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Importance of geometrical corrections to fusion barrier calculations for deformed nuclei

I. I. Gontchar,* M. Dasgupta, D. J. Hinde, R. D. Butt, and A. Mukherjee
Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University,

Canberra, Australian Capital Territory 0200, Australia
~Received 27 November 2001; published 19 February 2002!

In conventional calculations of fusion cross sections and barrier distributions, the nuclear potential is deter-
mined along the line joining the centers of the two nuclei. For deformed nuclei of finite size, this does not
correspond to the minimum distance between the nuclear surfaces. Calculations are made using the minimum
distance as the argument of the internucleus nuclear potential. The surface curvature correction to this potential
is also included. These geometrical effects significantly change the near-barrier fusion cross sections and the
shape of the barrier distribution.
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I. INTRODUCTION

More than 20 years ago it was conclusively shown@1# that
fusing nuclei ‘‘remember’’ their individual structures~in par-
ticular, quadrupole deformations! when fusion is decided
However, the precision of the measured fusion cross s
tions, s, was not high enough to show sensitivity to th
magnitude or sign of the static deformations of the react
nuclei. In the early 1990s a method was proposed@2#, that
allows the measureds to be converted into an experiment
barrier distributionD by double differentiation with respec
to the energy in the center-of-mass frame,E:

D~E!5
d2~Es!

dE2
. ~1!

This is proportional to the probability of encountering a f
sion barrier of heightE. The practical application of this
formula required improved the precision of cross-sect
measurement, with an uncertainty of;1%. Soon such mea
surements were made@3#, and showed that the fusion cros
sections andD(E) in the near-barrier region are extreme
sensitive both to static nuclear deformation@3# and to vibra-
tional excitations of the colliding nuclei@4#.

In order to interpret cross sections and barrier distri
tions, the simplified coupled channels codeCCDEF @5# and its
developmentCCMOD @6# were used extensively@7#. One of
the basic ingredients of these codes is a semiclassical t
ment of deformation through an angle-dependent poten
The nuclear part of this potential is of Woods-Saxon~WS!
form

VWS5
V0

11exp$@r 2RP~up!2RT~u t!#/a%
, ~2!

whereV0 anda are the depth and the diffuseness paramet
and up(u t) is the angle between the symmetry axis of t
projectile ~target! nucleus and the beam direction.

*Permanent Address: Omsk State Railway University, pr. Mar
35, Omsk, RU-644046, Russia.
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A radius parameterr 0 may be used to define the radii o
the projectile and target nuclei:

RP~up!5r 0AP
1/3f ~up!, RT~u t!5r 0AT

1/3f ~u t!. ~3!

For simplicity, we will consider only the case where the pr
jectile is spherical@i.e., f (up)51#, and the target nucleus i
deformed withf (u t) given by

f ~u t!5l21@11b2Y20~u t!1b4Y40~u t!#. ~4!

Herel guarantees volume conservation@8#.
The numerator of the argument of the exponent in Eq.~2!,

for spherical reacting nuclei, looks like a surface-to-surfa
distance. This interpretation ignores the fact that ther 0 pa-
rameter entering Eq.~3! and the corresponding parameter f
the nuclear density distribution are not necessarily eq
Moreover, in more realistic descriptions of nucleus-nucle
collisions, there are three different radius parameters:
first appears in the parametrization of the internucleus po
tial, the second defines the matter density distribution,
the third defines the charge distribution. In order to make
schematic consideration simple, we neglect this differen
interpretingDr 5r 2RP02RT0 as the surface-to-surface dis
tance for spherical reactants (RP05r 0AP

1/3, RT05r 0AT
1/3).

For deformed nuclei, however, such an interpretation d
regards two points. First,Dr 5r 2RP02RT(u t) is not the
minimum surface-to-surface distance~except foru t50,p/2).
This is illustrated in Fig. 1, where the geometry and relev
variables for this case are shown. Second, the nuclear at
tion between two nuclei depends upon the curvatures of t
surfaces. Thus the surface curvature correction to the sph
to-sphere nuclear potential can influence the height of fus
barrier. Following Refs.@9,10# we refer to the internucleus
potential withDr as the argument as for the ‘‘center-line
potential. If the minimum distance between the nuclear s
faces is used as the argument, this is referred to as
‘‘surface-to-surface’’ potential.

