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We construct the equation of sta€0S in a wide density range for neutron stars using the relativistic mean
field theory. The properties of neutron star matter with both uniform and nonuniform distributions are studied
consistently. The inclusion of hyperons considerably softens the EOS at high densities. The Thomas-Fermi
approximation is used to describe the nonuniform matter, which is composed of a lattice of heavy nuclei. The
phase transition from uniform matter to nonuniform matter occurs around 0.08, fand the free neutrons
drip out of nuclei at about 2410 * fm 3. We apply the resulting EOS to investigate the neutron star
properties such as maximum mass and composition of neutron stars.
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I. INTRODUCTION reproduce satisfactory agreement with experimental data in
studies of nuclei with deformed configurations and the giant
The properties of neutron stars are mainly determined byesonances within the RPA formaligih4—-16. At high den-

the equation of stattEOS of neutron star matter, which is sities, hyperons may appear as new degrees of freedom
charge neutral matter i equilibrium. A comprehensive de- through the weak interaction; the neutron star matter is then
scription of neutron stars should include not only the interiorcomposed of neutrons, protons, hyperons, electrons, and
region but also the inner and outer crusts; therefore, the EOfuons ing equilibrium. For nonuniform matter at low den-
for neutron stars is required to cover a wide density rangesities, we perform a Thomas-Fermi calculation, in which the
For the EOS at high densities, there are many efforts basef\MF results are taken as its input. Nonuniform matter is
on bOth nonrelatiViStiC and relatiViStiC approaCheS, Whichassumed to be Composed of a lattice of Spherica' nuclei im-
discussed several possible mechanisms to soften the EOS@krsed in an electron gas witlor without free neutrons
high densities, e.g., by hyperons, kaon condensates, or eveipping out of nucle[17,18. The optimal state at each den-
quark phases[1-3]. When the density is lowered to sjty is determined by minimizing the energy density with
10'* g/en?, some heavy nuclei may be formed and mattefrespect to the independent parameters in the model. The
becomes inhomogeneous. There are a few works based @mase transition from nonuniform matter to uniform matter
nonrelativistic models deSCfibing the EOS at low denSitiEQakes p|ace around g/cr‘r‘? The same methocbut with-
where heavy nuclei exist4—6]. Most studies of neutron oyt the inclusion of hyperonias been used to work out the
stars use the composite EOS, which is constructed by consquation of state at finite temperature with various proton
necting the EOS at h|gh densities to the one at low densitieﬁ'actions for the use of supernova S|mu|at|(im§’2q
[7-9]. Even though the EOS at high densities are based on Thjs paper is arranged as follows. In Sec. Il, we briefly
various relativistic many body theories, it has to be com-gescribe the RMF theory and its parameters. In Sec. IlI, we
bined with some nonrelativistic EOS at low densities. Theexp|ain the Thomas_Fermi approximation used for the de_
differences in the models used in the different density rangescription of nonuniform matter. The resulting EOS in the
usually lead to some discontinuity and inconsistency in theyhole density range is shown and discussed in Sec. IV. We
composite EOS. Therefore, it is very interesting to construchpply the relativistic EOS to study the constitution and struc-
the EOS in the whole density range within the same frametyre of neutron stars in Sec. V. The conclusion is presented in

work. _ o Sec. VI.
In this paper, we provide a complete relativistic EOS for

studies of neutron stars, which is based on the relativistic
mean field(RMF) theory. The RMF theory has been quite Il. RELATIVISTIC MEAN EIELD THEORY
successfully and widely used for the description of nuclear
matter and finite nucl€il0—17. We study the properties of We briefly explain the RMF theory used to describe uni-
dense matter with both uniform and nonuniform distributionsform matter. In the RMF theory, baryons interact via the
in the RMF framework adopting the parameter set TM1,exchange of mesons. The baryons considered in the present
which is known to provide excellent properties of the groundcalculation include nucleonsi(andp) and hyperonsA, 2.,
states of heavy nuclei including unstable nudl€8]. The E). The exchanged mesons consist of isoscalar scalar and
RMF theory with the TM1 parameter set was also shown tovector mesons« and w), isovector vector mesorp{, and
two strange mesonss and ¢) which couple only to hy-
perons. The total Lagrangian density of neutron star matter,
*Electronic address: songtc@public.tpt.tji.cn in the mean field approximation, can be written as
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where the sum o is over all charge states of the baryon B
octet (o, n, A, %, 39 37, E° E7), and the sum ohis

