the free Lagrangian of the nucleon field must be ~ : ) ; L ;
included particle energies. The “no-sea”approximation is embodied

Combining all of these terms, we obtain the Lagrangian of" the_restrlct_lon of the summation to positive single-particle
. : energies. All interactions in the Lagrangian, E2), are then
the point-coupling model as X . .
expressed in terms of the corresponding local densities,

CZEfree+£4f+£hot+£der+£em, (2)

B isoscalar-scalar: ps(r)= >, ¢, (1) d.(r), (4)
Lhe=y(iy, " —m)y, .
£4= = as ) ()~ & a7, ) (57" ) isoscalar-vector: pu(r)=2 $u(r)yodulr),

— 3 ardYrd) - (Y1) — 3 ar (YY) - (PTyHp),

isovector-scalar: st(F)=2 Za(F) T3¢Q(F),

£ =3 Bs()*= % v * = § WLy Gy i) 1
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- — . . 2 2
isovector-vector: pTV(I‘)=Z D o(1)T3v0h(T), avzg_‘;, 5V=g_Z, 8
“ ma) w
proton:  pc(r) =3[ pu(r) —pry(r)]. 92 2
ars=—, O1s= 4, C)
mys ms

C. Equations of motion

Following the mean-field approximation, the single- 2

9 9
particle wave functiong, remain as the relevant degrees of “TV_F’ 5TV_E- (10)
freedom. Standard variational techniqi2S] with respect to b

&, yield the coupled equations of motion for the $eéit, .

We are interested here in the stationary solution for which ] ]
the field equations read In order to describe deformed and non-closed-shell nuclei

reasonably, pairing has to be involved. Since in this paper
nuclei close to the drip lines will not be considered, the pair-

©

E. Pairing and the center-of-mass correction

Yo€aPa=| 1y d+ M+ Vst Vyyo+Vrstat ViyTsyo ing model can be kept simple. For reasons of better compari-
son, we use precisely the same pairing recipe as in former
1—173 RMF-FR calculationg27]. Thus we employ BCS pairing
+VCT7’0 P with a 6 force and use a smooth cutoff given by a Fermi
function in the single-particle energies. The occupation am-
Vs=agpst ﬂspé+ Vsngr S5sAps, plitudesu, v, are determined by the gap equation
Vy=aypy+ ypy+ Svlhpy, 02:} L N Cov2+ut=1, (11
207 (e, ep)? AL o

Vis= argprst St prs,
where the Fermi energyg is to be adjusted such that the

Vry=atyprv+ O1vApTy, correct particle number is obtained. The single-particle gaps
A, are state dependent and are determined as
VC:eA), AAO:_4’7Tpc, (5)
— 3 * (o " "
with the local densities as given in E@). A f A% o)A balx), (12
whereA(i) is the pair potential. The occupation weights for
the densitie$4) are then given byv,=v?. The pairing pre-
The coupling between two nucleon densities is mediate@cription introduces the pairing strength parameiéssand

by a finite-range propagator in the RMF-FR approach. Wey for protons and neutrons, respectively. These are fitted to
can expand the propagator into a zero-range coupling plugxperimental data simultaneously with the coupling con-
gradient corrections in a standard manner. This gives, fogtants appearing in the Lagrangian. The contribution to the
example, in the equation of motion for the iSOSC&'ar-SC&'aénergy of the nucleus emerging from pairing will be denoted

D. Relation to Walecka-type RMF models

coupling[see Eq(2.10b of Ref.[5]], by Epai-
2 ) ) A further important ingredient is the center-of-mass cor-
8o P~ gUpS+ gfprS‘ (6) rection_and it was _showf28] that the actual recipe_fo_r that
—A+m? m? m? correction has an influence not only on the predictions for
- < light nuclei, but also on the predictions for exotic nuclei.
ag S

Thus we use here the microscopic estimate
The identification with the corresponding parameters of the

D2
RMF-PC approach is obvious by inspection of E@R))— Ecm:@, (13)
(11). The reverse relations read 2M
m2=asl/ds, g°>=—a?ds. 7 whereP is the total momentum anMl is the total mass of

the nucleus. Again, we take care that the same recipe is used
Let us have a preview of what parameters to expect. Takingn the RMF-FR forces to which we compare.
for example, the set NL-Z26] from the RMF-FR approach
we haveg,=10.1369 andn,=493.150 MeV. This yields F. Observables
an expected ag=—4.2252x10 % MeV"2 and &g The determination of the coupling constants included in
=—1.7374x10"° MeV~“ We will see in Sec. Il G how the model is based upon a fit to experimental data, which
the optimized RMF-PC parametrizations compare with thatrequires precise numerical comparison of calculated and ex-
We shall also consider the similar relations belonging to theperimentally observed gquantities. For mean-field models, the
w, 8, andp meson, which are most natural quantities are bulk observables such as the bind-
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ing energy and the moments of the various density distribu¢j, is the spherical Bessel functiprhe diffraction radiudR
tions, while other properties such as the single-particle spegs determined such that the first rogg of the actual form
trum cannot be related to experiment in a similarly preciseactor coincides with the first root of the box form factor.
way. In the following we discuss the calculation of the ob-This is the case whengR is equal to the first rook, of
servables used in our present study. j1(X). We obtain thus the diffraction radius as

1. Binding energy R _ Xo 4.4934095 20
The binding energy for a nucleus with protons andN amsT g, qQo 20
neutrons is computed according to

4. Surface thickness

Ep=2My* NMy—EL = Epair— Eem: (14) The height of the first extremum fay>0 of the charge

form factor can be used to obtain information about the char-
acteristic surface thickness of the charge distribution. It
can be calculated by comparing the charge form factor to a
distribution that is obtained by folding a boxlike distribution
pEOX(r) over a Gaussiapg(r) with width o. The form factor
Fpg(d) of the resulting density distribution is simply the

The most crucial part is the ener@y from the mean-field
Lagrangian. It is computed in standard manner Bs
=3 v2e,— [d®(D|L|®) with |®) being the BCS ground-
state. It can be rewritten in terms of the local densities as

E.=2, viea—f d3x[ 2 aspl+ 2 aypi+ arepis product of the single form factors,
1
+3arvptyt EBspd+ Tysdt Iyvpl+ 3 0spshps FR(a)=FE(Q)F () =FR(a) exp( - Eazqz) .
+30upvApyt 3 SreprsAprst 3 StvpTvApTY (21)
+3pcVel- (159  The parameteo is determined in such a way that the origi-
_ nal charge form factor anE[fé”(q) have the same value at
2. Charge radius the first extremung, of Fi(q). For R, the diffraction ra-
The starting point for all observables of the charge distri-dius as obtained in the preceding section is used. The final
bution is the charge form factor defined by result for the surface thickness reads
R,
. 1 Fpox e
Fer(@)= f d*x expliq - X) per(X). (16) =12 |n('°°x—e (22)
Qe Fch(Qe)

It is a function of the momentum transfge=|q| for spheri- [Qe iS given by X./Ryms: Xe being thex value at the first
cally symmetric charge distributions. Note that the chargextremum ofj(x)/x].

density is to be obtained from folding the proton and neutron

densities with the intrinsic chargand currentdistributions G. Comments on the numerical solution

of protons and neutrons. We use here the same recipes as i .

previously[19,5]. The various bulk properties of the charge  The coupled mean-field equations of the RMF-PC and

distributions are deduced in the standard marj@sf. we ~ RMF-FR models are solved on a grid in coordinate space
calculate the rms charge radius then as employing derivatives as matrix multiplications in Fourier

space. The solution that minimizes the energy of the system

3 d2F (q) is obtained with thedamped gradient iteratiomethod[30]
rmsz \/_ lim et/ (17)  that has been successfully applied in the solution of such
Fen(0)g_o dg? problems.
3. Diffraction radius I1l. DETERMINATION OF COUPLING CONSTANTS
The diffraction radius is obtained by comparison with a A. The task

square-well distribution having total chargs The RMF-PC model as presented above contains 11 cou-

pling constants that have to be determined in a fit to experi-

-1
. Q(4_7TR3) , I<R mental data. We do this by laast-squares fiti.e., minimi-
Pbox= 3 (18)  zation of
0, r>R. (O}h—Opr‘)Z
2: ——
Its form factor is given by X i (AO))? ' @3
FR (q)=30Q j1(9R) (19 \Where O™ are the experimental data ai@" denote the
bo gR calculated valuesA O; are the assumed errors of the observ-
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ables, which empirically express the demands on the accu- [ .

