PHYSICAL REVIEW C, VOLUME 65, 034610

Importance of geometrical corrections to fusion barrier calculations for deformed nuclei
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In conventional calculations of fusion cross sections and barrier distributions, the nuclear potential is deter-
mined along the line joining the centers of the two nuclei. For deformed nuclei of finite size, this does not
correspond to the minimum distance between the nuclear surfaces. Calculations are made using the minimum
distance as the argument of the internucleus nuclear potential. The surface curvature correction to this potential
is also included. These geometrical effects significantly change the near-barrier fusion cross sections and the
shape of the barrier distribution.
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[. INTRODUCTION A radius parametery may be used to define the radii of
the projectile and target nuclei:

More than 20 years ago it was conclusively shg@hthat
fusing nuclei “remember” their individual structurém par- Rp(0,)=ToARf(6,), Rr(0)=rAY3f(6). (3
ticular, quadrupole deformationsvhen fusion is decided.
However, the precision of the measured fusion cross sed-or simplicity, we will consider only the case where the pro-
tions, o, was not high enough to show sensitivity to the jectile is sphericali.e., f(6,)=1], and the target nucleus is
magnitude or sign of the static deformations of the reactingleformed withf(6;) given by
nuclei. In the early 1990s a method was propof&d that

allows the measured to be converted into an experimental f(0)=N" 1+ B,Y 0 00+ BaYaof 6))]. (4)
barrier distributionD by double differentiation with respect
to the energy in the center-of-mass frarke, Here\ guarantees volume conservatiddi.
The numerator of the argument of the exponent in(2j.
d?(Eo) for spherical reacting nuclei, looks like a surface-to-surface
D(E)= 5 (1)  distance. This interpretation ignores the fact that thea-
dE rameter entering Eq3) and the corresponding parameter for

o . . ) the nuclear density distribution are not necessarily equal.
This is proportional to the probability of encountering a fu- pmoreover, in more realistic descriptions of nucleus-nucleus
sion barrier of heightE. The practical application of this cojiisions, there are three different radius parameters: the
formula required improved the precision of cross-sectiorfirst appears in the parametrization of the internucleus poten-
measurement, with an uncertainty fL%. Soon such mea- g, the second defines the matter density distribution, and
surements were mad@], and showed that the fusion cross the third defines the charge distribution. In order to make our
sections and>(E) in the near-barrier region are extremely schematic consideration simple, we neglect this difference,
§ensitive both to static nucl_ea_\r deformat[dﬂ and to vibra- interpretingAr =r — Rpo— Ry as the surface-to-surface dis-
tional excitations of the colliding nuclé#]. tance for spherical reactantBdo="roA%3, Ryp=roAY3).

In order to interpret cross sections and barrier distribu- For deformed nuclei, however, such an interpretation dis-
tions, the simplified coupled channels catleber[5] and its regards two points. FirstAr =r —Rpo— Ry(6,) is not the

developmentcmop [6] were used extensively7]. One of  ininum surface-to-surface distan@xcept foré,=0,/2).
the basic ingredients of these codes is a semiclassical treafis is illustrated in Fig. 1, where the geometry and relevant

ment of deformation through an angle-dependent potential;, iaples for this case are shown. Second, the nuclear attrac-
The nuclear part of this potential is of Woods-Saxt¥S)  jon petween two nuclei depends upon the curvatures of their

form surfaces. Thus the surface curvature correction to the sphere-
to-sphere nuclear potential can influence the height of fusion
Voo Vo ) barrier. Following Refs[9,10] we refer to the internucleus
WS 1+exp([r —Rp(6,) —Rr(6)]1/a}’ potential withAr as the argument as for the “center-line”

potential. If the minimum distance between the nuclear sur-
whereV, anda are the depth and the diffuseness parameterdaces is used as the argument, this is referred to as the
and 6,(6,) is the angle between the symmetry axis of the“surface-to-surface” potential.
projectile (targe} nucleus and the beam direction. Many works were devoted to closely related topics. The
effect of the shortest surface-to-surface distance on the val-
ues of deformation parameters extracted from nuclear and
* Permanent Address: Omsk State Railway University, pr. Marsk&Coulomb measurements was first discussed in [Ré&f. The
35, Omsk, RU-644046, Russia. proximity theorem[12] states that the internuclear potential
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Sec. lll the effect of using the surface-to-surface potential
instead of the center-line potential is investigated for fusion
barriers. Results of calculations of the fusion barriers, ac-
counting for the surface curvature correction to the nuclear
potential, are presented in Sec. IV. In Sec. V the fusion cross
sections and barrier distributions are calculated and com-
pared with experimental data. Conclusions are drawn in Sec.
VI.

