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Surface incompressibility from semiclassical relativistic mean field calculations
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By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic
mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility
Ka has been self-consistently computed. The validity of the simplest expansion, which contains volume,
volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent rd§ylts of
for some currently used nonlineafw parameter sets. A numerical estimate of higher-order contributions to the
leptodermous expansion, namely, the curvature and surface-symmetry terms, is made.
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The curvature of the nuclear matter equation of state, i.ethe parameters is well establish¢6,10,11. Rather, the
the nuclear matter incompressibiliy,, is a key quantity in  nuclear matter incompressibility has to be determined from
nuclear physics because it is related to many properties afffective forces that reproduce, in a microscopic calculation,
nuclei (such as radii, masses, and giant resonantesvy- the experimental values of the GMR excitation energy in
ion collisions, neutron stars, and supernova collapses. Orfgeavy nuclei6].
important source of information oK., is provided by the It is also possible to fitk, calculated microscopically
study of the isoscalar giant monopole resonafGdR)  within the scaling model for a given effective interaction to
(breathing modgin finite nuclei. In the nonrelativistic frame, the leptodermous expansion Eg). This has been done, for
theoretical microscopic calculations based on the randomexample, in the nonrelativistic frame using Skyrme forces
phase approximatiofil] and approximations to it such as the [12]. In this case the coefficients entering Eg) can be
scaling method2-4] or constrained calculation8—5] us-  expressed through infinite and semi-infinite nuclear matter
ing Skyrme[3] and Gogny[6] effective forces lead to a properties calculated with the Hartree-Fock approximation
nuclear matter incompressibility coefficiedt, of 215+15  for each considered interaction. In particular, the volume-
MeV [6,7]. A similar analysis carried out within the relativ- symmetry K,s) and Coulomb K.,,) coefficients depend
istic mean field(RMF) theory with nonlineaio-w effective  on some parameters of the liquid droplet mofiE3] com-
Lagrangians gives a value K, slightly higher, that is, 250— puted only using nuclear matter propert[@3. The surface
270 MeV[8]. coefficientKg;, also derived ir{2], can be written afl4]

The nuclear matter incompressibilly,, is not a directly
measurable quantity; what is measured is, actually, the en- )
ergyEy, of the GMR of finite nuclei. It is convenient to write st:477ro[

54 . ..
22+ K_Poeoc(Po) a(po) +9pua(po) |-

this energy in terms of the incompressibili§), for a finite 3
nucleus of mass numbéy as
5 The surface tensionr is calculated in symmetric semi-
E - i°Ka infinite nuclear matter and is defined as
M=\ < o0 ()
M(r<)
+ oo
where(r?) is the rms matter radius arM the nucleon mass. o(pe)= fﬁx {H(p)—ex(pc)pidz, (4)

The finite nucleus incompressibilg, can be parametrized
by means of a leptodermous expansj@hthat is similar to

the liquid drop mass formula wherep is the density profile whose central value is given by

pc=p(—=>), H is the energy density, angl, is the energy
Ka= Ko+ KA B K, |24+ KeouZ2A 43+ ..., (2)  per particle in nuclear matter at densjiy. In Eq. (3) dots
indicate the derivatives with respect to the central density
wherel = (N—2Z)/A is the neutron excess. Equatit®) sug- and all the quantities are evaluated at a central density equal
gests that it is possible to fit the coefficients of the expansioito the nuclear matter saturation densiy, which is related
to the experimental data in a model independent way. Al{o the radius constamt, through 4nr8p0/3=1.
though some effort along these lines has been made in the The key quantity entering Eq3) is &, which is the sec-
past[9], the fact that a fit of the parameters of EE) to  ond derivative ofo(p.) with respect top, calculated aip,
experimental data does not lead to a unique determination cf p,. The determination ofr also requires knowledge of
how the density profilep is modified during compression
[15]. In the study of the breathing mode a scaling transfor-
*Present address: Institute of Physics, Sachivalaya Margmnation of the densities is assumed. Actually, the coefficients
Bhubaneswar-751 005, India. entering the parametrizatiof2) can be derived under this
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hypothesis[2]. The scaling transformation means that the The key point of our semiclassical approach is that the
density changes according to the transformatiesi\r and  local Fermi momentunkz and the effective mass* scale
consequently as[20,2]]

AN =Np(Nr). ) ken=Ake(AT), M (r)=AM* (A1), ®)

Thus, in the scaling approach L . .
wherem* is still a function of\. With the help of Eq(8),

