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Complete relativistic equation of state for neutron stars
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We construct the equation of state~EOS! in a wide density range for neutron stars using the relativistic mean
field theory. The properties of neutron star matter with both uniform and nonuniform distributions are studied
consistently. The inclusion of hyperons considerably softens the EOS at high densities. The Thomas-Fermi
approximation is used to describe the nonuniform matter, which is composed of a lattice of heavy nuclei. The
phase transition from uniform matter to nonuniform matter occurs around 0.06 fm23, and the free neutrons
drip out of nuclei at about 2.431024 fm23. We apply the resulting EOS to investigate the neutron star
properties such as maximum mass and composition of neutron stars.
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I. INTRODUCTION

The properties of neutron stars are mainly determined
the equation of state~EOS! of neutron star matter, which i
charge neutral matter inb equilibrium. A comprehensive de
scription of neutron stars should include not only the inter
region but also the inner and outer crusts; therefore, the E
for neutron stars is required to cover a wide density ran
For the EOS at high densities, there are many efforts ba
on both nonrelativistic and relativistic approaches, wh
discussed several possible mechanisms to soften the EO
high densities, e.g., by hyperons, kaon condensates, or
quark phases@1–3#. When the density is lowered t
1014 g/cm3, some heavy nuclei may be formed and mat
becomes inhomogeneous. There are a few works base
nonrelativistic models describing the EOS at low densit
where heavy nuclei exist@4–6#. Most studies of neutron
stars use the composite EOS, which is constructed by c
necting the EOS at high densities to the one at low dens
@7–9#. Even though the EOS at high densities are based
various relativistic many body theories, it has to be co
bined with some nonrelativistic EOS at low densities. T
differences in the models used in the different density ran
usually lead to some discontinuity and inconsistency in
composite EOS. Therefore, it is very interesting to constr
the EOS in the whole density range within the same fram
work.

In this paper, we provide a complete relativistic EOS
studies of neutron stars, which is based on the relativi
mean field~RMF! theory. The RMF theory has been qui
successfully and widely used for the description of nucl
matter and finite nuclei@10–12#. We study the properties o
dense matter with both uniform and nonuniform distributio
in the RMF framework adopting the parameter set TM
which is known to provide excellent properties of the grou
states of heavy nuclei including unstable nuclei@13#. The
RMF theory with the TM1 parameter set was also shown
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reproduce satisfactory agreement with experimental dat
studies of nuclei with deformed configurations and the gi
resonances within the RPA formalism@14–16#. At high den-
sities, hyperons may appear as new degrees of free
through the weak interaction; the neutron star matter is t
composed of neutrons, protons, hyperons, electrons,
muons inb equilibrium. For nonuniform matter at low den
sities, we perform a Thomas-Fermi calculation, in which t
RMF results are taken as its input. Nonuniform matter
assumed to be composed of a lattice of spherical nuclei
mersed in an electron gas with~or without! free neutrons
dripping out of nuclei@17,18#. The optimal state at each den
sity is determined by minimizing the energy density wi
respect to the independent parameters in the model.
phase transition from nonuniform matter to uniform mat
takes place around 1014 g/cm3. The same method~but with-
out the inclusion of hyperons! has been used to work out th
equation of state at finite temperature with various pro
fractions for the use of supernova simulations@19,20#.

This paper is arranged as follows. In Sec. II, we brie
describe the RMF theory and its parameters. In Sec. III,
explain the Thomas-Fermi approximation used for the
scription of nonuniform matter. The resulting EOS in th
whole density range is shown and discussed in Sec. IV.
apply the relativistic EOS to study the constitution and str
ture of neutron stars in Sec. V. The conclusion is presente
Sec. VI.