racy of the model for the respective observables. They are in : 104 %

some casesfor example, for binding energigsarger than a6l ¥z - r

the experimental errors. The observables chosen for the ad o0l ° S E: os = - -

justment of the coupling constants are discussed below, se¢ e P = SoEERT =
Sec. Il C. The global minimum of? should correspond to el E T Y B
the optimal set of coupling constants. Finding the global _1485:3' Ea < - —
minimum is, however, a nontrivial and nonstraightforward ClE 80

task. To have a good chance to find the optimal set of cou- 500
pling constants, two different fitting algorithms have been 400} -

combined. 40001
3500 [* - -

<

o
no. of walkers
[SErS

B. The fitting algorithms 222500 | £%

The fitting of the model parameters is done with a com-  _ el
bination of a stochastic method and a direct method. The /15,7 ., - 1000
direct method is th@evington curved stef81], which had P s oty = stx
been successfully applied in many previous fits within the G R 0
RMF model [32] and in the Skyrme-Hartree-Fock model 0 00 ration . % 0 00 ration .
[19,20Q. It consists of the_.evenberg-Marquardinethod[33]
with an additional trial step in parameter space. The neigh- FIG. 1. The upper two figures show the positions of the walkers
borhood of the supposed minimum is modeled by a paraboli# Parameter space i anday direction. For each walker, a dot is
expansion. Close to the minimum this expansion method igrzlnted. The figure below (_)n the _Ieft_ side ShOWS the correspond_lng
used, while further away the method switches to slidingX values. The other two figures indicate the size of the population
down along the gradient in parameter space. This method h&2d the external temperature.
proved to be the most effective one for the given problem
and has been used for the final minimization. around 1600 iterationsThis information is fed back into the
This fitting algorithm searches in each step for a loweralgorithm, so that at later times the chance for new walkers
value of y2. Thus it will walk towards the minimum, which to be born increases again: after additonal 900 iterations new
is closest to the initial configuration in parameter space. Thisyalkers are born.
often lets it get stuck in a local minimum. One way out is 0 Using that population of walker@wo runs with a maxi-
start the algorithm several times with different initial con- mum number Of four Wa'kers were perforn)e'dcreases the
figurations. In this work, a different way out has been chosehance to find the desired minimum gf. Simulated anneal-
using Simulated AnnealingSA) [33]. This Monte Carlo al- g js however, quite slow compared to the other routine and
gorithm does random steps in parameter space. For eagileqs considerably more iterations than the direct methods.
step, depending on an externally controlled temperature, the 1 g6 the best from both classes of fitting algorithms, the
new configuration is accepted or refused. At high temperagy q\ying mixed fitting procedure was used to determine the
tures, steps that increagé have a nonzero probability to be oo hjing constants: Two populations of parameter vectors
accepted. The more the system is cooled ddwe used \ere propagated through parameter space with simulated an-
exponential cooling the smaller the probabilities get for ac- neajing, using the smaller set of observables denoted below
ceptance of a configuration that would increage If the  aq ser 1. After the system had been cooled down sufficiently,
cooling is tuned to be sufficiently slow, the routine can €s-neqe parameter vectors were used as starting points for the

cape shallow minima and settle down in the global mini-geyington curved steprocedure using the larger set 2 of
mum. Additionally, inspired by the techniques Dfffusion  jpservables.

Monte Carlo[34], a population of solution vectofsvalkers
has been used. Each walker, if unsuccessful in termg’pf )
has a finite probability to die, while on the other hand suc- TABLE I. Observables and chosen errdr® for set 1 of nuclei
cessful walkers can give birth to additional walkers that start'Sed for the SA fitting procedur&g denotes the binding energy,
their random walk from that parent configuration. ms the rms charge radius ane, and e the proton and neutron
Figure 1 demonstrates a sample rithe set of observ- spin-orbit splittings of one selected level.#A indicates an observ-
ables for this run is set 1 as shown bejohe maximum able contributing to the totat?. For the experimental values see
number of walkers was set to four. The two upper figures

Ref.[10].

show_the population walking through parameter space in the Observable Error 160 88g, 2080}
directions ag (left) and ay, (right). The strong correlations

among these two parameters are nicely illustrated in corre- Eg 0.15% + + +
lated movements of the walkers. The figures below show the reh 0.2% + + +
x? for the different configurations as well as the external €l 5.0% + + +
temperature and the number of walkers. Due to failures of en 5.0% + + +

some walkers, the population decreageslkers die after
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TABLE II. Observables and chosen erra&x© for set 2 of nuclei used for the Bevington fitting proceduRgy, denotes the diffraction
radius,o the surface thickness, arg, andA, are the proton and neutron pairing gaps+A—) indicates an observable contributifigot
contributing to the totaly?. For the experimental values see R&6].

Observable  Error %0 %°Ca “®Ca 5Ni %Ni 8gr %0zr 100gn 1125, 120G 124gp 1329 136y 1ld44gm, 202pp 208pp 2l4pp

Eg 02% + + + + + + + + + + + + + + - + +
Raitr 0.5% +  + + -+ + 4+ - + + + - - - - + -
T 15% + + + - - - + - - - - - - - - + -
ren 05% - + + + + + + -  + - 4+ - - - + o+ o+
A, 005 MeV — — — — — - — - - - - -4+ 4+ = =
A, 005 MeV - - — — — - — — 4+ 4 4+ = = = = -
C. The choice of observables three corresponding derivative terms and three higher-order

Two different sets of observables were employed due td€MS. The set of nine coupling constants emerging from the
the different aim of the minimization procedures. To explorefitting procedure with the lowest value gf is called PC-F1
the parameter space for minima with SA, set 1 was usecnd is shown in Table II.
which is identical to the set of observables used for the de- Note that these coupling constants have correlated and
termination of the coupling constants in REEQ] (see Table uncorrelated errorg31]. The uncorrelated error of a param-
| for the observables and weight§ince the idea here was to eter is the allowed variation of that isolated paramétdrile
locate basins around minima, that set of observables proveall other parameters are kept fiseavhich enhanceg? just
to be sufficient to indicate these areas. by the value 1. The parameters have thus to be given with
For the final minimization, however, the larger setsee  enough digits so that the last digit stays below the uncorre-
Table 1) was used. The pairing strengths were adjusted sitated error. This rule is obeyed in the above table. The cor-
multaneously, which is important in order to obtain a set ofrelated error of a parameter is its allowed change, i.e., within
coupling constants with predictive power comparable to,2 1 if all the other parameters are readjusted. Correlated
other mean-field approaches. This set of observables haghg uncorrelated error would be the same if a parameter is

successfully been applied before to fit the parametrizationompletely independent from the others. In practice, the cor-
NL-Z2 for the RMF model[26] (the only exception being (o|ateqd errors are much larger than the uncorrelated ones
Fhat the pairing strengths for NL'ZZ us_ed for the CalcuIat'onsmdicating strong correlations among the parameters. The
Ipr}ritgael g;%i‘?r:evevoélé[g%rf adjusted with a larger set of emE\rgest correlations appear betweeg qnd ay whose sum
appens to provide the largest contribution to the nuclear
shell model potential. The correlated error &, is quite
large and shows that the parameter might as well have a
Our first RMF-PC calculation is that corresponding to positive or zero value. It is quite loosely determined by the
RMF-FR approaches, which treat exchange ofdhev, and  fitting strategy. There is an analogous situation for Skryme
p mesons. Thus we have three linear terms together witforces, where some of the isovector terms possess only

D. The force PC-F1

TABLE lIl. The set PC-F1 of coupling constants resulting from the final fitting procedure. In columns
four and five the uncorrelated and correlated errors are shown as originating from the fitting procedure. Note
that the values for the pairing strengths have been rounded according to the error marigins. T{fe jctal
per point, andy? per degree of freedom apg,=99.1, x5=2.11, andy§=2.75.