II. INPUT OF THE CALCULATIONS

For the Coulomb part of the nucleus-nucleus potential, we
use the multipole expansion

Ve(r, 0;) = Veprl 1+ (Ryo /1) ?Y oo 6,)[0.6008,+ 0.21655

sph +0.19782+ 0.579B,8, 15+ (Ryo /1) *Y 4o 6,)
—B.>0, B,=0
B2>0 l34>0 X[0.24285+0.5183,]/\7}. (5)
2 ' Fq
B,>0, B,<0 Here higher-order terms in quadrupolg,] and hexadeca-

pole (B,) deformations have been neglected.

For the center-line nuclear potential we use the single-
FIG. 1. Geometry of the interaction between spherical and defolding potential of Refs[16,18,19, which is obtained by
formed nucleiAr ands are the distances between the nuclear sur-folding the density of the projectile with the nucleon-nucleus
faces along the center line and along the perpendicular to botffarge} potential and vice versa. Both density and nucleon-
surfaces, respectively. nucleus potential have spherically symmetric WS shapes. For

the density and the nucleon-nucleus potential we use the val-
can be presented as a product of a function depending updtes of the parameters from Reff$6,19. According to Refs.
the shortest surface-to-surface distangeand a factor in- [16,18 the resulting nucleus-nucleus potential is approxi-
cluding the relevant geometry such as nuclear surface curvanated as follows:
tures and the mutual orientation of the symmetry axes of the
deformed reactants. In Refd.0,13, the limits of applicabil-
ity of the proximity theorem and its relation to the double
folding potential were investigated. It was found that the
proximity theorem provides an accurate description of theThe meaning of ; anda for the Vp is substantially differ-
nuclear interaction between two nuclei when only one of theent from that of the WS potential, since aftgey and a are
reactants is deformegd3]. In Refs.[9,10], it was found that fixed, the coefficient€; are found from the fit of Eq(6) to
the difference between the proximity and center-line potenthe calculated folding potential. The standard values of the
tials is particularly important in the presence of hexadecaparameters o¥/p arer,=1.30 fm anda=0.61 fm[16,19.
pole deformations. However, in determiningC;, we user,=1.2 fm to be con-

The effect of the use cfinstead ofAr as the argument of  sistent with the calculation of the values of the deformation
the nuclear potential for inelastic heavy-ion collisions wasparameters3, and 8, (see below. The small change af,
investigated in Refd.10,14, and turned out to be substan- from the standard value changes the calculated cross sections
tial. However, to our knowledge it was never studied in cal-and barrier distributions only slightly. Since measurements of
culations of heavy-ion fusion cross sections and barrier disRefs.[1,3,7,2Q were performed for®0-induced reactions,
tributions. For example, in the calculations of Rdfs5,160  we concentrate on th&0+1%Sm reaction in what follows.
only a tip-to-tip geometry was considered, whereAr. In - The values of the deformation parameters 8fSm were
Ref.[17], in order to calculate the fusion cross sections, thagken to beB,=0.306[21] and 8,=0.13[22]. Note that

exact single-folding potential for the nuclear interaction be-these values are close to those theoretically predicted in Ref.
tween nuclei possessing quadrupole deformation was usefk3]: g8,=0.270 andB,=0.113.

However, in this work the center-line nucleon-nucleus WS
potential, which ignores the difference betwesmand Ar,
was used.