II. RELATIVISTIC MEAN FIELD THEORY

We briefly explain the RMF theory used to describe u
form matter. In the RMF theory, baryons interact via t
exchange of mesons. The baryons considered in the pre
calculation include nucleons (n andp) and hyperons (L, S,
J). The exchanged mesons consist of isoscalar scalar
vector mesons (s andv), isovector vector meson (r), and
two strange mesons (s* and f) which couple only to hy-
perons. The total Lagrangian density of neutron star ma
in the mean field approximation, can be written as
©2002 The American Physical Society02-1
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where the sum onB is over all charge states of the baryo
octet (p, n, L, S1, S0, S2, J0, J2), and the sum onl is
over electrons and muons (e2 and m2). The meson mean
fields are denoted ass, v, r, s* , andf. The inclusion of
nonlinears andv terms is essential to reproduce the featu
of the relativistic Brueckner-Hartree-Fock theory and sa
factory properties of finite nuclei@13#. We adopt the TM1
parameter set for the meson-nucleon couplings and the
coupling constants and some masses, which was determ
in Ref. @13# by reproducing the properties of finite nuclei
a wide mass range in the periodic table including neutr
rich nuclei. The RMF theory with the TM1 parameter set w
also shown to reproduce satisfactory agreement with exp
mental data in studies of nuclei with deformed configuratio
and giant resonances within the RPA formalism@14–16#.
The hyperon masses are taken to bemL51116 MeV, mS

51193 MeV, andmJ51313 MeV, while the strange me
son masses arems* 5975 MeV andmf51020 MeV @3#.
As for the hyperon couplings, we employ the following r
lations derived from the quark model:

1

3
gsN5

1

2
gsL5

1

2
gsS5gsJ ,

1

3
gvN5

1

2
gvL5

1

2
gvS5gvJ ,

grN5
1

2
grS5grJ , grL50,

2gs* L52gs* S5gs* J5
2A2

3
gsN , gs* N50,

2gfL52gfS5gfJ5
2A2

3
gvN , gfN50. ~2!

In the RMF theory, the meson fields are treated as cla
cal fields, and the field operators are replaced by their exp
tation values. The meson field equations in uniform ma
are given by

ms
2s2g2s21g3s35(

B
gsB

2JB11

2p2 E
0

kB mB*

Ak21mB*
2

k2dk,

~3!
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B
gvB~2JB11!kB

3/~6p2!, ~4!

mr
2r5(

B
grBI 3B~2JB11!kB

3/~6p2!, ~5!

ms*
2 s* 5(

B
gs* B

2JB11

2p2 E
0

kB mB*

Ak21mB*
2

k2dk, ~6!

mf
2 f5(

B
gfB~2JB11!kB

3/~6p2!, ~7!

wheremB* 5mB2gsBs2gs* Bs* is the effective mass of the
baryon speciesB, andkB is its Fermi momentum.JB andI 3B
denote the spin and isospin projections of baryonB.

For neutron star matter with uniform distributions, th
composition is determined by the requirements of cha
neutrality and b-equilibrium conditions. Considering th
baryon octet and leptons included in the present calculat
the b-equilibrium conditions, without trapped neutrinos, c
be clearly expressed by

mp5mS15mn2me ,

mL5mS05mJ05mn ,

mS25mJ25mn1me ,

mm5me , ~8!

wherem i is the chemical potential of speciesi. At zero tem-
perature, the chemical potentials of baryonB and leptonl are
given by

mB5AkB
21mB*

21gvBv1gfBf1grBt3r, ~9!

m l5Akl
21ml*

2. ~10!

The charge neutrality condition has the following form:

np1nS15ne1nm1nS21nJ2, ~11!

whereni5ki
3/3p2 is the number density of speciesi. Then,

the total baryon density isnB5nn1np1nL1nS21nS0

1nS11nJ21nJ0. We solve the coupled equations~3!–~7!,
~8!, and~11! self-consistently at a given baryon densitynB .
The total energy density and pressure of uniform matter
given by

«5(
B
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III. THOMAS-FERMI APPROXIMATION

In the low-density range, where heavy nuclei exist,
perform the Thomas-Fermi calculation based on the w
done by Oyamatsu@17#. In this approximation, nonuniform
matter can be modeled as a lattice of nuclei immersed
vapor of neutrons and electrons. At lower density, there is
neutron dripping out of nuclei. We assume that each he
spherical nucleus is located in the center of a charge-ne
cell consisting of a vapor of neutrons and electrons. T
nuclei form a body-centered-cubic~bcc! lattice to minimize
the Coulomb lattice energy. It is useful to introduce t
Wigner-Seitz cell to simplify the energy of the unit cell. Th
Wigner-Seitz cell is a sphere whose volume is the same
the unit cell in the bcc lattice.