Many works were devoted to closely related topics. T
effect of the shortest surface-to-surface distance on the
ues of deformation parameters extracted from nuclear
Coulomb measurements was first discussed in Ref.@11#. The
proximity theorem@12# states that the internuclear potenti
a
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GONTCHAR et al. PHYSICAL REVIEW C 65 034610
can be presented as a product of a function depending u
the shortest surface-to-surface distance,s, and a factor in-
cluding the relevant geometry such as nuclear surface cu
tures and the mutual orientation of the symmetry axes of
deformed reactants. In Refs.@10,13#, the limits of applicabil-
ity of the proximity theorem and its relation to the doub
folding potential were investigated. It was found that t
proximity theorem provides an accurate description of
nuclear interaction between two nuclei when only one of
reactants is deformed@13#. In Refs.@9,10#, it was found that
the difference between the proximity and center-line pot
tials is particularly important in the presence of hexade
pole deformations.

The effect of the use ofs instead ofDr as the argument o
the nuclear potential for inelastic heavy-ion collisions w
investigated in Refs.@10,14#, and turned out to be substan
tial. However, to our knowledge it was never studied in c
culations of heavy-ion fusion cross sections and barrier
tributions. For example, in the calculations of Refs.@15,16#
only a tip-to-tip geometry was considered, wheres5Dr . In
Ref. @17#, in order to calculate the fusion cross sections,
exact single-folding potential for the nuclear interaction b
tween nuclei possessing quadrupole deformation was u
However, in this work the center-line nucleon-nucleus W
potential, which ignores the difference betweens and Dr ,
was used.

The purpose of this study is to show to what extent
calculated near-barrier fusion cross sections and the co
sponding barrier distributions are sensitive to the use of
minimum distances instead ofDr , and to the surface curva
ture correction to the nuclear potential. In Sec. II the nucl
and Coulomb potentials and their parameters are specifie

FIG. 1. Geometry of the interaction between spherical and
formed nuclei.Dr ands are the distances between the nuclear s
faces along the center line and along the perpendicular to
surfaces, respectively.
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Sec. III the effect of using the surface-to-surface poten
instead of the center-line potential is investigated for fus
barriers. Results of calculations of the fusion barriers,
counting for the surface curvature correction to the nucl
potential, are presented in Sec. IV. In Sec. V the fusion cr
sections and barrier distributions are calculated and c
pared with experimental data. Conclusions are drawn in S
VI.

II. INPUT OF THE CALCULATIONS

For the Coulomb part of the nucleus-nucleus potential,
use the multipole expansion

VC~r ,u t!5Vsph$11~RT0 /r !2Y20~u t!@0.600b210.216b2
2

10.197b4
210.579b2b4#/l51~RT0 /r !4Y40~u t!

3@0.242b2
210.518b4#/l7%. ~5!

Here higher-order terms in quadrupole (b2) and hexadeca-
pole (b4) deformations have been neglected.

For the center-line nuclear potential we use the sing
folding potential of Refs.@16,18,19#, which is obtained by
folding the density of the projectile with the nucleon-nucle
~target! potential and vice versa. Both density and nucleo
nucleus potential have spherically symmetric WS shapes.
the density and the nucleon-nucleus potential we use the
ues of the parameters from Refs.@16,19#. According to Refs.
@16,18# the resulting nucleus-nucleus potential is appro
mated as follows:

VFP5(
i 50

4

Ci~Dr ! i ln@11exp~2Dr /a!#. ~6!

The meaning ofr 0 anda for the VFP is substantially differ-
ent from that of the WS potential, since afterr 0 and a are
fixed, the coefficientsCi are found from the fit of Eq.~6! to
the calculated folding potential. The standard values of
parameters ofVFP arer 051.30 fm anda50.61 fm @16,19#.
However, in determiningCi , we user 051.2 fm to be con-
sistent with the calculation of the values of the deformat
parametersb2 and b4 ~see below!. The small change ofr 0
from the standard value changes the calculated cross sec
and barrier distributions only slightly. Since measurements
Refs. @1,3,7,20# were performed for16O-induced reactions
we concentrate on the16O1154Sm reaction in what follows.
The values of the deformation parameters of154Sm were
taken to beb250.306 @21# and b450.13 @22#. Note that
these values are close to those theoretically predicted in
@23#: b250.270 andb450.113.

