
PHYSICAL REVIEW C, VOLUME 65, 034604
Fragment size correlations in finite systems: Application to nuclear multifragmentation

P. Désesquelles
IPN, Bâtiment 100, 15 rue Georges Cle´menceau, F-91406 Orsay Cedex, France

~Received 26 September 2001; published 11 February 2002!

We present an exact method for the calculation of fragment size correlations in a discrete finite system in
which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce the
combinatorial model, which describes the fragmentation of a finite system as a sequence of independent
random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size.
The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic
probabilities associated with the fragment sizes. Any fragment size correlation function can be built by calcu-
lating the ratio between the partition probabilities in the data sample~resulting from an experiment or from a
Monte Carlo simulation! and the ‘‘independent emission’’ model partition probabilities. This technique is
applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the
nuclear statistical multifragmention model are almost independent emission models, whereas the nuclear spin-
odal decomposition model shows strong correlations corresponding to the breakup of the hot dilute nucleus
into nearly equal size fragments.

DOI: 10.1103/PhysRevC.65.034604 PACS number~s!: 25.70.Pq, 24.60.Ky, 05.10.2a, 24.10.Lx
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I. INTRODUCTION

The breakup of any finite composite system~atomic clus-
ters, atomic nuclei, fullerenes, molecules, etc.! is character-
ized by a probability distribution that incorporates co
straints imposed by dynamical or static conservation la
Thus, in the case of nuclear decay, the observed multif
mentation modes provide information on properties
nuclear matter at high excitation energy. From a statist
point of view the simplest fragmentation model may be f
mulated by attributing an independent emission probab
to each type of fragment~mass, charge!. In the limit of infi-
nite parent system size the resulting model~which will be
referred to herein as theindependent emission model! exhib-
its no correlation between fragments. For finite systems,
show hereafter that the correlations induced by the st
conservation laws, that is in mass and/or charge1 ~hereafter
referred to astrivial correlations!, can be exactly calculated
In the independent emission model all the physical inform
tion is contained in the emission probabilities of the differe
types of particles. However, due to the static conserva
laws, theseintrinsic probabilities are not equal to the ob
served probabilities.

Most theoretical multifragmentation models, which d
scribe the process of instantaneous break-up of the ato
nucleus submitted to extreme temperature and pressure
ditions, introduce other forms of correlations between p
ticle types. When these correlations are specific to a gi
model, their experimental observation constitutes a cru
test of validation/invalidation. For example, several mode
describe the decay of hot nuclei by the development of d
sity fluctuations ~surface or volume instabilities@1–4#!.

1In practice, owing to the difficulties with mass measuremen
studies are mainly carried out on charge partitions, no
n:(n1 , . . . ,nztot

) wherenz is the number of chargesz in the parti-
tion. The charge conservation law reads(zznz5ztot .
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Among these models, the spinodal nuclear decomposi
mechanism may dominate when the collision between
nuclei leads to a highly heated and sufficiently compres
nucleonic system. The decompression phase leads the sy
into the spinodal zone@zone in which the incompressibility
modulus (]P/]r)S is negative# where the density fluctua
tions are exponentially amplified up to produce fragmen
tion @5#. The dynamics of the density waves in the system
dominated by the most unstable mode, whose waveleng
of the order of 10 fm. Thus the composite nucleus will d
integrate into almost equal size fragments~in the rangeZ
'6220 and, more particularly,Z'10215, see Sec. IV D!.

Binary sequential deexcitation models~GEMINI @6# or
SIMON @7,8#! do not exhibit, of course, any preferential d
cay into equal charges. Nor do instantaneous multifragm
tation models: the Copenhagen-Moscow model@statistical
multifragmentation model~codeSMM!# @9# ~see Ref.@10# for
the system Xe1Sn at 32 MeV/nucleon, and the Sec. IV B o
the present paper! and the Berlin model@11# ~code MMMC!
@12#.