Coupling constant Value Dimension Uncorr. er(eb) Corr. error(%)
as —3.8357% 10 * MeV 2 2.6x10°3 8.3x10°*
Bs 7.68567 10 * MeV 5 2.1x10°? 4.7x10°
Ys —2.90443%« 10 Y7 MeV 8 7.2x10°? 1.4x 10
Ss —4.1853< 10 1° MeV 4 2.0x10°! 2.3x 10
ay 2.59333% 10 4 MeV 2 3.7x10°3 1.2x10°
W —3.879x10 18 MeV 8 4.4x10°* 5.4x 10t
Sy —1.1921x10° %0 MeV 4 6.0x10°! 7.6x 10"
ary 3.4677x10°° MeV 2 1.2x10° 1.1x 10
Sty —4.2x10" 1 MeV 4 6.0x 10 1.7x10°
Vp -321 MeV fn? 1.3x10° 2.0x10°
Vy —308 MeV fn? 1.2x10° 2.3x10°

044308-7



BURVENICH, MADLAND, MARUHN, AND REINHARD

PHYSICAL REVIEW C 65 044308

0.3 ¢ 03
_ 04 = ) 04 R
) ’ A4
S 00 gl& -------------- ;e g g ﬁ---ﬁ---ﬂ---ﬂ---&--ﬂ 0.0 [------- ]
&= O
0.4 O 04
0.8 N ¢ -0.8
o L L L 8 & = == g o g2 g 9 Q g
o BB F S)rL) i?U .°,'§Z ‘%Z & 8N S AAGG ‘,ﬁx &
| aQ ™ = — - - - «© =
2.0 20
15 " 15
L0 1.0
ey m]
R o0s o ¢ n v ? 05 r
é_gg e AR S . oo ) 2‘2 """""""" FIG. 2. Errors(in %) for the
10 o o 10 observables binding energy, dif-
15 = 15 fraction radius, surface thickness,
2.0 20 and rms charge radius for PC-F1
S £ IS S 2 B 8N & & & (filed diamond$ and NL-Z2
5] 3 < n °° * = 8 8 (open squargsare seen on the
4 4 left. The right panels show the ab-
z = ; solute mean errors for the corre-
—_1 ¢ . » sponding observables, where the
R P S Do eeee e o oo P TR dashed lines indicate the chosen
53 1 . 1 relative errorsAO in the fitting
2 O ¢ 2 procedure.
3 ¢ -3
-4 4
o =l =] =3 ‘N-'
© g& 8[.) ﬁL) g
2 2
—_ 1 O [m] 1 g
9L v
_:E U S o E [ R R 9 """ E’ """ LR AN SRR (Ul S
o
g O T 3
&
2 g O 2
3 3
< < = = = H =] =] £ =] =
Z Z N N n wn A
A R A S A CHI S Sl Sl o

loosely determined parameters. The pairing strengths, on theithin about 0.5%. The surface thickness comes last. But
other hand, have small discrepancy between correlated andind that the usage of relative errors punishes this quantity,
uncorrelated error. This shows that the fit to pairing is basiwhich has a comparatively low value of 1 fm. Most actual
cally independent from the fit of the mean-field properties. errors stay within these error bands. There are a few excep-
tions. The energies of%Ca and Ni isotopes seem to have
trouble and the diffraction radius of*’Sn is a bit large.
The totaly? for PC-F1 is 99.1. Additionally, we consider Comparing the average errors between PC-F1 and NL-Z2,
we see slightly different trends. NL-Z2 is superior with re-

the x* per point,x 2.11,whe(e the number. of pomt; s the spect to binding energies and surface thicknesses. It does,
number of observables taken into account in the fitting pro

oo . ~~however, perform less well concerning radii. The togalof
cedure, which is 47 in our case. Thé per degree of free NL-Z2 is 132.7, which is 34% larger than that for PC-F1.

2 _
dom, xg=2.75, where the degrees of freedom are C"JIICljl""tecfhe overall performance of the point-coupling thus seems to

as the difference between data pom_ts and the number .Of fret?e a bit better, although the difference is not too dramatic.
parameters, also measures the quality of the force obtained In

the fitting procedure. These numbers need a bit more eluci-
dation. To that end, we inspect thdisjagreement for the
various fit observables in detail. This is done in Fig. 2, which  The model LagrangiafR) contains only a bare minimum
demonstrates the performance of the new RMF-PC forcef isovector terms. This was chosen in close analogy to the
PC-F1 and compares it to the RMF-FR force NL-Z2. OneRMF-FR. There are many more terms conceivable already at
sees that the binding energy is described most precisely witthe given order of couplings. The problem is that the given
an average accuracy of 0.25%. The radii are reproducedbervables all gather around the valley of stability and con-

E. Quality of the fit

F. Exploring modifications in the isovector channel
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TABLE IV. The set PC-F2 of coupling constants emerging from the fitting procedure including the linear
isovector-scalar term. In columns four and five the uncorrelated and correlated errors are shown as originat-
ing from the fitting procedure. The total?, x? per point, andy? per degree of freedom al)efot= 98.5,

Xa=2.10, andy5=2.80.

Coupling constant Value Dimension Uncorr. ertés) Corr. error(%)
as —3.835821x 104 MeV 2 1.9x10°3 8.1x10 !
Bs 7.6835< 10 ! MeV 5 1.6x10°? 4.7x10°
Ys —2.91148 10"V MeV ™8 5.2x1072 1.3x 10
8s —4.158<1071° MeV~* 2.6x1071 1.8x 10
ay 2.59351x 104 MeV ™2 2.9x10°3 1.3x10°
YW —3.8234x 10718 MeV 8 3.4x10°! 5.2x 10
Sy —1.218<10° 10 MeV 4 1.7x10° 6.9x 10
ars 2.34x10°8 MeV 2 1.6x 10 2.4x10°
ary 3.241x10°° MeV 2 1.1x10° 1.6X 10
Stv —6.0x10 1 MeV 4 2.5x 10 3.7x 1%
Vp -321 MeV fn? 8.7x10°* 1.6x10°
Vn —308 MeV fn? 8.1x1071 1.3x10°

tain only little isovector information. Isovector extensions of isovector strength has a well-defined value, but the detailed

the model are thus not so well fixed by the data. Nonethelessplitting between the two terms is not yet well determined.

it is worth exploring those extensions in order to check that . o .

one is not missing too much in the above standard model. 2. Nonlinearities in the isovector-vector terms
Another obvious extension of the model is the lowest-

1. Isovector-scalar terms order nonlinear term in the isovector-vector density,

We now test the linear isovector-scalar term with coupling
constantrrg[see Eqs(4) and(5)]. Table IV shows the set of
ten optimized coupling constants, which we call PC-F2. The
correlated errors of the isovector coupling constants ar&he ten optimized coupling constants, which we call PC-F3,
much larger than in PC-Fisee Table Il. The x? for the  are shown in Table V. The new coupling constast, is
extended set given was reduced by only 0.6% compared toharacterized by large uncorrelated and correlated errors, and
PC-F1. Thus we find that this extension is not well deter-in addition the uncertainties i+, have increased compared
mined by the present set of data. It is interesting to note thato the force PC-F1. This hints that the experimental ob-
the sum ofats+ ey approximately corresponds to the value servables are unable to pin down the magnitudeqf The
of ary in the force PC-F1. This may indicate that the overalloverall quality is y>=98.8, which is only 0.3% better

hot 1 e o 2
ﬁTv:_Z?’Tv[(llfTVﬂl//)'('/fT?’Ml/f)] - (24

TABLE V. The set PC-F3 of coupling constants emerging from the fitting procedure including the
nonlinear term in the isovector-vector density. In columns four and five the uncorrelated and correlated errors
are shown as originating from the fitting procedure. The tgfaly? per point, andy? per degree of freedom
are xj,=98.8, x5=2.10, andy5=2.82.

Coupling constant Value Dimension Uncorr. ertéb) Corr. error(%)
as —3.835796<10°4 MeV ™2 2551072 9.9x107*
Bs 7.6853<10 1! MeV 5 2.0x10 2 5.3x 10°
Ys —2.9062< 107 MeV 8 6.9x10 2 1.7x 10
Ss —4.1797x 10710 MeV *4 2.1x10°? 2.4x 10
ay 2.59335% 10 4 MeV 2 3.5x10°3 1.7x10°
W —3.8731x 10718 MeV 8 4.4x10°1 5.9x 10"
Sy —1.1997x 10710 MeV 4 6.9x10°* 8.0x 10"
ary 3.549<10°° MeV~?2 1.2x10° 7.6x10°
Yv —5.4x10° Y Mev 8 5.7x 10 1.8x 107
Sty —4.0x10° % MeV ™4 1.1x 107 4.0x 107
Vp -321 MeV fn? 1.4x10° 1.7x10°
Vy —308 MeV fn? 1.2x10° 1.3x10°
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TABLE VI. The set PC-F4 of 11 coupling constants emerging from the fitting procedure including four
isovector coupling constants. In columns four and five the uncorrelated and correlated errors are shown as
originating from the fitting procedure. The totgf, x? per point, andy? per degree of freedom apetzm
=98.2, x5=2.09, andy=2.89.