420 (p,) 1 [d2e the nuclear part of the energy and the scalar density includ-
(po) = —fc =—|—= . (6) ing #2 corrections, which are functionals kf andm*, scale
de Po 9p0 d)\ A=1 as
To obtain the surface incompressibility coefficigfg; for a E(=NEND),  pa(r)=NZpg(Ar). (9)

given effective interaction, it is necessary, first of all, to cal-
culate the scaled surface tensiap by replacing the densi-
ties by the scaled densities given by E5).in Eq. (4). In the
nonrelativistic frame this can be easily done within the
Hartree-Fock scheme using zero-range Skyrme forces and
simple analytical expression fer, is obtained12,14). drz)
The self-consistent calculation &f; within the RMF ap- (AZ
proximation using the~ model is more involved due to the ‘TA:J [NHA(N2) —e.(Npo)\°p(N2)] X
problem of the change in the meson fields induced by the
scaled nuclear densitigd6]. To our knowledge, only ap-
proximate calculations oKy have been developed in the :J d(Az)
past for the relativistic model. This is the case of the relativ-
istic Thomas-Fermi(RTF) calculations of Refs.[16,17]
where a local density approximation of the meson fields was + =\
used. Another approach is related with the study of nuclei 2
under an external pressure. Starting from a schematic energy 3 4
density functional and adding a density-dependent constraint n % n % — A2, (\3 }
: : . =(Npo)p ( (10)
that simulates the pressure, analytical expressions for the sur- 3N 4\
face tensiono as a function of the bulk density, can be
derived for a wide class of compression modes, in particula
for the scaling mod¢15]. This way one obtains the follow-
ing formula for¢ in the scaling mode

Again € andp are functions of the collective coordinake
because of their dependencefaii. Thus the scaled surface
tsnsion can be written §20-22

2

37 2 1 2 mv 2
NEENG,Vyp— Sh| (VV)) 5V

m3
<V¢A)Z+F¢i

'Where all densities and fields depend on the variabte
With the help of the Klein-Gordon equations for the scaled
vector and scalar fields derived from Ed.0), the scaled

surface tension can be recast as
19K«

a(po)=~1g7 P (@)

1 1
_ , _ o\ = d(xz)[xfé + =N\%g,V,p+ =\%0sd, P
wherea is the surface diffuseness parameter of a symmetric > f No2n SvTAT o BeTaTs

Fermi density. This pocket formula has been employed to bs® co
estimateK; in the RMF model for several nonlinearo 22 2 (\3pp)p!. (12)
parameter setll9]. A symmetric Fermi function that repro- 6N 4N

duces in the best way the density profile obtained from a

Hartree calculation of semi-infinite nuclear matter has beesing the explicit RTF or RETF expressions for the nuclear

used in Ref[19] to determine thex parameter of Eq(7). part of the energy and for the scalar den§9—23 together
Very recently, the scaling method applied to the RMFwith the Klein-Gordon equations oY, , ¢, , dV,/Jd\, and

theory in the RTF and relativistic extended Thomas-Fermig¢, /N derived from Eq.(10), after some algebra the first

(RETH approaches has been used to self-consistently obtaiénd second derivatives of the scaled surface tensjowith

the excitation energy of the GMR of finite nuclg20,21.  respect to\ atA=1 read(see Refs[20,21] for more details

Our aim in the present paper is, first to obtain the surface

coefficientKs; self-consistently in the RTF and RETF ap- 4 .

proaches developed in R¢R0,21 for some linear and non- —A|X=l:20+f

linear o-w parameter sets. On the other hand, we want to dA

check whether the leptodermous expansion of the finite 1 1 1

nucleus incompressibility Eq2) can reproduce the corre- — =b¢®— —co*+ Zg,pV+mAV2Z =0 (12

sponding fully self-consistent value obtained in the RETF 2 4 2

approacH 21] with some selected nonlinear-» parameter

sets. and

* 1
dzl E—psm* — m§¢2_ Egsps(f’

—o0
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TABLE I. Values of & (in MeV fm*) andKg; (in MeV) calculated with the RTF and RETF approaches
and the scaling method for several parameter sets. The nuclear matter incompressibility nkoduinis
MeV) and the—Kg;/K., ratio are also listed.