Experimentally, the charge distributions are privileg
tools for the study of nuclear multifragmentation. Howev
the yields of various charges alone do not permit a suffici
discrimination of mechanisms. Model validations thus
quire the comparison of intraevent charge correlations.
this context, a difficulty arises from the fact that the detec
fragments are not produced only at the multifragmentat
stage of the reaction. Certain light particles, for example,
emitted during the interpenetration of the nuclear sphe
~preequilibrium phase!, others are emitted, at the end of th
process, by the hot multifragmentation fragments. The fi
~detected! partitions have thus, in part, lost the memory
the crucial moment of the reaction. Therefore, it may
necessary to use statistical methods in order to detect
charge correlations induced by the initial multifragmentatio
One of these methods, proposed by Moretto and collab
tors @13#, was shown to be especially efficient for detecti

,
d

©2002 The American Physical Society04-1



io

n

e
ni

r
e
ve
l,

he
rg
y
o
o

on

-
xi
tr
-

ns
k
e
o

an
ro
re
th
b
th
.
da

th

rm
s
o
d

a

s
ela

ay
e

en

-

is-
no-

-

s

-

g-
a

rre-

rst
seu-
vent
h

u-
he
of

age
ong
rob-
mi-
vo-

s
me
-

nd
n
e

a
e

P. DÉSESQUELLES PHYSICAL REVIEW C 65 034604
the presence of the spinodal decay mechanism~volume in-
stabilities! of the nucleus.

The fragments formed during the spinodal decomposit
phase have comparable sizes~charges!. However, this effect
is not visible in the charge spectra generated by a Mo
Carlo code~Brownian one body dynamics,BOB code @5#!
simulating this type of mechanism. The reasons are num
ous: coalescence and primary fragment deexcitation, fi
size effect inducing mode superpositions, etc. The same
mark applies to the experimental charge distributions: no
cess yield is visible in the expected charge domain. Howe
the method of charge correlations reveals, for this mode
small ‘‘fossil’’ signal that corresponds to events in which t
system breaks into similar size fragments and whose cha
have not been modified~or reduced by the same quantit!
before detection. The method introduced by Moretto and c
laborators consists in calculating the correlation function
the mean chargêZ& of the M IMF2 and of their standard
deviation s. A peak appears therefore in this correlati
function for s'0 and^Z&'10215. Experimentally, a peak
has been effectively observed for the Xe1Sn system at 32
MeV/nucleon in central collisions with the INDRA multide
tector @10,14#. Preferential decompositions in three appro
mately equal size fragments were also observed in cen
Xe1Cu reactions at 45 MeV with the MULTICS multidetec
tor @15#.

The goals of this paper are the following.
~1! We wish to make the interpretation of correlatio

more rigorous. Progress is necessary because the pea
lated to spinodal decomposition is often generated by a v
small number of experimental or synthesized events. It c
responds, as we will see, to the ratio of two very small qu
tities and, therefore, will be characterized by a large er
bar. Thesignificanceassociated with a peak must, therefo
be systematically evaluated. To this end, we show that
error in the denominator of the correlation function can
greatly reduced by substituting a convolution product for
random selection process proposed in the initial method

~2! The correlation peak corresponding to the spino
decomposition~or to any other cause! is superimposed on a
dominant structure due to the correlations induced by
total charge conservation law~trivial correlations!. This
structure often makes the interpretation of the peaks in te
of physically interesting correlations difficult or ambiguou
Hence, it is important to correct the correlation function f
finite size effects. For this reason, it has been propose
construct the denominator of the correlation function in
different way than that introduced in Ref.@13# using the
minimum information model. It will be shown that thi
method can hide peaks corresponding to nontrivial corr
tions.

~3! We therefore introduce, in an algebraical exact w
the effects of charge conservation using the independ
emission model. Thanks to this new method, any ev

2Intermediate mass fragments, i.e., fragments with charge gre
than or equal to a given limit (Zmin53 or 5 in this work!.
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sample with only trivial correlations will show a flat corre
lation function.

~4! We will study more completely the independent em
sion model constrained by the charge conservation. The
tion of intrinsic probability of particles will be introduced.

~5! Finally, this new method will be validated by its ap
plication to three nuclear decomposition models~SMM, per-
colation@16#, and BOB!. It will be shown that these model
are, to first order, independent emission models.

II. THE CHARGE CORRELATION FUNCTION

A. Algebraic calculation of the denominator

The quantity 11R(^Z&,suM )5P(^Z&,suM )/Puc(^Z&,
suM ), where ^Z& is the mean charge of the IMF,s their
standard deviation andM their multiplicity, will be called the
charge correlation.3 The method traditionally used to calcu
late the denominator of a correlation function@13# consists in
constructing ‘‘pseudoevents’’ using randomly selected fra
ments belonging to different events of the sample with
given IMF multiplicity. The global variable distributions
relative to the pseudoevents do not contain intraevent co
lations. The numeratorP and the denominatorPuc of the
correlation function are calculated in the same way, the fi
one from the sample events, the second one from the p
doevents. Since the denominator does not contain intrae
correlations, its probability density function is written wit
an index uc~uncorrelated!.

