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Parity-violating interaction effects: The longitudinal asymmetry in pp elastic scattering
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The proton-proton parity-violating longitudinal asymmetry is calculated in the laboratory-energy range
0–350 MeV, using a number of different, latest-generation strong-interaction potentials—Argonnev18, Bonn-
2000, and Nijmegen-I—in combination with a weak-interaction potential consisting ofr- and v-meson
exchanges—the model known as DDH. The complete scattering problem in the presence of parity conserving,
including Coulomb, and parity-violating potentials is solved in both configuration and momentum space. The
predicted parity-violating asymmetries are found to be only weakly dependent upon the input strong-
interaction potential adopted in the calculation. Values for ther- andv-meson weak coupling constantshr

pp

andhv
pp are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.
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I. INTRODUCTION

A new generation of experiments have recently been c
pleted, or are presently under way or in their planning pha
to study the effects of parity-violating~PV! interactions in
pp elastic scattering@1#, np radiative capture@2#, and deu-
teron electrodisintegration@3# at low energies. There is als
considerable interest in determining the extent to which
interactions can affect the longitudinal asymmetry measu
by the SAMPLE collaboration in quasielastic scattering
polarized electrons off the deuteron@4#, and therefore influ-
ence the extraction from these data~and those on the proto
@5#! of the nucleon’s strange magnetic and axial form fact
at a four-momentum transfer squared of 0.1 (GeV/c)2.

The present is the first in a series of papers dealing w
the theoretical investigation of PV interaction effects in tw
nucleon systems: it is devoted topp elastic scattering, and
presents a calculation of the longitudinal asymmetry
duced by PV interactions in the laboratory-energy ran
0–350 MeV.

The available experimental data on thepp longitudinal
asymmetry is rather limited. There are two measurement
15 MeV @6# and 45 MeV@7#, which yielded asymmetry val
ues of (21.760.8)31027 and (22.360.9)31027, respec-
tively, as well as more precise measurements at 13.6 M
@8#, 45 MeV @9#, and 221 MeV@1# yielding (20.9560.15)
31027, (21.5060.23)31027, and (10.8460.29)31027,
respectively, and finally a measurement at 800 M
in Ref. @10#, which produced an asymmetry value
(12.461.1)31027.

The theoretical~and, in fact, experimental! investigation
0556-2813/2002/65~3!/035502~12!/$20.00 65 0355
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of PV effects induced by the weak interaction in thepp
system began with the prediction by Simonius@11# that the
longitudinal asymmetry would have a broad maximum
energies close to 50 MeV, and that, being dominated by
J50 partial waves, it would be essentially independent
the scattering angle. A number of theoretical studies of va
ing sophistication followed@12–14#, culminating in the
study by Driscoll and Miller@15#, who used a distorted-wav
Born-approximation~DWBA! formulation of the PV scatter-
ing amplitude in terms of exact wave functions obtain
from solutions of the Schro¨dinger equation with Coulomb
and strong interactions. In fact, Driscoll and Miller@15# in-
vestigated the sensitivity of the calculated asymmetry t
number of realistic strong-interaction potentials construc
by the late 1980s. The model adopted for the PV we
interaction potential, however, was that developed
Desplanques and collaborators@16#, the so-called DDH
model. In thepp sector, this potential is parametrized
terms ofr- andv-meson exchanges, in which the PV-NNr
andNNv weak coupling constants are calculated in a qu
model approach incorporating symmetry techniques l
SU(6)W and current algebra requirements. Factoring in
limitations inherent to such an approach, howev
Desplangueset al. @16# gave rather wide ranges of unce
tainty for these weak coupling constants.

The present paper sharpens and updates that of Ref.@15#.
It adopts the DDH model for the PV weak-interaction pote
tial, but uses the latest generation of realistic, pari
conserving~PC!, strong-interaction potentials, the Argonn
v18 @17#, Nijmegen I @18#, and CD-Bonn@19#. Rather than
employing the DWBA scheme of Ref.@15# to calculate the
©2002 The American Physical Society02-1
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PV component of thepp elastic scattering amplitude,
solves the complete scattering problem in the presenc
these PC and PV potentials~including the Coulomb poten
tial!, in either configuration or momentum space, depend
on whether the Argonnev18 and Nijmegen I or CD-Bonn
models are used. Such an approach allows us to obtain
PC and PV wave functions explicitly. While this is unnece
sary for the calculation reported here—the DWBA estima
along the lines of Ref.@15#, of the PV component of thepp
amplitude should suffice—it becomes essential for the s
ies ofnp radiative capture and deuteron electrodisintegrat
planned at a later stage.

The remainder of the present paper is organized as
lows. In Sec. II the PC and PV potentials used in this pa
are briefly described, while in Sec. III a self-consistent tre
ment of thepp scattering problem is provided along with
discussion, patterned after that of Ref.@15#, of the Coulomb
contributions to the longitudinal asymmetries measured
scattering and transmission experiments. In Sec. IV, the
sults for the asymmetry are presented; in particular, th
sensitivity to changes in the values of the weak coupl
constants and/or short-range cutoffs at the strong- and w
interaction vertices is studied. Finally, Sec. V contains so
concluding remarks.

II. PARITY-CONSERVING AND PARITY-VIOLATING
POTENTIALS

The parity-conserving~PC!, strong-interaction potential
used in the present work are the Argonnev18 ~AV18! @17#,
Nijmegen I ~NIJ-I! @18#, and CD-Bonn~BONN! @19# mod-
els. The AV18 and NIJ-I potentials were fitted to th
Nijmegen database of 1992@20,21#, consisting of 1787pp
data, and both producedx2 per datum close to one. The late
version of the charge-dependent Bonn potential, howe
has been fit to the 1999 database, consisting of 2932pp data,
for which it gives ax2 per datum of 1.01@19#. The substan-
tial increase in the number ofpp data is due to the develop
ment of novel experimental techniques—internally polariz
gas targets and stored cooled beams. Indeed, using this
nology, IUCF has produced a large number ofpp spin-
correlation parameters of very high precision, see for
ample Ref.@22#. It is worth noting that the AV18 potential, a
an example, fits the post-1992 data and both pre- and p
1992 pp data withx2’s of 1.74 and 1.35, respectively@19#.
Therefore, while the quality of their fits has deteriorat
somewhat in regard to the extended 1999 database, the A
and NIJ-I models can still be considered ‘‘realistic.’’