We assume the nucleon distribution functionsni(r ) ( i
5n for neutron,i 5p for proton! in the Wigner-Seitz cell as

ni~r !5H ~ni
in2ni

out!F12S r

Ri
D t i G3

1ni
out , 0<r<Ri

ni
out , Ri<r<Rcell ,

~14!

where r represents the distance from the center of
nucleus, andRcell is the radius of the Wigner-Seitz cell de
fined by the relation,Vcell5(4p/3)Rcell

3 5a3 (a is the lat-
tice constant!. The parametersRi andt i determine the bound
ary and the relative surface thickness of the heavy nucl
Rn and tn may be a little different fromRp and tp due to
additional neutrons forming a neutron skin in the surfa
region. For neutron star matter at a given average densit
baryons,nB5*cell@nn(r )1np(r )#d3r /Vcell , there are only
seven independent parameters among the eight varia
a,nn

in ,nn
out ,Rn ,tn ,np

in ,Rp ,tp . The optimal state is deter
mined by minimizing the average energy density,«
5Ecell /Vcell , with respect to those independent paramet

The total energy per cell,Ecell , can be written as

Ecell5Ebulk1Es1EC1Ee . ~15!

Here the bulk energy of baryons,Ebulk , is calculated by

Ebulk5E
cell

«RMF„nn~r !,np~r !…d3r , ~16!

where«RMF is the energy density in the RMF theory as
functional of the neutron densitynn and the proton density
np . As the input in the Thomas-Fermi calculation,«RMF at
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each radiusr is calculated in the RMF theory for uniform
matter with the corresponding densitiesnn andnp . The sur-
face energy termEs due to the inhomogeneity of nucleo
distribution is given by

Es5E
cell

F0u¹@nn~r !1np~r !#u2d3r , ~17!

where the parameterF0570 MeV fm5 is determined by do-
ing the Thomas-Fermi calculations of finite nuclei as d
scribed in the Appendix in Ref.@17#. The Coulomb energy
per cellEC is calculated using the Wigner-Seitz approxim
tion with an added correction term for the bcc lattice:

EC5
1

2Ecell
e@np~r !2ne#f~r !d3r 1DEC , ~18!

wheref(r ) stands for the electrostatic potential calculated
the Wigner-Seitz approximation, andDEC5CBCC(Ze)2/a is
the correction term for the bcc lattice as given in Ref.@17#.
ne is the electron number density of uniform electron g
which can be determined by the charge neutrality condit
asne5Z/Vcell (Z denotes the proton number per cell!. The
last term in Eq.~15!, Ee , is the kinetic energy of electrons
which is given by

Ee5
1

p2E0

keAk21me
2k2dk, ~19!

whereke5(3p2ne)
1/3 is the Fermi momentum of electrons

For each baryon densitynB , we minimize the average
energy density« of nonuniform matter with respect to th
independent parameters in the Thomas-Fermi approxima
At some higher densities, the heavy nuclei dissolve and
matter becomes homogeneous. We determine the densi
which the phase transition takes place, by comparing
energy density of nonuniform matter with the one of unifor
matter.

