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Dynamical moment of inertia and quadrupole vibrations in rotating nuclei
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The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed
within the self-consistent one-dimensional cranking oscillator model. It is numerically proven that for even-
even nuclei the dynamical moment of inertia calculated in a mean field approximation in the rotating frame is
equivalent to the Thouless-Valatin moment of inertia. If the contribution of the quantum fluctuations to the total
energy is taken into account, the dynamical moment of inertia differs from the Thouless-Valatin value.
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A description of rotational states is one of the oldest, ye{10,11])) and needs a dedicated study. Further, in literature
not fully solved, problem in nuclear structure physics. While(see, for instance, Ref3]) it is stated that the dynamical
various microscopic models based on the cranking approaamoment of inertia calculated in the rotating frame should be
[1,2] describe reasonably well the kinematical moment ofequivalent to the Thouless-Valatin moment of ineftéd. A
inertia 7(Y= — (dE/dQ)/Q for a finite angular frequency practical check of the validity of this statement requires that
Q, there is still a systematic deviation of the dynamical mo-the mean field and the RPA equations are solved self-
ment of inertia7?=—d?E/dQ? (E is the total energy in consistently.
the rotating framgefrom the experimental data at high spins  In the present paper, we will calculate the total energy
[3]. Since the moments of inertia are the benchmarks foincluding the mean field energy and the RPA correlation en-
microscopic models of collective motion in nuclei, the un-ergy in a model that is fully self-consistent and analytically
derstanding of the source of the discrepancy becomes a chaolvable. Our CM-RPA approach is based on the self-
lenge for a many-body theory of finite Fermi systems. consistent mean field of the rotating triaxial oscillator. This

The description of the moments of inertia can be im-model provides a relatively simple but still realistic frame to
proved if quantum oscillations around the mean solution willcg|cylate the Thouless-Valatin moment of inertia and the de-
be incorporated as it was suggested by Thouless and Valatifyeq contributions of shape oscillations without the usual
[4]. In fact, using the cranking plus random phase approxiyegtrictions of the configuration space. Notice that the contri-
mation (CM+RPA) approagh th.e effects of Pawmg'correla- bution of the pairing vibrations to the correlation energy be-
tions onto the moments of inertia were considered in FEf. sides the one from the shape vibrations is also impoftee
(see also references thergifror the case of pairing and Refs. [5,12,13 and references thereHowever, there are

quadrgpole vibrations such calculations in a restricted conggme open problems with the choice of the self-consistent
figuration spaceonly three shells have been includedere  qiring interaction. Therefore, the combined effect of both

performed only oncg6]. For a time new attempts to study nes of vibrations is beyond the scope of the present inves-
those effects were postponed, since there was no practicghaiion and we leave this problem for the future. We focus
recipe to calculate the RPA correlation energy for realistic, . analysis upon the dynamical moment of inegi&’ that
cases where a large configuration space _must be. Cons'd?r‘?ﬁgplies also information on the kinematical moment of iner-
On the other hand, the development of microscopic cranking"y,e to the obvious relatiod@= 70+ 0d 70/dQ. We
approaches which start with effective nucleon-nucleon interyiy show that the dynamical moment of inertia calculated in
actions treated within the self-consistent Hartree-F#- o rotating frame is different from the Thouless-Valatin mo-

.gOI'UbOw. mthod(see, for a review, Re[ﬂ) can renew the ment of inertia if the contribution of the quantum fluctuations
interest in this problem. Moreover, using the integral repre+g (aken into account

sentation method developed recently &}, the total energy The mean field part of the many-body Hamiltonian
E can be calculated in the RPA orddr,9] with a high accu- (Routhian in the rotating frame is given by

racy and with minimal numerical efforts. It is quite desirable

to clarify under which conditions the basic principles formu-

lated few decades ago could be valid. For example, the prob- N

lem of the quantization of the angular momentum within the H= 2 (ho—Ql,)i=Ho—QL,, 1)
CM+RPA is still controversialsee the discussions in Refs. i=1
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where the single-particle triaxial harmonic oscillator Hamil- mind that the self-consistent residual interaction does not

tonianhy is aligned along its principal axes and reads affect the equilibrium deformation obtained from the mini-
mization procedure.
p> m 20 20 2., Using the transformatiofil6] from p; ,q; variables to the
ho=5m+ 5 (X" + 0y + 3. () oscillator quantaa) ,a, of the rotating oscillator, all matrix

elements are calculated analytically. We solve the RPA equa-
The eigenmodes and the total energy of the mean fielon of motion for the generalized coordinatd and mo-
Hamiltonian Eq.(1) are well known[14-16,* mentap, ,

1 [Hrpa, 1= —i0 Py, [Hgea, P ]=ion&y, (8)
wi:i{wi—l— wg-i— ZQZi[(wi—wg)z-i- BQZ(w)Z,-i- wg)]llz},