Coupling constant Value Dimension Uncorr. er(emb) Corr. error(%)
as —3.83564< 10 * MeV 2 2.9x10°3 1.0x10°
Bs 7.6806<10 1 MeV 5 2.0x10°? 5.7x10°
Ys —2.9105<10° Y MeV ™8 6.9x10°2 1.9x 10
Ss —4.16057% 10 1© MeV~* 2.1x10°? 2.3x 10
ay 2.593614 104 MeV 2 3.5x10°3 1.5x10°
YW —3.844x10°18 MeV 8 4.4x10°1 6.8x 10"
Sy —1.2154x 10 1° MeV 4 6.8x10° 1 7.6x 10"
ars —5.92x10°6 MeV 2 7.8x10° 6.8x10°
S1s —1.12x10 %0 MeV 4 4.1x 10" 8.4x 1%
ary 3.937x10 ° MeV 2 1.0x10° 8.9x 10
Stv 3.0x10 %2 MeV 4 1.5x 10° 3.1x10
Vp -321 MeV fn? 1.4x10° 1.5x10°
Vn —308 MeV fn? 1.2x10° 1.4x10°

than that of PC-F1. This indicates that the extension by dive Lagrangian is not well determined by the data included
nonlinear isovector term is undetermined at the present stage the fit.
of the fits.

3. An extended set with 11 coupling constants G. Comparison with Walecka-type models

As a last test of possible extensions in the isovector chan- In Sec. Il D, we estimated expected coupling constants
nel we performed a fit including the four isovector couplingfrom a gradient expansion of the finite ranges in the
constantsatg, 51s,atyv,dry. The emerging set of 11 cou- RMF-FR model. We compare now the values for the various
pling constants is shown in Table VI and is called PC-F4.coupling constants with values that we can expect from the
This set has a small negative coupling constant in front of thdinite-range RMF model, choosing the interaction NL-Z2 for
four-fermion isovector-scalar term leading to a small attrac-our comparisons. Table VII shows the expected valigas
tion. The sum arstary leads to a value of=3.3  cept for the isovector-scalar channel, since the RMF-FR
X10°° MeV ™2, which is quite close to the value obtained model with NL-Z2 has naS meson together with the values
for aqy in the set PC-F1. This observation underlines thetaken from NL-Z2.
statement we have already made concerning the force PC-F2, Good agreement can be seen for the coupling constants
where we saw a similar behavior of the extended isovectomainly responsible for the nuclear potential, namely,and
strength. Due to the large correlated errors, all isovector couay,, which are very similar in each of the RMF-PC forces
pling constants exceptr, are compatible with positive or and are somewhat lower than the corresponding RMF-FR
zero values, showing that the isovector channel of this effecvalues.

TABLE VII. Coupling constants from the RMF-FR interaction NL-Z2 and corresponding values from the
RMF-PC interactions PC-F1 to PC-F4.

Coupling constant Value from NL-Z2 PC-F1 PC-F2 PC-F3 PC-F4
as (MeV) 2 —4.225<10°% —3.836x10° % —3.836x10° %4 -—3.836x10 % —3.836x10°*
55 (Mev)™* —1.737x10°° —4.185<10 ¥ —4.158<10 ° —4.180<10 1° —4.161x10 1°
ay (MeV) 2 2.739< 104 2.593x10° 4 2594104 2593104  2.594x 1074
Sy (Mev) ™4 4502<1071° —1.192<1071° —1.218<10 %® —1.120x1071° —1.215¢10 *©
ay (MeV) 2 3.566x 10 ° 3.468<10°°  3.241x10°°  3.549<10°°  3.937x10°°
Sry (Mev) 4 6.125¢10° ' —420x10 % -6.0x1071! —40x10¥1  3.0x10°1?
ars (MeV) 2 2.34x10°8 —5.92x10©
515 (MeV) # —1.12x10°1°
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TABLE VIII. Bulk properties of nuclear matter for the forces under consideration.

PC-F1 PC-LA NL-Z2 NL3 SLy6 SkI3
po (fm3) 0.151 0.148 0.151 0.148 0.159 0.158
E/A (MeV) -16.17 —16.126 ~16.07 —16.24 —15.90 —15.96
m*/m 0.61 0.575 0.583 0.595 0.690 0.577
K (MeV) 270 264 172 272 230 258
agm (MeV) 37.8 37.194 39.0 37.4 32.0 34.8

By looking at the results for the corresponding couplingtwo sets NL3[36] as well as NL-Z226] from the family of
constantsds and 6y, we realize that there are dramatic dis- RMF-FR models. NL-Z2 had been fitted with precisely the
crepancies. In none of the interactions does the siga,of same set of data as PC-F1. PC-LA employed a smaller set of
agree with the RMF-FR value. Only in PC-F4 do all signs ofdata as discussed above. NL3 was fitted to binding energies,
the four isovector coupling constants comply with the expeccharge radii, and neutron rms radii of the nudé®, 4%4&Ca,
tations from the estimate&gs. (19) and (10)]. One has to  58&\jj 907y 116124135  anq 208pp Additionally, nuclear
keep in mind, however, that these coupling constants, due t@atter properties entered into the fE/A=—16 MeV,p,
their large correlated errors, are not incompatible with zero_g 153 173 K=250 MeV. a...=33 MeV). NL-Z2
The values foraty agree well with the expected value from ’ NP
NL-Z2, reflecting about the same asymmetry energy that al
RMP-FR forces deliver(see the discussion about nuclear, .oy give us a well-balanced picture of the quality of

ma(t)tﬁre F?rrwz\?/etr)tele;u?p}[?iiljzlltzgmgesglfftf?rgn t mapping of non _modern relativistic mean-field forces. In some cases we com-
are also with state-of-the-art Skryme forces, namely, the

linearities spoils the comparison. To countercheck, we pert . o
formed one more fit including the 11 coupling constants, bufcorces SLy6[37] and Ski3[20]. SLy6 aims at describing

setting yy to zero in order to address the different signs Ofextremely neutron-rich systems up to neutron stars together
@y and &y, which appear in all sets of coupling constants With normal nuclear matter and nuclei. SkI3 has a spin-orbit

studied. The resulting set of coupling constants still has th&0rce that in its isovector properties is analogous to the non-
same signs, which shows that the negative valué,d not relativistic limit of the RMF_-FR_ model al_wd was fitted using
related to having nonlinearities in the isoscalar-vector chanthe strategy of Ref.20], which is much similar to the strat-
nel of the effective Lagrangian. We thus are led to the con€dy and input data used here.

clusion that the gradient terms in the RMF-PC model em-

body obviously more than just a compensation for the finite B. Nuclear matter

range. This may indicate that the present RMF-PC Lagrang- Table VIII shows the bulk properties of symmetric
ian is incomplete.

Altogether, all isovector extensions turned out to improVenuclear matter as predicted by the different forces. Like the

the fits only very little. Even a detailed analysis of the trendsOther RMF approaches, PC-F1 has a rather low saturation

along isotopic chains did not show any significant improve-density of aroungp,=0.15 fm :whne.the.Skyrme forces
ment. Thus, we did not consider additional forces in ourProduce the largepo=0.16 fm = (which is close to the
present study because they do not appear to be well detéfPmmonly accepted valug3g]). Additionally, all RMF
mined with existing observables. Additionally, thé per forces favor a Iarge.r blrldlng energy at the saturation point.
degree of freedom is larger for the extended sets compared fd1ese are systematic differences between the two approaches
PC-F1, showing that at the present stage the extended forcagparent for both types of RMF as compared to SHF. This
do not incorporate real physical improvements. This mayindicates that these trends are not due to a finite range in
change for larger sets of observables, which include dediRMF-FR but must have other reasons related to relativistic
cated isovector data. The large uncertainties in the isovectdinematics.

coupling constants in the three extended models show that The incompressibilitk of PC-F1 is comparable to that of
there is indeed sufficient freedom to accommodate new isPC-LA and NL3, whereas NL-Z2 produces a much smaller

nd NL3 are two state-of-the-art mean-field forces that have
een tested in a variety of applications. So this selection of

ovector observables. value. The larger value of 270 MeV is much closer to the
commonly accepted 240 MeV while the value of NL-Z2 is
IV. RESULTS far too small. It is interesting to note that the large valu&of
) was aimed at in the fit of NL3 while it just emerged from the
A. Comparisons fits for PC-F1 and PC-LA. It is also to be remarked that NL3

We now check the predictive power of the newly fitted achieves this larg& at the price of producing a somewhat
force PC-F1. We do this by looking at the performance for atoo small surface thickness. PC-F1, on the other hand, de-
variety of test cases and observables, which were not inscribes surface thickness as well as NL<&2e Fig. 2 and
cluded in the fit. We compare the model both to experimentahas a much large than NL-Z2. We see here a clear differ-
data and to three other relativistic mean-field approachegnce of the point coupling versus finite range. This is cor-
namely, the older point-coupling model PC-[LA0], and the  roborated by the fact that the SHF models are also point-
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coupling models and do also tend to predict incompressibilipendence is parametrized differently in point-coupling and
ties in the range of 250 MeV. finite-range models.