These realistic potentials consist of a long-range part
to one-pion exchange~OPE!, and a short-range part eithe
modeled by one-boson exchange~OBE!, as in the BONN
and NIJ-I models, or parameterized in terms of suitable fu
tions of two-pion range or shorter, as in the AV18 mod
While these potentials are~almost! phase equivalent, the
differ in the treatment of nonlocalities. AV18 is local~in LSJ
channels!, while BONN and NIJ-I have strong nonlocalitie
In particular, BONN has a nonlocal OPE component. Ho
ever, it has been known for some time@23#, and recently
reemphasized in Ref.@24#, that the local and nonlocal OP
03550
of

g

he
-
,

d-
n

l-
r

t-

n
e-
ir
g
k-
e

r,

d
ch-

-

st-

18

e

-
.

-

terms are related to each other by a unitary transformat
Therefore, the differences between local and nonlocal O
cannot be of any consequence for the prediction of obs
ables, such as binding energies or electromagnetic form
tors, provided, of course, that three-body interactions and
two-body currents generated by the unitary transformat
are also included@25#. This fact has been demonstrated@26#
in a calculation of the deuteron structure functionA(q) and
tensor observableT20(q), based on the local AV18 and non
local BONN models and associated~unitarily consistent!
electromagnetic currents. The remaining small differen
between the calculatedA(q) andT20(q) are due to the addi-
tional short-range nonlocalities present in the BONN mod
Therefore, provided that consistent calculations—in
sense above—are performed, present ‘‘realistic’’ potent
will lead to very similar predictions for nuclear observable
at least to the extent that these are influenced predomina
by the OPE component.

As already mentioned in Sec. I, the form of the PV wea
interaction potential was derived in Ref.@16#—the DDH
model,

vPV5 (
a5r,v

2
gaha

pp

4p

ma

m
$ma~11ka!Y8~mar !~s13s2!• r̂

1~s12s2!•@p,Y~mar !#1%, ~2.1!

where the relative position and momentum are defined ar
5r12r2 and p5(p12p2)/2, respectively,@ . . . , . . .#1 de-
notes the anticommutator, andm andma are the proton and
vector-meson (r or v) masses, respectively. Note that th
first term in Eq.~2.1! is usually written in the form of a
commutator, since

i @p,Y~mar !#25maY8~mar ! r̂ , ~2.2!

whereY8(x) denotes its derivative dY(x)/dx. The Yukawa
functionY(xa), suitably modified by the inclusion of mono
pole form factors, is given by

Y~xa!5
1

xa
H e2xa2e2~La /ma)xaF11

1

2

La

ma
S 12

ma
2

La
2 D xaG J ,

~2.3!

wherexa[mar . Finally, the values for the strong-interactio
r- andv-meson vector and tensor coupling constantsga and
ka , as well as for the cutoff parametersLa , are taken from
the BONN model@19#, and are listed in Table I. The weak
interaction coupling constantshr

pp andhv
pp correspond to the

following combinations of DDH parameters

TABLE I. Values used for the strong- and weak-interaction co
pling constants of ther- andv-meson to the nucleon, see text.

ga
2/4p ka

107ha
pp

~DDH-adj!
107ha

pp

~DDH-orig!
La

~GeV/c!

r 0.84 6.1 222.3 215.5 1.31
v 20 0 15.17 23.04 1.50
2-2
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hr
pp5hr0

1hr1
1

hr2

A6
, ~2.4!

hv
pp5hv0

1hv1
. ~2.5!

Their values, reported in Table I in the column label
~DDH-adj!, are obtained by fitting the available data on t
longitudinal asymmetry, see Sec. IV. The values correspo
ing to the ‘‘best’’ estimates for thehr i

andhv i
suggested in

Ref. @16# are also listed in Table I in the column~DDH-orig!.
Indeed, one of the goals of the present paper is to study
sensitivity of the calculated longitudinal asymmetry to var
tions in both the PV coupling constants and cutoff para
eters. In this respect, it should also be noted that, in the l
Lr5Lv and ignoring the small mass difference betweenmr

and mv , were it not for the different values of the tens
couplings kr and kv , the r- and v-meson terms invPV

would collapse to a single term of strength proportional
grhr

pp1gvhv
pp .

III. FORMALISM

In this section, we discuss thepp scattering problem in
the presence of a potentialv̄ given by

v̄5vPC1vPV1vC, ~3.1!

wherevPC andvPV denote the parity-conserving and parit
violating components induced by the strong and weak in
actions, respectively, andvC is the Coulomb potential.

A. Partial-wave expansions of scattering state,T- and
S-matrices

The Lippmann-Schwinger equation for thepp scattering
state up,SMS&

(6), where p is the relative momentum an
SMS specifies the spin state, can be written as@27#

up,SMS&
(6)5up,SMS&C

(6)1
1

E2H02vC6 i e
vup,SMS&

(6),

~3.2!

where H0 is the free Hamiltonian,v5vPC1vPV, and
u . . . &C

(6) are the eigenstates ofH01vC,

~E2H02vC!up,SMS&C
(6)50, ~3.3!

with wave functions given by

fp,SMS

(6) ~r !5^r up,SMS&C
(6)

54pA2 (
JMJL

i LeLSe6 isL
FL~h;pr !

pr

3@ZLSMS

JMJ ~ p̂!#* Y LSJ
MJ ~ r̂ !. ~3.4!
03550
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Here FL(h;r) denotes the regular Coulomb wave functio
@28#, while the parameterh and Coulomb phase shiftsL are
given by

h5am/p, ~3.5!

sL5arg@G~L111 ih!#, ~3.6!

wherea is the fine structure constant andm is the reduced
mass. Finally, the following definitions have also been int
duced:

ZLSMS

JMJ ~ p̂![(
ML

^LML ,SMSuJMJ&YLML
~ p̂!, ~3.7!

eLS[
1

2
@11~21!L1S#. ~3.8!

