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Electric and magnetic polarizability of Goldstone pions to subleadingO„Nc
À1

…

in the bosonized Nambu–Jona-Lasinio model
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We study the electric and magnetic polarizability coefficients to subleading order in the inverse number of
colorsNc

21 by constructing Compton scattering amplitudes derived from a bosonized version of the Nambu–
Jona-Lasinio~NJL! chiral Lagrangian with finite pion size effects included. We confirm the leading inNc

21

mean-field results of Bajcet al. @Nucl. Phys.A604, 406 ~1996!# to O(mp
2 ) in the pion massmp . The sub-

leading corrections arise from a gauge invariant sum of meson one-loop diagrams which is nonanalytic inmp
2 ,

but free of any chiral or ultraviolet divergences. These corrections lead to a*30% reduction in the mean-field
values for the polarizability coefficients of the charged pion. Use of the sum rule estimate for the NJL quark
mass renders these calculations parameter free, and dependent only on the physical observables of the pion.

DOI: 10.1103/PhysRevC.65.035206 PACS number~s!: 11.30.Rd, 11.10.Lm, 11.10.St
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I. INTRODUCTION

The electric and magnetic polarizability coefficientsap

andbp of the pion characterize the long-wavelength beh
ior of the photon-pion Compton scattering amplitude. Ne
threshold this takes the form@1#

f C52
e2

Mp
~eW1•eW2!dT3 ,611apv1v2~eW1•eW2!

1bp~eW13qW 1!•~eW23qW 2!1•••. ~1!

Here (v i ,qW i) ( i 52,1) are the energy and momentum f
incoming and outgoing photons of polarizationse i5(0,eW i) in
the transverse gauge,Mp and T3 are the pions’ mass an
isospin projection, ande25a'1/137. As has become cus
tomary, these coefficients will be given in~Gaussian! units of
1024 fm3.

The polarizability coefficients are fundamental paramet
in pion physics. Their measurement and calculation prov
important tests for pionic structure as studied in QCD,
from various effective models of the pion. These coefficie
have been extracted from radiative pion photoproduction@2#,
radiative pion nucleus scattering@3,4#, and from the crossed
channel ofgg→pp experiments@5–7#. The actual experi-
mental values are still very uncertain, however@8,9#. On the
theoretical side, their calculation has been attempted usi
variety of approaches, viz., various quark models@10–18# of
the pion, chiral perturbation theory~CHPT! @19–23#, disper-
sion sum rules@24,25#, and the Das-Mathur-Okubo~DMO!
sum rule@26# combined with either model@1,27#, empirical
@28#, experimental@29#, QCD sum rule@30#, or QCD lattice
determinations of spectral densities@31#. Due to its method
of derivation from current algebra the DMO sum rule opti
is, however, restricted to yielding charged pion polarizab
ities in the chiral limit only.
0556-2813/2002/65~3!/035206~13!/$20.00 65 0352
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According to Eq.~1!, a knowledge of the Compton sca
tering amplitude near threshold is sufficient for computi
polarizability coefficients. Classically this corresponds to e
amining the response of the system to electromagnetic fi
that are practically constant over the dimensions of the
get. The construction of Compton scattering amplitudes c
not be done exactly. Some form of perturbation approach
to be employed. In the case of CHPT a loop expansion
corresponds to a series of increasing powers of momen
used to express the Compton scattering amplitude in term
the empirical coupling constants of CHPT that can then
inferred from independent experimental data. Calculatio
up to two loops for both neutral@9# and charged pion@22,23#
polarizability coefficients are available. As two-loop expa
sions already require an evaluation of a large number of
ditional diagrams (*100 diagrams for the charged chann
for example!, an extension to higher-order loops is limited b
the technical feasibility.

Alternatively, model Lagrangians have been construc
that attempt to mimic the breaking of the underlying chi
symmetry of QCD, with the accompanying generation of
ovector pseudoscalar Goldstone bosons. These boson
then identified with physical pions that are allowed to inte
act with a photon gauge field. In this regard the Namb
Jona-Lasinio~NJL! @32,33# model has been studied in som
detail in both its minimal SU~2! @16# and SU~3! @12# ver-
sions, as well as an extended SU~2! version ~ENJL! that
includes vector and axial vector meson modes@15#. While it
was recently shown that it is possible to carry out calcu
tions of the Compton amplitude for the minimal NJL mod
to all orders of external momenta@16#, these calculations
have been limited to a mean-field approach, characterize
keeping only leading inNc

21 contributions in a series expan
sion in the inverse number of colors. But these calculatio
are already technically very complicated, requiring the use
computer-assisted validation of the Dirac traces. This in t
©2002 The American Physical Society06-1
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suggests that the computation of terms involving singlep
and s meson loops generated self-consistently by the N
model~these give the subleading inNc

21 contributions! to all
orders in momenta will become prohibitive, and one has
resort to some approximate way for including such ad
tional terms. In Ref.@16#, for example, the authors argued f
an ad hoc incorporation of the lowest orderO(p4) meson
loop correction taken from CHPT@11# in the neutral channe
scattering amplitude, but not in the charged channel, the
son being that the leading inNc

21 NJL model contribution
only starts atO(p6) in the former channel, but already a
O(p4) in the latter.

In the present study we adopt a complementary poin
view by using the minimal NJL model in its bosonized ve
sion from the start to generate both leading and subleadin
Nc

21 contributions to the Compton scattering amplitude fro
a common Lagrangian. A particular advantage of
bosonized, or effective, NJL model Lagrangian of Ebert a
Volkov @34,35# is that it explicitly puts into evidence the rol
of the inverse number of colors as a coupling parameter
tween bosonic modes with which to classify a perturbat
scheme. However, this comes at a price. The leading inNc

21

piece of this Lagrangian now involves a series expansio
space-time derivatives of these boson fields. In the langu
of Ref. @16# this regenerates their closed-form Compton sc
tering amplitudes in the form of power series expansions
momenta, that consequently become quite laborious w
high-order powers of momenta are important. On the ot
hand, the subleading inNc

21 corrections arise from one-loo
meson diagrams that are well defined by the interacting p
of the bosonized NJL Lagrangian@34#. They do not involve
any further parameters, and will be shown to lead to corr
tions to the leading order results which turn out to be lar
causing on the order of a 30% reduction of the mean-fi
values for the polarizability coefficients.

The paper is organized as follows. A brief recollecting
the effective action for the bosonized NJL Lagrangian mi
mally coupled to a photon gauge field is given in Sec. II.
the original derivation@34# only the most divergent parts o
quark-loop integrals are kept. This leads to an effective
grangian that describes a system of scalar and pseudos
point mesons in interaction with each other in the prese
of a gauge field. However, since point particles cannot
polarized, one has to go one step further, and also include
finite parts of quark-loop integrals in an expansion of t
effective action to higher orders in momentum. This is d
scribed in Sec. III.