IV. PROPERTIES OF NEUTRON STAR MATTER

In this section, we present the resulting EOS of neut
star matter in the density range from 1027 to 1.2 fm23. At
low densities where heavy nuclei exist, nonuniform matte
described by the Thomas-Fermi approximation, in which
optimal state is determined by minimizing the average
ergy density with respect to its independent parameters. F
density below;2.431024 fm23, the nucleons form opti-
mal nuclei and those nuclei build a bcc lattice with unifor
electron gas. It is found that the neutrons begin to drip
from nuclei atnB;2.431024 fm23; then, there is a neutron
gas in addition to the electron gas. In Fig. 1 we show
neutron and proton distributions along the straight line jo
ing the centers of the nearest nuclei in the bcc lattice at
average baryon densitiesnB50.0001, 0.001, 0.01, 0.05 fm23.
As the density increases, the optimal nuclei become clo
and more neutron rich. AtnB;0.06 fm23, the nuclei dis-
solve and the optimal state is a uniform matter consisting
neutrons, protons, and electrons inb equilibrium. When the
2-3
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electron chemical potential exceeds the rest mass of
muon ~at nB'0.11 fm23), it becomes energetically favor
able to convert the electrons at the Fermi surface into mu
then, muons appear with chemical equilibrium conditionme
5mm . Hyperons appear at higher densities (nB
*0.27 fm23). In Fig. 2 we show the fraction of speciesi,
Yi5ni /nB , as a function of the total baryon densitynB . The
composition of uniform neutron star matter is calculated
solving the coupled equations~3!–~7!, ~8!, and ~11!. The
threshold density for a hyperon species is determined
only by its charge and mass but also by the meson m
fields, which are shown in Fig. 3 as functions of bary
density. In the present calculation,S2 is the first hyperon
which appears atnB'0.27 fm23, while L has almost the
same threshold density (nB'0.29 fm23). It is partly be-
cause the negative charge is much more favorable, e
though S2 has somewhat larger mass compared with
mass ofL. The other hyperonsS0, S1, J2, andJ0 appear
one by one at higher densities (nB'0.57, 0.72, 0.84,
1.17 fm23). The appearance of hyperons causes some
creases of the nucleon fractions. At high densities (nB
*0.7 fm23), the L fraction is larger than the neutron frac
tion. We note that the hyperon threshold densities and f

FIG. 1. The neutron distribution~solid curves! and the proton
distribution~dashed curves! along the straight lines joining the cen
ters of the nearest nuclei in the bcc lattice at the average ba
densitynB50.0001, 0.001, 0.01, 0.05 fm23.
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tions are sensitive to the hyperon couplings, and there
quite large uncertainties in the hyperon couplings. In t
work, we adopt the hyperon couplings derived from t
quark model.

We display in Fig. 4 the pressure of neutron star matte
a function of energy density. The present EOS shown by
solid curve is compared with the EOS considering only
uniform matter phase~dotted curve!, and it is found that the
contribution from nonuniform matter is quite large at lo

on

FIG. 2. The fraction of speciesi, Yi5ni /nB , as a function of
the total baryon densitynB .

FIG. 3. The meson mean fields as functions of baryon densi
2-4
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densities. The EOS without hyperons is also shown for co
parison by a dashed curve. The inclusion of hyperons c
siderably softens the EOS at high densities, because con
sion of nucleons to hyperons can relieve the Fermi pres
of the nucleons. In Fig. 5 we show the fraction of speciei,
Yi , in neutron star matter as a function of the average bar
densitynB . It is very interesting to see the phase transitio

FIG. 4. The pressureP versus energy density« for neutron star
matter with the inclusion of hyperons~solid curve! and without
hyperons~dashed curve!. The EOS considering only uniform matte
phase~dotted curve! is also shown for comparison.

