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Parity-violating interaction effects: The longitudinal asymmetry in pp elastic scattering
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The proton-proton parity-violating longitudinal asymmetry is calculated in the laboratory-energy range
0-350 MeV, using a number of different, latest-generation strong-interaction potentials—Arnggnrigonn-
2000, and Nijmegen-l—in combination with a weak-interaction potential consisting- aind w-meson
exchanges—the model known as DDH. The complete scattering problem in the presence of parity conserving,
including Coulomb, and parity-violating potentials is solved in both configuration and momentum space. The
predicted parity-violating asymmetries are found to be only weakly dependent upon the input strong-
interaction potential adopted in the calculation. Values forghand w-meson weak coupling constar‘ﬂ%p
andhPP are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.
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I. INTRODUCTION of PV effects induced by the weak interaction in the
system began with the prediction by Simon[d4] that the
A new generation of experiments have recently been comlongitudinal asymmetry would have a broad maximum at
pleted, or are presently under way or in their planning phasesnergies close to 50 MeV, and that, being dominated by the
to study the effects of parity-violatingPV) interactions in  J=0 partial waves, it would be essentially independent of
pp elastic scattering1], np radiative captur¢2], and deu- the scattering angle. A number of theoretical studies of vary-
teron electrodisintegratiof8] at low energies. There is also ing sophistication followed[12—14, culminating in the
considerable interest in determining the extent to which P\study by Driscoll and Millef15], who used a distorted-wave
interactions can affect the longitudinal asymmetry measure@orn-approximatiofDWBA) formulation of the PV scatter-
by the SAMPLE collaboration in quasielastic scattering ofing amplitude in terms of exact wave functions obtained
polarized electrons off the deuterpf], and therefore influ- from solutions of the Schdbinger equation with Coulomb
ence the extraction from these d#tend those on the proton and strong interactions. In fact, Driscoll and Millgr5] in-
[5]) of the nucleon’s strange magnetic and axial form factorssestigated the sensitivity of the calculated asymmetry to a
at a four-momentum transfer squared of 0.1 (G&Y/ number of realistic strong-interaction potentials constructed
The present is the first in a series of papers dealing witlby the late 1980s. The model adopted for the PV weak-
the theoretical investigation of PV interaction effects in two-interaction potential, however, was that developed by
nucleon systems: it is devoted pp elastic scattering, and Desplanques and collaboratof46], the so-called DDH
presents a calculation of the longitudinal asymmetry in-model. In thepp sector, this potential is parametrized in
duced by PV interactions in the laboratory-energy rangeerms ofp- and w-meson exchanges, in which the RNp
0-350 MeV. andNNw weak coupling constants are calculated in a quark
The available experimental data on the longitudinal model approach incorporating symmetry techniques like
asymmetry is rather limited. There are two measurements &U(6),, and current algebra requirements. Factoring in the
15 MeV[6] and 45 MeV[7], which yielded asymmetry val- limitations inherent to such an approach, however,
ues of (—1.7+0.8)x10 7 and (—2.3+0.9)xX 10/, respec- Desplanguet al. [16] gave rather wide ranges of uncer-
tively, as well as more precise measurements at 13.6 MeYainty for these weak coupling constants.
[8], 45 MeV[9], and 221 MeV[1] yielding (—0.95*+0.15) The present paper sharpens and updates that of R&f.
X107, (—1.50=0.23)x1077, and (+0.84+0.29)x 10", It adopts the DDH model for the PV weak-interaction poten-
respectively, and finally a measurement at 800 MeMtial, but uses the latest generation of realistic, parity-
in Ref. [10], which produced an asymmetry value of conserving(PC), strong-interaction potentials, the Argonne
(+2.4+1.1)x10 7. v1g [17], Nijmegen 1[18], and CD-Bonn[19]. Rather than
The theoreticaland, in fact, experimentainvestigation = employing the DWBA scheme of Reff15] to calculate the
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PV component of thepp elastic scattering amplitude, it TABLE I. Values used for the strong- and weak-interaction cou-
solves the complete scattering problem in the presence ¢fing constants of the- and w-meson to the nucleon, see text.
these PC and PV potentialgcluding the Coulomb poten-

tial), in either configuration or momentum space, depending ) 10°h5P 10°'hg? Ay

on whether the Argonne ;s and Nijmegen | or CD-Bonn g./4m  «, (DDH-ad)  (DDH-orig)  (GeVic)
models are used. Such an approach allows us to obtain tf))e 0.84 6.1 —223 _155 1.31
PC and PV wave functions explicitly. While this is unneces- 20 0 1517 _304 150

sary for the calculation reported here—the DWBA estimate.
along the lines of Ref(15], of the PV component of thpp
amplitude should suffice—it becomes essential for the studeerms are related to each other by a unitary transformation.
ies ofnp radiative capture and deuteron electrodisintegrationrherefore, the differences between local and nonlocal OPE
planned at a later stage. _ . cannot be of any consequence for the prediction of observ-
The remainder of the present paper is organized as folaples, such as binding energies or electromagnetic form fac-
lows. In Sec. Il the PC and PV potentials used in this papefors, provided, of course, that three-body interactions and/or
are briefly described, while in Sec. Ill a self-consistent treattwo-body currents generated by the unitary transformation
ment of thepp scattering problem is provided along with a are also included25]. This fact has been demonstra{e)]
discussion, patterned after that of REif5], of the Coulomb  in a calculation of the deuteron structure functi(y) and
contributions to the longitudinal asymmetries measured iensor observabl&,q(q), based on the local AV18 and non-
scattering and transmission experiments. In Sec. IV, the rgpcal BONN models and associatédnitarily consistent
sults for the asymmetry are presented; in particular, theiglectromagnetic currents. The remaining small differences
sensitivity to changes in the values of the weak couplingyetween the calculateti(q) andT,(q) are due to the addi-
constants and/or short-range cutoffs at the strong- and wealjonal short-range nonlocalities present in the BONN model.
interaction vertices is studied. Finally, Sec. V contains somerherefore, provided that consistent calculations—in the

concluding remarks. sense above—are performed, present “realistic” potentials
will lead to very similar predictions for nuclear observables,
Il. PARITY-CONSERVING AND PARITY-VIOLATING at least to the extent that these are influenced predominantly
POTENTIALS by the OPE component.