In Sec. IV we recall the basic form of the relativist
Compton scattering amplitude and the relation to the elec
and magnetic polarizability coefficients in the nonrelativis
limit. Using the effective Lagrangian approach we also co
firm to O(mp

2 ) the leading inNc
21 results already obtained i

Ref. @16#.
The effective Lagrangian still contains the logarithm

and quadratic divergences of the original NJL model t
appear in the coupling constantgs and in the gap equation
for the quark massm @34#. However, instead of solving th
gap equation form, we will rely on the sum-rule estimat
03520
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@36# m'A2/3p f p , and use the Goldberger-Treiman relatio
f pgs5m for gs . Then both divergences are formally a
counted for in the bosonized Lagrangian in terms of
weak decay constantf p of the Goldstone mode. Employin
this Lagrangian, the subleading inNc

21 contributions to the
Compton amplitude are obtained in Sec. V. These contri
tions are given by a gauge-invariant sum of meson one-l
diagrams. Although subsets of these diagrams contain u
violet divergences, their sum converges, so no ultravio
cutoff has to be introduced. In addition, individual diagram
display chiral limit divergences due to~Langacker-Pagels
@37#! chiral logarithms, and the poles inmp

2 that they contain.
However, these chiral divergencesalso all cancel out in the
diagram sum, and one is left with subleading amplitudes t
although nonanalytic inmp

2 , have a well-defined chiral limit.
One thus obtains no-free-parameter predictions for the e
tric and magnetic polarizability coefficients to subleading
der, that depend only on the physical observables of the p

The discussion of results and conclusions is presente
Sec. VI, where a comparison is made with other theoret
approaches, and experiment. Some calculational details
be found in the Appendix.

II. EFFECTIVE LAGRANGIAN

The starting point for discussing the electromagnetic
larizability of pions is taken as the bosonized version of
UV(1)3SUL(2)3SUR(2) invariant two-flavor Nambu–
Jona-Lasinio Lagrangian that only contains pseudoscalar
scalar fieldsp5pW •tW ands. In addition, the quarks are mini
mally coupled to an electromagnetic gauge fieldAm . Omit-
ting details of dynamical symmetry breaking, we assume t
the quarks have already been endowed with a constitu
massm5m01gs^s& in terms of a current quark massm0
and the nonvanishing expectation value of thes field in the
interacting ground state. Then, shifting to new primed fie
s85s2^s& andp85p, since^p&50, one has

LNJL5c̄@ i ]”2m2gs~s81 ig5p8!2eqA” !]c

2
gs

2

4G
@s821p82#2

1

4
F2. ~2!

The meson fields in this expression thus represent fluc
tions in thep ands fields with vanishing expectation value
in the chirally broken ground state of the system, andF2

5FmnFmn is the electromagnetic field tensor. Furthermo

eq5 1
2 e( 1

3 1t3) andgs;Nc
21/2 are the quark electric charg

and coupling constant to thep8 and s8 fields. The four
component Dirac spinorsc additionally include theNc col-
ors and two flavorst3561 of the quark.G is a strong
interaction strength parameter that must scale likeNc

21 in
order to preserve proper QCD mass scaling.

Performing a functional integration over the quark fiel
in Eq. ~2! now allows one to identify an equivalent actio
A5*dxL in terms of a LagrangianL5L(s,p,Am) that
only involves meson and photon fields. The full details
6-2
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ELECTRIC AND MAGNETIC POLARIZABILITY OF . . . PHYSICAL REVIEW C 65 035206
this approach were given in Refs.@34, 35#. Here we summa-
rize only those aspects that are relevant for implemen
pion polarizability calculations. One can expressA ~now
dropping the primes! as

A5E dxH 2
gs

2

4G
~s21p2!1 i K xUTr(

n52

`
1

n
@~ i ]”2m!21

3@gs~s1 ig5p!1eqA” ##nUxL J 1E dxH 2
1

4
F2J ,

~3!

where the trace runs over all quark intrinsic indices.
shown in Ref.@34#, by calculating the two-, three-, and fou
point quark loop diagrams generated by then5$2,3,4% terms
in the expansion of the fermionic determinant in Eq.~3!, and
then keeping only their divergent parts, one obtains an ac
A5A21A31A41••• that involves quadratic, cubic, qua
tic, etc. combinations of the bosonic field amplitudes fro
which one identifies the Ebert-Volkov Lagrangian for the
cal part of a field theory of extended mesons in interact
with photons:

L5Lf ree1Lint1Lem1•••. ~4!

The noninteracting piece is

Lf ree5
1
2 ~]p!21 1

2 ~]s!22 1
2 mp

2 p22 1
2 ms

2s22 1
4 F2,

~5!

wheremp
2 5m0gs

2/(2mG) and ms
254m21mp

2 are the pion
and sigma field masses squared of the model, as generat
dynamical symmetry breaking. The meson-meson interac
terms are given by

Lint522mgss~s21p2!2 1
2 gs

2~s21p2!2. ~6!

Finally,

Lem52 ie~p2]mp12p1]mp2!Am1e2p2p1A2 ~7!

describes the electromagnetic interaction of point pions w
the gauge field.1 HereLem has been written in terms of pio
fields carrying good isospin. The above form ofLint also
exhibits theNc dependence of the theory explicitly throug
the behaviorgs;Nc

21/2 of the coupling constant between th
meson modes. In theNc→` limit, the interaction termLint
falls away, and Eq.~4! reduces to a Lagrangian field theo
of free point mesons interacting with photons.

III. PION STRUCTURE CORRECTIONS

A point charge cannot be polarized. Therefore, to be
evant for discussing pion polarizabilities,L also has to con-
tain elements that reflect the intrinsic nonpointlike nature
a polarizable pion. A nonvanishing pion radius can arise

1After charge and field renormalizations@34#, e→e(1
1

5
27e2gs

22)1/2 andAm→(11
5

27e2gs
22)21/2Am .
03520
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two ways:~i! from the intrinsic structure of the pion itself a
a boundq̄q pair; and~ii ! at higher order inNc

21 , from virtual
pion clouds created byLint . Technically, the inclusion of
intrinsic size effects amounts to including higher-order d
rivatives of the pion and photon fields that accompany
finite parts of the quark loop diagrams in evaluating the
tion A. We start with the finite-size contributions to an actio
that is quadratic in thep field. The quadratic parts inp come
from the first term plus a contribution from then52 piece of
the fermionic determinant in Eq.~3!. One can combine thes
two terms as

A25
1

2
gs

2E d4k

~2p!4
@pW ~k!•Dp

21~k2!pW ~2k!# ~8!

in a momentum representation. The inverse propag
gs

2Dp
21(k2) for the pion is found from

Dp
21~k2!52~2G!211Pps~k2!, ~9!

where the quark one-loop pseudoscalar polarization func
is given explicitly by@33#

Pps~k2!5
m2m0

2Gm
1gs

22k2Fp~k2!. ~10!

The function

Fp~q2!511
1

6
q2^r p

2 &1••• ~11!

is identical to the leading inNc
21 electromagnetic form facto

of the pion as given by the simple single quark loop appro
mation to thegpp vertex shown in Fig. 1~a!. The value of
this vertex at lowq2 is given in Eq.~36! of Sec. IV, and
allows one to identify the model~or Tarrach! radius squared
@38# parameter̂ r p

2 & of the NJL Goldstone pion in this ap
proximation as

^r p
2 &5

3

4p2f p
2

. ~12!