over electrons and muon®( and x~). The meson mean . 20 .
( ~) baryon specieB, andkg is its Fermi momentumlg andl ;5

fields are denoted as, o, p, ¢*, and¢. The inclusion of . ) ; S
. . . denote the spin and isospin projections of barfn
nonlinearo andw terms is essential to reproduce the feature

of the relativistic Brueckner-Hartree-Fock theory and satis- For neutrqn star mz_;\tter with uniform_ distributions, the
factory properties of finite nucldil3]. We adopt the TM1 composition is determined by the requirements of charge

parameter set for the meson-nucleon couplings and the Selbgryon octet and leptons included in the present calculation,

coupling constants and some masses, which was determin P - ) .
in Ref.[13] by reproducing the properties of finite nuclei in ihee gezﬂll;'lfxr;rgsgggdt;gons’ without trapped neutrinos, can

a wide mass range in the periodic table including neutron-
rich nuclei. The RMF theory with the TM1 parameter set was
also shown to reproduce satisfactory agreement with experi-
mental data in studies of nuclei with deformed configurations
and giant resonances within the RPA formaligi—16.

The hyperon masses are taken torhg=1116 MeV, my
=1193 MeV, andmz=1313 MeV, while the strange me-

wherem§ =mg—g,50 —g,+g0* is the effective mass of the

r]a_eutrality and B-equilibrium conditions. Considering the

Mp= M3 += Mn™ Me,
A= 0= (0= fhn,

Ms-=pE-= Tt te,

son masses arm,« =975 MeV andm,=1020 MeV [3]. _ 8
. . M= e, 8
As for the hyperon couplings, we employ the following re-
lations derived from the quark model: wherey; is the chemical potential of speciesAt zero tem-
perature, the chemical potentials of ban®and lepton are

1 1 1 given by

39N=5900=5090x =00z
ws=Vk5+ méz+ngw+g¢B¢+ngT3p’ (C)
1 1 1

39oN"59010 =590 =00z = kE+m*2, (10

The charge neutrality condition has the following form:

1
Oon=39x=9p=:  Gpa=0, Np+Ny+=Ne+N,+Ny-+nz-, (11
2.2 Wherenizki3/37r2 is the number density of speciesThen,
204 A=204%x3 =0z = Tg"’\" Js+n=0, the total baryon density img=n,+n,+n,+ns-+nso

+ny++nz-+ngzo. We solve the coupled equatio®—(7),
(8), and(11) self-consistently at a given baryon density.

2 - _ _2\/5 -0 2 The total energy density and pressure of uniform matter are
Jyr= gd)E_gd)E_Tngv gyn=0. 2 given by

In the RMF theory, the meson fields are treated as classi-

2Jg+1
cal fields, and the field operators are replaced by their expec- €~ 213:

K 1 1
J ® ik mE2kedk+ Sm2o?— = g,0°
0 2777 3

2
tation values. The meson field equations in uniform matter 2m
are given by 1 1 3 1 1

+ 20:0% 2 M2 w2+ = Caw?+ —m2p2+ =m>, o+ 2
X 4930' 2mw(1) 4C3(1) 2mpp 2m0, g
2Jg+1 (ks Mg
mia—g202+gga3:§B: 985 Jo \/k2+m*2k2dk’ 1 5.0 1[4 1= 2
7 B . +Smid +§I) ;jo VkZ+ mk2dk, (12
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1« 2Jg+1 (ke K4k 1 1 each radiug is calculated in the RMF theory for uniform
P=§ 5 — Emgonr 59203 matter with the corresponding densitigsandn,. The sur-
5 2a% Jo k2 +mj face energy ternEg due to the inhomogeneity of nucleon

1 1, 01 1,,01, distribution is given by
—ZggU4+ Emww +ZC3(1)4+ zmpp —Emo_*O'*

2

Es:j FolVIna(r)+np(r)][2dr, (17
1 [k k*dk cell

1 1
+omipit s D = | —.
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13 : :
where the parametdt,=70 MeV fn? is determined by do-

ing the Thomas-Fermi calculations of finite nuclei as de-

scribed in the Appendix in Ref17]. The Coulomb energy

per cellE¢ is calculated using the Wigner-Seitz approxima-
In the low-density range, where heavy nuclei exist, wetion with an added correction term for the bcc lattice:

perform the Thomas-Fermi calculation based on the work 1

done by Oyamats{il7]. In this approximation, nonuniform _ _ 3

matter )éanybe modeled as a Iat?i?:e of nuclei immersed in a EC_ELe“e[n”(r) Ne]$(r)d*r+AEc, (18)

vapor of neutrons and electrons. At lower density, there is no

neutron dripping out of nuclei. We assume that each heavwhere¢(r) stands for the electrostatic potential calculated in

spherical nucleus is located in the center of a charge-neutréie Wigner-Seitz approximation, atE = Cgc(Z€)%/a is

cell consisting of a vapor of neutrons and electrons. Thehe correction term for the bcc lattice as given in Réf7].