As already mentioned in Sec. I, the form of the PV weak-

The parity-conservingPC), strong-interaction potentials interaction potential was derived in Refl6]—the DDH
used in the present work are the Argonng (AV18) [17],  model,
Nijmegen | (N1J-I) [18], and CD-Bonn(BONN) [19] mod-
els. The AV18 and NIJ-I potentials were fitted to the ., %’ m, , .
Nijmegen database of 19920,21], consisting of 178%pp Y _agw T an T M1t k)Y (Mar) (X 0) -1
data, and both produced per datum close to one. The latest ’
version of the charge-dependent Bonn potential, however, +(o1—03)-[p,Y(Myr)].}, (2.1
has been fit to the 1999 database, consisting of 298aata, ) N _
for which it gives ay? per datum of 1.0{19]. The substan- where the relative position and momentum are defined as
tial increase in the number @fp data is due to the develop- =F1~ T2 andp=(p;—p,)/2, respectively[ ..., ...], de-
ment of novel experimental techniques—internally polarizednotes the anticommutator, amdandm, are the proton and
gas targets and stored cooled beams. Indeed, using this tedfector-meson £ or ») masses, respectively. Note that the
nology, IUCF has produced a large number mb spin- first term in E'q.(2.1) is usually written in the form of a
correlation parameters of very high precision, see for exfommutator, since
ample Ref[22]. It is worth noting that the AV18 potential, as ) -
an example, fits the post-1992 data and both pre- and post- i[p,Y(mgr)]-=m,Y'(m,r)r, (2.2

. 2' .
1992pp data with s of 1.74 and 1.35, respectivelf 9] dwhereY’(x) denotes its derivative ¥{x)/dx. The Yukawa

Therefore, while the quality of their fits has deteriorate on'Y itabl dified by the inclusi P
somewhat in regard to the extended 1999 database, the Avignctlon (Xa), suitably modified by the inclusion of mono-
pole form factors, is given by

and NIJ-I models can still be considered “realistic.”

These realistic potentials consist of a long-range part due 2
to one-pion exchangéOPE), and a short-range part either Y(x,)= i{exa_e(Aa/ma)xa 1+lﬁ 1— Mo X }
modeled by one-boson exchan@BE), as in the BONN Y X 2m, A2
and NIJ-1 models, or parameterized in terms of suitable func- 2.3

tions of two-pion range or shorter, as in the AV18 model.

While these potentials aré@lmos) phase equivalent, they wherex,=m,r. Finally, the values for the strong-interaction
differ in the treatment of nonlocalities. AV18 is lodah LSJ  p- andw-meson vector and tensor coupling constayntsand
channel while BONN and NIJ-I have strong nonlocalities. «,, as well as for the cutoff parameteAs,, are taken from
In particular, BONN has a nonlocal OPE component. How-the BONN mode[19], and are listed in Table I. The weak-
ever, it has been known for some tinfi23], and recently interaction coupling constantg” andh!’ correspond to the
reemphasized in Ref24], that the local and nonlocal OPE following combinations of DDH parameters

035502-2



PARITY-VIOLATING INTERACTION EFFECTS: THE . .. PHYSICAL REVIEW C 65 035502

h Here F (7;p) denotes the regular Coulomb wave function
hPP=h +h + ﬁ, (2.4 [28], while the parametes and Coulomb phase shift, are
LN given by
hﬂpzhwo-i- h,- (2.5 n=aulp, (3.5
Their values, reported in Table | in the column labeled o =ardgl'(L+1+i7n)], (3.6

(DDH-adj)), are obtained by fitting the available data on the

longitudinal asymmetry, see Sec. IV. The values correspondyhere « is the fine structure constant apdis the reduced
ing to the “best” estimates for the, andh,, suggested in  mass. Finally, the following definitions have also been intro-
Ref.[16] are also listed in Table | in the coluntBDH-orig). duced:

Indeed, one of the goals of the present paper is to study the

sensitivity of the calculated longitudinal asymmetry to varia- . R

tions in both the PV coupling constants and cutoff param- Z)8 (p=2 (LM ,SMgJ My)Yim (P), (3.7
eters. In this respect, it should also be noted that, in the limit ° ML

A,=A, and ignoring the small mass difference betwegn
andm,, were it not for the different values of the tensor
couplings x, and «,,, the p- and w-meson terms "’
would collapse to a single term of strength proportional to
g,hbP+g,hbP.