The purpose of this study is to show to what extent the
calculated near-barrier fusion cross sections and the corre- In this section we calculate the minimum distance be-
sponding barrier distributions are sensitive to the use of théween the surfaces and the center-line and surface-to-
minimum distances instead ofAr, and to the surface curva- surface barrierd8,, and Bg, as well as the corresponding
ture correction to the nuclear potential. In Sec. Il the nucleabarrier radiir ,, andr ignoring the surface curvature correc-
and Coulomb potentials and their parameters are specified. lion to the nuclear potential. In order to make calculations

4
VFP:--EO Ci(Ar)' In[1+exp(—Ar/a)]. (6)

IIl. EFFECT OF THE MINIMUM DISTANCE BETWEEN
NUCLEAR SURFACES
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FIG. 2. Calculated. =0 fusion barriers for the center-line and surface-to-surface potentials faf@he'>Sm reaction with quadrupole
and hexadecapole deformations. As a function of polar afglewe show(a) and (c) the fusion barrier heights calculated with the
surface-to-surface potentiB (thick solid lineg and with the center-line potentil, (thin solid lines; (b) and(d) the barrier radiir ¢ and
r », [all the notations as in panela) and(c)]; (e) the differences between the barrier heigBts; B,, , calculated with3,=0.306 and3,=
(thin line) and 8,=0.306 andB,=0.13((thick line); and(f) the differences between the barrier radji;-r 5, [notations as in pangé)]. The
dotted lines in panelé&)—(d) correspond to the spherical target.

with the surface-to-surface potential we usimstead ofAr rier height{compare Figs. @) and Zc)] and radiugcompare
in Eq. (6). From the geometry shown in Fig. 1, one sees thaFigs. Zb) and Zd)] becomes significantly larger due to the
the minimum distance can be found numerically from thesharper tip of the target nucleus in the presence of hexade-
following equations: capole deformatioficompare insets in Figs(& and Zc)].
9 The differences in barrier height8s—B,,, for the two
(5+Rpo)?=1%+ Re(65) — 2rR+( 65)cog 65— 6y), casesB,=0.306 and3,=0.0(thin Ilne) andB,=0.306 and
d(s+Rpg)? B,=0.13 (thick line), is presented in Fig.(8). The maxi-
—Qgo. O (7)  mum absolute value of this difference f@,=0.0 is 0.6
S MeV (at 6,=54°), which is~10% of the total range of the
In Fig. 2 we present results of the calculations for zerobarrier heights variation due to deformation. The hexadeca-
orbital angular momentumL@). All calculated quantities pole deformation increases the maximum differerigg
are plotted here versus polar angle First we examine the —Bg up to 1.5 MeV, and shifts its position t@,=37°. Fi-
effect of the surface-to-surface potential in the presence afally, in Fig. 2f) we present the corresponding difference of
only quadrupole deformationg,=0.306,8,=0). Figure the barrier radii. Here again a strong enhancement of the
2(a) shows thatB, is lower thanB,,, as expected. For the effect of the use of surface-to-surface potential in the pres-
barrier radii this is opposite, as shown in FigbR Only at  ence of hexadecapole deformation is observed.
0,=0 and/2 are the results the same, since h&reequals The influence of the change of projectile was checked by
s, performing calculations fof®Si and ®®Ni. It turned out that
Let us now consider the effect of hexadecapole deformathe variation of the fractional change of the fusion barrier
tion on the fusion barriers. The results, presented in Figsheights, Bs—Ba,)/B,,, remains within ~0.2% in the
2(c) and 2d), were obtained foB,=0.306 andB,=0.13.  whole range of the polar anglgrom 0° up to 90°) when
Qualitatively the effect of accounting for the minimum dis- switching from one projectile to another. This is also true
tance between the surfaces in this case is similar to the prevhen a Woods-Saxon internucleus potential is used.
vious case. However quantitatively there are some differ- To complete our consideration of the effect of changing
ences. First, in Fig. @) one sees thaB; andB,, become from the center-line potential to the surface-to-surface poten-
indistinguishable over a rather wide equatorial range#,of  tial we made calculations of fusion barriers and barrier radii
The same happens tQ andr ,, in Fig. 2(d). This is because for higher values of orbital angular momentum, for 30
of the “bulge”on the nuclear surface around the equator dueand 50. The results are plotted in Fig. 3, along with those for
to the positive hexadecapole deformatisee Fig. 1, and the L =0, versus the polar anglg . Calculations are again per-
inset in Fig. Zc)]. Second, the range of variation of the bar- formed with 8,=0.306 andB,=0.13. The higher the value
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FIG. 4. Effect of accounting for the surface curvature correction
20 40 60 80 0% 20" ""20 T80 80 for L=0 fusion barriers 8,=0.3068,=0.13). As a function of
6, (deg) o, (deg) polar angled, we show(a) the difference between the center-line

barrier calculated with and without curvature correcti@, (G)