nuclei form a body-centered-cubfbco lattice to minimize  n. is the electron number density of uniform electron gas,

the Coulomb lattice energy. It is useful to introduce thewhich can be determined by the charge neutrality condition

Wigner-Seitz cell to simplify the energy of the unit cell. The asn,=2Z/V . (Z denotes the proton number per ¢gelfhe

Wigner-Seitz cell is a sphere whose volume is the same dast term in Eq(15), E, is the kinetic energy of electrons,

Ill. THOMAS-FERMI APPROXIMATION

the unit cell in the bcc lattice. which is given by
We assume the nucleon distribution functiomgr) (i
=n for neutron,i=p for proton in the Wigner-Seitz cell as 1 (k
p for proton g == J ® K2+ m2kadk, (19
. r\t]® w0
(ni"=nf" 1—(— +nftt, O=r<R . :
Ri wherek,= (372n,) ' is the Fermi momentum of electrons.

MOT o For each baryon densit inimize th
n R<r<Reo, or each baryon densityg, we minimize the average

b energy densitye of nonuniform matter with respect to the
(14)  independent parameters in the Thomas-Fermi approximation.
) At some higher densities, the heavy nuclei dissolve and the
where r represents the distance from the center of th&naier hecomes homogeneous. We determine the density, at
nucleus, andR.e, is the radius of the Wigner-Seitz cell de- \ypich the phase transition takes place, by comparing the

. . _ 3 _ .
fined by the relationVee=(4m/3)RZ.=a’ (a is the lat-  energy density of nonuniform matter with the one of uniform
tice constant The parameterR; andt; determine the bound- matter.

ary and the relative surface thickness of the heavy nucleus.
R, andt, may be a little different fromR;, andt, due to
additional neutrons forming a neutron skin in the surface
region. For neutron star matter at a given average density of In this section, we present the resulting EOS of neutron
baryons,nBzfce”[nn(r)Jrnp(r)]d3rlvce”, there are only star matter in the density range from 10to 1.2 fm 3. At
seven independent parameters among the eight variabldsw densities where heavy nuclei exist, nonuniform matter is
a,n'n“,nﬂ“‘,Rn,tn,n'p”,Rp,tp. The optimal state is deter- described by the Thomas-Fermi approximation, in which the
mined by minimizing the average energy density, optimal state is determined by minimizing the average en-
=E¢en/Veen, With respect to those independent parametersergy density with respect to its independent parameters. For a

IV. PROPERTIES OF NEUTRON STAR MATTER

The total energy per celE e, can be written as density below~2.4x10"% fm~3, the nucleons form opti-
mal nuclei and those nuclei build a bcc lattice with uniform
Ecen=Epuikt Es+Ec+Ee. (15 electron gas. It is found that the neutrons begin to drip out
from nuclei aing~2.4x 10~ * fm~2; then, there is a neutron
Here the bulk energy of baryong,, is calculated by gas in addition to the electron gas. In Fig. 1 we show the
neutron and proton distributions along the straight line join-
_ 3 ing the centers of the nearest nuclei in the bcc lattice at the
Ebuik= J erur(Nn().Mp(r)d7r, (16 average baryon densitieg=0.0001, 0.001, 0.01, 0.05 fni.

As the density increases, the optimal nuclei become closer
where egye is the energy density in the RMF theory as aand more neutron rich. Abg~0.06 fm 3, the nuclei dis-
functional of the neutron density,, and the proton density solve and the optimal state is a uniform matter consisting of
n,. As the input in the Thomas-Fermi calculatiaryye at  neutrons, protons, and electronsgrequilibrium. When the
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FIG. 1. The neutron distributiofsolid curve$ and the proton
distribution(dashed curveslong the straight lines joining the cen-
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FIG. 2. The fraction of species Y;=n;/ng, as a function of
the total baryon densityg .

tions are sensitive to the hyperon couplings, and there are
quite large uncertainties in the hyperon couplings. In this
work, we adopt the hyperon couplings derived from the
quark model.