1
ELSE§[1+(_1)L+S]- (3.8

The factor e s ensures that the wave functions™) are
properly antisymmetrized. Note that in the lim§=0,
IIl. FORMALISM equivalent to ignoring the Coulomb potential, the latter re-

. . . . . duce to(antisymmetrizedplane waves,
In this section, we discuss thgp scattering problem in ( y Hip

the presence of a potentiaTIgiven by

1 )
(%) ipr 4 (—\Sg=ipr1, S
U_:UPC+UPV+UC (31) ¢p,SMS(r)—> \/E[e ( )e ]XMS' (39)

wherev”C andv®Y denote the parity-conserving and parity-  The T matrix corresponding to the potentiatv € can be
violating components induced by the strong and weak interexpressed a27]
actions, respectively, ansf is the Coulomb potential.
_ _ _ T(p',S'Ms;p,SMy)
A. Partial-wave expansions of scattering stateT- and

S-matrices =T(p',S'M§;p,SMg) +T(p’,S'M§;p,SMs),
The Lippmann-Schwinger equation for tipg scattering (3.10
state |p,SMg)(*), wherep is the relative momentum and
SMs specifies the spin state, can be writter{ 28] whereTC is the (known) T matrix corresponding only to the
Coulomb potential27], and
,SMg)(*)=|p,SMg)& + v|p, SMg)t),
PSSl S e PSS T(p',S'M&;p,SM9)=E Xp',.S'MYT|p,SMg)*).
(3.2 (3.11
where H, is the free Hamiltonian,v=v"“+v", and  Insertion of the complete set of statgsSMg)$™) into the
| ...)&) are the eigenstates bfy+ 0, right-hand side of the Lippmann-Schwinger equation leads to
(E-Ho—v9|p,SMg)E7 =0, (3.3 a1
P, SMg) ) =[p,SME+ > f 351P ML
with wave functions given by smg ) (2m)

. . T(p',S'M4;p,SM
5 2u (N =(r|p,SMg)E” (P75 Msp SMy) (3.12

E-p&(2u)+ie

- Fi(m;pr
:47T\/§2 iLGLSeiIUL—L(nrp )
IMat P from which the partial-wave expansion of the scattering state
IMy [ AvaxAoMy 2 is easily obtained by first noting that the potential, and hence
><[Z'-S'V's(lo)] Visdh)- 3.4 the T matrix, can be expanded as
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E:p’,S'MYv|p,SMg)E"

IMy

=2(4m)? 2 3 egese e g ()

IMy L’

M,

X[Z) g (P Tl ig  (PiP),

with
Fu(mp'r)
p'r

M, FL(m;pr)
LSJ pr )

Ui's',Ls(p';p):iLfL’f dr

XY (0
(3.149

After insertion of the corresponding expansion for Thea-
trix into Eq. (3.12 and a number of standard manipulations,
the scattering-state wave function can be written as

IMy

Podu nN=4m2> > iYe g€ Z) S (DT
IMy LL's S
J
Wogs(BiP) wm, -
with
Wi/sf'Ls(r;p)_ FL,(n;pr)
- "|%wv s,s'—pr
2 (= L FE(mp'r
= dprp' 2t (TP
mJo p’r
1 ] ,
A Toss(P5P) |-

E-p%(2u)+ie
(3.16

The (complex radial wave functionw(r) behaves in the
asymptotic regiomr — o as

w,, (r:p)

1
=580 h(mpn)+h{(7:p0)S,, (P)],

(3.17

where the labek («’) stands for the set of quantum num-
bersLS (L'S’), the on-shell p’'=p) S matrix has been
introduced

So o P)=8u e —4ippT,, (Pip), (318

and the functionsh™?(7;p) are defined in terms of the
regular and irregular®,) Coulomb functions as

_ FL(mp)=iGL(7;p)
p .

h(*2(7:p) (3.19

PHYSICAL REVIEW C65 035502

TABLE Il. Labeling of channels.

o
J 1 2 3
0 s, *Po
1 Py
2 °P, °F, 'D,
3 3F,
4 3F4 3H4 1G4
Again, in the limit »=0, F/ (#%;p)/lp—]j.(p) and

Gi(mp) p——nL(p), where j (p) and n (p) are the
spherical Bessel functions, and the familiar expressions for
the partial wave-expansion of the scattering st&end T
matrices are recoverd@7].

B. Schradinger equation, phase shifts, and mixing angles

The coupled-channel Schitimger equations for the radial
wave functionsw(r) read

d*> L(L+1) |
- —t ————p%|w,, (I;
ar? 2 P Wy, (I;P)
J 1 J
+2 ro ,B(r)—wﬂ Lrp)=0 (3.20
B a’, r 3
with
V=i o [ a0y ey, @2

where, because of time-reversal invariance, the maliixa

can be shown to be real and symmetttts is the reason for
the somewhat unconventional phase factor in BR1); in
order to maintain symmetry for both thé€ andv "V matri-
ces, and hence th®@matrix, the states used here differ by a
factori‘ from those usually used in nucleon-nucleon scatter-
ing analysep The asymptotic behavior of the(r)’s is given

in Eq. (3.17).

The Pauli principle requires that there be a single channel
whenJ is odd, and three coupled channels whkis even,
with the exception ol=0 in which case there are only two
coupled channeldS, and 3P,. The situation is summarized
in Table Il. Again because of the invariance under time-
inversion transformations af*“+v "V, the S matrix is sym-
metric (apart from also being unitaryand can, therefore, be
written for the coupled channels havidgeven, ag27]

S’=uTslu, (3.22
whereU is a real orthogonal matrix, anﬁ‘ﬂ3 is a diagonal
matrix of the form

S a o= Oar 0, (3.23
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TABLE lII. Classification of channel mixings fa¥ even: PC or
PV if induced byv"C or v®V, respectively.