FIG. 1. Typical quark triangle and box diagrams that determ
Lgpp andLggpp . The double and wavy lines indicate entering
exiting pions and photons. Thes propagator in~b!, connecting
quark triangles with photons and pions attached, generates
s-pole contributionL ggpp

(s) . The box diagram in~c! determines
L ggpp

(box) .
6-3
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C. A. WILMOT AND R. H. LEMMER PHYSICAL REVIEW C 65 035206
Being the square of a length, this parameter combina
serves as a convenient abbreviation by which to express
scattering amplitudes generated by the bosonized
model. The symbolf p for the pion weak decay constan
enters Eq.~12! via the Goldberger-Treiman~GT! relation
f pgs5m that is strictly only applicable in the chiral limi
m0→0 of vanishing current quark mass. Thusf p ~andmp),
that enter the bosonized Lagrangian, can differ in value fr
their measured values. We return to this point later. In
following, m will mean the value of the constituent qua
mass for vanishingm0.

Returning to the propagatorDp
21(k2) and inserting the

result given in Eq.~10! for Pps , one obtains

gs
2Dp

21~k2!5k2Fp~k2!2mp
2 Fp~mp

2 !

5~k22mp
2 !@11 1

6 ^r p
2 &~k21mp

2 !#1••• ~13!

after using the conditionDp
21(mp

2 )50 to eliminate the quark
masses and coupling constantG in terms of the pion mass
The residue ofgs

22Dp(k2) at the pion pole is thus reduced
below unity, to

Z5@11 1
3 mp

2 ^r p
2 &#21'12 1

3 mp
2 ^r p

2 &. ~14!

The factorZ serves to renormalize the pion field,p→AZp.
Carrying over this renormalization into Eq.~8!, and at the
same time inserting the result forgs

2Dp
21(k2), one obtains

A25
1

2E dxH ~]p!22mp
2 p21

1

6
^r p

2 &pW •~]21mp
2 !2pW J

~15!

after moving back to a coordinate representation again. T
the noninteracting part ofL in Eq. ~5! picks up an additiona
term in the pion sector due to size effects that involve qua
field derivatives. These give rise to a revised Feynm
propagator2

2 iDp~k2!5
i

~k22mp
2 !@11 1

6 ^r p
2 &~k22mp

2 !#
~16!

for the pion mode. Both the pion field renormalization
well as the ensuing structural change in the pion propag
are essential elements of the retention of gauge invarianc
the scattering amplitudes.

Turning now to the structure modifications of the elect
magnetic part of the interaction with pions we isolate t
Lgpp andLggpp fragments of the renormalized electroma
netic Lagrangian from then53 and 4 terms in Eq.~3! that

2The ghost pole in this propagator at spacelikek2;21 GeV2 is
an artifact of the low momentum expansion. It plays no role in
physics.
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involve two pion fields and one or two photon fields, respe
tively. The relevant diagrams are shown in Fig. 1. Forn
53,

E dxLgpp5 igs
2ZE dx^xuTr@~ i ]”2m!21ig5p~ i ]”2m!21

3 ig5p~ i ]”2m!21eqA” #ux&, ~17!

that involves the quark three point function of Fig. 1~a!.
Evaluating this up to and including cubic derivatives in t
field amplitudes~combinations of second-order field deriv
tives cannot contribute due to the pseudoscalar and ve
nature of the pion and photon, respectvely!, one has

Lgpp52 ieZ~p2]mp12p1]mp2!Am

1 ie^r p
2 &$ 1

6 ~p2]2]mp12p1]2]mp2!

2 1
2 ~]mp2]2p12]mp1]2p2!

1 1
3 ~]rp2]r]mp12]rp1]r]mp2!%Am. ~18!

There are two types of contributions to the effective fou
point interaction LagrangianLggpp . These arise from the
s-pole and quark box diagrams depicted in Figs. 1~b! and
1~c!. The s-pole contribution is obtained by contracting th
spp vertex in Eq.~6! with the sgg vertex that is given by
anothern53 fragmentLsgg that describes a quark-loop
induced coupling of photons to thes field. This latter vertex
is determined by

E dxLsgg5 igsE dxTr^u@~ i ]”2m!21s~ i ]”2m!21

3eqA” ~ i ]”2m!21eqA” #ux& ~19!

or

Lsgg5 5
27 e2^r p

2 & f ps$~]rAs!~]rAs!2~]rAs!~]sAr!%
~20!

after again using the abbreviation of Eq.~12! for brevity.
Carrying out the contraction on the intermediates propaga-
tor between the two quark triangles in Fig. 1~b! then yields
the separately gauge invariant contribution

L ggpp
(s) 5 1

4
10
27 e2^r p

2 &$~]rAs!~]sAr!2~]rAs!~]rAs!%p2

52 1
4

5
27 e2^r p

2 &p2F2, ~21!

since

~]mAn!~]nAm!2~]mAn!~]mAn!52 1
2 F2. ~22!

Then54 term in Eq.~3! includes the box diagram of Fig
1~c!. Since one is taking the trace of the fourth power o
sum of field operators, the question of operator order is
portant. With due regard to this aspect, one has

e

6-4
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E dxL ggpp
(box) 5

i

4
gs

2ZH4E dx^xuTr@~ i ]”2m!21

3eqA” ~ i ]”2m!21eqA” ~ i ]”2m!21

3 ig5p~ i ]”2m!21ig5p#ux&J
1

i

4
gs

2ZH2E dx^xuTr@~ i ]”2m!21

3eqA” ~ i ]”2m!21ig5p~ i ]”2m!21

3eqA” ~ i ]”2m!21ig5p#ux&J , ~23!

the factors 4 and the 2 giving the number of identical ter
of each type.

Evaluation of this expression up to and including seco
order derivatives of the photon and pion fields in order
identify L ggpp

(box) to that order is straightforward but cumbe
some. After some calculation, one finds that there is no
sultant interaction at all in the neutral channel,

Lggpp5L ggp0p0
(box)

1L ggp0p0
(s)

50, ~24!

in agreement with the~tree–level! result established previ
ously in CHPT@11#, while in the charged channel the resu
is

Lggpp5L ggp2p1
(box)

1L ggp2p1
(s)

5e2@Zp2p12 1
6 ^r p

2 &@p2]2p11p1]2p2##A2

1 1
4 e2^r p

2 &$@ 8
3 ~]mp2!~]np1!AmAn

2p2p1@ 4
3 Am]2Am1 2

3 ~]mAm!2##

1 2
3 p2p1@~]mAn!~]nAm!2]mAn!~]mAn!#%. ~25!

For real photons and pions this expression is equivalent

Lggpp5e2p2p1A21 2
3 e2^r p

2 &~]mp2!~]np1!AmAn

2 1
12 e2^r p

2 &p2p1F2, ~26!

after introducing the explicit form of the pion field renorma
ization Z. This restores the contact term to its correct val
The term involving pion field derivatives ensures the gau
invariance of the scattering amplitudes but does not oth
wise contribute to the pion polarizability. This is determin
solely by the last term. Since this term involves the elect
magnetic field strengths in the gauge-invariant combina
2 1

2 F25E22B2, theap52bp degeneracy characteristic o
chiral invariance@1# will be maintained by this interaction
Lagrangian.

