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Dynamical moment of inertia and quadrupole vibrations in rotating nuclei
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The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed
within the self-consistent one-dimensional cranking oscillator model. It is numerically proven that for even-
even nuclei the dynamical moment of inertia calculated in a mean field approximation in the rotating frame is
equivalent to the Thouless-Valatin moment of inertia. If the contribution of the quantum fluctuations to the total
energy is taken into account, the dynamical moment of inertia differs from the Thouless-Valatin value.
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A description of rotational states is one of the oldest,
not fully solved, problem in nuclear structure physics. Wh
various microscopic models based on the cranking appro
@1,2# describe reasonably well the kinematical moment
inertia J (1)52(dE/dV)/V for a finite angular frequency
V, there is still a systematic deviation of the dynamical m
ment of inertiaJ (2)52d2E/dV2 ~E is the total energy in
the rotating frame! from the experimental data at high spin
@3#. Since the moments of inertia are the benchmarks
microscopic models of collective motion in nuclei, the u
derstanding of the source of the discrepancy becomes a
lenge for a many-body theory of finite Fermi systems.

The description of the moments of inertia can be i
proved if quantum oscillations around the mean solution w
be incorporated as it was suggested by Thouless and Va
@4#. In fact, using the cranking plus random phase appro
mation ~CM1RPA! approach the effects of pairing correl
tions onto the moments of inertia were considered in Ref.@5#
~see also references therein!. For the case of pairing an
quadrupole vibrations such calculations in a restricted c
figuration space~only three shells have been included! were
performed only once@6#. For a time new attempts to stud
those effects were postponed, since there was no prac
recipe to calculate the RPA correlation energy for realis
cases where a large configuration space must be consid
On the other hand, the development of microscopic crank
approaches which start with effective nucleon-nucleon in
actions treated within the self-consistent Hartree-Fock~Bo-
goliubov! method~see, for a review, Ref.@7#! can renew the
interest in this problem. Moreover, using the integral rep
sentation method developed recently in@8#, the total energy
E can be calculated in the RPA order@1,9# with a high accu-
racy and with minimal numerical efforts. It is quite desirab
to clarify under which conditions the basic principles form
lated few decades ago could be valid. For example, the p
lem of the quantization of the angular momentum within t
CM1RPA is still controversial~see the discussions in Ref
0556-2813/2002/65~4!/041307~4!/$20.00 65 0413
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@10,11#! and needs a dedicated study. Further, in literat
~see, for instance, Ref.@3#! it is stated that the dynamica
moment of inertia calculated in the rotating frame should
equivalent to the Thouless-Valatin moment of inertia@4#. A
practical check of the validity of this statement requires t
the mean field and the RPA equations are solved s
consistently.

In the present paper, we will calculate the total ene
including the mean field energy and the RPA correlation
ergy in a model that is fully self-consistent and analytica
solvable. Our CM1RPA approach is based on the se
consistent mean field of the rotating triaxial oscillator. Th
model provides a relatively simple but still realistic frame
calculate the Thouless-Valatin moment of inertia and the
sired contributions of shape oscillations without the us
restrictions of the configuration space. Notice that the con
bution of the pairing vibrations to the correlation energy b
sides the one from the shape vibrations is also important~see
Refs. @5,12,13# and references there!. However, there are
some open problems with the choice of the self-consis
pairing interaction. Therefore, the combined effect of bo
types of vibrations is beyond the scope of the present inv
tigation and we leave this problem for the future. We foc
our analysis upon the dynamical moment of inertiaJ (2) that
implies also information on the kinematical moment of ine
tia due to the obvious relationJ (2)5J (1)1VdJ (1)/dV. We
will show that the dynamical moment of inertia calculated
the rotating frame is different from the Thouless-Valatin m
ment of inertia if the contribution of the quantum fluctuatio
is taken into account.