Coupling
J 12 13 23
0 PV
2 PC PV PV
4 PC PV PV
PC PV PV

Here &) is the (rea) phase shift in channek, which is a

function of the energy=2uxE. The mixing matrixU can
be written as

u=u®  J=0, (3.24
= [J] ul,  J=2 with J even, (3.25
1<i<j<3

whereU)) is the 2<2 or 3x 3 orthogonal matrix, that in-
cludes the coupling between channglandj only, for ex-
ample

cosel; 0 sinel, 0
u®= o 1 0 0

—sinel; 0 cosely

_ J
=1+e€i,

0 1
0 0
-1 0 O

Thus, forJ=0 there are two phase shifts and a mixing angle,
while for J even=2 there are three phases and three mixin

angles. Of course, sinde”|<|v"9, the mixing angles:)

induced byv"Y are <1, a fact already exploited in the last
expression above fdd. Given the channel ordering in Table
II, Table Il specifies which of the channel mixings are in-

duced byv "€ and which by V.
The reality of the potential matrix elementsi,ya(r)

makes it possible to construct real solutions of the Schro
dinger equationt3.20. The problem is reduced to determin-
ing the relation between these solutions and the comple

w(r)’s functions. Using Eq(3.22 andUTU=1, thew(r)’s
can be expressed in the asymptotic region as

Wi,,a S " hf,)e‘i‘sfﬂrhfyl,)ei‘%
- = > (U, 5€% 5

Ug,

= (UT), 46 %
B

sipr—L' /2= 7In(2pr)+ oy + 53]
X
Ba>
pr

(3.2

where thee, 5 has been dropped for simplicity. The expres-

sion above is real apart from the ekf)). To eliminate this
factor, the following linear combinations of the(r)’s are
introduced:

PHYSICAL REVIEW C 65 035502

J J
a’,a _'SJWa’,B T
= e '"s—=(U
2 (U g,

u

-

cos8 F /(7;pr)+sins G . (7;pr)

— T
_( a pr

! ’

(3.27

and theu(r)’s are then the sought real solutions of Eg.
(3.20.

The asymptotic behavior of the(r)’s can now be read
off from Eq. (3.27 once theU matrices above have been
constructed. The latter can be written as, up to linear terms in
the “small” mixing angles induced by,

1 6?2
u=| J=0,
_612 1

a

COSel, Sinel,  €1500S€l,+ ex8ine,
FN| J J ain I J J
U=| —SInN€, COSe, — €38N €101 €55C0S€7»
J J
€13 €23 1
J=2J even.

Inverting the first line of Eq(3.27),

J

u
@ st “a'.B
= e’s——Ug,,,
r Eﬁ r Ba

J
W,
a’,

(3.28

and inserting the resulting expressions into 320 leads

%o the (in general, coupled-channeSchralinger equations

satisfied by thdreal functionsu(r). They are identical to
those of Eq(3.20), but for thew(r)’s being replaced by the
u(r)’s. These equations are then solved by standard numeri-
cal techniques. Note tha) vy, ,=vy"C, since the diagonal
matrix elements of"V vanish because of parity selection
rules; (ii) in the coupled equations witheven, terms of the
type rvi’,P’Z(r)ufg‘a(r)/r involving the product of a parity-
violating potential matrix element with @”V-induced wave
f(unction are neglected.

C. Amplitudes, cross sections,
and the parity-violating asymmetry

The amplitude forpp elastic scattering from an initial
state with spin projectionm,;,m, to a final state with spin
projectionsm;,m; is given by

(mimg|M|mimy) = >
S'Mg,SMg

i Y P
Eml,EmZSMS

SMS> MS’M’S,SMS(EyH)y

(3.29

1 1
X Eml,zmz

where the amplituddﬁ is related to thel matrix defined in

Eq. (3.10 via
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_ _ . from which it is clear that the numerator would vanish in the
Msmg smg(E,0)=—5_T(p",S'Mg;pz,SMy). absence of parity-violating interactions, singB+vC, in
(3.309  contrast tw PV| cannot change the total spof the pp pair.
Parity-violating scattering experiments typically measure
Note that the direction of the initial momentumhas been (e asymmetry weighted over a rang# ,6,] of scattering
taken to define the spin quantization agtisez axis), ¢ is the ~ andles,

angle betweem andp’, the direction of the final momen-

tum, and the energg=p?/(2u) [=p %(2u)]. The ampli- f dQ o (E, 0)A(E, 6)

tudeM is split into two termsM =M +M°C, as in Eq (3 10. (A(E))= h=0=% . (3.36
Using the expansmn of thEmatrix, Eq.(3.13 with vL,S, Ls f dQ o (E, 0)

replaced byTL,S, Ls» and the relation between tt&and T 01=0=0;

matrices in Eq(3.18, the amplitude induced byPC+ PV -

can be expressed as where o= (0o, +0_)/2 is the spin-averaged differential
cross section. In contrast, transmission experiments measure
the transmission of a polarized proton beam through a target.