The electromagnetic interactionLem in Eq. ~7! that in-
cludes pion structure contributions is thus upgraded to re

Lem5Lgpp1Lggpp . ~27!
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With this upgrade, the Ebert-Volkov Lagrangian in Eq.~4! is
taken as the starting point for the polarizability calculatio
reported on here.

IV. COMPTON SCATTERING BY PIONS

The Compton scattering amplitude may be written as

f C52
e1

mWmne2
n

2As
~28!

if the photons and pions are described by plane waves of
amplitude. The tensorWmn consists of a~Thompson! scatter-
ing amplitude off the total charge, plus a contribution th
arises from the intrinsic structure of the target@13#:

Wmn5Wmn
point1Wmn

structure522e2Tmn
point2@ f 1Tmn

(1)1 f 2Tmn
(2)#.

~29!

The amplitudesf 15 f 1(s,t) and f 25 f 2(s,t) are functions of
the invariantss5(k11q1)25(k21q2)2 and t5(k22k1)2

5(q12q2)2. The three tensor coefficients in Eq.~29! have
been explicitly constructed out of combinations of the pi
and photon four-momenta in Ref.@13# to ensure gauge in
variance separately for both the point charge and struc
contributions. We will only require the explicit form of

Tmn
(2)5gmn~q1•q2!2q2mq1n , ~30!

plus the relations

e1
mTmn

pointe2
n→2~eW1•eW2!,

e1
mTmn

(1)e2
n→2~eW1•eW2!~v1v2!,

e1
mTmn

(2)e2
n→2~eW1•eW2!~v1v2!1~eW13qW 1!•~eW23qW 2!

~31!

that hold near thresholdss→Mp
2 and t→0. Then

e1
mWmne2

n'2e2~eW1•eW2!dT3 ,612$~eW1•eW2!v1v2@ f 12 f 2#

1~eW13qW 1!•~eW23qW 2! f 2#% ~32!

in the transverse gauge. This leads tof C in Eq. ~1!, with

ap5
@ f 12 f 2#

2Mp
, bp5

f 2

2Mp
, ap1bp5

f 1

2Mp
, ~33!

after division by22As→22AMp
2 .

We very briefly retrieve some previously known leadin
in Nc

21 results using the bosonized Lagrangian, before tak
up the main task of subleading corrections. The Comp
scattering amplitude for charged point pions is given at t
level by the sum of contact~seagull! and pion pole diagrams
@39#. Let us regenerate these contributions using the
graded version ofLem in Eq. ~27!, that includes a finite pion
size.
6-5
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C. A. WILMOT AND R. H. LEMMER PHYSICAL REVIEW C 65 035206
We label the contribution to the scattering tensor fro
Lggpp in Eq. ~25! as the quark box pluss-pole contribution.
This term reduces to the standard seagull diagram in
point charge limit. One has

Wmn
(box1s)~k1 ,k2!522e2@Z1 1

3 mp
2 ^r p

2 &#gmn

2 1
3 e2^r p

2 &$~q1
21q2

2!gmn2q1mq2n

12@k2mk1n1k2nk1m#%1 1
3 e2^r p

2 &

3@~q1•q2!gmn2q2mq1n#. ~34!

The contribution from thep-pole diagram plus its crosse
counterpart with the incoming and outgoing photons int
changed is

Wmn
(p)~k1 ,k2!52$Gm

gpp~k1 ,k11q1!Dp~k21q2!

3Gn
gpp~k2 ,k21q2!1Gm

gpp~k2 ,k22q1!

3Dp~k22q1!Gn
gpp~k1 ,k12q2!%, ~35!

where theGm
gpp(k1 ,k2) vertex is generated byLgpp of Eq.

~18!. This vertex is given by

Gm
gpp~k1 ,k2!5eZ~k11k2!m1e^r p

2 &$ 1
3 k1mk2

21 1
3 k2mk1

2

1 1
6 q2~k11k2!m% ~36!

for the incoming photon four-momentum squared:q25(k1

2k2)2. The sum ofWmn
(box1s) andWmn

(p) is gauge invariant.
The on-shell version ofGm

gpp(k1 ,k2) with k1
25k2

25mp
2

determines the electromagnetic form factor of the char
pion from

Gm
gpp~k1 ,k2!5eFp~q2!~k11k2!m ~37!

to be

Fp~q2!5Z1 1
3 mp

2 ^r p
2 &1 1

6 q2^r p
2 &511 1

6 q2^r p
2 & ~38!

at smallq2. This was already used in Eq.~11!. The pion field
renormalization ensures that thegpp vertex carries the cor
rect total charge,Fp(0)51.

Contracting on the photon polarization vectors in t
transverse gauge again, one finds thate1

mWmn
(p)e2

n vanishes
near threshold, so that the Compton scattering in the cha
channel is fully determined by the quark box pluss-pole
amplitude alone:

e1
mWmn

(box1s)e2
n52e2@Z1 1

3 mp
2 ^r p

2 &#~eW1•eW2!

1 1
3 e2^r p

2 &~e1
mTmn

(2)e2
n!. ~39!

The first term gives the correct point charge scattering si
the coefficient of 2e2 is actually unity because of Eq.~14!.
The second term identifies the leading inNc

21 values of the
amplitudesf 1 and f 2 for charged pions as

f 1x
6 50, f 2x

6 52
1

3
e2^r p

2 &52
a

4p2f p
2

. ~40!
03520
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This value of f 2x
6 sets the overall model–independent sc

for the pion Compton scattering amplitudes. The same s
factor appears in CHPT@22,23#. There is no scattering at a
in the neutral channel at this order of approximation,f 1x

0

5 f 2x
0 50. All of these amplitudes are independent of t

pion mass, and thus describe the scattering in the chiral li
mp

2 →0; hence the subscriptsx. Furthermore, a vanishingf 1

indicates that the chiral conditionap1bp50 is also satis-
fied. Hence

apx
6 52bpx

6 5
a

8p2mp f p
2

, apx
0 52bpx

0 50, ~41!

with Mp→mp , the pion mass of the model. We refer
these values as the polarizability coefficients of a ch
~Goldstone! pion.

The degeneracy in the magnitude of the chiral electric a
magnetic polarizabilities is lifted in the next order of a
proximation when higher-order momentum contributions
considered inLggpp . This involves expanding thes-pole
and quark box diagrams in Fig. 1 toO(p6). Omitting the
details, one finds that

f 1
05

1

3
e2^r p

2 &S 5

9

mp
2

m2 D ,

f 2
052

1

3
e2^r p

2 &S 5

9
mp

2 ^r p
2 &2

5

6

mp
2

m2 D ~42!

and

f 1
65

1

3
e2^r p

2 &S 7

45

mp
2

m2 D ,

f 2
652

1

3
e2^r p

2 &S 11
5

9
mp

2 ^r p
2 &2

1

3

mp
2

m2 D ~43a!

for the neutral and charged channels, respectively. As bef
the tacit assumption has been made that the GT rela
f pgs5m is unaltered by the presence of a current qu
mass in the NJL gap equation. This is not strictly true on
O(mp

2 ) contributions are included. Considering a finite cu

rent quark mass changes@40# the values ofm2→m̃2, gs
22

→g̃s
22 that causes these scattering amplitudes to be m

plied by a global factor Z fp
2 g̃s

2/m̃2'11 1
6 mp

2 ^r p
2 &

2 1
2 mp

2 /m2. To orderO(mp
2 ), this only affects the amplitude

f 2
6 because of theO(p4) tree level term it contains. It is

replaced by

f 2
6→ f̃ 2

6'2
1

3
e2^r p

2 &S 11
13

18
mp

2 ^r p
2 &2

5

6

mp
2

m2 D .