III. EFFECT OF THE MINIMUM DISTANCE BETWEEN
NUCLEAR SURFACES

In this section we calculate the minimum distance b
tween the surfacess and the center-line and surface-t
surface barriersBDr and Bs , as well as the correspondin
barrier radiir Dr andr s ignoring the surface curvature corre
tion to the nuclear potential. In order to make calculatio

-
-
th
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FIG. 2. CalculatedL50 fusion barriers for the center-line and surface-to-surface potentials for the16O1154Sm reaction with quadrupole
and hexadecapole deformations. As a function of polar angleu t , we show ~a! and ~c! the fusion barrier heights calculated with th
surface-to-surface potentialBs ~thick solid lines! and with the center-line potentialBDr ~thin solid lines!; ~b! and~d! the barrier radii,r s and
r Dr @all the notations as in panels~a! and~c!#; ~e! the differences between the barrier heights,Bs2BDr , calculated withb250.306 andb450
~thin line! andb250.306 andb450.13~thick line!; and~f! the differences between the barrier radii,r s2r Dr @notations as in panel~e!#. The
dotted lines in panels~a!—~d! correspond to the spherical target.
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with the surface-to-surface potential we uses instead ofDr
in Eq. ~6!. From the geometry shown in Fig. 1, one sees t
the minimum distance can be found numerically from t
following equations:

~s1RP0!25r 21RT
2~us!22rRT~us!cos~us2u t!,

d~s1RP0!2

dus
50. ~7!

In Fig. 2 we present results of the calculations for ze
orbital angular momentum (L\). All calculated quantities
are plotted here versus polar angleu t . First we examine the
effect of the surface-to-surface potential in the presence
only quadrupole deformation (b250.306,b450). Figure
2~a! shows thatBs is lower thanBDr , as expected. For th
barrier radii this is opposite, as shown in Fig. 2~b!. Only at
u t50 andp/2 are the results the same, since hereDr equals
s.

Let us now consider the effect of hexadecapole deform
tion on the fusion barriers. The results, presented in F
2~c! and 2~d!, were obtained forb250.306 andb450.13.
Qualitatively the effect of accounting for the minimum di
tance between the surfaces in this case is similar to the
vious case. However quantitatively there are some dif
ences. First, in Fig. 2~c! one sees thatBs and BDr become
indistinguishable over a rather wide equatorial range ofu t .
The same happens tor s andr Dr in Fig. 2~d!. This is because
of the ‘‘bulge’’on the nuclear surface around the equator d
to the positive hexadecapole deformation@see Fig. 1, and the
inset in Fig. 2~c!#. Second, the range of variation of the ba
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rier height@compare Figs. 2~a! and 2~c!# and radius@compare
Figs. 2~b! and 2~d!# becomes significantly larger due to th
sharper tip of the target nucleus in the presence of hexa
capole deformation@compare insets in Figs. 2~a! and 2~c!#.

The differences in barrier heights,Bs2BDr , for the two
cases,b250.306 andb450.0 ~thin line!, andb250.306 and
b450.13 ~thick line!, is presented in Fig. 2~e!. The maxi-
mum absolute value of this difference forb450.0 is 0.6
MeV ~at u t554°), which is;10% of the total range of the
barrier heights variation due to deformation. The hexade
pole deformation increases the maximum differenceBDr

2Bs up to 1.5 MeV, and shifts its position tou t537°. Fi-
nally, in Fig. 2~f! we present the corresponding difference
the barrier radii. Here again a strong enhancement of
effect of the use of surface-to-surface potential in the pr
ence of hexadecapole deformation is observed.

The influence of the change of projectile was checked
performing calculations for28Si and 58Ni. It turned out that
the variation of the fractional change of the fusion barr
heights, (Bs2BDr)/BDr , remains within ;0.2% in the
whole range of the polar angle~from 0° up to 90°) when
switching from one projectile to another. This is also tr
when a Woods-Saxon internucleus potential is used.