Msrmz, smg(E,6)= Vam X V2L +1lerges A cross section is then inferred from the transmission mea-
L’ surement. Beam particles elastically scattered by angles
X(L'(Mg—M$),S' Mg IMsg) greater than some small critical anglg are remov_ed from

. the beam, thus reducing the observed transmission and add-

X(LO,S Ms|JMs>YL'(MS—M'S)(9)8'”L' ing to the inferred cross section. Beam particles scattered at

angles smaller thad, are not distinguished from the beam
Si,S,VLS(p)— oL L0s s i and do not contribute to the cross section. To derive an ex-
X ip e'’t, (3.3)  pression for the asymmetry in this case, one needs to care-

fully consider the Coulomb contribution to the cross
ection—a divergent quantity in the limiy— 0. To this end,
ollowing Ref. [29], one first defines the differential cross
sections

while the partial-wave expansion of the amplitude associate
with the Coulomb potential read27]

C
MS'M,S,SMS(E’G) O-S’M/S,SMS(E’G)

e2|0|__1

=0y, s5M Mg V4 E V2L+ 1€ sY o( 0 . E|MS’M’S,SMS(E10)|2_| c M(E’0)|2

Cip S'M&,SMg
(3.32 :|MS’M’S,SM5(E1‘9)|2

The differential cross section for scattering of a proton

C*
L . . . +2Rd Mgy E,O)MS,,,, E,0)],
with initial polarizationm, is then given by dMsmgsu(E Mgy s (E.0)]

(3.37
Ty (E.0) =75 2 2 [(mimM|mmy)? 333
m2 m1m2
¢ E,0)=|MS E,0)2  (3.39
and the longitudinal asymmetry is defined as US’M’S,SMS( 0= S’M’S,SMS( O :
— o.(E,0)—o_(E,0) and hence
A(E,0) = = EDio (Ed)’ (3.39
o , o_(E,
! US'M smg(E,0)=0smz smdE, 0)+‘75/M SMq (E,0).
where+ denote the initial polarizations 1/2. Carrying out (3.39
the spin sums leads to the following expression for the asym-
metry: In transmission experiments, the quantity of interest is
_ /2
E [MS,M oo E, (9)MS,M 1(E.0)+cc] USMS,>(E)527TL dosing > o osmy, smg B, 6)
_ ' o s'M§
ACE )= ,
> 2> |MS’M sug(E, )7 =sws,>(E) + o5 ~(E), (340
s'mg SMs S

(3.39 whereogMS,>(E) is explicitly given by
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2)2
p
(—)°

. sin{2 7 In[tan( 6,/2) ]}

1 1
Sirfy/2  cog /2

oSMS,><E>=w(

. (3.4)

To evaluatechMS,>(E), one writes, following Ref[29],
bo
O-SMS,>(E):O'SMS(E)_2’7Tf désine

e—0

x 2 {lMS’M’S,SMS(E10)|2
S'Mg
C*
+ZRQMS’MévSMS(E’Q)MS’M’S,SMS(E’9)]}'
(3.42

Application of the optical theorem to the total cross section
o and ¢ allows one to deduce

— c 4
osug(E)=0osu(E) —osu(E)= 3 IM[Msng,sm(E.0)],
(3.43

and the determination of the cross sectmgMS,>(E) is re-

S

PHYSICAL REVIEW C 65 035502

posed in Ref[30] and most recently applied in Rdfl9] is
used here. It consists in separating the potential into short-

and long-range partss andv, , respectively,

v=vstu,, (3.46

where
vs=[vP+0v"V+vC16(R-T), (3.47)
v =0v%0(r—R), (3.48

and 6(x) is the Heaviside step functioéi(x)=1, if x>0,
=0 otherwise. The radiuR is chosen large enough, so that
vPS+ 0PV vanishes forr>R (in the present paperR
=20 fm).

Sincevg is of finite range, standard momentum-space
technigues can now be used to solve for ikhematrix in the
J channe(s),

2 e ]
Ké;a’,a(p,;p) :;é;a’,a(p’;p)_l— ;JO dkk2§ FSQQ”B(p,;k)

P

X— 5 K2
P/ (2m) =K (2u)

S;B,a(k; p),

(3.49

duced to evaluating the integral on the right-hand side of Eq.

(3.42. For sufficiently smalldy and by appropriately taking
the limit e—0 in the integral of the interference term
MM | which essentially entails taking the limit term by
term in the partial-wave expansion bf¢, one finds

4
osmg,>(E)= ?lm[MSMS,SMS(EiO)

Xexp(2i[ 7In[sin(6/2)]— og])],
(3.49

neglecting terms of ordef? and higher. Using Eq¥3.41)

and (3.44), the longitudinal asymmetry measured in trans-

mission experiments is obtained as
A-(E)

Im{e'[M 10,04 E,0)+ Mg 1d E,0) 1}

Im{ €'* >, Mgy smg(E0) | +(p/am) > 7Suig > (E)
& $Ws

(3.45
with

expli p)=exp(2i{ 7 In[sin( 6,/2) ] — a}).

D. Momentum-space formulation

In order to consider théparity-conserving Bonn poten-
tial [19], it is necessary to develop techniques to treatpthe

where P denotes a principal-value integration, and the
momentum-space matrix elements of the potemntigre de-

fined as in Eq(3.21), but for the replacements—uvg and
FiL(7;x)/x—] (X). Note that performing the Bessel trans-
forms of a Coulomb potential truncated &t R poses no
numerical problem. The integral equatiot®49 are dis-
cretized, and the resulting systems of linear equations are
solved by direct numerical inversion. The principal-value in-
tegration is eliminated by a standard subtraction technique
[31].