The mean field part of the many-body Hamiltonia
~Routhian! in the rotating frame is given by

H5(
i 51

N

~h02V l x! i5H02VLx , ~1!
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where the single-particle triaxial harmonic oscillator Ham
tonianh0 is aligned along its principal axes and reads

h05
pW 2

2m
1

m

2
~vx

2x21vy
2y21vz

2z2!. ~2!

The eigenmodes and the total energy of the mean fi
Hamiltonian Eq.~1! are well known@14–16#,1

v6
2 5

1

2
$vy

21vz
212V26@~vy

22vz
2!218V2~vy

21vz
2!#1/2%,

~3!

EMF5vxSx1v1S11v2S2 . ~4!

Here, Sk5^S j
N(nk11/2)j& and nk5ak

†ak (k5x,1,2)
whereak

† , ak are the oscillator quanta operators. The low
levels are filled from the bottom, which give the ground st
energy in the rotating frame. The Pauli principle is taken in
account such that two particles occupy one level. The m
mization of the total energy Eq.~4! with respect to all three
frequencies, subject to the volume conservation condi
vxvyvz5v0

3, yields the self-consistent condition@17,18# for
a finite rotational frequency

vx
2^x2&5vy

2^y2&5vz
2^z2&. ~5!

It should be pointed out that the condition Eq.~5! provides
generally the absolute minima in comparison with the lo
minima obtained from the condition of theisotropic velocity
distribution @15,16#

vxSx5v1S15v2S2 ~6!

at large rotational frequency. Since all shells are mixed,
go beyond the approximation used in Ref.@6# ~for a cranking
harmonic oscillator, see also Ref.@19#!.

To analyze the contribution of the quadrupole shape
cillations we add to the mean field Hamiltonian Eq.~1! the
self-consistent interaction resulting from small angular ro
tions around thex2, y2, z2 axes and small variations o
the two intrinsic shape parameters« and g @20#. Conse-
quently, the total Hamiltonian can be expressed as

HRPA5H02VLx2
k

2 (
m522

2

Qm
† Qm5H̃2VLx . ~7!

Here, the quadrupole operatorsQm5r 2Ȳ2m are expressed in
terms of the doubly stretched coordinatesq̄i5(v i /v0)qi ,
(qi5x,y,z). The effective quadrupole interaction restor
the rotational invariance of the HamiltonianH0 such that
now @H̃,Li #50 (i 5x,y,z) in the RPA order. The self-
consistency condition Eq.~5! fixes the quadrupole strengt
k5(4p/5)(mv0

2/^r 2&), where ^r 2&5^x̄21 ȳ21 z̄2&. We re-

1To simplify our notation the unit\ entering the angular momen
tum and the frequencies is suppressed.
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mind that the self-consistent residual interaction does
affect the equilibrium deformation obtained from the min
mization procedure.

Using the transformation@16# from pi ,qi variables to the
oscillator quantaak

† ,ak of the rotating oscillator, all matrix
elements are calculated analytically. We solve the RPA eq
tion of motion for the generalized coordinatesXl and mo-
mentaPl ,

@HRPA,Xl#52 ivlPl , @HRPA,Pl#5 ivlXl , ~8!

@Xl ,Pl#5 idl,l8 ,

wherevl are the RPA eigenfrequencies in the rotating fra
and the associated phonon operators areOl5(Xl

2 iPl)/A2. Here Xl5(sXs
l f̂ s , Pl5 i (sPs

lĝs are bilinear

combinations of the quantaak
† ,ak such that ^@ f̂ s ,ĝs8#&

5Vsds,s8 , where quantitiesVs are proportional to different
combinations ofS i ( i 5x,1,2). Further,^•••& means the
averaging over mean field states. Since the mean field
lates the rotational invariance, among the RPA eigenfrequ
cies there exist two spurious solutions. One solution w
zero frequency is associated with the rotation around thx
axes, since@H,Lx#50. The other ‘‘spurious’’ solution atv
[V corresponds to a collective rotation, since@H,L6#
5@H,Ly6 iL z#57VL6 @21#. The Hamiltonian Eq.~7! pos-
sesses the signature symmetry, i.e.,@Rx ,HRPA#50 (Rx