RTF RETF
K. b K —Kgi/Ke & Ke —Kgf/Ke
NL-Z2 172.2 —113.9 —85.2 0.49 —131.2 —182.5 1.06
NL1 2111 —170.3 —170.6 0.81 —171.8 —225.4 1.07
NL3 271.5 —224.2 —310.4 1.14 —209.3 —313.7 1.16
NL-RA1 285.3 —235.5 —335.4 1.18 —216.6 —326.7 1.15
NL-SH 355.0 —292.7 —469.8 1.32 —258.2 —429.6 1.21
NL2 399.2 —295.9 —521.0 1.31 —279.0 —482.8 1.21
HS 546.8 —521.5 —996.7 1.82 —424.9 —804.2 1.47
L1 625.6 —422.6 —1024.6 1.64 —320.6 —787.1 1.26
a2, oo Ieby for semi-infinite nuclear matter and fin_ite nuclei with respect
—2|x=1=—60+f dz{ bp>— (b + 2m§¢)x A=1 to the RMF Hartree approach, and its dependence on the
dx ‘°° effective interaction, was investigated in Ref&2,24,25
oV by analyzing the results obtained with many different param-
+3m2p2+ 2m§v(9—)\* —3m2V? eter sets. It was noticed that the RTF results fluctuate around
A=1 the corresponding Hartree results. Due to this fact there
exist parametrizations for which the RTF approximation
+m ops (m*+g ai’* A1) _KwPJ' (13) agrees by chance with the Hartree result. The behavior of
m* 2 RETF results in comparison with the Hartree solutions was

) o 3 o ) found to be less dependent on the parameters of the force
The first derivative ofe..(A°po) at A=1 is just three times than in the RTF case, and it turned out that on the average the

the pressure calculated at saturation density and thus it ValyeTE results are in better agreement with the Hartree ones
ishes, while the second derivative giv€sp [21,26. On the [22,24,25.

other hand, since in the self-consistent RTF and RETF cal- The first contribution toK in Eq. (3) comes from the

culations the inputs for computing EqeL2) and (13) are surface tension, let us callitZ;. The deviation found in the

guantities obtained from the solution of the variational equay, ., fth o nsion from RTE calculations with re-
tions associated with the surface tensid®) at A=1, the alue of the surface tension fro calculations with re

so-called “sigma dot” theorem is rigorously fulfillef27]. spect to the corresponding RMF Hartree calculations is

8 strongly correlated with the value of the effective mass in
The method, therefore, allows and consequentli{; to be nuclear mattemz/m [22,25. For small values ofmZ/m the

computed on top of a self-consistent RTF or RETF calcula TF surface tension is larger than the Hartree one, it practi-
tion of the surface tension in symmetric semi-infinite nuclea . g 1L P!
cally agrees with the Hartree result for¥ /m~0.65, and it

matter. This is similar to what happens in the nonrelativistic
frame with Skyrme force§14], although in the relativistic Pecomes smaller than the Hartree result for largkfm. On

case additional Klein-Gordon equations fé¥, /ox and the other hand, the RETF result for the surface tension is
d¢y 1O\ atA=1 have to be solved. consistently lower than the Hartree result and much less de-

Now we shall discuss the results obtained from the selfPendent on the specific value of;/m. (A similar situation
consistent RTF and RETF methods in the scaling approximds found for the total energy of finite nucl¢P2,24,23.)
tion. Table | collectsK.,, &, and K¢ for the nonlinear ~These trends, of course, are also reflected{p. For ex-
NL-Z2 [28], NL1 [29], NL3 [30], NL-RA1 [31], NL-SH  ample, for NL1 (}/m=0.57) we haveK=402.6, 377,
[32], and NL2[33] and the linear H$34] and L1[33] pa- and 429.3 MeV in the Hartree, RETF, and RTF approaches,
rameter sets. One observes that in both the RTF and RETEspectively. For NL21(x/m=0.67) it isKZ=479.6, 439.1,
calculationso and Kg; decrease(become more negative and 465.7 MeV in the Hartree, RETF and RTF calculation,
with increasing bulk incompressibilitiK... The RTF and respectively.