The asymptotic wave functions associated withhave
the form

v_vJ.a, AP a, . R
e = 8w (P R (NS, (D)),
(3.50
where
ht2(p)=jL(p)=inL(p), (3.51)

jL andn_ being the regular and irregular spherical Bessel
functions, respectively, and the constamjscan only depend
upon the entrance channe| see the Schiinger equations
(3.20. These wave functions should match smoothly, at
r =R, those associated with the full potentig§+v, , which
behave asymptotically as in E@3.17). Carrying out the
matching for the functions and their first derivatives leads to

scattering problem in momentum space. A method first proa relation between th& matricesSg.,,» , andS,, ,, corre-
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sponding to:TS andv_s+v_,_, respectively. In terms ok ma-
trices, related to the correspondiBgnatrices via

S'(p)=[1+2iupK)(p;p)] [1-2i upK’(p;p)],
(3.52

and similarlySs andKg, this relation reads in matrix nota-
tion [32],

2upK¥={G—[J+2upNKI][J' +2upN'KL]1G"}?
X{[J+2upNKL][ I’ +2upN'K3] F' —F},
(3.53

where the dependence uppris understood, and the diago-
nal matricesX and X’ have been defined as

Xar.a=0ar oXa(R), (3.59
F_s dXg(r) 35
a',a Ya dr r:Ri ( . 5)
with the functions
i FL(7:pR)
Xa(RI=jLPR),  —— .
G PR

n.(pR), and —L(:Rp ) (3.56

whenX=J,F,N, andG, respectively. Once thi€ matrices in
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. [2J+1%1
<J,J,0|(0'1_0'2)‘r|JvJ+1’l>:i J+1/2

(3.60
J o
B 2J+1%3 [2J+1F1 36
2 V J+12 (363
3 J
_2J+1t1 [2J+1%1 36
B 2 J+1/2 ° (362

Note that the operators in Eq&8.59 and(3.60 are Hermit-
ian, while those in Eq9.3.61) and(3.62 are not. The com-
plete Hamiltonian is, of course, Hermitian.

IV. RESULTS AND DISCUSSION

In this section, we present results for the longitudinal
asymmetry in the laboratory-energy range 0—-350 MeV. The
calculations use any of the modern strong-interaction poten-
tials, either AV18[17] or BONN[19] or NIJ-1[18], in com-

the various channels have been determined, the corresponigination with the DDH weak-interaction potential parameter-

ing S matrices are obtained from E(B.52), from which the
ampIitudeMS/Mé,SMs(E,B) (3.31) is constructed.

E. Matrix elements of v" in channel J

To evaluate the radial functioms;',PZ(r) of the PV poten-
tial in EqQ. (3.20)—those associated with the PC potential
are well known—one needs the matrix elements of; (
X a,) -t and (o, — o) - p between spin-angle functions. Us-
ing the notation

<J;L',s'|o|J;|_,s>zfde[”,JST,JO(r)y[”SJJ, (3.5
and writing
— 1 - 5 3
(01— 02) - p=—i(o1—0y)- rr a0l (3.58

where thes symbol indicates that the partial derivatives must

ized in terms ofp- and w-meson exchangg46]. The values

for the p- andw-meson coupling constants and cutoff param-
eters are listed in Table |. The strong-interaction coupling
constants and cutoff parameters are taken from the BONN
potential, while the weak-interaction coupling constam}8

and hPP have been determined by an AvV18-based fit to the
observed asymmetry. In Table I, we also list tiff andh}?
values corresponding to the “best” estimates for tl},ie and

h,, suggested in Refl16], column labeled DDH-orig.

The data points for the longitudinal asymmetry at 13.6
MeV, 45 MeV, and 221 MeV are those reported in Refs.
[1,33], and their values are<{0.97+0.20)x 10/, (—1.53
+0.21)x10 7, and (+0.84+0.34)x10 ’, respectively.
The first point at 13.6 MeV has been obtairfj&8] by taking
the weighted mean and accounting for the square-root energy
dependence of the latest result from the the Bonn experiment
at 13.6 MeV, as reported by EversheiilRef. [14] in Ref.

[1]), and the 15 MeV result from Ref6]. The point at 45
MeV has also been obtain¢83] by combining results from
measurements at 45 Mel@], 46 MeV, and 47 MeMthese

act to the right, one finds that the nonvanishing matrix ele{ast two both from Ref[33]). The last point at 221 MeV is

ments are

1o N ALy
<\],J, |(0'1><0'2)-r|J,J+1,1>——| J+1/2

(3.59

that reported in Ref.1]. Finally, the errors include both sta-
tistical and systematic errors added in quadrature.

The total longitudinal asymmetry, shown in Fig. 1 for a
number of combinations of strong- and weak-interaction po-
tentials, is defined as
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1 L
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N AN NIJ=I|
215 F W —— AV18 (DDH) 1
\ ———- Reid-SC (DDH)
- o N // ]
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T .n(MeV)

50 100 350

FIG. 1. Total nuclear asymmetries obtained with various com
binations of strong- and weak-interaction potentials are compared
data, see text.

A(E)= IM[M 1004 E,0) + Mg 1d E,0)]

4.9

Im| >, M smg.smo(E.0)
Mg

where the ampIitudeMS/Mé,SMS(E,B) are those given in

Eq. (3.31). The expression above fé(E) ignores the con-
tribution of the Coulomb amplitude, E3.32, divergent in
the limit #=0, and for this reasoA(E) will be referred to as
the “nuclear” asymmetry. Of course, one should note tha
Coulomb potential effects enter inf(E) explicitly through
the Coulomb phase shifts, present in the partial-wave expa
sion for MS’M’S,SMS(Evo)v and implicitly through the wave
functions, from which theS-matrix elements are calculated.

The effect of including explicitly the amplitude induced by
the Coulomb potential is discussed below.