FIG. 3. The effect of using the surface-to-surface potential on—Bar(1) (thick solid line, and the same difference for the barrier
the L-dependent fusion barriers. Shown for three values of orbitafadii, ra(G)—rar(1) (thin solid ling, as well asG—1 (dashed
angular momentuniL=0 (thick solid lines, L=30 (thin solid line); (b) same as in panéh) but for the surface-to-surface poten-
lines), andL =50 (dashed lined are(a) the difference between the tial; (c) the difference between the surface-to-surface barrier calcu-
fusion barrier heights calculated with the surface-to-surface poteriated with the curvature correction and the center-line barrier with-
tial and with the center-line potentid,—B,, ; (b) as in panela), ~ Out this correctionBy(G) — By (1), (thick solid ling, and the same
but for the barrier radiirs—r », ; (c) fractional change of the fusion difference for the barrier radii,(G) —r (1), (thin solid line; and
barrier heights, B—B,,)/B,,; and (d) same as in pandkt), but (d) fusion barrier calculated with the surface-to-surface potential
for the barrier radii. These calculations are performed fori@  including the curvature correctios(G), (thick solid ling), with
+1%%Sm reaction with3,=0.306 andB,=0.13. The dotted lines the center-line potential without the curvature correctiBr,(1),
Correspond to a spherica| target_ (thln solid Iine, and for a spherical targédotted Ilne

of L, the larger the absolute value of the differerBe tential should 'be correc_ted for its angle—dependent surface
—B,, [Fig. 3@]. There are two reasons for this. First, for curvature. This correction enters the caICL_lIatlons as a
higher partial waves the absolute value of the fusion barriefl€formation- and angle-dependent fact@rapplied to the
height increases due to the repulsive centrifugal potentialPotential of Eq.(6) (see Refs[15,16),

Second, due to this repulsion the reactants must come closer (Reg+ Rro)

to each other in order to reach the fusion barrier; therefore, - PO 7TO ,
the effect of using the shortest surface-to-surface distance VI(1/Rpo+ 1) (1/Rpo+ K2) IR1oRpo
instead ofAr is enhanced. In the limiting case, one obtains ) o
s=0 whenAr is still positive. In order to separate the size of Where G=1 for a spherical target nucleus. The principal
the second effect, in Fig.(® we plot the fractional change curvaturesk, and «, with respect to spherl_cal coordinate
of the heights of the surface-to-surface and center-line barr@nglesd and ¢ have been calculated according to He#].

ers. One sees that the effect of the use of surface-to-surface 1he role of this curvature correction for zero orbital an-
potential is enhanced far=50 by up to~30% in compari- 9ular momentum ang,=0.306 andB,=0.13 is illustrated
son withL=0. TheL dependence of the difference of the I Fig. 4. In this f|gure the quantities calculated, mcludmg
barrier radii,rs—r,,, is presented in Fig.(®), and is much the curvature correction, haveG‘" as the argument, Wh|t§
weaker than the. dependence oB.—B,,. The fractional those without this .correctllon have the argument 1 First
difference[r—r ,, 1/ 5, , Shown in Fig. &), is independent We made calculations with the center-line potential. Pre-

®

of L for all the values of the polar angle. sented in Fig. &) as a function of polar anglé, are the

differences between the barrier height,,(G) — By, (1)

IV. SURFACE CURVATURE CORRECTION TO NUCLEAR (thick solid line] and the barrier rad(ir  (G) —r (1) (thin
POTENTIAL solid ling)] calculated with and without the curvature correc-

tion. The values of5—1 are shown by the dashed line. The
According to the proximity theorerfil2] the strength of curvature correctiorG is smaller than 1(i.e., the nuclear
the attraction between two nuclear surfaces is defined by thattraction is weaker than between two spherical nuclei
shortest distance between them, and the curvatures of tleound the equator and the tip of the target. This increases
surfaces. However, the coefficien® in Eq. (6) are calcu- the height of the fusion barrier and decreases its radius. In
lated for spherical targets and projectile nuclei. Therefore, irthe region 35% §,<<75° the barrier height is reduced and the
the case of statically deformed target nuclei the nuclear pobarrier radius is increased becauSe-1. The similarity in
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the values of the dimensionless quantdy- 1, and the bar- 160 . . T
rier radii differencer ,,(G) —r4,(1) is coincidental.