~43b!

These expressions correspond exactly to keeping at m
O(p6) contributions in external momenta in terms of th
6-6
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ELECTRIC AND MAGNETIC POLARIZABILITY OF . . . PHYSICAL REVIEW C 65 035206
classification scheme adopted in Ref.@16#. The amplitudesf 2
tend to a finite constant or vanish respectively in the char
or neutral channel asmp

2 →0; f 1 vanishes in both channels
The null values3 for f 1

0 and f 2
0 as mp

2 →0 just reflect the
pointlike nature of the neutral Goldstone pion of zero cha
radius in the chiral limit@12#. Such a point object cannot b
polarized. Here this result comes about as a consequen
an exact cancellation between the scattering amplitudes
ing from the quark box ands-pole diagrams in this limit.

The associated leading inNc
21 polarizabilities can be read

off to O(mp
2 ) from Eqs.~33!. Note, however, that the pion

massMp'mp(11 1
6 mp

2 ^r p
2 &2mp

2 /8m2) that enters into tha
equation also differs frommp by O(mp

2 ) nonchiral correc-
tions @40#. Then

ap
0 1bp

0 5
a

8p2mp f p
2 S 5

9

mp
2

m2 D , ~44a!

bp
0 52

a

8p2mp f p
2 S 5mp

2

12p2f p
2

2
5

6

mp
2

m2 D ~44b!

for p0, and

ap
61bp

65
a

8p2mp f p
2 S 7

45

mp
2

m2 D , ~45a!

bp
652

a

8p2mp f p
2 S 11

5mp
2

12p2f p
2

2
17

24

mp
2

m2 D ~45b!

for p6, after making the replacementf 2
6→ f̃ 2

6 for calculat-
ing bp

6 . These results are identical up toO(mp
2 ) with the

exact leading inNc
21 computations in Ref.@16# for the NJL

model electric and magnetic polarizability coefficients, af
letting their cutoffL→`. If in addition the quark massm is
taken equal to its sum rule value@36#, this set of equations
makes predictions for these coefficients that only involve
known physical constants of the pion. Usingmp

5140.2 MeV and f p588.8 MeV as appropriate NJL
model input values ~see Sec. VI! after inserting m
'A2/3p f p'228 MeV, one has, in units of 1024 fm3,

ap
65

a

8p2mp f p
2 S 12

33mp
2

80p2f p
2 D '5.75 @4.98#,

3As an aside we point out that the vanishing of the neutral am
tudes in the chiral limit can also be understood in terms of Dash
theorem. This theorem@41# shows that a neutral Goldstone pio
remains a Goldstone pion~i.e., cannot develop electromagnet
mass! in the presence of electromagnetic interactions as a co
quence of chiral symmetry. The electromagnetic self-mass squ
can be obtained@42# from the Compton scattering tensor by simp
contracting the photon lines in Figs. 1~b! and 1~c!. A vanishing
scattering amplitude in the neutral channel is thus sufficient~but not
necessary; see Sec. V B! to make the electromagnetic self-ener
also vanish in the chiral limit, in line with this theorem.
03520
d

e

of
is-

r

e

bp
652

a

8p2mp f p
2 S 12

31mp
2

48p2f p
2 D '25.37 @24.57#,

~46!

ap
0 50 @20.09#,

bp
0 5

a

8p2mp f p
2 S 5mp

2

6p2f p
2 D '1.35 @1.54#.

Note thatap
6'2bp

6 come to within 80–90 % of their com
mon chiral valueapx

6 '6.42 in Eq.~41!, while ap
0 50 returns

to its chiral value. Onlybp
0 has been changed appreciably

O(mp
2 ) contributions. Actually solving the gap equation fo

reasonable input parameters places@33# m in the range
;200–240 MeV that does not differ substantially from t
corresponding sum-rule estimate form given above. Conse
quently toO(mp

2 ), the values of the leading order electr
and magnetic polarizabilities will still mainly be determine
by the chiral properties of the Goldstone pion.

These leading-order estimates differ somewhat from
correspondingO(p41p6) values given in Ref.@16# ~shown
in square brackets! because of our slightly different choice o
the effectivef p , mp , and m, but more especially becaus
their ~convergent! integrals that determine the polarizabilit
are cut off with the sameL;1 GeV that is necessary for a
actual calculation ofm. In the present approach this wou
correspond to introducing an additional parameterL2/m2 by
cutting off all quark loop integrals, convergent or not, th
determine the structure of the interaction Lagrangian.

V. SUBLEADING IN NC
À1 CORRECTIONS

We next set up the main task of identifying and comp
ing the subleading inNc

21 corrections due to meson-meso
interaction terms described byLint in Eq. ~6!. Intermediate
meson loops are introduced by this interaction, that gene
meson clouds which make a contribution of their own to t
pion charge radius.

The set of direct Compton scattering diagrams that
subleading is shown in Fig. 2. Not shown are the cros
diagrams with the initial and final photon states inte
changed, that must accompany each direct diagram. Ne
are the three ‘‘seagull’’ diagrams shown that match Fi
2~c!–2~e! in structure, but have the two photons attached a
common point instead of sequentially. The complete set,
rect plus crossed, plus matching seagull diagrams, gene
the subleadingO(Nc

21) Compton scattering amplitude con
tribution that is gauge invariant. Since these contributions
all subleading, we may use the point-charge form given
Eq. ~7! to describe the photon-pion interactions for this sta
of the calculation. The introduction of the transverse gau
for the photon polarization after moving to the long-wa
limit results in an essential simplification at this point. F
then only the subset of diagrams~c!, ~d!, and ~e! of Fig. 2
need to be considered, since only these will survive contr
tion with the transverse polarization vectors.
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6-7



Fi

d

in
O

n
e

try

-
n
s
lly
e

ally
nce
s

ss,

e-

l
n’s
ith
iral
en
,
ct-
ig.

-
.

in

th
s

st
to

o

C. A. WILMOT AND R. H. LEMMER PHYSICAL REVIEW C 65 035206
A. Neutral channel

In the neutral channel charge conservation removes
2~c! from consideration too, so only Figs. 2~d! and 2~e! are
relevant. Since the pion in the loop must be charged in or
to couple to a photon, the four-pion vertex for Fig. 2~d! only
involves that piece of the four-pion interaction Lagrangian
Eq. ~6! where at least two of the pion fields are charged.
the other hand, the two vertices at the ends of thes meson
propagator in Fig. 2~e! are determined by theLspp

522mgssp2 term inLint . With the eventual limitt→0 in
mind, it becomes convenient to generate the diagram sum
Figs. 2~d! and 2~e! from a common interaction Lagrangia
by contracting thes meson line, and adding the result to th
four-pion Lagrangian with due regard to differing symme
factors for charged and neutral channels. Then

L pppp
(2d12e)52

1

2
gs

2H 4
mp

2

ms
2 @p0p0p2p1#

1
1

2 S 11
mp

2

ms
2 D @4p2p1p2p1#J ~47!

where the relationms
254m21mp

2 has been used.
The first term in Eq.~47! determines the scattering con

tribution in the neutral channel. Upon coupling two photo
to the charged pion loop, either via a photon seagull or
quentially, one finds that both loops diverge logarithmica
but that their sum is finite. The tensor scattering amplitud
given by

Wmn
(2d12e)~q1 ,q2!528ie2gs

2
mp

2

ms
2 $gmnI ~mp

2 ,mp
2 ;t !