The only experimental information required for the calc
lation of the denominator is the charge distribution of t
sample. It is equivalent, and, from a computational point
view, faster, to sort charges with respect to the aver
charge distribution, rather than to select fragments am
events. In fact, the random selection using the charge p
ability distribution is not even necessary since the deno
nator can be calculated algebraically in the form of a con
lution product.

One notesP(^Z&uM ) the probability to obtain a valuêZ&
of the mean IMF charge for the multiplicityM events
@(^Z&P(^Z&uM )51, hereafter all conditional probabilitie
will be assumed to be normalized by a relation of the sa
type#. This conditional probability is given by the convolu
tion

Puc~^Z&uM !

5(
Z1

••• (
ZM21

PZ~Z1uM !•••PZ~ZM21uM !PZ„M ^Z&

2~M21!^Z&8uM …, ~1!

where^Z&8 is the mean charge of the IMF except the last a
PZ(ZuM ) the IMF charge probability distribution for a give
multiplicity. The last factor accounts for the IMF total charg

ter

3In the following, the variables in capitals will be relative to th
IMF, the IMF partitions will be notedN, the complete partitionsn,
and the total multiplicitym.
4-2
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FRAGMENT SIZE CORRELATIONS IN FINITE . . . PHYSICAL REVIEW C 65 034604
conservation (( i 51
M Zi5M ^Z&). The standard deviation i

calculated according to themeasure

s5A 1

M (
i 51

M

~Zi2^Z&!2. ~2!

The equations obtained with the unbiasedestimatorof the
standard deviation, used in Ref.@13# are listed in the Appen-
dix. The choice of the expression of the standard devia
will not have any influence on the shape of the correlat
functions nor on the conclusions of this study. It can
shown that the probability to obtain a standard deviations,
when the fragments are randomly selected, is

Puc~suM !5(
Z1

••• (
ZM21

PZ~Z1uM !•••PZ~ZM21uM !

3PZS ^Z&81MA s2

M21
2

s82

M
UM D

3PZS ^Z&82MA s2

M21
2

s82

M
UM D , ~3!

wheres8 is the standard deviation of the charges of the IM
except the last. If the term under the square root is nega
the probability is zero. Finally the correlation between t
mean charge and the standard deviation reads

Puc~^Z&,suM !

5(
Z1

•••(
ZM

PZ~Z1uM !•••PZ~ZM21uM !PZ~ZMuM !

3dZM ,M ^Z&1(M21)^Z&8dZM ,^Z&86MA[s2/(M21)]2(s82/M ) ,

~4!

where da,b , the Kronecker symbol, is equal to 1 whena
5b and 0 otherwise. The multinomial decomposition lea
to an equivalent~but more practical! form of this equation,

Puc~^Z&,suM !5M ! (
N

(
Z

NZ5M

(
Z

ZNZ5M ^Z&

(
Z

Z2NZ5M (^Z&21s2)

)
Z

PZ~ZuM !NZ

NZ!
,

~5!

whereNZ is the number of IMF with chargeZ andN an IMF
partition. The product runs over all possible IMF charg
The probabilities in the denominator respect the normal
tion: (s(^Z&Puc(^Z&,suM )51. Hereafter, for notationa
simplification, the sum sign of Eq.~5! will be written as
($NuM ,^Z&,s% and the other sum signs will be formed accor
ing to the same logic.

The extension of this formula of the denominator
samples containing a variable number of IMF is useful wh
the experimental statistics is reduced. It is expressed stra
03460
n
n
e

e,

s

.
-

-

n
ht-

forwardly asPuc(^Z&,s)5(MPM(M )Puc(^Z&,suM ) ~where
PM is the multiplicity probability distribution of the IMF!,
i.e.,

Puc~^Z&,s!5 (
$Nu^Z&,s%

PMS (
Z

NZD
3S (

Z
NZD !)

Z

PZ~Zu(Z8NZ8!
NZ

NZ!
. ~6!

B. Statistical error bars

Let us recall that the correlation function is defined by

11R~^Z&,suM !5
P~^Z&,suM !

Puc~^Z&,suM !
, ~7!

where the probability in the numerator is the number
sample events includingM IMF, with mean chargêZ& and
standard deviations, divided by the number of events wit
IMF multiplicity M. To first order, the sampling variance of
proportion applied to Eq.~7! gives the following error:

D„11R~^Z&,suM !…5
AP~^Z&,suM !