To complete our consideration of the effect of changi
from the center-line potential to the surface-to-surface pot
tial we made calculations of fusion barriers and barrier ra
for higher values of orbital angular momentum, forL530
and 50. The results are plotted in Fig. 3, along with those
L50, versus the polar angleu t . Calculations are again per
formed withb250.306 andb450.13. The higher the value
0-3
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GONTCHAR et al. PHYSICAL REVIEW C 65 034610
of L, the larger the absolute value of the differenceBs
2BDr @Fig. 3~a!#. There are two reasons for this. First, f
higher partial waves the absolute value of the fusion bar
height increases due to the repulsive centrifugal poten
Second, due to this repulsion the reactants must come c
to each other in order to reach the fusion barrier; therefo
the effect of using the shortest surface-to-surface dista
instead ofDr is enhanced. In the limiting case, one obta
s50 whenDr is still positive. In order to separate the size
the second effect, in Fig. 3~c! we plot the fractional change
of the heights of the surface-to-surface and center-line ba
ers. One sees that the effect of the use of surface-to-sur
potential is enhanced forL550 by up to;30% in compari-
son with L50. The L dependence of the difference of th
barrier radii,r s2r Dr , is presented in Fig. 3~b!, and is much
weaker than theL dependence ofBs2BDr . The fractional
difference@r s2r Dr #/r Dr , shown in Fig. 3~d!, is independent
of L for all the values of the polar angle.

IV. SURFACE CURVATURE CORRECTION TO NUCLEAR
POTENTIAL

According to the proximity theorem@12# the strength of
the attraction between two nuclear surfaces is defined by
shortest distance between them, and the curvatures o
surfaces. However, the coefficientsCi in Eq. ~6! are calcu-
lated for spherical targets and projectile nuclei. Therefore
the case of statically deformed target nuclei the nuclear

FIG. 3. The effect of using the surface-to-surface potential
the L-dependent fusion barriers. Shown for three values of orb
angular momentum@L50 ~thick solid lines!, L530 ~thin solid
lines!, andL550 ~dashed lines!# are~a! the difference between th
fusion barrier heights calculated with the surface-to-surface po
tial and with the center-line potential,Bs2BDr ; ~b! as in panel~a!,
but for the barrier radii,r s2r Dr ; ~c! fractional change of the fusion
barrier heights, (Bs2BDr)/BDr ; and ~d! same as in panel~c!, but
for the barrier radii. These calculations are performed for the16O
1154Sm reaction withb250.306 andb450.13. The dotted lines
correspond to a spherical target.
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tential should be corrected for its angle-dependent surf
curvature. This correction enters the calculations as
deformation- and angle-dependent factorG applied to the
potential of Eq.~6! ~see Refs.@15,16#!,

G5
~RP01RT0!

A@~1/RP01k1!~1/RP01k2!#RT0RP0

, ~8!

where G51 for a spherical target nucleus. The princip
curvaturesk1 and k2 with respect to spherical coordinat
anglesu andf have been calculated according to Ref.@24#.

The role of this curvature correction for zero orbital a
gular momentum andb250.306 andb450.13 is illustrated
in Fig. 4. In this figure the quantities calculated, includin
the curvature correction, have ‘‘G’’ as the argument, whits
those without this correction have the argument ‘‘1.’’ Fir
we made calculations with the center-line potential. P
sented in Fig. 4~a! as a function of polar angleu t are the
differences between the barrier heights@BDr(G)2BDr(1)
~thick solid line!# and the barrier radii@r Dr(G)2r Dr(1) ~thin
solid line!# calculated with and without the curvature corre
tion. The values ofG21 are shown by the dashed line. Th
curvature correctionG is smaller than 1~i.e., the nuclear
attraction is weaker than between two spherical nuc!
around the equator and the tip of the target. This increa
the height of the fusion barrier and decreases its radius
the region 35°,u t,75° the barrier height is reduced and th
barrier radius is increased becauseG.1. The similarity in

n
l

n-

FIG. 4. Effect of accounting for the surface curvature correct
for L50 fusion barriers (b250.306,b450.13). As a function of
polar angleu t we show~a! the difference between the center-lin
barrier calculated with and without curvature correction,BDr(G)
2BDr(1) ~thick solid line!, and the same difference for the barri
radii, r Dr(G)2r Dr(1) ~thin solid line!, as well asG21 ~dashed
line!; ~b! same as in panel~a! but for the surface-to-surface poten
tial; ~c! the difference between the surface-to-surface barrier ca
lated with the curvature correction and the center-line barrier w
out this correction,Bs(G)2BDr(1), ~thick solid line!, and the same
difference for the barrier radii,r s(G)2r Dr(1), ~thin solid line!; and
~d! fusion barrier calculated with the surface-to-surface poten
including the curvature correction,Bs(G), ~thick solid line!, with
the center-line potential without the curvature correction,BDr(1),
~thin solid line!, and for a spherical target~dotted line!.
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the values of the dimensionless quantityG21, and the bar-
rier radii differencer Dr(G)2r Dr(1) is coincidental.