The factor eLS ensures that the wave functionsf (6) are
properly antisymmetrized. Note that in the limith50,
equivalent to ignoring the Coulomb potential, the latter
duce to~antisymmetrized! plane waves,

fp,SMS

(6) ~r !→ 1

A2
@eip•r1~2 !Se2 ip•r#xMS

S . ~3.9!

The T̄ matrix corresponding to the potentialv1vC can be
expressed as@27#

T̄~p8,S8MS8 ;p,SMS!

5T~p8,S8MS8 ;p,SMS!1TC~p8,S8MS8 ;p,SMS!,

~3.10!

whereTC is the~known! T matrix corresponding only to the
Coulomb potential@27#, and

T~p8,S8MS8 ;p,SMS!5C
(2)^p8,S8MS8uTup,SMS&

(1).
~3.11!

Insertion of the complete set of statesup,SMS&C
(2) into the

right-hand side of the Lippmann-Schwinger equation lead

up,SMS&
(1)5up,SMS&C

(1)1 (
S8MS8

E dp8

~2p!3

1

2
up8,S8MS8&C

(2)

3
T~p8,S8MS8 ;p,SMS!

E2p82/~2m!1 i e
~3.12!

from which the partial-wave expansion of the scattering st
is easily obtained by first noting that the potential, and he
the T matrix, can be expanded as
2-3



s

-

for

l

a
er-

nel

o

e-

CARLSON, SCHIAVILLA, BROWN, AND GIBSON PHYSICAL REVIEW C65 035502
C
(2)^p8,S8MS8uvup,SMS&C

(1)

52~4p!2(
JMJ

(
LL8

eL8S8eLSeisL8eisLZ
L8S8M

S8

JMJ ~ p̂8!

3@ZLSMS

JMJ ~ p̂!#* vL8S8,LS
J

~p8;p!, ~3.13!

with

vL8S8,LS
J

~p8;p!5 i L2L8E d r
FL8~h;p8r !

p8r

3Y
L8S8J

MJ†
v~r !Y LSJ

MJ
FL~h;pr !

pr
.

~3.14!

After insertion of the corresponding expansion for theT ma-
trix into Eq. ~3.12! and a number of standard manipulation
the scattering-state wave function can be written as

cp,SMS

(1) ~r !54pA2(
JMJ

(
LL8S8

i L8eL8S8eLSeisL@ZLSMS

JMJ ~ p̂!#*

3
wL8S8,LS

J
~r ;p!

r
Y

L8S8J

MJ ~ r̂ ! ~3.15!

with

wL8S8,LS
J

~r ;p!

r
5F dL,L8dS,S8

FL8~h;pr !

pr

1
2

pE0

`

d p8p82
FL8~h;p8r !

p8r

3
1

E2p82/~2m!1 ie
TL8S8,LS

J
~p8;p!G .

~3.16!

The ~complex! radial wave functionw(r ) behaves in the
asymptotic regionr→` as

wa8,a
J

~r ;p!

r
.

1

2
@da,a8hL8

(2)
~h;pr !1hL8

(1)
~h;pr !Sa8,a

J
~p!#,

~3.17!

where the labela (a8) stands for the set of quantum num
bers LS (L8S8), the on-shell (p85p) S matrix has been
introduced

Sa8,a
J

~p!5da,a824impTa8,a
J

~p;p!, ~3.18!

and the functionsh(1,2)(h;r) are defined in terms of the
regular and irregular (GL) Coulomb functions as

hL
(1,2)~h;r!5

FL~h;r!7 iGL~h;r!

r
. ~3.19!
03550
,

Again, in the limit h50, FL(h;r)/r→ j L(r) and
GL(h;r)/r→2nL(r), where j L(r) and nL(r) are the
spherical Bessel functions, and the familiar expressions
the partial wave-expansion of the scattering state,S and T
matrices are recovered@27#.

B. Schrödinger equation, phase shifts, and mixing angles

The coupled-channel Schro¨dinger equations for the radia
wave functionsw(r ) read

F2
d2

dr2
1

L~L11!

r 2
2p2Gwa8,a

J
~r ;p!

1(
b

rva8,b
J

~r !
1

r
wb,a

J ~r ;p!50 ~3.20!

with

va8,a
J

~r !5 i L2L82mE dVY
a8J

MJ†
v~r !Y aJ

MJ , ~3.21!

where, because of time-reversal invariance, the matrixva8,a
J

can be shown to be real and symmetric@this is the reason for
the somewhat unconventional phase factor in Eq.~3.21!; in
order to maintain symmetry for both thevPC andvPV matri-
ces, and hence theS matrix, the states used here differ by
factor i L from those usually used in nucleon-nucleon scatt
ing analyses#. The asymptotic behavior of thew(r )’s is given
in Eq. ~3.17!.

The Pauli principle requires that there be a single chan
when J is odd, and three coupled channels whenJ is even,
with the exception ofJ50 in which case there are only tw
coupled channels1S0 and 3P0. The situation is summarized
in Table II. Again because of the invariance under tim
inversion transformations ofvPC1vPV, the S matrix is sym-
metric ~apart from also being unitary!, and can, therefore, be
written for the coupled channels havingJ even, as@27#

SJ5UTSD
J U, ~3.22!

whereU is a real orthogonal matrix, andSD
J is a diagonal

matrix of the form

SD;a8,a
J

5da8,ae2ida
J
. ~3.23!