5e2 ipL̂x), such that it decomposes into positive and negat
signature terms

HRPA5H~1 !1H~2 ! ~9!

that can be separately diagonalized@21–23#. The negative
signature Hamiltonian contains the rotational mode and
vibrational mode describing the wobbling motion@22,24#.
We focus on the positive signature Hamiltonian. It conta
the zero-frequency mode defined by

@H~1 !,fx#5
2 iL x

JTV
, @fx ,Lx#5 i ~10!

and allows one to determine the Thouless-Valatin momen
inertia JTV @25#. Here, the angular momentum operatorLx

5(sl s
x f̂ s and the canonically conjugated anglefx

5 i (sfs
xĝs are expressed viaf̂ s andĝs , which obey the con-

dition Rxd̂sRx
215d̂s (d̂s5 f̂ s or ĝs). Solving Eqs.~10! for the

HamiltonianH(1),

H~1 !5 (
k5x,1,2

(
j

vk~ak
†ak11/2! j

2
k

2
~Q0

21Q1
(1)21Q2

(1)2!, ~11!

where

Q05A 5

16p
~2z̄22 x̄22 ȳ2!5A 5

16p(
s

qs
0 f̂ s , ~12!
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Q1
(1)5A15

4p
ȳz̄5A15

4p
i(

s
qs

1ĝs , ~13!

Q2
(1)5A 15

16p
~ x̄22 ȳ2!5A 15

16p(
s

qs
2 f̂ s , ~14!

we obtain the expression for the Thouless-Valatin momen
inertia

JTV5JI1

2Sx0Sx2S022Sx0
2 S S222

1

k2
D2Sx2

2 S S002
1

k0
D

S S002
1

k0
D S S222

1

k2
D2S02

2

.

~15!

Here, the termJI corresponds to the Inglis moment of inert

JI5(
s

~ l s
x!2Vs

Es
. ~16!

The second term in Eq.~15! is a contribution of the quadru
pole residual interaction in the cranking model. In the cra
ing harmonic oscillator it consists of terms that have
following structure,

Sxm5(
s

l s
xqs

mVs

Es
, Snm5(

s

qs
nqs

mVs

Es
, n,m50,2,

~17!

where Es are the energies of particle-hole excitations:E1
52v1 , E252v2 , E352vx , E45v11v2 , and E5
5v12v2 . We also introduced the following notation
k05(5/16p)k andk25(15/16p)k.

The above results are the starting point for our numer
analysis. It should be noted that a general discussion a
the RPA corrections to the cranking model has been p
sented in Ref.@21#. The total energy in Ref.@21# is a sum of
the mean field energyESCC defined in thelaboratory frame
and the RPA correlation energy defined in therotating frame.
This inconsistency was already mentioned in Ref.@10#. Fur-

FIG. 1. Moments of inertia forN5Z510 system as a function
of the rotational frequencyV. The definitions of different moment
of inertia are given in the text.
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ther, an equivalence is claimed between the Thouless-Va
moment of inertia defined by Eq.~10! and the quantityg33
5(]2ESCC/]I 2)0 @21#. However, the angular momentum
not a good quantum numberin the cranking model~see, e.g.,
@1#!. In addition, the quantization condition for the angul
momentum in the CM1RPA approach depends on the de
nition of the total energy@10,11#. Therefore, a question arise
about the validity of this equivalence.

We recall that all calculated quantities, i.e., the mean fi
energy, the quasiparticle~particle-hole! excitations, the RPA
eigenfrequencies, are functions of the rotational frequencV
that is the only free parameter. We stress that we shall fol
the option to study the rotational properties as the Thoule
Valatin moment and the dynamical moment of inertia
terms of this parameter and avoid making any transforma
to the laboratory system. In fact, this analysis is consist
with the experimental definition of the dynamical moment
inertia J(2)5dI/dV'4/DEg ~see, for example, Ref.@19#!.
Here, DV5DEg/2, whereDEg is the difference between
two consecutiveg transitions, andEg is theg-transition en-
ergy between two neighboring states that differ on two un
of the angular momentum.