FIG. 5. The fractions of the composition in neutron star ma
as functions of baryon density.
03580
-
n-
er-
re

n
s

in the wide density range. At low densities, all nucleons ex
inside nuclei; therefore, the fraction of the nucleons in nuc
~dot-dashed curve! is equal to 1. The decrease of the electr
fraction ~dotted curve!, which is equal to the proton fraction
due to charge neutrality, implies that the optimal nucle
becomes more and more neutron rich as the density
creases. Beyond the neutron drip density (nB;2.4
31024 fm23), there is a increasing fraction of free neutro
outside nuclei~solid curve!, and this causes a rapid decrea
of the fraction of nucleons in nuclei~dot-dashed curve!. The
phase transition from nonuniform matter to uniform mat
occurs at;0.06 fm23, where the heavy nuclei dissolve an
the matter consists of neutrons, protons, and electronsb
equilibrium. We note that the neutron star matter is assum
to be at zero temperature, so there is no free proton
outside nuclei in the nonuniform matter phase. The mu
fraction appears atnB'0.11 fm23 with the charge neutrality
conditionYm1Ye5Yp . At high densities (nB*0.27 fm23),
the hyperon fractions appear, which have been shown m
clearly in Fig. 2.

V. NEUTRON STAR STRUCTURE

We calculate the neutron star properties by using the r
tivistic EOS. The neutron star masses as functions of cen
baryon density are displayed in Fig. 6. It is shown that
maximum mass of the neutron stars including hyperons
around 1.6M ( , while it is around 2.2M ( without hyperons.
The neutron star mass is determined predominantly by
behavior of the EOS at high densities. The inclusion of h
perons considerably softens the EOS at high densities, th
fore results in much smaller neutron star masses. Non
form matter, which exists in the crusts of neutron stars, ha
negligible contribution to the total neutron star mass, bu

r

FIG. 6. The neutron star masses as functions of central ba
density
2-5
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plays an important role in the description of the neutron s
profile in the crustal region. In Figs. 7 and 8, we show t
number density of the composition in neutron stars withM
51.6M ( andM51.2M ( , respectively, as a function of ra
dius. It is clear that uniform matter containing an equilibriu
mixture of nucleons, hyperons, and leptons exists in the
ternal region of the neutron star, while the nonuniform ma
phase occurs only in the surface region. The neutron
with M51.6M ( has much thinner crusts as compared to
case of the neutron star withM51.2M ( . We show in Fig. 9

FIG. 7. The number density of the composition in the neut
star withM51.6M ( as a function of radiusr.

FIG. 8. Same as Fig. 7 but forM51.2M ( .
03580
r
e

-
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e

the mass-radius relations using the EOS with or without
perons. It is found that the inclusion of hyperons only infl
ences the neutron stars having large masses (M*1.2M ().

VI. CONCLUSION

We have constructed the relativistic EOS of neutron s
matter in the density range from 1027 to 1.2 fm23. Nonuni-
form matter at low densities has been described by
Thomas-Fermi approximation, in which the nucleons fo
the optimal nuclei and those nuclei build a bcc lattice. U
form matter at high densities has been studied in the R
theory. We adopted the RMF model with the TM1 parame
set, which was demonstrated to be successful in descri
the properties of nuclear matter and finite nuclei includi
unstable nuclei@13#, and its results were taken as the input
the Thomas-Fermi calculations. Hence we have worked
consistent calculations for uniform matter and nonunifo
matter. The phase transition from nonuniform matter to u
form matter is found to take place atnB;0.06 fm23. At
high densities (nB*0.27 fm23), it is energetically favorable
to convert some nucleons into hyperons via weak inter
tions. The inclusion of hyperons leads to a considerable s
ening of the EOS at high densities, since the conversion
nucleons to hyperons can relieve the Fermi pressure of
nucleons. We note that the contributions from hyperons
sensitive to the hyperon couplings; here, we have adop
the hyperon couplings derived from the quark model. Pr
ently, there exist large uncertainties in hyperon couplin
The hyperon couplings should be constrained by the exp
mental data of hypernuclei, but experimental information
deficient for determining them. From a study of singleL
hypernuclei, the quark model values ofL hyperon couplings
usually predict overbinding ofL single particle energies. I

n
FIG. 9. The mass-radius relations for neutron stars. The s

curve shows the results with the inclusion of hyperons, while th
without hyperons are plotted by the dashed curve for comparis
2-6
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seems that the quark model values ofL hyperon couplings
lead to a rather strong attraction. This might cause an ea
appearance of theL hyperon. A detailed investigation of th
dependence of the results on the hyperon couplings is
ferred to future work.