TABLE II. Labeling of channels.

a
J 1 2 3

0 1S0
3P0

1 3P1

2 3P2
3F2

1D2

3 3F3

4 3F4
3H4

1G4

••• ••• ••• •••
2-4
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Here da
J is the ~real! phase shift in channela, which is a

function of the energyp5A2mE. The mixing matrixU can
be written as

U5U (12), J50, ~3.24!

5 )
1< i , j <3

U ( i j ), J>2 with J even, ~3.25!

whereU ( i j ) is the 232 or 333 orthogonal matrix, that in-
cludes the coupling between channelsi and j only, for ex-
ample

U (13)5F cose13
J 0 sine13

J

0 1 0

2sine13
J 0 cose13

J
G.11e13

J F 0 0 1

0 0 0

21 0 0
G .

Thus, forJ50 there are two phase shifts and a mixing ang
while for J even>2 there are three phases and three mix
angles. Of course, sinceuvPVu!uvPCu, the mixing anglese i j

J

induced byvPV are !1, a fact already exploited in the las
expression above forU. Given the channel ordering in Tabl
II, Table III specifies which of the channel mixings are i
duced byvPC and which byvPV.

The reality of the potential matrix elementsva8,a
J (r )

makes it possible to construct real solutions of the Sch¨-
dinger equation~3.20!. The problem is reduced to determin
ing the relation between these solutions and the comp
w(r )’s functions. Using Eq.~3.22! andUTU51, thew(r )’s
can be expressed in the asymptotic region as

wa8,a
J

r
.(

b
~UT!a8beidb

J ha8
(2)e2 idb

J
1ha8

(1)eidb
J

2
Uba

5(
b

~UT!a8beidb
J

3
sin@pr2L8p/22h ln~2pr !1sL81db

J #

pr
Uba ,

~3.26!

where theeL8S8 has been dropped for simplicity. The expre
sion above is real apart from the exp(idb

J). To eliminate this
factor, the following linear combinations of thew(r )’s are
introduced:

TABLE III. Classification of channel mixings forJ even: PC or
PV if induced byvPC or vPV, respectively.

Coupling
J 12 13 23

0 PV
2 PC PV PV
4 PC PV PV
••• PC PV PV
03550
,
g

x

-

ua8,a
J

r
[(

b
e2 idb

J wa8,b
J

r
~UT!ba

.~UT!a8a

cosda
J FL8~h;pr !1sinda

J GL8~h;pr !

pr
,

~3.27!

and theu(r )’s are then the sought real solutions of E
~3.20!.

The asymptotic behavior of theu(r )’s can now be read
off from Eq. ~3.27! once theU matrices above have bee
constructed. The latter can be written as, up to linear term
the ‘‘small’’ mixing angles induced byvPV,

U5F 1 e12
0

2e12
0 1 G J50,

U5F cose12
J sine12

J e13
J cose12

J 1e23
J sine12

J

2sine12
J cose12

J 2e13
J sine12

J 1e23
J cose12

J

2e13
J 2e23

J 1
G ,

J>2,J even.

Inverting the first line of Eq.~3.27!,

wa8,a
J

r
5(

b
eidb

J ua8,b
J

r
Uba , ~3.28!

and inserting the resulting expressions into Eq.~3.20! leads
to the ~in general, coupled-channel! Schrödinger equations
satisfied by the~real! functionsu(r ). They are identical to
those of Eq.~3.20!, but for thew(r )’s being replaced by the
u(r )’s. These equations are then solved by standard num
cal techniques. Note that:~i! va,a

J 5va,a
J,PC, since the diagona

matrix elements ofvPV vanish because of parity selectio
rules;~ii ! in the coupled equations withJ even, terms of the
type rva8,b

J,PV(r )ub,a
J (r )/r involving the product of a parity-

violating potential matrix element with avPV-induced wave
function are neglected.

C. Amplitudes, cross sections,
and the parity-violating asymmetry

The amplitude forpp elastic scattering from an initia
state with spin projectionsm1 ,m2 to a final state with spin
projectionsm18 ,m28 is given by

^m18m28uM̄ um1m2&5 (
S8MS8 ,SMS

K 1

2
m18 ,

1

2
m28US8MS8L

3 K 1

2
m1 ,

1

2
m2USMSL M̄S8M

S8 ,SMS
~E,u!,

~3.29!

where the amplitudeM̄ is related to theT̄ matrix defined in
Eq. ~3.10! via
2-5
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M̄S8M
S8 ,SMS

~E,u!52
m

2p
T̄~p8,S8MS8 ;pẑ,SMS!.

~3.30!

Note that the direction of the initial momentump has been
taken to define the spin quantization axis~thez axis!, u is the
angle betweenp̂ and p̂8, the direction of the final momen
tum, and the energyE5p2/(2m) @5p82/(2m)#. The ampli-
tudeM̄ is split into two terms,M̄5M1MC, as in Eq.~3.10!.
Using the expansion of theT matrix, Eq.~3.13! with vL8S8,LS

J

replaced byTL8S8,LS
J , and the relation between theS and T

matrices in Eq.~3.18!, the amplitude induced byvPC1vPV

can be expressed as

MS8M
S8 ,SMS

~E,u!5A4p (
JLL8

A2L11eL8S8eLS

3^L8~MS2MS8!,S8MS8uJMS&

3^L0,SMSuJMS&YL8(MS2M
S8)~u!eisL8

3
SL8S8,LS

J
~p!2dL8,LdS8,S

ip
eisL, ~3.31!

while the partial-wave expansion of the amplitude associa
with the Coulomb potential reads@27#

MS8M
S8 ,SMS

C
~E,u!

5dS8,SdM
S8 ,MS

A4p(
L

A2L11eLSYL0~u!
e2isL21

ip
.

~3.32!