3 [X Pa=ioya,

wherew, are the RPA eigenfrequencies in the rotating frame
and the associated phonon operators &g =(AX)
Here, S, =(3M(n+1/2);) and ne=aja, (k=x,+,-) —iP)/V2. Here X, =3 X}, P,=iZ,Plgs are bilinear
whereal, a, are the oscillator quanta operators. The lowestcombinations of the quantal,ak such that([fs,0¢])
levels are filled from the bottom, which give the ground state=V4ds s, Where quantitied/g are proportional to different
energy in the rotating frame. The Pauli principle is taken intocombinations of%; (i=x,+,—). Further,{---) means the
account such that two particles occupy one level. The miniaveraging over mean field states. Since the mean field vio-
mization of the total energy Edq4) with respect to all three lates the rotational invariance, among the RPA eigenfrequen-
frequencies, subject to the volume conservation conditiories there exist two spurious solutions. One solution with
W0y ©,= wg, yields the self-consistent conditiph7,18 for ~ zero frequency is associated with the rotation aroundxthe

EMF=wXEX+w+E++w727- (4)

a finite rotational frequency axes, sincgH,L,]=0. The other “spurious” solution ai
=() corresponds to a collective rotation, singkl,L . ]
0X{x?) =0 y?)=wXz?). (5)  =[H,L,*iL,]=7FQL. [21]. The Hamiltonian Eq(7) pos-
sesses the signature symmetry, i.ER,,Hgrpa]l=0 (R4
It should be pointed out that the condition E) provides =e~"), such that it decomposes into positive and negative

generally the absolute minima in comparison with the |oca|signature terms
minima obtained from the condition of thgotropic velocity

distribution[15,16] Hrpa=H(+)+H(—-) 9

OEZx= w3 =0 % (6)  that can be separately diagonalizZgl—23. The negative
signature Hamiltonian contains the rotational mode and the
at large rotational frequency. Since all shells are mixed, W&jiprational mode describing the wobbling moti¢g2,24.
go beyond the approximation used in Ré] (for a cranking  \we focus on the positive signature Hamiltonian. It contains

harmonic oscillator, see also R¢19]). the zero-frequency mode defined by
To analyze the contribution of the quadrupole shape os-

cillations we add to the mean field Hamiltonian Ed) the —iL, .
self-consistent interaction resulting from small angular rota- [H(+), d]= R [x, Lyl=i (10)
tions around thex—, y—, z— axes and small variations of

the two intrinsic shape parametessand y [20]. Conse- and allows one to determine the Thouless-Valatin moment of

quently, the total Hamiltonian can be expressed as inertia Jyy [25]. Here, the angular momentum operatgr
o 2 =34 gfs and the canonically conjugated angle,
Hrpa=Ho— QL — > ,inz QLQP-: H-OL,. (7) =iZs¢.0sare expressed vig andgs, which obey the con-

dition RXaSRX_l:aS (ds=f orgy). Solving Eqs(10) for the

o . HamiltonianH(+),
Here, the quadrupole operatd@g, =r<Y,, are expressed in

terms of the doubly stretched coordina®s= (w;/wg)q;, +
(gi=x,y,z). The effective quadrupole interaction restores H(+):k=x§; - §]: o (@@t 1/2);
the rotational invariance of the Hamiltonidf, such that o

now [H,L;]=0 (i=x,y,z) in the RPA order. The self- K2 A2, A(+)2
consistency condition Eq5) fixes the quadrupole strength 7 (Qot QL 7+Q2™), (1)
k= (47/5)(Mw2/(r?)), where (r?)=(x?+y?+7%). We re-
where
'To simplify our notation the unit entering the angular momen- Qo= /i(z? —x2—y?)= A /iE qlf (12)
tum and the frequencies is suppressed. 167 16m 75
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FIG. 1. Moments of inertia foN=2Z= 10 system as a function FIG. 2. As in Fig. 1 forN=Z=32 system.
of the rotational frequenc{). The definitions of different moments ) . . .
of inertia are given in the text. ther, an equivalence is claimed between the Thouless-Valatin
moment of inertia defined by Eq@10) and the quantitygs;
15 15 =(0’Egccld1?), [21]. However, the angular momentum is
(= [ Zyz= /i 15 nota good quantum numbén the cranking mod
Qi yz 21 24 dss. (13 good q g elsee, e.g.,
T s

[1]). In addition, the quantization condition for the angular

i i momentum in the CM-RPA approach depends on the defi-

+ — = 2% nition of the total energy10,11]. Therefore, a question arises
Qt= V E(Xz_yz): V Ez dsfs, (9 apout the validity of this equivalence.