2Jmn~q1 ,q2!%, ~48!

FIG. 2. The complete set of Compton scattering diagrams
are subleading inNc

21 . Wavy lines indicate photons, and solid line
indicate mesons. Only direct diagrams are drawn. To these mu
added another eight diagrams with incoming and outgoing pho
interchanged, plus a further three seagull diagrams that match~c!,
~d!, and~e! in structure, but with the photons attached at a comm
point instead of sequentially.
03520
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wheret5(q12q2)2. The integralsI andJmn , which are in-
dividually divergent, are defined in Eqs.~A1! and~A3!. They
determine the contributions of the seagull and sequenti
scattered photons, respectively. However, the differe
@gmnI (mp

2 ,mp
2 ;t)2Jmn(q1 ,q2)# is convergent, and behave

like ;1/mp
2 for on-shell photons ast→0. Thus the scattering

amplitudeWmn
(2d12e) becomes independent of the pion ma

and consequentlyfinite in the chiral limit.
We contract with the photon polarization vectors as b

fore, to find

e1
mWmn

(2d12e)e2
n52

1

3~11y!

e2

~4p!2f p
2 ~e1

mTmn
(2)e2

n!, ~49!

after again employing the GT relationf pgs5m and the ab-
breviationsy5mp

2 /m2 with m52m. It then follows that the
subleading inNc

21 corrections tof 1 and f 2 in the neutral
channel are

d f 1
050, d f 2

05
1

36
e2^r p

2 &
1

~11y!
. ~50!

Thus f 1
0 is unchanged from its leading value, whilef 2

0 is
replaced by

f 2
01d f 2

052
1

3
e2^r p

2 &S 5

9
mp

2 ^r p
2 &2

13

4

mp
2

m2
2

1

12D , ~51!

after only keeping subleading corrections toO(mp
2 ) for con-

sistency.
Since the sumf 2

01d f 2
0 no longer vanishes in the chira

limit, the question arises of what has become of Dashe
theorem. However, this theorem concerns itself solely w
the vanishing electromagnetic mass correction of the ch
p0, not its polarizability, and continues to hold. This is se
as follows. The electromagnetic~EM! mass shift squared
dmp0

2 , due to these meson loops is again found by contra
ing on the photons in the Compton tensor amplitudes in F
2 ~and dividing by 2 to compensate for crossing!. This intro-
duces the photon propagator2 iD mn(q2)52 igmn /q2. The
gauge choice is immaterial, sincedmp0

2 is explicitly gauge
invariant. Then

dmp0
2

5
1

2E d4q

~2p!4
@2 iD mn~q2!#Wmn

(2d12e)~q,q!

;e2mp
2 S L2

ms
2 D H 11

1

3
ln

mp
2

L2
1•••J , ~52!

with the help of Eq.~48!, after regulating the divergent inte
gral with a sharp cutoffL in Euclidean momentum space
Thus theO(Nc

21) EM mass correction continues to vanish
the chiral limit.
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ELECTRIC AND MAGNETIC POLARIZABILITY OF . . . PHYSICAL REVIEW C 65 035206
B. Charged channel

The contributions of Figs. 2~d! and 2~e! in the charged
channel follow from the last term of Eq.~47!. This gives rise
to the same expression as Eq.~48!, but withmp

2 /ms
2 replaced

by 11mp
2 /ms

2 . One now has

Wmn
(2d12e)652

e2

~4p!2f p
2 S 1

3y
1

1

3~11y! DTmn
(2) . ~53!

This amplitude develops a chiral pole aty→0. The remain-
ing contribution in the charged channel is given by Fig. 2~c!.
Translating the diagram, one finds that

Wmn
(2c)6528ie2gs

2~4m2!$gmnJ~k1 ,k2!2 1
2 I mn~q1 ,k1 ,k2!

2 1
2 I nm~2q2 ,k1 ,k2!%. ~54!

The integralsJ(k1 ,k2) and I mn(q1 ,k1 ,k2) are given in Eqs.
~A5! and ~A6!. We require theirt→0 limit after contraction
with the polarization vectors. AlthoughJ(k1 ,k2) and
I mn(q1 ,k1 ,k2) individually display chiral singularities; ln y
and;1/y, the logarithmic terms cancel out in the combin
tion required in Eq.~54!. Using they→0 limiting forms for
these integrals, one obtains

e1
mWmn

(2c)6e2
n52e2S gs

2

8p2D H 11
8

3
y12y ln y1•••J ~eW1•eW2!

2
e2

~4p!2f p
2 H 2

1

3y
111

119

18
y1

10

3
y ln y

1•••J ~e1
mTmn

(2)e2
n!. ~55!

The remaining simple pole in this expression is in tu
canceled by an identical pole inWmn

(2d12e)6 . Consequently
the final scattering correction toO(mp

2 ) andO(mp
2 ln mp

2) in
the charged channel is given by

e1
mWmn

(2c12d12e)6e2
n

52e2S gs
2

8p2D H 11
8

3
y12y ln y1•••J ~eW1•eW2!

2
e2

~4p!2f p
2 H 4

3
1

113

18
y1

10

3
y ln y1•••J ~e1

mTmn
(2)e2

n!,

~56!

that is nonanalytic iny5mp
2 /m2 but free of all chiral diver-

gences. The subleading scattering amplitude corrections
thus

d f 1
650, d f 2

65
1

3
e2^r p

2 &S 1

3
1

113

72
y1

5

6
y ln y1••• D .

~57!
03520
-
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There is again no correction tof 1
6 . However, there is now

a spurious correction to the point charge scattering, com
from the first term;(eW1•eW2) in Eq. ~56! which is unphysi-
cal. This is in turn removed by subleadingO(Nc

21) correc-
tions to the pion field renormalization. One sees this by c
culating the correction2 idS(k2)5 igs

2dPps(k
2) to the pion

self-energy. This is given by the sum of diagrams 2~f! plus
2~g! plus 2~h! of the last row in Fig. 2 with the photon
removed. With the help ofLint in Eq. ~6!, one finds that the
k250 value of Fig. 2~f! just cancels out against th
k2–independent contribution from the sum of Figs. 2~g! and
2~h!. Then

dPps~k2!5216im2$I ~ms
2 ,mp

2 ;k2!2I ~ms
2 ,mp

2 ;0!%

'
k2

8p2
, k2→0. ~58!