RETF values ofr andKg; for a given parameter set are, in ~ The second contribution t&g; in Eq. (3) is due to the
general, rather different from one another, which means thatecond derivative of the surface tension. The resultg-for

the precise value of these quantities is model dependent. Thike RTF approach decrease wih faster than in the RETF

is known to happen also with other quantities related withcalculation. At small values df., the RTF value ofr is less
the nuclear surface. For example, such is the case of theegative than that computed in the RETF approach, while
surface energy coefficient of the leptodermous expansion ahe opposite happens for higher values Kf. Both ap-
the binding energy of a nucleus, which is calculated agproaches predict the same valuesofor an incompressibility
477r(2)cr. The quality of the RTF and RETF approximations around that of NL1(211 Me\). A similar behavior is dis-
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played by the self-consistent values I§f;, although the
crossing point between the RTF and RETF predictions is 1000 -
shifted to a larger value df.. (around 280 MeVY due to the
fact that the contribution proportional te (KZ;) is larger in 800 |
the RTF approach than in the RETF approach for the param

eter sets considered here. z 600 - |
The ¢ values obtained from the pocket formula E@) \E:
using the surface diffuseness of the RTF or RETF semi—zf"’ 400

infinite nuclear matter density profiles also decrease with
K., though the estimate provided by Ed) does not repro-
duce, in general, the self-consistent values very precisely 200
The approximater is always smaller when calculated from
the RTF approach than from the RETF approach for the pa- 0 !
rametrizations of Table |. Using E¢7) to estimate the value 100 200 300 400 500 600 700
of K¢ in first approximation, one finds that the RETF result K.. (MeV)
is closer to the Hartree value than the RTF result f'or' the sets FIG. 1. Surface incompressibility coefficient versus the nuclear
NL-Z2, NLl’ NL3, a_nd NL-RA1. For NL2 and L1 '_t is the matter incompressibility mpodulus foyr the parameter sets of Table I.
RTF estimate that lies closer to the Hartree estimate. For
NL-SH and HS the approximate Hartree prediction lies
roughly in between of the approximate RTF and RETF val-negative, thus its contribution considerably reduces the finite
ues. To the extent that E(¥7) is applicable, it provides a hint nucleus incompressibility<, with respect to the nuclear
of where the unknown exact Hartree value fay; should lie  matter limitK.. . This result, although obtained in the scaling
with respect to the self-consistent RTF and RETF resultgnodel, illustrates the physical effect that the compression of
presented in Table I. the surface provides a considerable reductioiKgf which
Another different approach to computirgs; was pro- is also found in more fundamental RPA calculati¢6% In
posed in Refs[16,17. It is based on the scaling method Ref. [21] we have self-consistently computed the finite
together with a local density approximation for the mesonnucleus incompressibiliti , using the RETF approach and
fields within the RTF approach. In Reff17] a K¢ of ap-  the scaling method that we have employed in the present
proximately —1000 MeV was reported for a linear set with work to obtainK;. Thus we can now precisely check the
K. =545 MeV (similar to the HS set This result is in  apjlity of the leptodermous expansion E8) in reproducing

good agreement with that of our self-consistent RTFine fy|| calculation ofK 5 carried out in Ref[21] for various
calculation for the HS set, though it is clearly larger in ab-fnite nuclei.

solute value than the RETF result fiig; obtained with the
HS set. On the other hand, our self-consistent RTF and RET
surface incompressibilities differ considerably from the
estimate of Ref.[35] where approximateKg; values of
—333.1 and—610.1 MeV were reported for the NL1 and
NL-SH parametrizations calculated with the method used i
Ref.[16].

It should also be pointed out that in our self-consisten
semiclassical calculations we find that the ratio between th
surface and bulk incompressibilities increases vith (in
agreement with the results of R¢fL7]). In the RETF case TABLE II. Finite nuclei incompressibilitiesin MeV) calculated
this ratio is close to one, as happens for the nonrelativistiavith the self-consistent RETF approack ) and with the lepto-
Skyrme forced5], provided that the bulk incompressibility dermous expansion E) [K(A,1)]. Results are presented for the
K., of the interaction is not excessively high. In the RTF case\L1, NL3, and NL-SH parameter sets.
the ratio between the surface and bulk incompressibilities
increases much faster wikh,, than in the RETF calculations, NL1 NL3 NL-SH
and it considerably differs from unity for parametrizations Ka KA  Kia  KAD  Kia KA
with either a very low or a very high bulk incompressibility.
In Fig. 1 we plot—Kg; as a function oK., for the parameter “°Ca 1082 1281 1453 161.0 1968 2086
sets considered in Table I. As in the nonrelativistic @~ “®Ca 111.1 1169 1474 151.0 1983 1984
K varies roughly linearly withK.,. A linear fit of all the  ®Ni 1150 1308 153.2 166.0 207.1 216.7
points gives—K=1.47K.,—84 in the RETF model and °Zzr 1225 1293 1616 167.3 2175 221.1
—Kg=2.1K,—295 in the RTF model. If only the nonlin- %sn 1243 1263 163.4 1654 219.8 220.4
ear parametrizations are included in the fit one obtaing®sn  121.3 1054 157.6 1449 2109 1975
—Kg=1.3K,—54 and— K =1.9&K_,—238 in the RETF  *m 1254 1253 1645 1653 2216 2215
and RTF cases, respectively. 28%p 1241 1111 1611 1521 216.7  208.1