We display in Fig. 4 the pressure of neutron star matter as
a function of energy density. The present EOS shown by the
solid curve is compared with the EOS considering only the

ters of the nearest nuclei in the bcc lattice at the average baryonniform matter phasédotted curvg, and it is found that the

densityng=0.0001, 0.001, 0.01, 0.05 .

electron chemical potential exceeds the rest mass of the 100

muon (at ng~0.11 fm 3), it becomes energetically favor-

able to convert the electrons at the Fermi surface into muons

then, muons appear with chemical equilibrium conditign
=um,. Hyperons appear at higher densitiesng (
=0.27 fm 3). In Fig. 2 we show the fraction of specigs
Y;=n;/ng, as a function of the total baryon density. The

composition of uniform neutron star matter is calculated by

solving the coupled equation®)—(7), (8), and (11). The

threshold density for a hyperon species is determined noz 5o
only by its charge and mass but also by the meson meate,

fields, which are shown in Fig. 3 as functions of baryon
density. In the present calculatioB,” is the first hyperon
which appears ahg~0.27 fm 3, while A has almost the
same threshold densityng~0.29 fm 3). It is partly be-

cause the negative charge is much more favorable, evel
though >~ has somewhat larger mass compared with the

+ - —

mass ofA. The other hyperons?, , 27, andE° appear
one by one at higher densitiesng=~0.57,0.72,0.84,

1.17 fm 3). The appearance of hyperons causes some de

creases of the nucleon fractions. At high densitieg (
=0.7 fm %), the A fraction is larger than the neutron frac-

contribution from nonuniform matter is quite large at low

<
)

ield

f

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ng (fm?)

tion. We note that the hyperon threshold densities and frac- FIG. 3. The meson mean fields as functions of baryon density.
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) FIG. 6. The neutron star masses as functions of central baryon
FIG. 4. The pressurB versus energy densiy for neutron star density
matter with the inclusion of hyperonsolid curve and without
hyperonsdashed Cu.rV)EThe EOS ConSidering.only uniform matter in the wide density range. At low densities, all nucleons exist
phase{dotted curvgis also shown for comparison. inside nuclei; therefore, the fraction of the nucleons in nuclei
. . . (dot-dashed curvyes equal to 1. The decrease of the electron
densmes. The EOS without hyperc_)ns |s.also shown for COMraction (dotted curvaqwhich is equal to the proton fraction
parison by a dashed curve. The mcIus!o_n of hyperons COMue to charge neutrality, implies that the optimal nucleus
siderably softens the EOS at high densities, because CoNVelacomes more and more neutron rich as the density in-
sion of nucleons to hyperons can relieve the Fermi pressur, eases. Beyond the neutron drip densityg{ 2.4
of the nucleons. In Fig. 5 we show .the fraction of specjes . 104 fm~3), there is a increasing fraction of free neutrons
Vi n neutron_ star m‘f"“er asa function of the average t?"’_Woeutside nucleisolid curve, and this causes a rapid decrease
densityng.. It is very interesting to see the phase transitions¢ 1o fraction of nucleons in nuclédot-dashed curje The
phase transition from nonuniform matter to uniform matter
't occurs at~0.06 fm 3, where the heavy nuclei dissolve and
the matter consists of neutrons, protons, and electror in
equilibrium. We note that the neutron star matter is assumed
to be at zero temperature, so there is no free proton gas
outside nuclei in the nonuniform matter phase. The muon
{ fraction appears atg~0.11 frmi 3 with the charge neutrality
! conditionY ,+ Y=Y, At high densities 165=0.27 fm 3,
“ the hyperon fractions appear, which have been shown more
clearly in Fig. 2.

K]
=~

Ny V. NEUTRON STAR STRUCTURE

}; We calculate the neutron star properties by using the rela-
‘ tivistic EOS. The neutron star masses as functions of central
L, baryon density are displayed in Fig. 6. It is shown that the
i maximum mass of the neutron stars including hyperons is
Y around 1.8/, while it is around 2.®1 without hyperons.