PHYSICAL REVIEW C 65 035502

point at 221 MeV essentially determines the valudagff. As
pointed out by Simoniuf34] (see also beloyy the dominant
contributions to the total asymmetry in the energy range un-
der consideration here are those associated with §€P,,

and 3P,-1D, partial waves. At energies close to 225 MeV
the 1S,-3P,, contribution, which can easily be shown to be
proportional to cdsSXE;'S)+o4(E)+oo(E)]—cod &E;*Py)
+01(E)+0o(E)] using Eq. (3.31) [here 8(E;'S,) and
8(E;3P,) are the strong-interaction phagesanishes. As a
result, the total asymmetry in this energy region is almost
entirely due to the®P,-'D, contribution, which is known
[34] to be approximately proportional to the following com-
bination of coupling constant$\"g,x,+hbPg,,«,, . In the
BONN model, thew-meson tensor coupling constant is taken
to be zero, and hence the data point at 221 MeV ﬂx%%
(for giveng,, «,, andA ). This is the reason for the-44%
increase(in magnitud¢ of h’” with respect to the DDH
igoest” estimate.

Below 50 MeV, however, the calculated total asymmetry
is dominated by the'S,-3P, contribution, approximately
proportional to[34] hPg,(2+ «,,) + hbPg,(2+ ). The in-
crease in magnitude dfY” required to fit the point at 221
MeV, now leads to a total asymmeti#(E)| below 50 MeV,
which is too large when compared to experiment. Thus, in
order to reproduce the 13.6 MeV and 45 MeV data points,
the overall strength of the coupling constant combination
above needs to be reduced significantly. Siggé2+ « )
andg,(2+ k,)=2g, have the same sign, this requires mak-
fing the sign ofhP" opposite to that ohbP.

It is worth pointing out, though, that the changes in value
for hPP andhf? advocated here are still compatible with the
“reasonable” ranges for thep” andhi?, determined in Ref.
[16].

Finally, we show in Fig. 1 the total nuclear asymmetry
obtained in a calculation based on the old Reid soft-core

.The calculate_d. nuc!ear asymmetries in Fig. 1 were obpotential[35,36 and a DDH potential using the following
tained by retaining in the partial-wave expansion forcoupling constant and cutoff valueg’/4m=0.95, g2/4m

MS’M’S,SMS(Eie) all channels withd up to J,.,=8. The

curves labeled AV18, BONN, and NIJ-I all use the DDH
potential with the coupling constart§” andh’" determined
by a rough fit to datdthe AV18 is used in the fitting proce-
durg. There is very little sensitivity to the input strong-
interaction potential, the larger differences displayed in Fig

=20, «,=6.1, «,=0, A,=13 GeVt, and A,
=1.5 GeVt (these are all from the old-space version of
the Bonn potentia[37]), and the “best” estimates foh)”
andhPP. These model interactions are essentially identical to
those employed by Driscoll and Miller in Rdf15]. Indeed,
our calculated total asymmetry is close to that obtained by

1 of Ref.[15] may be attributable to larger differences in the these authors. It should be stressed that in RES] the
partial-wave phase shifts. The reduced difference is undoubktrong-interaction phases and mixing angles were taken from

edly a consequence of the more extend@dandpn scatter-

Arndt’'s analysis of nucleon-nucleon scattering daBs]

ing database to which present potentials are fitted, as well 8ather than calculated from the Reid soft-core potential, as

the much higher accuracy achieved in these fits. An analys
of the extractech” and hi" coupling constants and their
errors is presented later in this section.

i§one here. This is presumably the origin of the remaining
small differences between their results and ours.
Figure 2 shows the total nuclear asymmetries obtained by

We also show in Fig. 1 the AV18 results that correspondincluding only theJ=0 channel {S,-3P,) and, in addition,

to a DDH potential using the “best” estimates for tha”
andhPP coupling constantgl6] (values in column DDH-orig
in Table ), with the remainingp- and w-meson strong-

the J=2 channels {P,-'D, and °F,-'D,), and finally all
(even J channels up td,,,=8. We reemphasize that in the
energy range 0—350 MeV the asymmetry is dominated by

interaction coupling constants and cutoff parameters as givetne J=0 and 2 contributiongamong the latter, specifically
in Table I. A number of comments are now in order. The datahose from the’P,-'D, partial waves

03550
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FIG. 2. Contributions to the total nuclear asymmetry obtainedt tFlle 4. To:al ngtck_ear dagy"?metfy- Sti]e tht’l'S (E)omptar(iq ltoTthhe
by including only theJ=0 channel, and by adding thle=2 chan- :Visasy;nglgéy 3_ aTe i Iy |gn(l:;r|ngt_ € tou c(;rrl[h_po eIDdI?. ne
nels, and finally all eved channels up td,,,,=8. The AV18 and an -adj potential combination Is used, thin Solid fine in

DDH-adj potential combination is used, thin solid line in Fig. 1. Fig. 1.