The surface incompressibility coefficient is both large and

The coefficientK s andK,, entering Eq(2) are com-
Buted using nuclear matter properties only. Explicit expres-
sions for these coefficients in the nonlinearo model are
reported in Ref[18]. In our analysis we will use the NL1,
r{\IL3, and NL-SH parameter sets for which the numerical
values of these coefficients are given in Rdf9]. The sur-
ace incompressibility coefficient is the self-consistent value
iaken from Table I. Table Il collect& , obtained from the
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-200 -200
®—@NLI 12010 NL1
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< = NL-SH
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o= 400 - i i 600
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“\“A\A\‘\A\A -700 | ,
_500 w -800 ‘ :
0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
A—‘/G A—1/3
FIG. 2. (Ka—K.)AY® versusA~ % computed for several un-  FIG. 3. (Ka,—Ka,_o)/12 versusA~ 2 for several uncharged
charged and symmetric nuclei frof=250 to A=300000 for the  nuclei from A=200 to A=200 000 with a neutron excess 0.10 for
NL1, NL3, and NL-SH parameter sets. the NL1, NL3, and NL-SH parameter sets.

full self-consistent RETF calculatiof2l] as well as the j, yhe nonrelativistic caskL2], it becomes more complicated

H 40, 48, 56p1:; 9
valueK(A,1) given by Eq.(2) for “*Ca, “*Ca, *Ni, *Zr, i the relativistic case. Thus, for a fast estimate of the cur-

11 13 14 20 H H
°Sn, 1¥%8n, 4Sm, and***Pb. From this table it can be \4¢re and surface-symmetry terms, we perform a numerical
seen that the leptodermous expansion with the terms given ify 14 do this. we follow the same strategy as in R@R].

Eq. (2) fails to describe small nuclei and also very asymmet-rjrst \e consider symmetric nuclei with the Coulomb force

; i 3 20 »
ric nuclei such as*?Sn or 2*%b. In addition, some words of  gyitched off. In this case the leptodermous expansion&d.
caution should be said about the Coulomb term in(2y.In (adding the curvature tefmeduces to

the self-consistent scaling calculation of the finite nucleus
incompressibility, the Coulomb energy does not participate _ _
directly if the scaling Eq(5) for the density is assumed to Ka=K..+ KA~ Ko, AT2E, (14)
apply [3,21]. Thus, the Coulomb term in Eq2) should be
related to the change #i, when the Coulomb interaction is In Fig. 2 we plot[K,— K., ]JAY3 versusA~ for the three
switched off in the self-consistent calculation. The Coulombparameters sets used in this analysis. Héres the nuclear
term in Eq.(2) overestimates this change by approximately 6matter incompressibility given in Table | and, are the
MeV for NL1, 3 MeV for NL3, and 1 MeV for NL-SH. self-consistent incompressibilities calculated ®rranging
Now we would like to analyze whether the addition of from 250 to 300000. In the linear fit of these curves the
some higher-order terms in the leptodermous expansion Eg-axis intercept giveX; of the corresponding force, while
(2) improves the agreement with th€, results calculated the slope giveX., . The surface terms obtained in this way
self-consistently. In particular, we will focus our attention on are —246.1, —328.4, and—435.8 MeV for the NL1, NL3,
the curvaturé ., A~ ¥ and the surface-symmetk,J?A~Y®  and NL-SH parameter sets, which are very close to the cor-
terms. Although these terms could be derived by enlargingesponding self-consistent valugge Table)l. The estimates
the leptodermous expansion of BlaiZ@i, as has been done of the curvature term in the leptodermous expansion of the

TABLE lIl. Finite nuclei incompressibilitiesin MeV) for severalunchargednuclei calculated self-
consistently using the RETF approadf,), with the leptodermous expansion Eg8) [K(A,l)] and includ-
ing the curvature and surface-symmetry contributipid (A,1)]. Results are presented for the NL1, NL3,
and NL-SH parameter sets.