A qualitatively similar behavior is found when using the
surface-to-surface potential as presented in Fif). Note
that in this case the curvature correction is calculateé at
not at 6, .

The net effect of the surface-to-surface potential and cur-
vature correction is shown in Fig(@. Here the difference
between the barrier heights calculated with the surface-to-
surface potential accounting for the curvature correction,
Bs(G), and the barrier heights calculated according to the
center-line potential without the curvature correction,
B, (1), isshown by the thick solid line. The difference be- T T T
tween the corresponding barrier radiig(G) —r,,(1), is <
shown by the thin solid line. Qualitatively the effect of the g
surface-to-surface potential and curvature correction together = |
is similar to the effect of the curvature correction alone in 1:é 0 ]

)
o
e

Figs. 4a) and 4b). However, the range of the angles at
which the barrier heights are reduced becomes wider. At
these intermediate angles both effects work in the same di-
rection, resulting in the maximum decrease of the fusion bar-
rier heights by about 20% of the total range of the barrier
variation due to deformation. The change of the absolute
values of the barriers with polar angheis illustrated in Fig.
4(d). Let us recall that the minimum surface-to-surface dis-
tance effect disappears at the tip and equésee Fig. 2
whereas the absolute value®f- 1 reaches its local maxima

0,-88

at those points. Therefore, f@; near zero and 90°B¢(G) 0 .
behaves essentially likB,,(G).
Figure 5 illustrates the influence of angular momentum on
the effects under discussion. These calculations have been
made for values off,=2°, 45° and 88°, again foB, -10¢ 1

=0.306 andB,=0.13. In Fig. %a) the barriers calculated
with the surface-to-surface potential, including curvature
correction, are shown versus For comparison the depen-
dence of the barrier obtained for a spherical target is also 0 20 40 60 80
shown by the dotted line. In Fig.(5) we present the differ-
enceB¢(G)—B,,(1). As expectedsee Fig. 4, the effect of
the minimum surface-to-surface distance dominates at the FIG. 5. The net effect of accounting for both the shortest
intermediate anglest{=45°), whereas the curvature correc- surface-to-surface distance and the curvature correction on the
tion makesB¢(G) larger thanB,,(1) near the tip and equa- heights of theL-dependent fusion barrierg3¢=0.306,3,=0.13).
tor (the curves forg,=2° and 88°). For all values of the Shown for three values of the polar angle, as a function of
polar angle, the absolute value of the differerBgG) orbital angular momentum, afe) the fusion barrier heights calcu-
—B,,(1) increases with.. lated with the surface-to-surface potential including the curvature
This behavior can be understood qualitatively from thecorrection,B¢(G), (thick solid lineg and the barrier calculated for a
approximate relation spherical targetdotted ling; (b) the difference between the heights
of the barriers calculated with the surface-to-surface potential in-
Bi(G,L)—B,(1,L)~B(G,00— B (1,00+bL(L+1) cluding the curvature correction and with the center-line barrier
without this correctionB¢(G) —B,,(1); and(c) the percentage of
this barrier height difference with respect to the total range of the
. 9) barrier height variation due to deformation as defined by (EQ).

[B,(G)-B,(1)/AB, (1) (%)

1 1
b T2
re(G,L) rix,(1L)

practically absenfsee Fig. 2c)], whereas the curvature cor-
Hereb=7%2/2u, u is the reduced mass of the reactants. Folrection G is smaller than Isee, e.g., Fig. @], which re-
the intermediate anglesf{=45°), where the minimum duces nuclear attraction. ThuB4(G,0)>B,,(1,0) and
surface-to-surface distance effect is enhanced by the curvay(G,L)<r,,(1,L). Consequently, the difference of E®)
ture correction[G>1, see Fig. &)] B¢(G,0)<B,,(1,0), is positive and increases with For the equatorial angles the
andrg(G,L)>r,,(1L). This makes the difference of E@)  situation is the same as for the tip.
negative, and its absolute value increases witNear the tip Finally, it is very convenient to analyze the influence.of
(6;=2°) the minimum surface-to-surface distance effect ison the minimum distance and curvature effects by comparing
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the differenceB¢(G) —B,,(1) with the total range of the . P,=0.308, B,=+0.13 B,= 0.306, B,= -0.13
barrier heights variation due to deformation, e B, (1) 1 T S T
=B,,(1,90°)—B,,(1,0°). The corresponding percentage, 10