A qualitatively similar behavior is found when using th
surface-to-surface potential as presented in Fig. 4~b!. Note
that in this case the curvature correction is calculated atus ,
not atu t .

The net effect of the surface-to-surface potential and c
vature correction is shown in Fig. 4~c!. Here the difference
between the barrier heights calculated with the surface
surface potential accounting for the curvature correcti
Bs(G), and the barrier heights calculated according to
center-line potential without the curvature correctio
BDr(1), is shown by the thick solid line. The difference b
tween the corresponding barrier radii,r s(G)2r Dr(1), is
shown by the thin solid line. Qualitatively the effect of th
surface-to-surface potential and curvature correction toge
is similar to the effect of the curvature correction alone
Figs. 4~a! and 4~b!. However, the range of the angles
which the barrier heights are reduced becomes wider.
these intermediate angles both effects work in the same
rection, resulting in the maximum decrease of the fusion b
rier heights by about 20% of the total range of the barr
variation due to deformation. The change of the abso
values of the barriers with polar angleu t is illustrated in Fig.
4~d!. Let us recall that the minimum surface-to-surface d
tance effect disappears at the tip and equator~see Fig. 2!
whereas the absolute value ofG21 reaches its local maxim
at those points. Therefore, foru t near zero and 90°,Bs(G)
behaves essentially likeBDr(G).

Figure 5 illustrates the influence of angular momentum
the effects under discussion. These calculations have b
made for values ofu t52°, 45° and 88°, again forb2
50.306 andb450.13. In Fig. 5~a! the barriers calculated
with the surface-to-surface potential, including curvatu
correction, are shown versusL. For comparison theL depen-
dence of the barrier obtained for a spherical target is a
shown by the dotted line. In Fig. 5~b! we present the differ-
enceBs(G)2BDr(1). As expected~see Fig. 4!, the effect of
the minimum surface-to-surface distance dominates at
intermediate angles (u t545°), whereas the curvature corre
tion makesBs(G) larger thanBDr(1) near the tip and equa
tor ~the curves foru t52° and 88°). For all values of the
polar angle, the absolute value of the differenceBs(G)
2BDr(1) increases withL.

This behavior can be understood qualitatively from t
approximate relation

Bs~G,L !2BDr~1,L !'Bs~G,0!2BDr~1,0!1bL~L11!

3F 1

r s
2~G,L !

2
1

r Dr
2 ~1,L !

G . ~9!

Hereb5\2/2m, m is the reduced mass of the reactants. F
the intermediate angles (u t545°), where the minimum
surface-to-surface distance effect is enhanced by the cu
ture correction@G.1, see Fig. 4~c!# Bs(G,0),BDr(1,0),
andr s(G,L).r Dr(1,L). This makes the difference of Eq.~9!
negative, and its absolute value increases withL. Near the tip
(u t52°) the minimum surface-to-surface distance effec
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practically absent@see Fig. 2~c!#, whereas the curvature co
rection G is smaller than 1@see, e.g., Fig. 4~a!#, which re-
duces nuclear attraction. ThusBs(G,0).BDr(1,0) and
r s(G,L),r Dr(1,L). Consequently, the difference of Eq.~9!
is positive and increases withL. For the equatorial angles th
situation is the same as for the tip.