The symmetry energgs,m, has the same large value in all
RMF models while SHF results stay closer to the commonly C. Neutron matter

accepted values~<30 MeV). This is a systematic discrep-  Neutron matter is a most critical probe for the isovector
ancy between RMF and SHF. It is most probably connectedeatures. It has been exploited extensively in the adjustment
to the rather rigid parametrization of the isovector channel irof the SHF force$37]. There are, of course, no direct mea-
RMF. surements. But neutron matter is well accessible to micro-
The effective mass is consistently small in all RMF mod-scopic many-body theory such that there exist several reli-
els while SHF can cover a broad range of values up t@ble calculations of its properties. Figure 4 shows the
m*/m=1 and even a bit larger, see, e[@9]. The value of equation of state for the four RMF forces and SLy6. The

m*/m in the RMF is directly related to the strength of the crosses correspond to data frga]. We confine the com-

vector and scalar fields which. in turn. determines the Spinparison to low densities, which are relevant for nuclear struc-

. - . . . ture physics. It is obvious that all RMF models show a simi-
orbit splitting. There is thus little freedom to tamper with the lar trend, which, however, differs significantly from the

effective mass in RMF unless one alternative means to t“nedata" and from SLy6. This is a systematic discrepancy.

the spin-orbit forcgas, e.g., a tensor coupling which, again, is related to the rather sparse parametrization
Figure 3 shows several features of symmetric nucleaj, the isovector channel.

matter as a function of densipy. The results are about simi-
lar for NL-Z2, NL3, and PC-F1 while PC-LA shows dra-
matic deviations, particularly fop>0.17 fm 3. The effec-
tive potentialV=Vs—V,, and the effective mass* play a 1. Isotopic and isotonic chains

crucial role to determine the spectra of finite nuclei. Thus we In Figs. 5 and 6, we show the systematics of relative
have to expect somewhat unusual spectral features for P@rrors on binding energies along isotopic and isotonic chains
LA. At second glance, we see also slight differences betweefor the two RMF-PC forces and the RMF-FR forces dis-
the other parametrizations coming up slowly at larger densieussed here. All nuclei in these figures are computed as being
ties. The equation of state/A is less rigid for PC-FXcor-  spherical. Note that the scales are different for each figure.
related with a slightly smaller potentisland less suppressed As a guideline we indicate by horizontal dotted lines the
m*). This is a consequence of the fact that the density deaverage error of the models for this observable.

D. Binding energies
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— , We also see that NL-Z2 performs best in most cases. Some
..... %ﬂ slopes and kinks are also apparent in these plots for all

14 o NL-Z2 e forces. They indicate yet unresolved isotopic and isotonic
————— NL3 ; ; ; i
—— SLy6 7 trends. Another interesting observation can be made: the

12 } % —— Ref.[40] (1981) 2 structure of the curves is, with differences in detail, similar
7 for NL-Z2 and PC-F1 in almost all caséthis is most strik-
ing for the Sn isotopgslt shows that the fitting stratedye.,
the choice of nuclei and observablesas direct conse-
quences for the trends of the errors.
A well-visible feature manifests itself in the form of kinks
of the errors that appear at magic shell closures. These kinks
indicate that the jump in separation energies at the shell clo-
sure is too largétypically by about 1-2 MeV. This, in turn,
means that the magic shell gap is generally a bit too large.
Some SHF forces solve this problem by using effective mass
m*/m=1. This option does not exist in RMF as we have
seen above. But there are other mechanisms active around
0.12 shell closures. The strength and form of the pairing can have
an influence on the kinki.e., shell gap Moreover, ground-
state correlations will also act to reduce the shell gap of the
FIG. 4. Energy per particle versus neutron density for four RMFmere mean-field description. This is an open point for future
forces and the Skyrme force SLy6. The crosses mark data from Re§tudies.
[40]. Figure 6 shows the relative errors of binding along iso-
tonic chains, assuming again all spherical nuclei. Again,
Larger errors show up sometimes for light nuclei in thethere are larger fluctuations for the small nucki 20 and
isotopic chains, see Fig. 5. The ca®€a is notoriously dif- N=28, while the heavier nucleiN=50 and N=82, stay
ficult for PC-F1 and light Ni isotopes are a problem for all nicely within the error bounds. But the heavidst=126
RMF models. The underbinding 8PCa may be excused by chain grows again out of bounds at its upper end. Isotonic
a missing Wigner enerd1]. But *®Ni is already overbound chains are a sensitive test of the balance between the Cou-
and a Wigner energy would worsen the situation. The realomb field and the isovector channel of the effective La-
sons for the deviation have to be searched somewhere elggrangian. All effective forces discussed here produce larger
probably it is again an isovector mismatch. errors compared to the experimental isotonic chains, which
The heavier systems perform much better. They are deshows the need for further investigations of this property of
scribed within an error of about 0.4%, with few exceptions.the RMF models.

E/A [MeV]
o]

6E [%]

FIG. 5. Deviation(in %) of

02 A/ AN A the calculated energies from the

A 7/ S .
04| ‘é/ """""""" Q\‘\";;B" experimental values in spherical
= \, . . . .
06 , . L & calculations of isotopic chains.
16 20 2 28 2 Note that the scales are different

for each figure. The dotted lines
indicate the accuracy that can be
demanded from the models. The
experimental errors are smaller
than the size of the symbols used
in the figure.
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the calculated energies from the
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calculations of isotonic chains.
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2. Superheavy elements tice the kinks visible for thez=98 andZ=100 isotopes at
The upper panel of Fig. 7 shows the relative errors inn€utron numbeN=152, which hint at a smalldeformed

binding energies for the heaviest even-even nuclei witishell closure there.
known experimental massésompare with a similar figure Al forces predict strong prolate ground-state deforma-
in Ref. [42]). The lower panel delivers as complementingtions for these superheavy nucleBA~0.26-0.31). The

information the ground-state deformations expressed itrends look similar for all forces. The largest deformations
terms of the dimensionless quadrupole mome@ntThe cal- appear aN=148 a_n.d/oer 150. But there are systematic
culations were performed by allowing axially symmetric de-differences in detail: NL-Z2 has always larger ground-state

formation assuming reflection-symmetric shapes. The agre&leformations than the other forces, while PC-F1, PC-LA,
ment is remarkable. All forcewith some exceptions for the and NL3 show much similar deformations. The difference is

PC-LA mode) produce only small deviations that stay well Probably related to the surface energy: NL-Z2 has a lower
within the given error band. This is a gratifying surprise Surface energy than NL3. The symbol with error bars at
because we are here 40-50 mass units above the larggdfN=102/152 in Fig. 7 corresponds to the measured
nucleus included in the fit. It is to be noted that most SHFIround-state deformation 6P"No [43,44. This deformation
forces do not perform so well and have a general tendency #§ Overestimated by all forces, PC-LA and NL3 stay within
underbinding for superheavy nuclg#2]. There are also the. error pars, though. The error ranges from 6% to 13%,
(small bu} systematic differences between the RMF modelsWhich is still acceptable.

NL3 generally overbinds a little while NL-Z2 and PC-F1
tend to underbind. All forces show yet unresolved isovector
trends. The increase of the binding energy with increasing
neutron number is too small. These trends were already ap- Figure 8 shows the fission barrier 6f%Pu computed in
parent for known nuclefsee the discussion abgv&he rea- axial symmetry allowing for reflection asymmetric shapes
sons for all these trends are not yet understood. Finally, nofor a discussion of the numerical methods, see R45]).