We recall that all calculated quantities, i.e., the mean field
we obtain the expression for the Thouless-Valatin moment oénergy, the quasiparticlgarticle-holé excitations, the RPA
inertia eigenfrequencies, are functions of the rotational frequéncy
that is the only free parameter. We stress that we shall follow
the option to study the rotational properties as the Thouless-
Valatin moment and the dynamical moment of inertia in

1 terms of this parameter and avoid making any transformation
Soo— —) ( Sy— —) -s5 to the laboratory system. In fact, this analysis is consistent
Ko K2 with the experimental definition of the dynamical moment of
19 inertia JD=dI/dQ~4/AE, (see, for example, Ref19)).
Here, the terny/; corresponds to the Inglis moment of inertia Here, AQ=AE,/2, where AE, is the difference between
two consecutivey transitions, and,, is the y-transition en-
(13)2V ergy between two neighboring states that differ on two units
=2 E (16)  of the angular momentum.
s s To take into account shell effects, we consider two sys-
The second term in E15) is a contribution of the quadru- €MS With number of particlea=20, 64 N=2). For ()
pole residual interaction in the cranking model. In the crank-—0 MeV, the global minimum occurs for a prolate shape
ing harmonic oscillator it consists of terms that have the@nd for a near oblate triaxial shape for-20 and 64, respec-

2 1 2 1
2S5,05¢2S02~ So| S22~ P S Soo_K—
Jv=I+ ( °

following structure, tively [18]. If we trace the configurations that characterize
the ground states, with increasing rotational frequency both
1590V qedeVe systems become oblate. At this point the moment of inertia
Sxm:ES E. Sqm=§ E. n,m=0,2, vanishes, since there is no a kinetic energy associated with
S S

such a rotation.

17) In order to compare various moments of inertia, i.e., the
where E, are the energies of particle-hole excitatios; ~ Thouless-Valatin, Eq(15), the Inglis, Eq.(16), and J{7}
=20,, E,=20_, Es=2w,, Es;=w,+w_, and Es =—d’Eye/dQ? with 7§} x= — d’Erpa/dQ?, we calculate
—w,—w_. We also introduced the following notations: the RPA correlation energlgc: »=3(Z,w,— =<E,) that in-
ko= (5/16m) k and k,=(15/16m) . cludes the positive and negative signature contributions.

The above results are the starting point for our numerical In Figs. 1 and 2 the results of calculations for different
analysis. It should be noted that a general discussion aboantoments of inertia are presented #+20 and 64, respec-
the RPA corrections to the cranking model has been pretively. To our knowledge this is the first numerical demon-
sented in Ref[21]. The total energy in Ref21] is a sum of  stration of the equivalence between the dynamical moment
the mean field energiscc defined in thdaboratory frame  of inertia 73} calculated in the mean field approximation
and the RPA correlation energy defined in thtating frame  and the Thouless-Valatin moment of inerfia, calculated in
This inconsistency was already mentioned in R&€]. Fur-  the RPA. For the both systems the Inglis moment of inertia

041307-3



RAPID COMMUNICATIONS

R. G. NAZMITDINOV, D. ALMEHED, AND F. DONAU PHYSICAL REVIEW C 65 041307R)

J, is smaller than the7r, and jfﬁ and has a different ertia manifests the rotational dependence of the residual in-
rotational dependence. teraction. Thus, we may speculate that inclusion of the

While the Inglis moment of inertia characterizes the col-phonon interaction could help us to reproduce the behavior
lective properties of noninteracting fermions, the dynamicalof the j(RzF),A that characterizes the rotational dependence of
moment of inertia reflects the changes in the rotating selfthe phonon-phonon interaction.
consistent mean field due to an internucleon interaction. As it |n summary, using the self-consistent cranking harmonic
was pointed out in Ref.26], the volume conservation con- oscillator model, we have numerically proved the equiva-
dition, used as a constraint in the mean field calculations, cafnce of the mean field dynamical moment of inertia calcu-
be interpreted as a Hartree approximation applied t0 an ingtedin the rotating frameto the Thouless-Valatin moment of
teraction that involves the sum of one-body, two-body, etC.inertia calculated in the CMRPA approach. Our result is a
forces. The sharp drop in all moments of inertia in Fig. 2 ISconsequence of the self-consistent condition ES). that
caused by the onset of the oblate shape where the collectiygiinizes the expectation value of the mean field Hamil-
rotation QOes not exist. Foh=64 the, onset of the Ot."ate tonian, Eq.(1). This condition is equivalent to the stability
deformation occurs at a smaller rotational frequency in CONtondition of collective modes in the RART7], i.e., w, to be
trast to the one for the system: 29' 2) real, and has been used to calculate different moments of
ThThIe dyr\1/a1n|tc_:al momer:t ?f_ metr_tlai'pA IS Iarg(far than the I inertia. The rotational dependence of both the dynamical mo-

ouless-Valatin moment of inertia. However, from our cal- Cartia 7(2) 2 e aimi
culations it follows that the contribution of the RPA ground m(ezr)lts' of Inertia.Jje an?z)jRPA' s similar, however, the
state correlations decreases with an increase of the numberg pa IS larger than the7yg due to the contribution of the
particles. The difference between t562), and the 7 is ound state porrelatlorjs. This difference between the mo-

: RPA TV ments of inertia is less important for heavy systems.
due to the following reason. The Inglis moment of inertia is
smaller than the Thouless-Valatior 7{Z) value, since the This work was supported in part by the Heisenberg-
Jrv contains the effect of the residual particle-hole interacLandau program of the JINR and the Russian Foundation for
tion. On the other hand, the Thouless-Valatin moment of inBasic Research, project 00-02-17194
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