Finally, it is very convenient to analyze the influence ofL
on the minimum distance and curvature effects by compa

FIG. 5. The net effect of accounting for both the shorte
surface-to-surface distance and the curvature correction on
heights of theL-dependent fusion barriers (b250.306,b450.13).
Shown for three values of the polar angleu t , as a function of
orbital angular momentum, are~a! the fusion barrier heights calcu
lated with the surface-to-surface potential including the curvat
correction,Bs(G), ~thick solid lines! and the barrier calculated for
spherical target~dotted line!; ~b! the difference between the heigh
of the barriers calculated with the surface-to-surface potential
cluding the curvature correction and with the center-line bar
without this correction,Bs(G)2BDr(1); and~c! the percentage of
this barrier height difference with respect to the total range of
barrier height variation due to deformation as defined by Eq.~10!.
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GONTCHAR et al. PHYSICAL REVIEW C 65 034610
the differenceBs(G)2BDr(1) with the total range of the
barrier heights variation due to deformation, e.g.,DBDr(1)
5BDr(1,90°)2BDr(1,0°). The corresponding percentage,

d5
Bs~G!2BDr~1!

BDr~1,90°!2BDr~1,0°!
, ~10!

is shown in Fig. 5~c!. It is interesting to see that the absolu
values ofd either decrease slightly~at u t52° and 45°) or
stay unchanged~at u t588°). Qualitatively, the minimum
distance and curvature effects do not change withL. Thus;
one can expect that for low incident energies the fusion cr
sections calculated withBs(G) will be lower than those cal-
culated withBDr(1), with the situation reversing as the co
lision energy is increased.

V. FUSION CROSS SECTIONS AND
BARRIER DISTRIBUTIONS

The ultimate goal of our study is to see the effect of us
the minimum surface-to-surface distance and curvature
rection on the fusion cross sections and barrier distribut
Therefore, we now discuss calculations of these quant
and finally make a comparison with experimental data.

The transmission coefficientsTL(u t) have been calculate
by means of the parabolic barrier approximation for ea
value ofu t in the interval 0° to 90° with a step of 1°. The
the fusion cross sections have been found according to
formulas@7,20#

s~L,u t!5S p\2

2mED S 2L11

11exp$2p@B~L,u t!2E#/\v~L,u t!%
D ,

~11!

s5(
L

(
0

p/2

s~L,u t!sin~u t!. ~12!

We found that the use ofu t steps of 0.5° and 0.25° change
the cross sections and barrier distributions by less then 0

Quantum mechanically, one should consider the coup
of the relative motion of the reactants to the rotational m
tion of the deformed target. The classical approach, follow
here, is an approximation which gives the result close to
full quantum mechanical calculation for well deformed n
clei ~see e.g. Refs.@7,25#!.

The calculated fusion cross sections and barrier distr
tions are shown in Fig. 6 versus the energy in the cente
mass frame. Since statically deformed nuclei possess
positive and negative hexadecapole deformations, we m
calculations forb4510.13 ~left panels! and 20.13 ~right
panels!, while keepingb250.306 the same, in order to se
the effect of the sign of the hexadecapole deformation. Th
types of calculations ofs and D have been made. Two ar
without curvature correction, for the center-line potent
@sDr(1) andDDr(1), ~dashed lines!#, and for the surface-to
surface potential@ss(1) andDs(1), ~thin solid lines!#. The
last is for the surface-to-surface potential including the c
vature correction@ss(G) andDs(G), ~thick solid lines!#.
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In Fig. 6~a! one sees the dramatic effect of accounting
the curvature correction: whereasss(1) is abovesDr(1),
accounting for the curvature correction brings the cross s
tions ss(G) substantially belowsDr(1) at low energies. We
have to conclude that at these energies, for positive value
b4, the impact of the curvature correction on the fusion cro
sections appears to be significantly stronger than the effec
the minimum distance. The barrier distribution as a whole
affected more strongly by the minimum distance effect,
seen in Fig. 6~b!.

Remarkably, the change of the sign ofb4 reduces the
influence of both minimum distance and curvature on
absolute value ofs: in Fig. 6~c! the three curves are hardl
distinguishable. However, in Fig. 6~d! the barrier distribu-
tions make it clear that the energy dependence ofs is af-
fected by the minimum distance and curvature correct
more strongly than for positive values ofb4. For both posi-
tive and negativeb4, the use of the surface-to-surface pote
tial shifts the barrier distribution to lower energies, althou
this shift is compensated for to a certain extent by the c
vature correction, especially forb4,0.