AN~M !Puc~^Z&,suM !
, ~8!

whereN(M ) is the number of events withM IMF in the data
sample. The use of formula~5! reduces considerably the sta
tistical error. In the case of a Monte Carlo selection proce
it would be, to the same order,

D~11R~^Z&,suM !!5
AP~^Z&,suM !

AN~M !Puc~^Z&,suM !

1
P~^Z&,suM !

ANuc~M !Puc~^Z&,suM !3/2
,

~9!

whereNuc(M ) is the number of pseudoevents generated
random selection for the calculation of the denominator. T
last term can be very important in the presence of correla
peaks. The calculation of the error is crucial when the st
dard deviation is zero, on the one hand, because it is th
events that we are interested in, and, on the other hand
cause the number of events of this type is often very sm

In practical cases, the denominator may be evaluated w
a very low uncertainty thanks to Eq.~5! since only the very
low statistical fluctuations on the charge spectrum alter
result. On the other hand, the precision of the numera
depends strongly on the number of events in the conside
sample. Furthermore, the error on the error bar@Eq. ~8!#
depends also on the number of events. Therefore it can
inaccurate. It would, therefore, be interesting to obtain
evaluation of the error bar using only the value of the d
nominator. This is possible using the so-called null hypo
esis, i.e., that the correlation function is equal to unity~ab-
sence of correlation!. In the frame of this hypothesis the erro
bar is
4-3
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P. DÉSESQUELLES PHYSICAL REVIEW C 65 034604
D11R51„11R~^Z&,suM !…5
1

AN~M !Puc~^Z&,suM !
.

~10!

The significance of a positive correlation~of a peak! is
defined as being the probability, in the frame of the n
hypothesis, that the peak has a height lower than that
served. Therefore, the higher the peak, the higher the sig
cance. An underestimation of the significanceS can be ob-
tained straightforwardly using the Schwarz inequality,

S<
N~M !Puc~^Z&,suM !3

@P~^Z&,suM !2Puc~^Z&,suM !#2
. ~11!

Exact calculations of the significance as well as appli
tions to experimental data will be presented in a forthcom
publication@17#.

C. Case where all IMF have the same charge

1. Numerator

Since the spinodal decomposition peak is expected w
all IMF have the same charge, we now consider the c
wheres50. For a fixed IMF mean charge, there is now on
one IMF partition:; i ,Zi5^Z&. Thus, differences betwee
the complete partitions with samêZ& are only due to the
light fragments whose total charge iszlight5ztot2M ^Z&.

2. Denominator

Whens50, the probabilities given by Eq.~5! become

Puc~^Z&,0uM !

5H PZ~^Z&uM !M if ^Z& is integer and̂Z&

P@Zmin ,ztot2~M21!Zmin#

0 otherwise,

~12!

wherePZ(ZuM ) is the charge distribution for a given IMF
multiplicity @(Z5Zmin

ztot P(ZuM )51#. The mean charge bein

equal to the charge of each IMF implies that^Z& is always an
integer. The probability that the standard deviation is zer

Puc~s50!5 (
^Z&5Zmin

ztot2(M21)Zmin

PZ~^Z&uM !M. ~13!

When the charge distribution of light IMF follows
power law or an exponential law~we will see that this is the
case for the minimum information model!, the denominator
assumes very simple forms~respectively!,

Puc~^Z&,0uM !}^Z&2tM, ~14!

Puc~^Z&,0uM !}e2tM ^Z&. ~15!
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3. Correlation function

As indicated previously, the evaluation of the correlati
function in the case of equal size IMF is of considerab
physical interest. Unfortunately it often corresponds to
ratio of two very small probabilities. If the number of even
in the sample is too low, it is possible that no event cor
sponds to the given mean charge~the correlation function
cannot be calculated! or that a very small number of even
correspond~which can lead to a spurious peak!. It is, there-
fore, important to determine,a priori, the minimum number
of events necessary to obtain a reliable evaluation of
correlation function for a null standard deviation. An eval
ation of this number can be obtained making, once more,
hypothesis that the correlation function is unity. The pro
ability to obtain an event in which the IMF charges are
equal to^Z& is PZ(^Z&uM )M ~this quantity can be obtaine
precisely even with a reduced event sample!. The minimum
sizeN(M ) of the sample must be, therefore, of one order
magnitude greater thanPZ(^Z&uM )2M.