The integralI (ms
2 ,mp

2 ;k2) is given by Eq.~A1!. The differ-
ence vanishes likek2, confirming that the Goldstone natur
of the chiral pion is strictly preserved. We replace the ps
doscalar polarizationPps(k

2) in Eq. ~9! by the sum
Pps(k

2)1dPps(k
2), and find that the residue at the po

k25mp
2 of the modified pion propagator is altered fromZ to

Z8, where

Z85F 11
1

3
mp

2 ^r p
2 &1gs

2S ]

]k2
dPpsD

m
p
2
G21

'12
1

3
mp

2 ^r p
2 &2

gs
2

8p2 S 11
8

3
y12y ln y1••• D

~59!

after appealing to Eq.~A2!. The correct point-charge scatte
ing is restored by replacingZ with Z8 in the point scattering
term ;(eW1•eW2) in Eq. ~39!, and adding this to the corre
sponding point scattering contribution that appears in
~56!.

VI. RESULTS AND CONCLUSIONS

We have seen that the subleading inNc
21 corrections to

the Compton scattering tensor appear in the amplitudef 2 but
not f 1 in either channel. Thus these corrections influence
electric and magnetic polarizability coefficients individuall
but not the leading inNc

21 values of their sums which ar
immune to the class of subleading corrections conside
here. This finding is also in line with the results of CHPT@9#.
To quantify the changes in the individual coefficients w
start with the magnetic polarizability and write

bp
T352

a

8p2mp f p
2

xT3~x,y!, x5mp
2 / f p

2 , y5mp
2 /m2,

~60!

whereT3 is the third component of the channel isospin. Th
6-9
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TABLE I. Breakdown into leading and subleading inNc
21 contributions to the charged pion polarizabilit

coefficients for the bosonized NJL model. The input parameters aremp5140.2 MeV andf p588.8 MeV at
a quark mass ofm5227.8 MeV, as given by the sum rule, so thatm5ms'0.46 GeV. These parameter
reproduce the observed values ofFp'93 MeV for the weak decay constant and an average meson ma
Mp'138 MeV. For a critical overview of data extraction, see Refs.@7,9,22#. Units are 1024 fm3.

ap
61bp

6 ap
62bp

6 ap
6 bp

6

Leading 0.38 11.13 5.75 25.37
Subleading 0 23.80 21.90 1.90
Total 0.38 7.33 3.85 23.47
Expt. 0.2260.07(stat.)60.04(sys.)@5,7#

0.3360.0660.01 @6,7#
1.463.162.5 @4#

4.861.0 @5,7# 2.560.5 22.360.5
6.0361.26 @5#

15.666.464.4 @4# 8.566.1 27.166.1
17.0963.5 @3#
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x0~x,y!5F S 5

12p2
x2

10

3
y1••• D 1S 2

1

12
1

1

12
y1••• D G

~61!

and

x6~x,y!5F S 11
5

12p2
x2

17

6
y1••• D

2S 1

3
1

113

72
y1

5

6
y ln y1••• D G ~62!

for the neutral and charged channels, respectively, using
~50! and ~57!. The leading and subleading inNc

21 contribu-
tions in these expressions have been bracketed separ
Note thatx0 and x6 are reduced from zero and unity to
21/12 and 2/3, respectively, by the subleading contributi
in the chiral limit.

Besides the order parameterf p that sets the energy sca
for chiral symmetry restoration by external influences@33#,
the nonchiral terms in these expressions require an additi
scale parameter against which to comparemp . For the
bosonized NJL model we have seen thatm52m'ms pro-
vides such a scale in terms of the scalar field mass. Th
the only place where the NJL model parameters enter
the polarizability calculations. As already remarked, we c
circumvent even these by taking the sum rule valuem
'228 MeV for the quark mass instead of solving form
from the gap equation that depends on the NJL coup
constantG plus a regulating cutoffL. This choice ofm cor-
responds to the scale ofm'456 MeV. In obtaining numeri-
cal estimates we have used the ‘‘adjusted’’ valuesmp

5140.2 MeV andf p588.8 MeV that reproduce the ob
served average pion mass and decay constant atMp

'138 MeV and Fp'93 MeV respectively, after taking
into account, as in CHPT@19#, that the bare constantsmp

and f p of the model, differ by nonchiral corrections from
03520
s.

ely.

s

al

is
to
n

g

their observed values. The relations for making these adj
ments for the NJL model are given in Ref.@40#.

Using these input values in Eqs.~60!, ~45a!, and~44a!, we
obtain the breakdown into leading and subleading contri
tions given in Tables I and II. The subleading correctio
have a significant effect. While the sumap1bp is not af-
fected in either channel, there is more than a 30% reduc
in ap2bp , and therefore in the values of the individu
coefficients in the charged channel due toO(Nc

21) contribu-
tions. These corrections are much larger than the;6% cor-
rections ofO(p41p6), leading inNc

21 values of these coef
ficients due to retainingall orders of external momenta a
reported in@16#. So neglectingO(p8) and higher momentum
contributions in the row labeled ‘‘leading’’ in Table I, as w
have done here, will not make much difference to our fin
results.

The polarization coefficients in the neutral channel b
have differently. Although the sumap

0 1bp
0 is again indepen-

dent of subleading contributions,ap
0 is determined almos

totally by them, whilebp
0 is almost independent of thes

contributions. The reason for this is clear from the simp
analytic expressions

ap
0 5

a

8p2mp f p
2 S 2

1

12
1

mp
2

32p2f p
2 D ,

TABLE II. A repetition of the calculations described in Table
but for the neutral pion. Data from the Mark II and Crystal Ba
Collaborations@5#.

ap
0 1bp

0 ap
0 2bp

0 ap
0 bp

0

Leading 1.35 21.35 0 1.35
Subleading 0 20.98 20.49 0.49
Total 1.35 22.33 20.49 1.84
Expt. 1.2560.06 21.461 20.0860.50 1.3360.50
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TABLE III. Comparison of various estimates of the sum and differenceap6bp for charged and neutra
pions.

Charged pions ap
61bp

6 ap
62bp

6

From Table I 0.38 7.33
Bajc et al. @16# 0.33 10.0
CHPT, one loop@22# 0 5.460.8
CHPT, two loops@22# 0.360.1 4.461.0
Dispersion sum rules@24# 0.3960.04 ;10.8
DMO sum rule, QCD estimate of spectral densities@30# 0 11.261.0
DMO sum rule, spectral densities on a lattice@31# 0 24.063.663.2
DMO sum rule, empirical spectral densities@28,27# 0 26.0
DMO experimental spectral densities (s<3 GeV2) @29# 0 ;1662
DMO sum rule, NJL model spectral densities@27# 0 8.56
DMO sum rule, ENJL model spectral densities@27# 0 3.2 to 10.4
Experimental range ;0.22 to 1.4 ;4.8 to 17.1

Neutral pions ap
0 1bp

0 ap
0 2bp

0

From Table II 1.35 22.33
Bajc et al. @16# 1.19 22.16
CHPT, one loop@9# 0 21.01
CHPT, two loops plus chiral logs.@9# 1.1560.30 21.9060.20
Dispersion sum rules@24# 1.0460.07 ;10.0
Experimental range ;1.25 ;21.4
,
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bp
0 5

a

8p2mp f p
2 S 1

12
1

77mp
2

96p2f p
2 D . ~63!

that follow from Eqs.~44a! and ~61!. These expressions
which reduce to the standard CHPT one-loop resultap

0

52bp
0 52a/(96p2mp f p

2 ) for the neutral pion formp
2 →0,

show that the subleading chiral contribution of21/12 domi-
nates the value ofap

0 but is overshadowed by the nonchir
term inbp

0 . As already pointed out, for reasonable values
m the leading contribution toap

0 is always near zero. For th
sum rule value ofm used to derive Eq.~63! it is exactly zero.
Consequently the final value ofap

0 is determined almost en
tirely by subleading contributions. Finally we note that t
disparity inp6 andp0 intrinsic polarizability values simply
reflects the quasi-point-like nature of the neutral~Goldstone!
pion.