In Fig. 7 the results of calculations of the fusion cro
sections and barrier distributions for16O1154Sm are pre-
sented along with the data from Ref.@20#. These calculations
are performed withb250.306 andb450.13. In Fig. 7~a! the
fusion cross sections obtained with the surface-to-surface
tential including the curvature correction~thick solid line!
are compared with those for the center-line potential with
the curvature correction~thin solid line!. The dotted line rep-
resents the cross section calculated for a spherical ta
Since fusion occurs mostly near the tip of the target for

FIG. 6. Influence of the sign of the hexadecapole deformat
on the fusion cross sections and barrier distributions. The calcul
fusion cross sectionss @panels~a! and~c!# and the barrier distribu-
tion D @see Eq.~1!# @panels~b! and~d!# vs the energy in the center
of-mass frameE. Calculations an performed withb250.306, and
with b4510.13 ~left panels! and b4520.13 ~right panels!.
Dashed lines denote calculations without curvature correction w
the center-line potential; thin solid lines are for calculations witho
the curvature correction with surface-to-surface potential; th
solid lines are for calculations with surface-to-surface potential
cluding the curvature correction.
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low energies,ss(G) are lower thansDr(1) due to the cur-
vature correction. For the near-barrier energies the calcul
fusion cross sections agree satisfactorily with the experim
tal data when deformation is accounted for. Results obtai
with the surface-to-surface potential agree better with
data, though this depends upon the values ofb2 andb4 used.

The calculated barrier distributions are compared w
each other and with the data in Fig. 7~b!. As expected, the
barrier distribution obtained with the spherical target~dotted
line! is very sharply peaked and does not agree with the d
even qualitatively. The main effect of the calculations w
the surface-to-surface potential including the curvature c
rection is that theDs(G) ~thick solid line! is shifted with
respect toDDr(1) ~thin solid line! in the direction of lower

FIG. 7. Comparison of the fusion cross sections and bar
distributions~calculated forb250.306, andb450.13) with experi-
mental data for the reaction16O1154Sm. Shown as a function o
energy in the center-of-mass frame are~a! the fusion cross section
s, ~b! the barrier distributionD, ~c! the productsE, and ~d! the
ratios Ds(G)/DDr(1) ~thick solid line! and ss(G)/sDr(1) ~thin
solid line!. In panels~a!–~c!, dotted lines denote calculations for
spherical target, thin solid lines denote calculations with the cen
line potential without curvature correction, and thick solid lin
denote calculations with the surface-to-surface potential includ
the curvature correction. Open circles with error bars show the
perimental data of Ref.@20#.
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fusion barriers—the effect already observed in Fig. 6~b!. The
calculated barrier distribution appears to be closer to the
perimental one when the surface-to-surface potential is u

In order to see the degree of agreement between ca
lated and measured cross sections at energies well abov
barrier, in Fig. 7~c! we plot the excitation function of the
productsE on a linear scale. At higher energies the resu
of the calculations are in a reasonable agreement with
data, although slightly above the experimental points no m
ter what potential is used. In order to show quantitatively
importance of changing from the center-line potential to
surface-to-surface potential, in Fig. 7~d! we plot the ratios of
the cross sectionsss(G)/sDr(1) ~thin solid curve! and of the
barrier distributionsDs(G)/DDr(1) ~thick solid curve! as a
function of energy. These ratios vary by up to 50%, indic
ing the importance of accounting for both the minimum d
tance and the curvature correction in calculating the nuc
potential.

VI. CONCLUSION

Our starting point was that the Woods-Saxon center-l
nucleus-nucleus potential ignoring the surface curvature
rection may not be adequate in the calculation of the fus
cross sections performed by means of the simplified coup
channels codes likeCCDEF @5# and CCMOD @6#. We have
shown that using the minimum distance between the surfa
of the fusing nuclei as the argument of the nuclear poten
and accounting for the curvature correction substantially
fects the calculated fusion cross sectionss and barrier dis-
tributionsD, if the target nucleus has a large static deform
tion. These quantities can change by up to 50% for
16O1154Sm reaction. Since current experimental data ha
typical precisions of 1% fors and of 10% forD ~see Refs.
@3,7,20#!, accounting for these geometrical effects is nec
sary in data analysis and interpretation. Our conclusions
not depend sensitively upon the type of internucleus pot
tial; therefore, they are expected to also hold for more rig
ous coupled channels codes likeECIS @26#, FRESCO@27#, and
CCFULL @28#, which use the Woods-Saxon center-line pote
tial.
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