NL1 NL3 NL-SH

Ka KA K*AIl)  Ka KA KA Ky KA KAl

“ca 118.6 1452 118.1 160.1  179.8 160.2 213.4  229.4 213.5
48Ca 119.6  130.3 121.2 159.7  165.8 161.8 215.1 2147 213.8
56N 129.3  152.2 130.5 172.7  189.6 173.9 230.5 2427 230.0
907r 139.6  152.5 142.0 184.2  192.9 186.3 2443  249.3 244.8
1165 144.0 152.0 146.3 189.0 193.9 191.1 250.1  251.8 250.7
1829 137.2  127.1 137.4 179.3  168.9 180.2 236.8 2239 236.58
1445m 1485  155.0 150.7 194.3  198.2 196.3 256.7 257.7 257.2
208pp 1484 1428 148.5 1934  187.3 194.0 255.0 246.9 254.6
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finite nucleus incompressibility obtained with NL1, NL3, tributions, we fit the self-consistent results for the finite nu-
and NL-SH are—317.2,—229.8 and—185.6 MeV, respec- clei considered in Table Il to a leptodermous expansion in-
tively. cluding curvature and surface-symmetry terms. The volume,
To obtain the surface-symmetry contribution, we havesurface, and volume-symmetry coefficients are taken from
found it convenient to parametrize the difference between theelf-consistent infinite and semi-infinite nuclear matter calcu-
self-consistent incompressibilitieK, of a given nucleus |ations. The results of this calculation show that the differ-
with neutron excesd and the corresponding symmetric ence of the curvature contribution obtained from the fit in the
nucleus as asymptotic region and from finite nuclei is always less than
Kai—Ka—o=K,d 2+ Ked 2A~ 18, (15) 10%, w.hereas the difference in the surface-symmetry contri-
’ ' bution lies below 3%.

where again uncharged nuclei have been considered. For We have applied the scaling method in the Thomas-Fermi
each parameter set and according to Etp), if [Kpu, and extended Thomas-Fermi approximations to the relativis-
—Ka-0]l "2 is plotted versuA~® a unique curve should tic mean-field theory to self-consistently calculate the surface
be found which is independent of the valueloHowever, coefficientKg; of the leptodermous expansion of the finite
one obtains a family of almost parallel lines whose slope iucleus incompressibility derived within the Blaizot model.
Kss. The splitting of these lines gives us information on theThe ratio between the surface and bulk incompressibilities
higher-order symmetry contributions missed in the paramoptained in our semiclassical calculation increases with the
etrization(15). Thus we will estimate the surface-symmetry nyclear matter incompressibility, more strongly in the RTF
term from a linear fit of the curve correspondinglte 0.1,  than in the RETF case. In the RETF calculations this ratio is
which roughly corresponds to an average asymmetry alongjose to one, as in the case of non-relativistic Skyrme forces,

the periodic table. This curve is plotted in Fig. 3 ®rang-  for the nonlinear parameter sets that have a nuclear matter
ing from 200 to 200 000 for each considered parameter Sefncompressibility not larger than roughly 300 MeV.

The corresponding—axis_ intercepts agree very well with the £,/ e analyzedr-o parameter sets, the leptodermous
K,s values calculated in nuclear matter676.1, —698.9, expansion Eq(2) is not able to reproduce very precisely the
and —794.5 MeV for NL1, NL3, and NL-SH respectively finite nuclei incompressibilities obtained self-consistently. In
[19]). Our estimate of the surface-symmetry contribution ©Oparticular, the macroscopic contribution of the Coulomb

Ka corresponds to the slopes of these linear fits, which arg,.ce can differ from the self-consistent contribution up to 6
1951.4, 1754.0, and 1716.5 MeV for NL1, NL3, and NL-SH, \jev/ We have numerically estimated higher-order contribu-

respectively. , o . tions to the leptodermous expansion, namely, curvature and
Table Il collects the self-consistent finite nuclei incom- surface-symmetry terms, in the asymptotic regioa., for

pressibility K (without Coulomb compared Wlth the mac-  ery Jarge uncharged systemiVe have found that the finite

roscopic parametrizatiod§(A,1) [Eq.(2)] andK* (A,I) that  n,clej incompressibilities are reasonably well reproduced by

contains the curvature and surface-symmetry contributiong,, extended leptodermous expansion that includes curvature
obtained from the previously discussed fits. Again, the selfyq surface-symmetry contributions.

consistent incompressibilities corresponding to the lightest
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