The O(Nc
21) calculations of the pion polarizability re

ported here are contrasted in Table III with values obtain
from other calculations. We have also included an infer
measurement of the polarization difference in the char
channel as deduced from the ALEPH data in conjunct
with the DMO sum rule. These data seem to saturate
sum rule for s&3 GeV2, when judged against the chira
predictions@43# for it.

From Table III one sees that, except for the DMO su
rule which gives zero by construction, all the calculated v
ues ofap

61bp
6 are consistent and in reasonable accord w

the data. On the other hand there is a considerable spre
the values of the charged pion polarizability difference.
particular, the DMO values ofap

62bp
652ap

6 vary between
26.0 and 11.2. This spread of values reflects the uncerta
in the DMO sum-rule estimate of the intrinsic polarizabili
of the charged pion, which is always negative@1#, typically
03520
f

d
d
d
n
is

l-
h

in

ty

two orders of magnitude greater than that of the neutral p
and consequently of a similar magnitude as the recoil@44#
contribution a recoil

6 5a^r p
2 &/(3Mp)'1531024 fm3 from

which it is subtracted.
The role of vector meson excitations@8# ought to be con-

sidered too, since their inclusion also gives rise to lead
order contributions to the Compton amplitude within t
Nc

21 classification scheme. Such excitations have been m
icked in the extended NJL model@45# by including modes
carrying the quantum numbers of ther anda1 mesons in a
chirally invariant manner. Although some results in the fo
of numerical fits to leading order calculations forgg
→p0p0 are available@15#, a systematic investigation of th
role of vector modes on Compton scattering within t
bosonized ENJL model framework, including both leadi
and subleading chiral and nonchiral contributions, is s
lacking. But in leading order, in the chiral limit at least, th
main physical consequence of including ther plus a1 chiral
partner vector modes is the occurrence ofp2a1 mixing
@46,45#. As discussed in Refs.@27,47# this leads to an addi-
tional induced axial vector coupling characterized by the s
of the quark axial coupling constantgA&1, that shrinks the
calculated pion rms radius by a factorAgA while at the same
time rescaling @48# both f p→ f p8 5AgAf p , and gs→gs8
5gs /AgA. The combined effect is to reduce the Tarrach
dius parameter bygA

2 , and thus to quench the chiral lim
values of the electric and magnetic polarizabilities by t
same factor. In combination with the DMO sum rule, th
gives the ENJL model range of values for charged pio
listed in Table III.

In summary, the role of subleading inNc
21 meson one-

loop corrections on the pions’ polarizability coefficients h
been investigated within the bosonized version of the m
mal Nambu–Jona-Lasio model. We have shown that, w
6-11
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leaving the leading order values of the polarizability su
ap1bp unaltered in both charged and uncharged chan
in agreement with CHPT, such corrections lead to signific
changes in the leading inNc

21 values of the polarizability
coefficients themselves in the charged channel. These
clusions are independent of any regulating cutoffs or mo
parameters, since the final results have been expresse
tirely in terms of the physical observables of the pion.

APPENDIX: EVALUATION OF LOOP INTEGRALS

The following loop integrals are required to evaluate t
subleading Feynman diagrams for Compton scattering
plitudes.

~i! The integral

I ~ms
2 ,mp

2 ;k2!5E d4l

~2p!4

1

@~ l 1k!22mp
2 #@ l 22ms

2 #

5
i

~4p!2E0

1

daE
$R%

` dr

r

3e2 ir[ms
2(12a)1mp

2 a2k2a(12a)] , ~A1!

together with a suitable gauge-preserving regularization
scription $R%, gives the loop integral for two-point ampli
tudes. However, the difference I (ms

2 ,mp
2 ;k2)

2I (ms
2 ,mp

2 ;0);dPps , which determines the subleading
Nc

21 correction to the pion self-energy, is convergent. T
derivative ofdPps at k25mp

2 is required for calculating the
pion propagator renormalization toO(Nc

21). In view of Eqs.
~58! and ~A1!, this is given by

]

]k2
dPps5

m2

p2E0

1

da
a~12a!

ms
2a1mp

2 ~12a!2

5
1

8p2 H 11
8

3
y12y ln y1•••J , ~A2!

with y5mp
2 /m2 as before.

~ii ! The subleading inNc
21 contribution to the neutra

channel depicted in Figs. 2~d! and 2~e! is proportional to the
combination@gmnI (mp

2 ,mp
2 ;t)2Jmn(q1 ,q2)#, where
03520
s
ls
t

n-
el
en-

-

e-

e

Jmn~q1 ,q2!

5E d4l

~2p!4

~2l 2q1!m~2l 2q2!n

@~ l 2q1!22mp
2 #@ l 22mp

2 #@~ l 2q2!22mp
2 #

.

~A3!

Note that the ‘‘crossed’’ version ofJmn(q1 ,q2) with q1→
2q2 , m→n is identical to itself. This integral diverges du
to external photon vertices atm andn. However, the required
combination in the neutral channel,

@gmnI ~mp
2 ,mp

2 ;t !2Jmn~q1 ,q2!#

5
i

~4p!2 H 2gmnE
0

1

da1E
0

1

da2u~12a12a2!ln~R/R0!

1E
0

1

da1E
0

1

da2

u~12a12a2!

R
@~2a121!q1m

12a2q2m#@2a1q1n1~2a221!q2n#J , ~A4!

R5mp
2 2~q1

2a11q2
2a2!~12a12a2!2ta1a2 ,

R05mp
2 2ta2~12a2!,

is convergent.
~iii ! The subleading inNc

21 contribution in the charged
channel requires the additional combination of integrals
Eq. ~54! that arises from Fig. 2~c!. They are given by the
convergent expressions

J~k1 ,k2!5E d4l

~2p!4

3
1

@~ l 1k1!22mp
2 #@~ l 1k2!22mp

2 #@ l 22ms
2 #

52
i

~4p!2E0

1

dxxE
0

1

db

3
1

ms
2~12x!1mp

2 x22tx2b~12b!
~A5!

and
I mn~q1 ,k1 ,k2!5E dl
@2l 12k11q1#m@2l 12k21q2#n

@~ l 1k1!22mp
2 #@~ l 1k2!22mp

2 #@~ l 1k11q1!22mp
2 #@ l 22ms

2 #

52
i

~4p!2E0

1

)
i 51

4

~da i !dS 12(
j 51

4

a j D H 2gmn

R
2

1

R2
@2a1k112a4q21„2~a11a3!21…q1#m

3@2a1k112~a11a3!q11~2a421!q2#nJ , ~A6!

whereR5ms
2a11mp

2 (12a1)222k1q1a1a22ta3(12a12a22a3) for on-shell pions and photons.
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