The differential cross section for scattering of a prot
with initial polarizationm1 is then given by

s̄m1
~E,u!5

1

2 (
m2

(
m18m28

u^m18m28uM̄ um1m2&u2, ~3.33!

and the longitudinal asymmetry is defined as

Ā~E,u!5
s̄1~E,u!2s̄2~E,u!

s̄1~E,u!1s̄2~E,u!
, ~3.34!

where6 denote the initial polarizations61/2. Carrying out
the spin sums leads to the following expression for the as
metry:

Ā~E,u!5

(
S8MS8

@M̄S8M
S8 ,00~E,u!M̄S8M

S8 ,10
* ~E,u!1c.c.#

(
S8MS8

(
SMS

uM̄S8M
S8 ,SMS

~E,u!u2

,

~3.35!
03550
d
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from which it is clear that the numerator would vanish in t
absence of parity-violating interactions, sincevPC1vC, in
contrast tovPV, cannot change the total spinSof thepp pair.

Parity-violating scattering experiments typically measu
the asymmetry weighted over a range@u1 ,u2# of scattering
angles,

^Ā~E!&5

E
u1<u<u2

dVs̄~E,u!Ā~E,u!

E
u1<u<u2

dVs̄~E,u!

, ~3.36!

where s̄5(s̄11s̄2)/2 is the spin-averaged differentia
cross section. In contrast, transmission experiments mea
the transmission of a polarized proton beam through a tar
A cross section is then inferred from the transmission m
surement. Beam particles elastically scattered by an
greater than some small critical angleu0 are removed from
the beam, thus reducing the observed transmission and
ing to the inferred cross section. Beam particles scattere
angles smaller thanu0 are not distinguished from the bea
and do not contribute to the cross section. To derive an
pression for the asymmetry in this case, one needs to c
fully consider the Coulomb contribution to the cro
section—a divergent quantity in the limitu0→0. To this end,
following Ref. @29#, one first defines the differential cros
sections

sS8M
S8 ,SMS

~E,u!

[uM̄S8M
S8 ,SMS

~E,u!u22uMS8M
S8 ,SMS

C
~E,u!u2

5uMS8M
S8 ,SMS

~E,u!u2

12Re@MS8M
S8 ,SMS

~E,u!MS8M
S8 ,SMS

C*
~E,u!#,

~3.37!

and

sS8M
S8 ,SMS

C
~E,u!5uMS8M

S8 ,SMS

C
~E,u!u2, ~3.38!

and hence

s̄S8M
S8 ,SMS

~E,u!5sS8M
S8 ,SMS

~E,u!1sS8M
S8 ,SMS

C
~E,u!.

~3.39!

In transmission experiments, the quantity of interest is

s̄SMS ,.~E![2pE
u0

p/2

du sinu (
S8MS8

s̄S8M
S8 ,SMS

~E,u!

5sSMS ,.~E!1sSMS ,.
C ~E!, ~3.40!

wheresSMS ,.
C (E) is explicitly given by
2-6
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sSMS ,.
C ~E!5pS h

p D 2F 1

sin2u0/2
2

1

cos2u0/2

2
~2 !S

h
sin$2h ln@ tan~u0/2!#%G . ~3.41!

To evaluatesSMS ,.(E), one writes, following Ref.@29#,

sSMS ,.~E!5sSMS
~E!22pE

e→0

u0
du sinu

3 (
S8MS8

$uMS8M
S8 ,SMS

~E,u!u2

12Re@MS8M
S8 ,SMS

~E,u!MS8M
S8 ,SMS

C*
~E,u!#%.

~3.42!

Application of the optical theorem to the total cross sectio
s̄ andsC allows one to deduce

sSMS
~E!5s̄SMS

~E!2sSMS

C ~E!5
4p

p
Im@MSMS ,SMS

~E,0!#,

~3.43!

and the determination of the cross sectionsSMS ,.(E) is re-
duced to evaluating the integral on the right-hand side of
~3.42!. For sufficiently smallu0 and by appropriately taking
the limit e→0 in the integral of the interference term
MMC* , which essentially entails taking the limit term b
term in the partial-wave expansion ofMC, one finds

sSMS ,.~E!5
4p

p
Im@MSMS ,SMS

~E,0!

3exp„2i @h ln@sin~u0/2!#2s0#…#,

~3.44!

neglecting terms of orderu0
2 and higher. Using Eqs.~3.41!

and ~3.44!, the longitudinal asymmetry measured in tran
mission experiments is obtained as

Ā.~E!

5
Im$eif@M10,00~E,0!1M00,10~E,0!#%

ImFeif (
SMS

MSMS ,SMS
~E,0!G1~p/4p!(

SMS

sSMS ,.
C ~E!

,

~3.45!

with

exp~ if![exp„2i $h ln@sin~u0/2!#2s0%….

D. Momentum-space formulation

In order to consider the~parity-conserving! Bonn poten-
tial @19#, it is necessary to develop techniques to treat thepp
scattering problem in momentum space. A method first p
03550
s

q.

-

-

posed in Ref.@30# and most recently applied in Ref.@19# is
used here. It consists in separating the potential into sh
and long-range partsv̄S and v̄L , respectively,

v̄5 v̄S1 v̄L , ~3.46!

where

v̄S5@vPC1vPV1vC#u~R2r !, ~3.47!

v̄L5vCu~r 2R!, ~3.48!

and u(x) is the Heaviside step functionu(x)51, if x.0,
50 otherwise. The radiusR is chosen large enough, so th
vPC1vPV vanishes for r .R ~in the present paper,R
520 fm).

Since v̄S is of finite range, standard momentum-spa
techniques can now be used to solve for theKS matrix in the
J channel~s!,

KS;a8,a
J

~p8;p!5 v̄S;a8,a
J

~p8;p!1
2

pE0

`

dkk2(
b

v̄S;a8,b
J

~p8;k!

3
P

p2/~2m!2k2/~2m!
KS;b,a

J ~k;p!, ~3.49!

where P denotes a principal-value integration, and t
momentum-space matrix elements of the potentialv̄S are de-
fined as in Eq.~3.21!, but for the replacementsv→ v̄S and
FL(h;x)/x→ j L(x). Note that performing the Bessel tran
forms of a Coulomb potential truncated atr 5R poses no
numerical problem. The integral equations~3.49! are dis-
cretized, and the resulting systems of linear equations
solved by direct numerical inversion. The principal-value
tegration is eliminated by a standard subtraction techni
@31#.