0.01 ! ! ! ! ! 2ot The neutron star mass is determined predominantly by the
107 10° 10° 10° 10° 10” 10" 10° behavior of the EOS at high densities. The inclusion of hy-
perons considerably softens the EOS at high densities, there-
fore results in much smaller neutron star masses. Nonuni-

FIG. 5. The fractions of the composition in neutron star matterfform matter, which exists in the crusts of neutron stars, has a
as functions of baryon density. negligible contribution to the total neutron star mass, but it

U
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. e FIG. 9. The mass-radius relations for neutron stars. The solid
FIG. 7. The number density of the composition in the neutron . - . .
. : . curve shows the results with the inclusion of hyperons, while those
star withM=1.6M; as a function of radius. . .
without hyperons are plotted by the dashed curve for comparison.

plays an important role in the description of the neutron stathe mass-radius relations using the EOS with or without hy-
profile in the crustal region. In Figs. 7 and 8, we show theperons. It is found that the inclusion of hyperons only influ-
number density of the composition in neutron stars With  ences the neutron stars having large masbés 1.2M ).
=1.6My andM=1.2M, respectively, as a function of ra-
dius. It is clear that uniform matter containing an equilibrium
mixture of nucleons, hyperons, and leptons exists in the in-
ternal region of the neutron star, while the nonuniform matter We have constructed the relativistic EOS of neutron star
phase occurs only in the surface region. The neutron stdnatter in the density range from 10to 1.2 fm 3. Nonuni-
with M =1.6M has much thinner crusts as compared to thdorm matter at low densities has been described by the
case of the neutron star wit =1.2M . We show in Fig. 9  Thomas-Fermi approximation, in which the nucleons form
the optimal nuclei and those nuclei build a bcc lattice. Uni-
, form matter at high densities has been studied in the RMF
O theory. We adopted the RMF model with the TM1 parameter
set, which was demonstrated to be successful in describing
the properties of nuclear matter and finite nuclei including
unstable nucl€il3], and its results were taken as the input in
the Thomas-Fermi calculations. Hence we have worked out
consistent calculations for uniform matter and nonuniform
matter. The phase transition from nonuniform matter to uni-
form matter is found to take place ag~0.06 fm 3. At
high densitiesifg=0.27 fm %), it is energetically favorable
to convert some nucleons into hyperons via weak interac-
tions. The inclusion of hyperons leads to a considerable soft-
ening of the EOS at high densities, since the conversion of
nucleons to hyperons can relieve the Fermi pressure of the
nucleons. We note that the contributions from hyperons are
3 —nucleons sensitive to the hyperon couplings; here, we have adopted
_'_f_'_lr;y;i:’sns . the hyperon couplings derived from the quark model. Pres-
—-—-nucleons in nuclei caf ently, there exist large uncertainties in hyperon couplings.
R T The hyperon couplings should be constrained by the experi-
6 8 10 12 14 mental data of hypernuclei, but experimental information is
r (km) deficient for determining them. From a study of single
hypernuclei, the quark model values Afhyperon couplings
FIG. 8. Same as Fig. 7 but fol =1.2M, . usually predict overbinding oA single particle energies. It

VI. CONCLUSION

number density (fm™®)

o
N
&>
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seems that the quark model values/othyperon couplings important to construct a complete EOS based on other mi-
lead to a rather strong attraction. This might cause an earlieroscopic theories such as the Dirac-Brueckner-Hartree-Fock
appearance of th& hyperon. A detailed investigation of the approach. Especially, the same approach should be employed
dependence of the results on the hyperon couplings is dén the treatment of both uniform matter and nonuniform mat-
ferred to future work. ter. It is well known that relativity plays an essential role in
We have employed the present EOS to calculate the newescribing nuclear saturation and nuclear structure; it also
tron star properties. With the appearance of hyperons, thgrings some distinctive properties to the EOS compared with
maximum mass of neutron stars turned out to beVl6 It the case in the nonrelativistic framework. Therefore, it is
is found that the inclusion of hyperons results in muchyery interesting and important to study astrophysical phe-

smaller neutron star masses due to the softening of the EOfgmena such as neutron star properties using the relativistic
The core of massive neutron stars is then composed of theps.

equilibrium mixture of nucleons, hyperons, and leptons.
Nonuniform matter exists only in the surface region, which
forms quite thin crusts of neutron stars. Consideration of the
nonuniform matter phase gives a negligible contribution to
the neutron star mass, but it is essential to provide a realistic The author would like to thank H. Toki, K. Sumiyoshi,
description of the neutron star structure. and K. Oyamatsu for fruitful discussions and collaborations.
The present calculations have been performed within thdhis work was supported in part by the National Natural

framework of the relativistic mean field approach, which isScience Foundation of China under Contracts No. 10075028
incapable to include pions explicitly. It will be possible and and No. 10135030.
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