Figure 3 illustrates the sensitivity of the total nucleara” cases very similar. The couplings used to generate the two

. - Ph— _ PP—
asymmetry to modifications of the, and A, cutoff param- other curves are. fO'Rcut*ppl'S’ h," = 15'35;) andh,"=
eters in the DDH potential. Both cutoffs are multiplied by *3-92; and forR¢,=0.8, h,"=—106.7, anch,,"= + 14.63.
Ry, in each caséiPP and hPP are then readjusted to ap- Figures 4-6 |[Ius'§rate the effects of Coulomb contribu-
proximately reprodulce the AVH8DDH-adj combination. In tions on the longitudinal asy_mmetry. Figure 4 compares the
the near pointlike limit R,=10), the asymmetry increases [©tal nuclear asymmetry defined abcieeirve labeled C”)

in magnitude by roughly a factor of 2 prior to adjustment. with the total asymmetry obtained by ignoring the Coulomb

The resulting couplings used for this case Bf8= —14.33 potential altogether(curve labeled “noC”). As already
and hPP= +3.95. Results are also shown fBé —15 and pointed out in Ref.[15], Coulomb contributions to these
© .JO. ut™ -

0.8, the latter is an extreme case where the cutoff parameteggon physical quantities are rather small

are near the meson masses used to determine the ranggs Figure 5 compares the angular distribution of thaysi-

Nevertheless, the energy dependence of the asymmetry is mD Iongnugjmal asymmetry _obtamed from the amplitudes
M=M+M*%, see Eq(3.39, with that calculated by replac-

3 , . , , ing M—M in Eq. (3.39, namely, ignoring the contribution

2 T T T T

15 F ] 15 L 1
no-C \

A (107)

=05
aF

-15 |
2 3

-25 1
-3 L

0 50 100 150 200 250 300 350
T .n(MeV)

) I I I ! I

0 15 30 45
FIG. 3. Sensitivity of the total nuclear asymmetry to modifica- 6(deg)

tions of the cutoff parameterd , and A, in the DDH potential.

Both cutoffs are multiplied byR.,, see text. For each case the  FIG. 5. Angular distributions obtained witfturve labeledC)
couplings are then adjusted to approximately reproduce the resultnd without(curve labeled n&) inclusion of the Coulomb ampli-
obtained with the AV18 and DDH-adj potential combinati@or- tude at 45 MeV and 221 MeV, see text. The AV18 and DDH-adj
responding tdR.,~=1) in Fig. 1. potential combination is used, thin solid line in Fig. 1.

60 75 90
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A (107)

25 L L L 1 1 1
0 50 100 150 200 250 300 350

T n(MeV)

FIG. 6. Total nuclear asymmetighick solid line is compared
with the total asymmetries measured in transmission experiments
with critical angles §,=2°,5°, and 10° (curves labeled hPP
Als,, Alss, and Al 4o, respectively. The AV18 and DDH-ad] ®
potential combination is used, thin solid line in Fig. 1.

FIG. 8. Curves of constant tota? obtained by analyzing the
. . experimentalpp data with the AV18 model, and- and w-meson
of the Coulomb amplitud® €. The latter dominates at small strong-interaction couplings in the DDH potential from the Bonn-

scattering angles, and leads to the peculiar small angle b€o00 model. The curves indicate surfaces of tg1,2,3,4, and

havior of the angular distribution shown in Fig. 5, namely, its5 for various values ohf” andhf?’.

changing of sign at smak#, and its vanishing a#=0 (also

observed in Refl15]). It is interesting to note that the angu- contributions are substantial, particularly for smay and

lar distribution at 230 MeV obtained by Driscoll and Miller energies below 100 MeV. We also demonstrate, in Fig. 7, that

in Ref.[15] is significantly different from that shown in Fig. the angular distributions of the longitudinal asymmetry are

5 at 221 MeV. To some degree this difference may be attribonly weakly affected by different inpustrong-interaction

uted to the larger value of the asymmetry obtained by fittingpotentials.

the new experimental results. Finally, we present an analysis of the extracted coupling
Figure 6 illustrates the effects of Coulomb contributionsconstants and their experimental errors. This analysis em-

on the total longitudinal asymmetry measured in transmisploys the AV18 model and the BONN-derived strong inter-

sion experimentg¢3.49, for various choices of the critical action couplings and cutofféable | in the DDH potential.

angle 6, (6,=2°,5°, and 10°), see E(3.40. Coulomb  Given the weak sensitivity described earlier, only small

changes should be expected with the use of other recent

2 . . . . strong interaction potentials. The experimental data at low
energies have been combined into the two data points shown
15 ¢ T,,=221 MeV . in Fig. 1 at 13.6 and 45 MeV. The asymmetries ar6.97

+0.2 and —1.53+0.21, respectively, combining statistical
and systematic errors. We also include the recent TRIUMF
result of +0.84+0.34 at 221 MeMall in units of 10 7).

Figure 8 shows contours of constant tofdlat levels of 1
through 5 versus the coupling constahf andhfP. As is
apparent in the figure, there is a rather narrow band of ac-
ceptable values fon"" andhbP at total y>=1 for the three
experimental data points. At this levéil” can range from
approximately —14 to —28, with a simultaneougand
strongly correlated variation in hP? from roughly —2 to
+10, all in units of 107,

0 15 30 60 75 90

45
8(deg) V. CONCLUSIONS

FIG. 7. Angular distributions of the longitudinal asymmetry ob-  We have performed an analysis of thp parity-violating
tained with either the AV18 or BONN potential in combination with (PV) longitudinal asymmetry using combinations of modern-
the DDH-adj potential. day strong interaction potentials and the DDH-PV potential.
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The new eXperimental results from TRIUMF at 221 MeV, in however, indudinng(ﬁ, »),)ZH [2]' the neutron Spin rotation
combination with previous results at lower energy, provide &n helium [41], and electron scattering measurements at
strong constraint on allowable linear combinationspadnd  Bates and JLab. The combination of these diverse experi-
w PV coupling constants. Combining the statistical and sysments should finally yield a coherent picture of tal PV
tematic errors in quadratur@?® is constrained by present interaction at the hadronic scale.
data to approximately 35%, at the level of one standard de-
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