We have employed the present EOS to calculate the n
tron star properties. With the appearance of hyperons,
maximum mass of neutron stars turned out to be 1.6M ( . It
is found that the inclusion of hyperons results in mu
smaller neutron star masses due to the softening of the E
The core of massive neutron stars is then composed of
equilibrium mixture of nucleons, hyperons, and lepto
Nonuniform matter exists only in the surface region, whi
forms quite thin crusts of neutron stars. Consideration of
nonuniform matter phase gives a negligible contribution
the neutron star mass, but it is essential to provide a real
description of the neutron star structure.

The present calculations have been performed within
framework of the relativistic mean field approach, which
incapable to include pions explicitly. It will be possible an
er

e

c

ys
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important to construct a complete EOS based on other
croscopic theories such as the Dirac-Brueckner-Hartree-F
approach. Especially, the same approach should be empl
in the treatment of both uniform matter and nonuniform m
ter. It is well known that relativity plays an essential role
describing nuclear saturation and nuclear structure; it a
brings some distinctive properties to the EOS compared w
the case in the nonrelativistic framework. Therefore, it
very interesting and important to study astrophysical p
nomena such as neutron star properties using the relativ
EOS.

ACKNOWLEDGMENTS

The author would like to thank H. Toki, K. Sumiyosh
and K. Oyamatsu for fruitful discussions and collaboratio
This work was supported in part by the National Natu
Science Foundation of China under Contracts No. 10075
and No. 10135030.
i-

r.

g,

l.

g.
@1# M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattim
and R. Knorren, Phys. Rep.280, 1 ~1997!.

@2# H. Heiselberg and M. Hjorth-Jensen, Phys. Rep.328, 237
~2000!.

@3# S. Pal, M. Hanauske, I. Zakout, H. Stocker, and W. Grein
Phys. Rev. C60, 015802~1999!.

@4# G. Baym, H. A. Bethe, and C. J. Pethick, Nucl. Phys.A175,
225 ~1971!.

@5# J. W. Negele and D. Vautherin, Nucl. Phys.A207, 298 ~1973!.
@6# C. J. Pethick and D. G. Ravenhall, Annu. Rev. Nucl. Part. S

45, 429 ~1995!.
@7# N. K. Glendenning, F. Weber, and S. A. Moszkowski, Ph

Rev. C45, 844 ~1992!.
@8# P. K. Sahu, Phys. Rev. C62, 045801~2000!.
@9# K. Schertler, C. Greiner, J. Schaffner-Bielich, and M.

Thoma, Nucl. Phys.A677, 463 ~2000!.
@10# B. D. Serot and J. D. Walecka, Adv. Nucl. Phys.16, 1

~1986!.
,

r,

i.

.

@11# Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys.~N.Y.! 198,
132 ~1990!.

@12# D. Hirata, K. Sumiyoshi, B. V. Carlson, H. Toki, and I. Tan
hata, Nucl. Phys.A609, 131 ~1996!.

@13# Y. Sugahara and H. Toki, Nucl. Phys.A579, 557 ~1994!.
@14# D. Hirata, H. Toki, and I. Tanihata, Nucl. Phys.A589, 239

~1995!.
@15# Z. Y. Ma, H. Toki, B. Q. Chen, and N. Van Giai, Prog. Theo

Phys.98, 917 ~1997!.
@16# Z. Y. Ma, N. Van Giai, A. Wandelt, D. Vretenar, and P. Rin

Nucl. Phys.A686, 173 ~2001!.
@17# K. Oyamatsu, Nucl. Phys.A561, 431 ~1993!.
@18# K. Sumiyoshi, K. Oyamatsu, and H. Toki, Nucl. Phys.A595,

327 ~1995!.
@19# H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nuc

Phys.A637, 435 ~1998!.
@20# H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Pro

Theor. Phys.100, 1013~1998!.
2-7