1

()

& (mb)

5= BS(G)_BAr(l)
© Bar(1,909—B,(1,0°)

(10) 107 y ,

10

-
)
=
sl s s 21 sl ol sl s s
‘i A B B ai A B
s s sint v vl conad sl sud ol

is shown in Fig. ). It is interesting to see that the absolute o,
values of § either decrease slightliat 6,=2° and 45°) or
stay unchangedat 6,=88°). Qualitatively, the minimum
distance and curvature effects do not change WitfThus; 20
one can expect that for low incident energies the fusion cross

sections calculated witB;(G) will be lower than those cal-

)

culated withB,,(1), with the situation reversing as the col- ) ) ) , ) QO ) )
|isi0n energy iS increased. 45 50 55 60 65 70 45 50 55 60 65 70
E (MeV) E (MeV)
V. FUSION CROSS SECTIONS AND FIG. 6. Influence of the sign of the hexadecapole deformation
BARRIER DISTRIBUTIONS on the fusion cross sections and barrier distributions. The calculated

fusion cross sections [panels(a) and(c)] and the barrier distribu-

Thg gltimate goal of our study i; to see the effect of using,; ., p [see Eq(1)] [panels(b) and(d)] vs the energy in the center-
the minimum surface-to-surface distance and curvature COft.mass frameE. Calculations an performed witB,=0.306, and

rection on the fusion cross sections and barrier distributionyit, g,=+0.13 (left panels and B,=—0.13 (right panels.

Therefore, we now discuss calculations of these quantitieashed lines denote calculations without curvature correction with
and finally make a comparison with experimental data.  the center-line potential; thin solid lines are for calculations without
The transmission coefficienTs (6;) have been calculated the curvature correction with surface-to-surface potential; thick
by means of the parabolic barrier approximation for eactsolid lines are for calculations with surface-to-surface potential in-
value of ¢, in the interval 0° to 90° with a step of 1°. Then cluding the curvature correction.
the fusion cross sections have been found according to the
formulas[7,20] In Fig. 6(a) one sees the dramatic effect of accounting for
the curvature correction: whereas(1) is aboveo,, (1),
2L+1 accounting for the curvature correction brings the cross sec-
1+exp27[B(L,0)—Ellfw(L,0,)}) tions o4(G) substantially be|OV‘0'Ar(1). at low ene_rgies. We
(11) have to_conclude that at these energies, for positive values of
Ba, the impact of the curvature correction on the fusion cross
w2 sections appears to be significantly stronger than the effect of
o=, > o(L,6,)sin(6,). (12)  the minimum distance. The barrier distribution as a whole is
L 0 affected more strongly by the minimum distance effect, as
seen in Fig. &).

We found that the use df; steps of 0.5° and 0.25° changes = Remarkably, the change of the sign g, reduces the
the cross sections and barrier distributions by less then 0.5%nfluence of both minimum distance and curvature on the
Quantum mechanically, one should consider the couplingbsolute value of: in Fig. 6(c) the three curves are hardly

of the relative motion of the reactants to the rotational mo-distinguishable. However, in Fig.(@& the barrier distribu-
tion of the deformed target. The classical approach, followedions make it clear that the energy dependencer d§ af-
here, is an approximation which gives the result close to théected by the minimum distance and curvature correction
full quantum mechanical calculation for well deformed nu- more strongly than for positive values gf,. For both posi-
clei (see e.g. Refd.7,25)]). tive and negativgs,, the use of the surface-to-surface poten-
The calculated fusion cross sections and barrier distributial shifts the barrier distribution to lower energies, although
tions are shown in Fig. 6 versus the energy in the center ofhis shift is compensated for to a certain extent by the cur-
mass frame. Since statically deformed nuclei possess botfature correction, especially fg@,<0.
positive and negative hexadecapole deformations, we made In Fig. 7 the results of calculations of the fusion cross
calculations forgB,=+0.13 (left panel$ and —0.13 (right  sections and barrier distributions fdfO-+%‘Sm are pre-
panel$, while keepingB,=0.306 the same, in order to see sented along with the data from RE20]. These calculations
the effect of the sign of the hexadecapole deformation. Threare performed with3,=0.306 and3,=0.13. In Fig. 7a) the
types of calculations oé and D have been made. Two are fusion cross sections obtained with the surface-to-surface po-
without curvature correction, for the center-line potentialtential including the curvature correctidthick solid line
[oar(1) andD,, (1), (dashed lined, and for the surface-to- are compared with those for the center-line potential without
surface potential os(1) andDg(1), (thin solid lineg]. The  the curvature correctiotihin solid line. The dotted line rep-
last is for the surface-to-surface potential including the curtesents the cross section calculated for a spherical target.
vature correctionf o4(G) andD¢(G), (thick solid lines]. Since fusion occurs mostly near the tip of the target for the
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50 55 60 85 70 50 8 70 80 fusion barriers—the effect already observed in Figp) 6The
calculated barrier distribution appears to be closer to the ex-
perimental one when the surface-to-surface potential is used.
In order to see the degree of agreement between calcu-
lated and measured cross sections at energies well above the
barrier, in Fig. Tc) we plot the excitation function of the
productcE on a linear scale. At higher energies the results
of the calculations are in a reasonable agreement with the
data, although slightly above the experimental points no mat-