The asymptotic wave functions associated withv̄S have
the form

w̄S;a8,a
J

~r ;p!

r
.

aa

2
@da,a8ĥL8

(2)
~pr !1ĥL8

(1)
~pr !S̄S;a8,a

J
~p!#,

~3.50!

where

ĥL
(1,2)~r![ j L~r!6 inL~r!, ~3.51!

j L and nL being the regular and irregular spherical Bes
functions, respectively, and the constantsaa can only depend
upon the entrance channela, see the Schro¨dinger equations
~3.20!. These wave functions should match smoothly,
r 5R, those associated with the full potentialv̄S1 v̄L , which
behave asymptotically as in Eq.~3.17!. Carrying out the
matching for the functions and their first derivatives leads
a relation between theS matricesSS;a8,a and Sa8,a , corre-
2-7
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sponding tov̄S and v̄S1 v̄L , respectively. In terms ofK ma-
trices, related to the correspondingS matrices via

SJ~p!5@112impKJ~p;p!#21@122impKJ~p;p!#,
~3.52!

and similarlySS andKS , this relation reads in matrix nota
tion @32#,

2mpKJ5$G2@J12mpNKS
J#@J812mpN8KS

J#21G8%21

3$@J12mpNKS
J#@J812mpN8KS

J#21F82F%,

~3.53!

where the dependence uponp is understood, and the diago
nal matricesX andX8 have been defined as

Xa8,a[da8,aXa~R!, ~3.54!

Xa8,a
8 [da8,aFdXa~r !

dr G
r 5R

, ~3.55!

with the functions

Xa~R!5 j L~pR!,
FL~h;pR!

pR
,

nL~pR!, and
GL~h;pR!

pR
~3.56!

whenX5J,F,N, andG, respectively. Once theK matrices in
the various channels have been determined, the corresp
ing S matrices are obtained from Eq.~3.52!, from which the
amplitudeMS8M

S8 ,SMS
(E,u) ~3.31! is constructed.

E. Matrix elements of vPV in channel J

To evaluate the radial functionsva8,a
J,PV(r ) of the PV poten-

tial in Eq. ~3.21!—those associated with the PC potent
are well known—one needs the matrix elements of (s1

3s2)• r̂ and (s12s2)•p between spin-angle functions. Us
ing the notation

^J;L8,S8uOuJ;L,S&[E dVY
L8S8J

MJ†
O~r !Y LSJ

MJ , ~3.57!

and writing

~s12s2!•p52 i ~s12s2!•F r̂
]W

]r
1

1

r

]W

]V
G , ~3.58!

where the]W symbol indicates that the partial derivatives mu
act to the right, one finds that the nonvanishing matrix e
ments are

^J;J,0u~s13s2!• r̂ uJ;J71,1&56 iA2J1171

J11/2
,

~3.59!
03550
nd-
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-

^J;J,0u~s12s2!• r̂ uJ;J71,1&56A2J1171

J11/2
,

~3.60!

^J;J,0u~s12s2!•
]W

]V
uJ;J71,1&

52
2J1173

2
A2J1171

J11/2
, ~3.61!

^J;J71,1u~s12s2!•
]W

]V
uJ;J,0&

5
2J1161

2
A2J1171

J11/2
. ~3.62!

Note that the operators in Eqs.~3.59! and~3.60! are Hermit-
ian, while those in Eqs.~3.61! and ~3.62! are not. The com-
plete Hamiltonian is, of course, Hermitian.

IV. RESULTS AND DISCUSSION

In this section, we present results for the longitudin
asymmetry in the laboratory-energy range 0–350 MeV. T
calculations use any of the modern strong-interaction po
tials, either AV18@17# or BONN @19# or NIJ-I @18#, in com-
bination with the DDH weak-interaction potential paramet
ized in terms ofr- andv-meson exchanges@16#. The values
for ther- andv-meson coupling constants and cutoff para
eters are listed in Table I. The strong-interaction coupl
constants and cutoff parameters are taken from the BO
potential, while the weak-interaction coupling constantshr

pp

and hv
pp have been determined by an AV18-based fit to

observed asymmetry. In Table I, we also list thehr
pp andhv

pp

values corresponding to the ‘‘best’’ estimates for thehr i
and

hv i
suggested in Ref.@16#, column labeled DDH-orig.

The data points for the longitudinal asymmetry at 13
MeV, 45 MeV, and 221 MeV are those reported in Re
@1,33#, and their values are (20.9760.20)31027, (21.53
60.21)31027, and (10.8460.34)31027, respectively.
The first point at 13.6 MeV has been obtained@33# by taking
the weighted mean and accounting for the square-root en
dependence of the latest result from the the Bonn experim
at 13.6 MeV, as reported by Eversheim~Ref. @14# in Ref.
@1#!, and the 15 MeV result from Ref.@6#. The point at 45
MeV has also been obtained@33# by combining results from
measurements at 45 MeV@9#, 46 MeV, and 47 MeV~these
last two both from Ref.@33#!. The last point at 221 MeV is
that reported in Ref.@1#. Finally, the errors include both sta
tistical and systematic errors added in quadrature.

The total longitudinal asymmetry, shown in Fig. 1 for
number of combinations of strong- and weak-interaction
tentials, is defined as
2-8
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A~E!5
Im@M10,00~E,0!1M00,10~E,0!#

ImF (
SMS

MSMS ,SMS
~E,0!G , ~4.1!

where the amplitudesMS8M
S8 ,SMS

(E,u) are those given in

Eq. ~3.31!. The expression above forA(E) ignores the con-
tribution of the Coulomb amplitude, Eq.~3.32!, divergent in
the limit u50, and for this reasonA(E) will be referred to as
the ‘‘nuclear’’ asymmetry. Of course, one should note th
Coulomb potential effects enter intoA(E) explicitly through
the Coulomb phase shifts, present in the partial-wave exp
sion for MS8M

S8 ,SMS
(E,u), and implicitly through the wave

functions, from which theS-matrix elements are calculated
The effect of including explicitly the amplitude induced b
the Coulomb potential is discussed below.