E. Fission barrier of 2*%Pu
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FIG. 7. Deviation(in %) of the calculated energies from the experimental valupper figur¢ and ground-state deformatiofiswer
figure) in axially deformed and reflection symmetric calculations. The errors for the binding energies are smaller than the size of the symbols
used in this figure. The symbol with error bars indicates the measured ground-state deformation, together with its unce®¥Moy, of
[43,44].

The experimental values for ground-state deformation, barevern. This can be related to the surface properties of the
rier, and isomer energy are taken from Rd#6—49. All different forces. Forces with a high surface energy place the
forces predict the same ground-state deformation, in agreésomeric state higher up than forces with lower surface en-
ment with the experimental value, and they all show theergy. All forces, however, underestimate the experimental
typical double humped structure of the fission barrier. Alsovalue for the energy difference of the ground-state and the
the first barrier(which corresponds to reflection-symmetric isomeric state, which is 2.3 MeV. Vibrational zero-point en-
shapesis very similar but too large as compared to experi-ergies may still help in case of NL3. But the minima for the
ment. That may be a defect of symmetry restrictions. Triaxiabther three forces are so deep that those small corrections
degrees of freedom can decrease the calculated barrier Iepuld not bridge the gap.
about 2 MeV[45], which would bring the curves closer to
the experimental value. Moreover, thget to be calculated F. Observables of the density
zero-point energy corrections will also lower the barriers
somewhaf50].

Larger differences develop towards the second minimum In this section we take a look at the observables that are
and further out(where also the asymmetric shapes takerelated to the nuclear charge distribution, the rms and diffrac-

1. Charge radius, diffraction radius, and surface thickness
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tion radii, as well as the surface thickngsse Sec. Il F In
Fig. 9 we show results for Sn and Pb isotopes. The experi-
mental data are taken from Ref89,51,53.

The rms and diffraction radii are described generally
good. The PC-LA model yields large diffraction radii in Sn
isotopes. NL-Z2 produces a bit too large radii in Pb isotopes.
But note that all forces reproduce the trends of the rms radii
in lead with its pronounced kink at the magdic=126. It is a
known feature that RMF-FR models perform very well in
that respec{53,20 and we see here that the point-coupling
models maintain this desirable feature. Larger discrepancies
are observed for the surface thicknéksvest panel in Fig.

9). All forces have a tendency to underestimate the surface
thickness. This is a common feature of the RMF models.
. . . , , NL-Z2 and PC-F1 included that observable in the fit and it is
00 02 04 06 08 10 12 14 L6 then no surprise that they yield a more acceptable agreement
with data. The two other forces produce too small a surface

FIG. 8. Fission barrier of*%Pu in axially and reflection asym- thickness. The deviation ranges up to 10%. This is outside
metric calculations with the forces as indicated. The experimentalhe range that could be explained by possible ground-state
values for the ground-state deformation, the barrier height, and theorrelation effects.
energy of the second minimum are indicated, respectively, with an
arrow, a symbol with error bars, and three lines indicating the value 2. Density profiles and form factors
and its errors. The data are taken from R§46—49.

Figure 10 shows the baryon densitia;(F) in Eq. (4) for
the nuclei*Ca and*%sn. They all display the typical pat-
tern of a boxlike distribution with a smoothened surface and
oscillations on tod29]. The oscillations are an unavoidable

FIG. 9. Surface thicknesses
(lower figure, diffraction radii
(middle), and rms charge radii
(upper figure for Sn (left) and Pb
(right) isotopes emerging from
spherical calculations. Note that
the radii have been divided by
A2 to eliminate the liquid drop
trend with mass number. The
experimental data are from
[29,51,53. Their errors are
smaller than the symbols used in
¢ this figure.

50 60 70 80 90 100 110 120 90 100 110 120 130 140 150 160 170 180
neutron number neutron number
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consequence of shell structur€’Sn shows, in addition, the following maximum, while the two RMF-FR forces overes-
suppression of central density due to the repulsive CoulomBmate it somewhat. This indicates that the momentum ex-
force. All forces produce about the same bulk properties, i.epansion of the RMF-PC model appears to work well in that
the overall extension, central density, and surface profile. Butespect up to momentum transfge3.0 fm™*.
there are sizeable differences for the amplitude of the shell
oscillations. RMF-FR produces more than factor of 2 larger
oscillations than RMF-PQand even that is still a bit larger
than the experimentally observed oscillatiprihe reason is Figure 12 shows the relative errors for a selection of spin-
that the finite-range folding is more forgiving as far as theseorbit splittings in 10, 132Sn, and?°%Ph. We have taken care
oscillations are concerned. It seems that the final nucledo choose splittings that can be deduced reliably from spectra
potential is determined by the data to have in all cases abowf neighboring odd nucl€i56]. All RMF forces, except for
the same profile with not too large oscillations. The ampli-the PC-LA force, perform very well. It was shown in a
tude of oscillations in the density carries fully through to theformer study that RMF-FR forces perform much better in
potentials in case of point coupling. Thus the model needs tthat respect than many Skyrme for¢@6|. We see now that
curb down the initial amplitude. In finite-range models, how-the well-fitted point-coupling model PC-F1 does as well as
ever, the densities are smoothened by folding with the mesotihe RMF-FR model. The ability to describe the spin-orbit
propagator, which gives more leeway for oscillations of theforce correctly is thus a feature of the relativistic approach.
density. Comparison with experimental oscillations could
help to decide between finite-range and zero-range models 0
But just this observable of shell oscillations is heavily modi-
fied by all sorts of ground-state correlatidigl|. These have
first to be fully understood before drawing conclusions on
the range of the effective Lagrangian. 10 ¢
For the nucleus®Ca, for which experimental data are
available, we compare the charge form factor with the pre-
dictions of our models. The experimental data are taken from ;42 |
Ref. [55], where the charge density is parametrized by a =
Fourier-Bessel series with the coefficients determined di- =
rectly from the data. This density is then Fourier transformed — |
to obtain the form factor. We show it in Fig. 11, together with 10
the RMF predictions, in the momentum range covered by the
original analysis. Of special importance are the first root and

G. Spin-orbit splittings

the height of the first maximum for finite momentum trans- 10*F
fer, as they correspond to the diffraction radius and the sur- Ry

i i 48 P
face thickness. We see that all forces overestimate somewha Ca b
the first root of the form factor, leading to a slightly too small 5 , . , . . U .
diffraction radius. They reproduce well the following mini- 10 00 05 10 15 20 25 30 35
mum, which leads to an accurate prediction of the surface q [fm'l]

thickness. Note, however, that both observables were part of

the fitting procedure for the forces PC-F1 and NL-Z2. Going  FIG. 11. Form factor of the charge density of the nucléi@a

to higher momentum transfer, we see that all forces reprofor the four RMF forces under consideration. The experimental
duce the second zero of the form factor and that the tw@lata, which are taken from RéB5], are plotted in the momentum-
RMF-PC forces agree nicely with experiment concerning theransfer range=0.35-3.55 fm 1, as in the original analysis.
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The force PC-LA falls clearly below the others except for variations on the mean fieldbere the spin-orbit potential
160. The poor performance is related to the very weak fieldsare rather small.
at large densities, see Fig. 3 and related discussion. The ex-
ample demonstrates that one needs a sufficiently large set of H. Magic numbers for superheavy nuclei

observables to pin down the nuclear mean field sufficiently The prediction of new maaic shell closures in sunerheav
well. The argument is corroborated by Fig. 13, where we b g P y

have a quick glance at the effective spin-orbit otentialsmements varies amongst the mean-field mod8lg. For
q g P P rotons one has a competition betwe2nr 114, 120, and

¥ (2my=Vs=Vy) . 226 F t findé=172 and 184. The RMF-FR
The three well-performing models have all very similar - FOr neutrons oneé finds= an . Ihe )

potentials whereas the PC-LA model has a 10% strongef'®d€ls agree in predicting a doubly magit120,,,. Pre-
spin-orbit potential, which is shifted a little bit to larger radii. CIS€ly the same result emerges from the PC-F1 model. This

This difference yields the observed mismatch in the spindoubly magic nucleus is thus a common feature of relativis-
orbit splittings. In turn, this figure shows that the allowed tic models. For the density profile 6f2120,7,, we observe a
central depression in accordance with other mean-field ap-

proacheg26,58,59.