6 (mb)

40

oE (b*MeV)

107k e spherical
4 — center-line
F —— surface-to-surface
_3| + curvature
107

20— " 20 ter what potential is used. In order to show quantitatively the
@ importance of changing from the center-line potential to the
. e S o 18 surface-to-surface potential, in Figidy we plot the ratios of
E g 1o / SN T 10 g the cross sections(G)/o (1) (thin solid curve and of the
g a’ / / barrier distributionsD¢(G)/D,,(1) (thick solid curve as a
a osl 05 function of energy. These ratios vary by up to 50%, indicat-
ing the importance of accounting for both the minimum dis-
00— oo tance and the curvature correction in calculating the nuclear
E (MeV) potential.
FIG. 7. Comparison of the fusion cross sections and barrier VI. CONCLUSION

distributions(calculated for3,=0.306, and3,=0.13) with experi-

mental data for the reactiotfO-+'%Sm. Shown as a function of Our starting point was that the Woods-Saxon center-line
energy in the center-of-mass frame &athe fusion cross section nucleus-nucleus potential ignoring the surface curvature cor-
o, (b) the barrier distributiorD, (c) the producteE, and (d) the rection may not be adequate in the calculation of the fusion
ratios D¢(G)/D,,(1) (thick solid line and o4(G)/o (1) (thin cross sections performed by means of the simplified coupled
solid ling). In panels(a)—(c), dotted lines denote calculations for a channels codes likecDer [5] and ccmop [6]. We have
spherical target, thin solid lines denote calculations with the centershown that using the minimum distance between the surfaces
line potential without curvature correction, and thick solid lines of the fusing nuclei as the argument of the nuclear potential
denote calculations with the surface-to-surface potential includingand accounting for the curvature correction substantially af-
the curvature correction. Open circles with error bars show the exfacts the calculated fusion cross sectiengnd barrier dis-
perimental data of Ref20]. tributions D, if the target nucleus has a large static deforma-

| . G | th 1) due to th tion. These quantities can change by up to 50% for the
ow energiesos(G) are lower thanr,, (1) due to the cur- 1eq, 1545 reaction. Since current experimental data have

vature correction. For the near-barrier energies the calculate[gpical precisions of 1% forr and of 10% forD (see Refs
fusion cross sections agree satisfactorily with the experime 7.20), accounting for these geometrical effects is neées-
tal data when deformation is accounted for. Results obtaing@’ry' in aata analysis and interpretation. Our conclusions do

\(/letth ttT]e sur:ff;]qe-éo-sur?ce poti?tlal lagree bstter W'tg th%ot depend sensitively upon the type of internucleus poten-
ata, though this depends upon the va ueg0andp, used. .. tial; therefore, they are expected to also hold for more rigor-
The calculated barrier distributions are compared with

each other and with the data in FiglbY. As expected, the ous coupled chf_:lnnels codes likeis [ 26 FRESCO[Z?]’ and
barrier distribution obtained with thg sphericalptargmtted CCFULL [28], which use the Woods-Saxon center-line poten-
line) is very sharply peaked and does not agree with the data™
even qualitatively. The main effect of the calculations with
the surface-to-surface potential including the curvature cor-
rection is that theD4(G) (thick solid ling is shifted with M.D. acknowledges the financial support of the Australian
respect toD,,(1) (thin solid line in the direction of lower Research Council.
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