The calculated nuclear asymmetries in Fig. 1 were
tained by retaining in the partial-wave expansion
MS8M

S8 ,SMS
(E,u) all channels withJ up to Jmax58. The

curves labeled AV18, BONN, and NIJ-I all use the DD
potential with the coupling constantshr

pp andhv
pp determined

by a rough fit to data~the AV18 is used in the fitting proce
dure!. There is very little sensitivity to the input strong
interaction potential, the larger differences displayed in F
1 of Ref.@15# may be attributable to larger differences in t
partial-wave phase shifts. The reduced difference is undo
edly a consequence of the more extendedpp andpn scatter-
ing database to which present potentials are fitted, as we
the much higher accuracy achieved in these fits. An anal
of the extractedhr

pp and hv
pp coupling constants and the

errors is presented later in this section.
We also show in Fig. 1 the AV18 results that correspo

to a DDH potential using the ‘‘best’’ estimates for thehr
pp

andhv
pp coupling constants@16# ~values in column DDH-orig

in Table I!, with the remainingr- and v-meson strong-
interaction coupling constants and cutoff parameters as g
in Table I. A number of comments are now in order. The d

FIG. 1. Total nuclear asymmetries obtained with various co
binations of strong- and weak-interaction potentials are compare
data, see text.
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point at 221 MeV essentially determines the value ofhr
pp . As

pointed out by Simonius@34# ~see also below!, the dominant
contributions to the total asymmetry in the energy range
der consideration here are those associated with the1S0-3P0

and 3P2-1D2 partial waves. At energies close to 225 Me
the 1S0-3P0 contribution, which can easily be shown to b
proportional to cos@d(E;1S0)1s1(E)1s0(E)#2cos@d(E;3P0)
1s1(E)1s0(E)# using Eq. ~3.31! @here d(E;1S0) and
d(E;3P0) are the strong-interaction phases#, vanishes. As a
result, the total asymmetry in this energy region is alm
entirely due to the3P2-1D2 contribution, which is known
@34# to be approximately proportional to the following com
bination of coupling constants,hr

ppgrkr1hv
ppgvkv . In the

BONN model, thev-meson tensor coupling constant is tak
to be zero, and hence the data point at 221 MeV fixeshr

pp

~for givengr , kr , andLr!. This is the reason for the.44%
increase~in magnitude! of hr

pp with respect to the DDH
‘‘best’’ estimate.

Below 50 MeV, however, the calculated total asymme
is dominated by the1S0-3P0 contribution, approximately
proportional to@34# hr

ppgr(21kr)1hv
ppgv(21kv). The in-

crease in magnitude ofhr
pp required to fit the point at 221

MeV, now leads to a total asymmetryuA(E)u below 50 MeV,
which is too large when compared to experiment. Thus
order to reproduce the 13.6 MeV and 45 MeV data poin
the overall strength of the coupling constant combinat
above needs to be reduced significantly. Sincegr(21kr)
andgv(21kv)52gv have the same sign, this requires ma
ing the sign ofhv

pp opposite to that ofhr
pp .

It is worth pointing out, though, that the changes in val
for hr

pp andhv
pp advocated here are still compatible with th

‘‘reasonable’’ ranges for thehr i

pp andhv i

pp , determined in Ref.

@16#.
Finally, we show in Fig. 1 the total nuclear asymmet

obtained in a calculation based on the old Reid soft-c
potential @35,36# and a DDH potential using the following
coupling constant and cutoff values:gr

2/4p50.95, gv
2 /4p

520, kr56.1, kv50, Lr51.3 GeV/c, and Lv

51.5 GeV/c ~these are all from the oldr-space version of
the Bonn potential@37#!, and the ‘‘best’’ estimates forhr

pp

andhv
pp . These model interactions are essentially identica

those employed by Driscoll and Miller in Ref.@15#. Indeed,
our calculated total asymmetry is close to that obtained
these authors. It should be stressed that in Ref.@15# the
strong-interaction phases and mixing angles were taken f
Arndt’s analysis of nucleon-nucleon scattering data@38#
rather than calculated from the Reid soft-core potential,
done here. This is presumably the origin of the remain
small differences between their results and ours.

Figure 2 shows the total nuclear asymmetries obtained
including only theJ50 channel (1S0-3P0) and, in addition,
the J52 channels (3P2-1D2 and 3F2-1D2), and finally all
~even! J channels up toJmax58. We reemphasize that in th
energy range 0–350 MeV the asymmetry is dominated
the J50 and 2 contributions~among the latter, specifically
those from the3P2-1D2 partial waves!.

-
to
2-9
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Figure 3 illustrates the sensitivity of the total nucle
asymmetry to modifications of theLr andLv cutoff param-
eters in the DDH potential. Both cutoffs are multiplied b
Rcut, in each casehr

pp and hv
pp are then readjusted to ap

proximately reproduce the AV181DDH-adj combination. In
the near pointlike limit (Rcut510), the asymmetry increase
in magnitude by roughly a factor of 2 prior to adjustme
The resulting couplings used for this case arehr

pp5214.33
and hv

pp513.95. Results are also shown forRcut51.5 and
0.8, the latter is an extreme case where the cutoff parame
are near the meson masses used to determine the ra
Nevertheless, the energy dependence of the asymmetry

FIG. 2. Contributions to the total nuclear asymmetry obtain
by including only theJ50 channel, and by adding theJ52 chan-
nels, and finally all evenJ channels up toJmax58. The AV18 and
DDH-adj potential combination is used, thin solid line in Fig. 1.