In deformed calculations done in the way as described in
Ref.[42], we obtain, again in agreement with other relativ-
istic models, deformed shell closureszat 104 for the pro-
tons andN =162 for the neutrons. The nuclei in that region
of the nuclear chart have deformations wjgh~0.2—0.3.
Thus also in the deformed case, these different types of RMF
models agree well concerning their predictions of shell struc-
ture for superheavy elements.

0 2 4 6 8 10 12

6 NLZ2 ¢ 208
Pb

V. QCD SCALES AND CHIRAL SYMMETRY

QCD is widely believed to be the underlying theory of the
strong interaction. However, a direct description of nuclear
structure properties in terms of timatural degrees of free-
dom of that theory, quarks and gluons, has proven elusive.
The problem is that at sufficiently low energy, thhysical
degrees of freedom of nuclei are nucleons énttanucleay
pions. Nevertheless, QCD can be mapped onto the latter Hil-
bert space and the resulting effective field theory is capable,

0.5 in principle, of providing a dynamical framework for nuclear
0 2 4 . [?m] 8 1012 structure calculations. This framework is usually called chi-
ral perturbation theoryPT) [17].
FIG. 13. The neutron spin-orbit potenti@lpper figurg¢ and ef- Two organizing principles govern thePT: (1) (broken

fective masglower figure in 2°%Pb for the forces under discussion. chiral symmetry(which is manifest in QCDand(2) an ex-
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nuclear momentum or pion mass andis a generic QCD f2A2 (27)
large-mass scale<1 GeV), which in a loose sense indi-
cates the transition region between quark-gluon degrees of
freedom and nucleon-pion degrees of freedom. Chiral symand the chiral constraint E426) remains unchanged.

metry is a direct consequence of ttepproximatée conser- Our test of naturalness does not care whether a particular
vation of axial vector currents. This symmetry provides ac,,0rc,, coefficient has the value 0.5 or 2.0 or some other
crucial constraint in the construction of interaction terms invalue near 1. Changingefining) the model by adding terms
the nuclear many-body Lagrangian: a general term has thwould changeall of the c,,,orc,,, but the same test of
structure~ (Q/A)N and N = 0 is mandated. Higher-order naturalness still applies. Adding new terms would simply
constructions in perturbation theor§foops will involve change a specific coefficient by an amouit (or less. That
higher powers of Q/A) that will, consequently, be smaller. is, testing naturalness is largely and uniquely independent of
This mapping fromnatural to effectivedegrees of freedom the details, such as adding pions or performing more sophis-
results in an infinite series of interaction terms whose coefticated nuclear calculations, provided the framework is given

pansion in powers of @/A), whereQ is a general intra- {@b
L~—=Ccjy

ficients are unknown and must be determined. by Egs. (25—(27) while the physics is introduced via the
In 1990, Weinberd17] introducedyPT into nuclear phys- measured observables of nuclei.
ics and showed that Lagrangians witbroken chiral sym- The early RMF-PC parametrization [df0] was tested for

metry predict the suppression bfbody forces. He accom- naturalness ifi21]. The nine empirically fitted coupling con-
plished this by constructing the most general possible chirastants as such span 13 orders of magnitigieoring dimen-
Lagrangian involving pions and low-energy nucleons as arsions. Scaling them in accordance with the QCD-based La-
infinite series of allowed derivative and contact interactiongrangian of{60] using Eq.(27), and taking into account the
terms and then using QCD ener@ipas$ scales and dimen- role of chiral symmetry in weakening-body forceq17,61]
sional power counting to categorize the terms of the seriessing Eq.(26), yields that six of the nine scaled coupling
according to Q/A)N. He choseA equal to thep-meson  constants arenatural. Later work [22] refitting the model
mass of 770 MeV. This led to a systematic suppression ofising the same Lagrangian ansatz as before resulted in two
N-body forces, that is, two-nucleon forces are stronger thaadditional solutions where seven of the nine coupling con-
three-nucleon forces, which are stronger than four-nucleostants are natural. These results provide evidenceQkdd
forces, and so forth. Thus, the infinite series of interactiorscaling and chiral symmetry apply to finite nucteid, there-

terms is not physically infinite. fore, may assist in the selection of physically admissable
Following Manohar and Geord60] we can scale a ge- nuclear structure interactions. However, one also concludes
neric Lagrangian term of the physical series as that the Nikolaus-Hoch-Madland Lagrangi@bO] may re-
quire more and/or different interaction terms, and this con-
—, I = Im . o
gy || 7| (- m ", ) clusion has led to our present study. It is important to note
L~=Cmp m T A fo A%, (25  that the work summarized above did not test QCD, or chiral
w ’T symmetry, but ratheeffective Lagrangiansvhose construc-

R tion is constrainedby QCD and chiral symmetry.
wherey and 7 are nucleon and pion fields, respectively, A more extended RMF-PC adjustment was performed
andm, are the pion decay constants, 92.5 MeV, and pionater[12]. This work also found naturalness and dimensional
mass, 139.6 MeV, respectivelyA=770 MeV is the power counting to be extremely useful concepts in construct-
p-meson mass as discussed above, afftini,) signifies ing realistic chiral effective Lagrangian expansions. Their
either a derivative or a power of the pion mass. Dirac matriexpansions are based upon the relativistic mean-field meson
ces and isospin operatofse uset here rather thar%) have models of quantum hadrodynami@@HD) [3,7]. Thus, each

been ignored. Chiral symmetry demarié4] term in their Lagrangian corresponds to the leading-order
expansion of that appearing in an appropr[aieQHD-based
A=Il+n-2=0, (26) meson-nucleon Lagrangian. Accordingly, their RMF-PC La-

grangian contains nucleon densities of isoscalar-scalar,
such that the series contains omlgsitivepowers of 1A. If -vector, -tensor, isovector-vector, and -tensor character, with
the theory is naturdl60,62, the Lagrangian should lead to each tensor term appearing only as a product with its corre-
dimensionless coefficients,,, of order unity. Thus, all in- sponding vector term. No isovector-scalar terms appear due
formation on scales ultimately resides in thg,,. If they are  to their absence in the various QHD approaches. In their
natural, QCD scaling works. fourth-order truncation, the best-fit s€t6 coupling con-

An explicit pionic degree of freedom is absent in the stants, unconstrained seardontained 14 natural and 2 un-
RMF. It has been tacitly eliminated in favor of an effective natural coupling constants, whereas the worst-fi{sétcou-
Hartree theory, where the pion effects contribute to the varipling constants, constrained searghthe one set containing
ous effective couplings. But various many-body effects areall natural coupling constants. Note, however, that the cou-
encompassed in the model parameters as well and may mapkng constants of the derivative terms were constrained by
the underlying chiral structure. Nonetheless, it is worthwhilethe appropriate meson masses, as described in Sec. Il D.
to classify the actual RMF-PC model according to natural-Nevertheless, their study concludes thaturalness and di-
ness. Without pions, Eq25) reduces to mensional power counting are compatible with and implied
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TABLE 1X. QCD-scaled coupling constants for four relativistic point-coupling interactions.