To take into account shell effects, we consider two s
tems with number of particlesA520, 64 (N5Z). For V
50 MeV, the global minimum occurs for a prolate sha
and for a near oblate triaxial shape forA520 and 64, respec
tively @18#. If we trace the configurations that characteri
the ground states, with increasing rotational frequency b
systems become oblate. At this point the moment of ine
vanishes, since there is no a kinetic energy associated
such a rotation.

In order to compare various moments of inertia, i.e.,
Thouless-Valatin, Eq.~15!, the Inglis, Eq.~16!, and J MF

(2)

52d2EMF /dV2 with J RPA
(2) 52d2ERPA/dV2, we calculate

the RPA correlation energyEcorr
RPA5 1

2 ((lvl2(sEs) that in-
cludes the positive and negative signature contributions.

In Figs. 1 and 2 the results of calculations for differe
moments of inertia are presented forA520 and 64, respec
tively. To our knowledge this is the first numerical demo
stration of the equivalence between the dynamical mom
of inertia J MF

(2) calculated in the mean field approximatio
and the Thouless-Valatin moment of inertiaJTV calculated in
the RPA. For the both systems the Inglis moment of ine

FIG. 2. As in Fig. 1 forN5Z532 system.
7-3
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JI is smaller than theJTV and J MF
(2) and has a differen

rotational dependence.
While the Inglis moment of inertia characterizes the c

lective properties of noninteracting fermions, the dynami
moment of inertia reflects the changes in the rotating s
consistent mean field due to an internucleon interaction. A
was pointed out in Ref.@26#, the volume conservation con
dition, used as a constraint in the mean field calculations,
be interpreted as a Hartree approximation applied to an
teraction that involves the sum of one-body, two-body, e
forces. The sharp drop in all moments of inertia in Fig. 2
caused by the onset of the oblate shape where the colle
rotation does not exist. ForA564 the onset of the oblat
deformation occurs at a smaller rotational frequency in c
trast to the one for the systemA520.

The dynamical moment of inertiaJ RPA
(2) is larger than the

Thouless-Valatin moment of inertia. However, from our c
culations it follows that the contribution of the RPA groun
state correlations decreases with an increase of the numb
particles. The difference between theJ RPA

(2) and theJTV is
due to the following reason. The Inglis moment of inertia
smaller than the Thouless-Valatin~or J MF

(2) ) value, since the
JTV contains the effect of the residual particle-hole inter
tion. On the other hand, the Thouless-Valatin moment of
.

E.

cl

tt

s

v,
.
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ertia manifests the rotational dependence of the residua
teraction. Thus, we may speculate that inclusion of
phonon interaction could help us to reproduce the beha
of the J RPA

(2) that characterizes the rotational dependence
the phonon-phonon interaction.

In summary, using the self-consistent cranking harmo
oscillator model, we have numerically proved the equiv
lence of the mean field dynamical moment of inertia calc
latedin the rotating frameto the Thouless-Valatin moment o
inertia calculated in the CM1RPA approach. Our result is
consequence of the self-consistent condition Eq.~5! that
minimizes the expectation value of the mean field Ham
tonian, Eq.~1!. This condition is equivalent to the stabilit
condition of collective modes in the RPA@27#, i.e., vl to be
real, and has been used to calculate different moment
inertia. The rotational dependence of both the dynamical m
ments of inertia,J MF

(2) and J RPA
(2) , is similar, however, the

J RPA
(2) is larger than theJ MF

(2) due to the contribution of the
ground state correlations. This difference between the m
ments of inertia is less important for heavy systems.
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