FIG. 3. Sensitivity of the total nuclear asymmetry to modific
tions of the cutoff parametersLr and Lv in the DDH potential.
Both cutoffs are multiplied byRcut , see text. For each case th
couplings are then adjusted to approximately reproduce the re
obtained with the AV18 and DDH-adj potential combination~cor-
responding toRcut51! in Fig. 1.
03550
.

rs
es.
in

all cases very similar. The couplings used to generate the
other curves are: forRcut51.5, hr

pp5215.32 andhv
pp5

13.92; and forRcut50.8, hr
pp52106.7, andhv

pp5114.63.
Figures 4–6 illustrate the effects of Coulomb contrib

tions on the longitudinal asymmetry. Figure 4 compares
total nuclear asymmetry defined above~curve labeled ‘‘C’’ !
with the total asymmetry obtained by ignoring the Coulom
potential altogether~curve labeled ‘‘no C’’ !. As already
pointed out in Ref.@15#, Coulomb contributions to thes
~non physical! quantities are rather small.

Figure 5 compares the angular distribution of the~physi-
cal! longitudinal asymmetry obtained from the amplitud
M̄5M1MC, see Eq.~3.35!, with that calculated by replac
ing M̄→M in Eq. ~3.35!, namely, ignoring the contribution

d

lts

FIG. 4. Total nuclear asymmetry, see text, is compared to
total asymmetry obtained by ignoring the Coulomb potential. T
AV18 and DDH-adj potential combination is used, thin solid line
Fig. 1.

FIG. 5. Angular distributions obtained with~curve labeledC)
and without~curve labeled noC) inclusion of the Coulomb ampli-
tude at 45 MeV and 221 MeV, see text. The AV18 and DDH-a
potential combination is used, thin solid line in Fig. 1.
2-10
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of the Coulomb amplitudeMC. The latter dominates at sma
scattering angles, and leads to the peculiar small angle
havior of the angular distribution shown in Fig. 5, namely,
changing of sign at smallu, and its vanishing atu50 ~also
observed in Ref.@15#!. It is interesting to note that the angu
lar distribution at 230 MeV obtained by Driscoll and Mille
in Ref. @15# is significantly different from that shown in Fig
5 at 221 MeV. To some degree this difference may be att
uted to the larger value of the asymmetry obtained by fitt
the new experimental results.

Figure 6 illustrates the effects of Coulomb contributio
on the total longitudinal asymmetry measured in transm
sion experiments~3.45!, for various choices of the critica
angle u0 (u052°,5°, and 10°), see Eq.~3.40!. Coulomb

FIG. 6. Total nuclear asymmetry~thick solid line! is compared
with the total asymmetries measured in transmission experim
with critical angles u052°,5°, and 10° ~curves labeled
Au.2 , Au.5, and Au.10, respectively!. The AV18 and DDH-adj
potential combination is used, thin solid line in Fig. 1.

FIG. 7. Angular distributions of the longitudinal asymmetry o
tained with either the AV18 or BONN potential in combination wi
the DDH-adj potential.
03550
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contributions are substantial, particularly for smallu0 and
energies below 100 MeV. We also demonstrate, in Fig. 7,
the angular distributions of the longitudinal asymmetry a
only weakly affected by different input~strong-interaction!
potentials.

Finally, we present an analysis of the extracted coupl
constants and their experimental errors. This analysis
ploys the AV18 model and the BONN-derived strong inte
action couplings and cutoffs~Table I! in the DDH potential.
Given the weak sensitivity described earlier, only sm
changes should be expected with the use of other re
strong interaction potentials. The experimental data at
energies have been combined into the two data points sh
in Fig. 1 at 13.6 and 45 MeV. The asymmetries are20.97
60.2 and21.5360.21, respectively, combining statistica
and systematic errors. We also include the recent TRIU
result of10.8460.34 at 221 MeV~all in units of 1027).

Figure 8 shows contours of constant totalx2 at levels of 1
through 5 versus the coupling constantshr

pp andhv
pp . As is

apparent in the figure, there is a rather narrow band of
ceptable values forhr

pp andhv
pp at totalx251 for the three

experimental data points. At this level,hr
pp can range from

approximately 214 to 228, with a simultaneous~and
strongly correlated! variation in hv

pp from roughly 22 to
110, all in units of 1027.

V. CONCLUSIONS

We have performed an analysis of thepp parity-violating
~PV! longitudinal asymmetry using combinations of moder
day strong interaction potentials and the DDH-PV potent

ts

FIG. 8. Curves of constant totalx2 obtained by analyzing the
experimentalpp data with the AV18 model, andr- and v-meson
strong-interaction couplings in the DDH potential from the Bon
2000 model. The curves indicate surfaces of totalx251,2,3,4, and
5 for various values ofhr

pp andhv
pp .
2-11
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The new experimental results from TRIUMF at 221 MeV,
combination with previous results at lower energy, provid
strong constraint on allowable linear combinations ofr and
v PV coupling constants. Combining the statistical and s
tematic errors in quadrature,hr

pp is constrained by presen
data to approximately 35%, at the level of one standard
viation.

The prime motivation for the present paper is to initiate
systematic and consistent study of many PV observable
the few nucleon sector, where accurate microscopic calc
tions are feasible. Recent measurements of nuclear ana
moments in atomic PV experiments are difficult to reconc
with earlier PV experiments in light nuclei using the simp
DDH-orig model @39#. Up to now, this approach has bee
extremely limited by the available data.

The present experimental data in the few nucleon se
remain rather sparse, with primary constraints coming fr
the pp longitudinal asymmetry analyzed here and measu
ments of the PV asymmetry inp-a elastic scattering@40#. A
variety of new results are expected in the next few yea
,

hy

d
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however, including1H(nW ,g)2H @2#, the neutron spin rotation
in helium @41#, and electron scattering measurements
Bates and JLab. The combination of these diverse exp
ments should finally yield a coherent picture of theNN PV
interaction at the hadronic scale.
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