Coupling constant cin(PC-F1) cin(PC-F2) cin(PC-F3) cin(PC-F4) Order inA

as —1.641 —1.641 —1.641 —1.641 A°
Bs 1.443 1.443 1.443 1.442 ATY
Ys —2.695 —2.701 —2.696 —2.700 A2
8s —1.061 —1.054 —1.060 —1.055 A2
ay 1.109 1.109 1.109 1.109 A°
W —0.360 —-0.355 —0.359 —-0.357 A2
Sy —0.302 —0.309 —0.304 —0.308 A2
ars 0.040 —0.101 A°
S1s —1.134 A2
ary 0.593 0.555 0.607 0.674 A°
Yrv —80.470 A2
Sty —0.422 —-0.612 —0.404 0.026 A2
Numberc, 9 10 10 11

Number natural 9 9 9 9

[max/|min| 8.92 67.5 264.7 103.8

X 2.75 2.80 2.82 2.89

by the measured ground-state properties of finite nuclei  is 8.92, thus satisfying our definition of a natural set of QCD-
We now turn to these same considerations for the sets afcaled coupling constants. So far as we are aware, this is the
coupling constants determined in our present study that aré@'st complete set of natural QCD-scaled coupling constants
tabulated in Sec. lIl. Applying Eq$26) and(27) to the sets  With order up toA ~2, that has been obtained with uncon-
of dimensioned coupling constants in Tables IlI-VI, and us-Strained least-squares parameter adjustment to measured
ing Weinberg's17] choice of thep-meson masé770 MeV) ~ ground-state observables.
for the QCD large-mass scale, we obtain the correspond-
ing sets of QCD-scaled coupling constants listed in Table IX, B. Interaction PC-F2
together with the additional information of expansion order The form of the PC-F2 interaction is identical to that of
in A, number of coupling constants, number of natural COUPC-F1 except for the addition of the isovector-scalar term in
pling constants amongst them, and ratio of maximum angq. (2). The most likely corresponding isovector-scalar me-
minimum scaled coupling constants in the set. The table alsggn js thes meson with a mass of 983 MeV and a relatively
shows thex” per degree of freedom. The sets are orderedyeak coupling constang;~ 2, according to Machleidi63).
according to increasing values of this quantity. For ourthys, its contribution is expected to be small. Nevertheless,
present work we require a more quantitative definition of ahe QCD-scaled coupling constant should be of order 1 if
natural set of coupling constants than the various interpretas.meson exchange has a physical role in the strong interac-
tions of the usual phrase “of order one,” which have beention occurring in finite nuclei in the ground-state. We will
applied[7,9,21,27: a set of QCD-scaled coupling constants retyr to this topic in our discussion of the PC-F4 interaction.
is natural if their absolute values are distributed about thenjine of the ten QCD-scaled coupling constants of this inter-

value landthe ratio of the maximum value to the minimum 5ction are natural whereas that of the isovector-scalar term,
value isless than 10We now discuss each set of QCD- . —234x10°6 MeV~2 is very small and unnatural, as

scaled coupling constants appearing in Table IX. one would expect from the above discussion. This small
value is responsible for the relatively large ratio of 67.5 lead-
A. Interaction PC-F1 ing to the conclusion that this QCD-scaled set of coupling

The PC-F1 interaction is the most physically realistic in-constants is not natural. This deviation from naturalness

teraction that we have found. It reproduces the measureﬁ]ere a”“_'”‘:Of the foltl)owmg ;[WO J_orcescan d have setveral th
observables used to determine its coupling constants mo'rg.asor'ls.t. ere maé/ er‘;" yef undlscclwer? sfmm.e ry or the
exactly than any of our other interactions, as can be seen W'n'm'za lon procedure has found only a local minimum.

inspection of thexﬁf values in Table IX. Its predictive power _
is also better than that of the other interactions as has been C. Interaction PC-F3

shown in Sec. IV. The nine QCD-scaled coupling constants The form of the PC-F3 interaction is also identical to that
are all natural and the ratio of the maximum to the minimumof PC-F1 except for the addition of the quartic isovector-
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vector term, Eq(24). This was done in hopes of producing a actually has reached the quality of competing approaches. In
sign change in either of the two other isovector-vector termssome of these comparisons we discovered the influence of
aTy Or 81y, SO that their ratio would be positive, thus satis- finite versus zero range in the models. For example, the den-
fying expectations based upon the first-order expansion ddity profiles of the RMF-PC model are generally smoother
the propagator for the@ meson, as discussed in Sec. Il D. than those in RMF-FR model. Like the SHF model, the
The sign change, however, did not occur. Again, nine of thepoint-coupling model naturally leads to a rather high incom-
ten QCD-scaled coupling constants of this interaction argressibility in nuclear mattelK =260 MeV. And like the
natural whereas that of the quartic isovector-vector termestablished RMF-FR forces, point coupling forces exhibit
yrv=—5.4x10"1" MeV~8 is very large and unnatural. some unresolved isovector trends and a rather high symme-
This large value is responsible for the very large ratio oftry energy in nuclear matter. The model performs well in
264.7, again leading to the conclusion that this QCD-scaledeformed calculations. Also, the spin-orbit splittings are re-

set of coupling constants is not natural. produced in a manner comparable to the finite-range models,
showing that the relativistic framework is important here
D. Interaction PC-F4 rather than the finite range.

. S . . : Attempts to extend the effective Lagrangians utilizing ad-
The PC-F4 interaction is built from the PC-F1 Ir'teractlonditional isovector terms proved to be elusive: the additional

by the addition of isovector-scalar terms that are quadrat'%oupling constants can only be loosely determined with the

and the derivative of quadratic in the corresponding density, . . )
This continues the attempt with the PC-F2 interaction to adEEXIStIng set of experimental observables. Thus the problem

: . remains the same as in RMF-FR and SHF approaches,
dress the role qf thé meson by including bqth terms Fhat are namely, that the experimental observables are very highly
necessary to simulate the propagator. While only nine of th

11 QCD-scaled coupling constants are natural ang;orrelated with respect to the values of the coupling con-
o ! Stants. This means that highly accurate experimental observ-
|max/|min| is a factor of~10 worse than that of the PC-F1 gnty P

bles corresponding to large isospin are required to deter-

Interaction, It Is very interesting to observe that the signs oﬁline the isovector properties of the model more completely.
the two new terms are identical and thus they correctly simu- . . .
We have been guided by naturalness in the extraction of

late the expansion of the propagator for thaneson. Not our sets of coupling constants and have found that those of

only that, but the corresponding signs for theneson are,
for the first time in the present study, also identical. Thus, th he set -PC—Fllare all natural. In fact, so far as We are aware,
C-F1 is the first complete set of natural coupling constants

expansions of the propagators for the two isovector meso . ; . .
appearing in the PC-F4 interaction have the correct relativ at have been determined in an unconstrained search. This

signs. Nevertheless, the maximum ratio is yet large, 103.g€sult, together with the predictability of PC-F1, demon-
leading again to the conclusion that this QCD-scaled set o$trates that QCD scaling and chiral symmetry apply to finite
coupling constants is not natural. We believe, however, thatuclei. It appears, from the sets PC-F2 and PC-F4, that either
the PC-F4 interaction should be studied further. d-meson exchange is not natural and is not required for a
We conclude this section by noting that the PC-F1 inter-viable dgscription of the strong interaction in finite nuclei, or
action is one that leads to a physically admissable Lagrang%lhere exists an as yet undiscovered symmetry. We think,
ian from the simultaneous points of view @ predictability =~ nowever, that the PC-F4 interaction requires further study
and (b) naturalness. We have therefore demonstrated thdficluding possible extensions beyond 11 coupling constants

QCD scaling and chiral symmetry apply to finite nuclei. (es_pecially following new measurements on .high-isospin nu-
clei) because the extracted isovector coupling constants all

have the right signs to satisfy expectations from the expan-
sions of their propagators.

We have investigated the properties and applicability of a The point-coupling model discussed here may be viewed
relativistic point-coupling model for nuclear structure calcu-as amissing linkbetween the established SHF and RMF-FR
lations. To answer the question whether the point-couplingnodels. With it, one can separately investigate the influence
model can reach a predictive power comparable to otheof finite range versus zero range and relativistic framework
state-of-the-art mean-field approaches, like the RMF-FR andersus nonrelativistic framework. This is important because,
SHF models, we have carefully performeg@aminimization  as we have learned, there are differences in the predictions
combining two different search algorithms, and have beerfrom the two model classes, which cannot easily be mapped
guided by expectations of naturalness in physically realistionto the separate features of the two classes. We believe that
extracted coupling constants. The resulting set of couplinduture work should include more detailed studies of the is-
constants is the PC-F1 model in Table Ill. It has been used tovector components of the relativistic effective Lagrangians
test the predictive power of the RMF-PC model in a varietyand, perhaps more importantly, the influence of the Fock
of applications ranging from saturated symmetric nucleaterms via the Fierz relations. Systematic studies of relativis-
and neutron matter and binding energies in isotopic and isaic Hartree-Fock calculations using the RMF-PC model will
tonic chains to form-factor- and shell-structure-related ob-provide further linkages, on the one hand, with relativistic
servablesrms charge radii, diffraction radii, surface thick- Hartree calculations using the RMF-FR model, and on the
nesses, and spin-orbit splittingand the fission barrier of other hand, with nonrelativistic Hartree-Fock calculations us-
249y, The net result is that the RMF-PC model with PC-Fling SHF. Work in these directions is in progress.

VI. CONCLUSIONS
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