III. DENOMINATOR CONDITIONED BY CHARGE
CONSERVATION

The formation of the denominator as proposed by More
and collaborators@that we will continue to call the pseudo
event method though the result is expressed by the algeb
formula ~5!# has many advantages: it is rigorous, it is simp
to evaluate, it takes into account the efficiency of the det
tor, it uses only experimentally measured quantities and
resulting correlation function shows all charge correlatio
whatever their origin. This latter advantage can become
inconvenience when one wishes to study correlations
duced by only one physical cause. In the majority of cas
the main structure in the correlation function is due to t
total charge conservation law. We will see that this law
troduces a large structure, greater than unity, close to^Z&
5ztot /M . In Ref. @10#, this structure was considered as
baseline on which was superimposed a peak due to the s
odal decomposition mechanism.

In this section we will discuss two different proposition
for calculating the denominator taking into account t
charge conservation~in order to remove the correspondin
structure from the correlation function!. The first one con-
sists in using partitions provided by the minimum inform
tion model~all the partitions of a given total charge have t
same probability!. We will show that the denominator con
structed in this way presents a spurious peak ats50 that can
conceal a possible physical peak in the correlation funct
~Sec. III A!. The second proposition consists in modifyin
the expression~5! of the algebraic calculation of the denom
nator in order to introduce, in an exact way, the influence
charge conservation with the consequence that charge
servation influences both numerator end denominator.

A. Minimum information model

1. Introduction

In this model, all partitions have the same probabili
P(n)51/N(ztot) whereN(ztot) is the total number of parti-
4-4
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tions for total chargeztot . This result is obtained by the ap
plication of the minimum information principle~or maximal
entropy!, information being defined as

I 5(
n

P~n!ln P~n!. ~16!

Setting the derivative ofI equal to zero, under the singl
constraint of charge conservation, one obtains that all pr
abilities are equal. The total number of charge partitions o
charge ztot nucleus is approximately given by th
Ramanujan-Hardy formula@18# whose leading term is

N~ztot!'

expS pA2ztot

3 D
4ztotA3

. ~17!

The number of partitions increases therefore very rap
with the charge. Thus, studies of large systems, by syst
atic generation of all partitions, are not possible. The cal
lation of the number of IMF partitions~all fragments have a
charge greater than a certain limit! and of light fragments
~fragments with charge lower than a certain limit! is exposed
in the companion paper@19#. Some examples of application
of the minimum information model~possibly modified by
combinatorial factors! to nuclear fragmentation are given
Refs.@20–24#

2. Case where all IMF have the same charge

In this section, the correlation function for the minimu
information model in the cases50 will be calculated ex-
actly. It will be shown that this function presents a combin
torial peak due to an intrinsic feature of the model, name
the nonordering of the charges. We will introduce an alter
tive model in which this effect is corrected.

a. Numerator. The numeratorP(^Z&,0uM ) of the correla-
tion function is calculated as the number of partitions withM
IMF, each of chargê Z&, divided by the total number o
partitions withM IMF. The charges of the IMF being fixed
the number of partitions will be equal to the number of wa
lt
o
e

nly
o
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to divide the remaining chargezlight5ztot2M ^Z& into light
fragments~i.e., fragments with charge less than or equal
zmax5Zmin21). This constrained number of partitions wi
be notedzmaxN(zlight). Similarly, the number of partitions o
chargez into M fragments with charge greater than or equ
to Zmin will be noted Zmin

N(z,M ). These numbers can b
calculated exactly@19#. With our notation, the numerato
reads

P~^Z&,0uM !5
zmaxN~zlight!

(
^Z&8

Zmin
N~M ^Z&8,M !zmaxN~ztot2M ^Z&8!

.

~18!

b. Denominator. We have seen@Eq. ~12!# that the denomi-
nator is written asPZ(^Z&uM )M when the standard deviatio
is zero. The conditional probability of̂Z& given M is the
number of partitions withM IMF weighted by the proportion
of chargeŝ Z& that they contain, divided by the number o
partitions containingM IMF, so that

Puc~^Z&,0uM !

5S (
^Z&5Zmin

ztot /M

(
$Nu^Z&,M %

N^Z&

M
zmaxN~ztot2M ^Z&!

(
^Z&85Zmin

ztot /M

Zmin
N~M ^Z&8,M !zmaxN~ztot2M ^Z&8!

D M

,

~19!

in which the sum over all partitions containingM IMF has
been written

(
^Z&5Zmin

ztot /M

(
$Nu^Z&,M %

[(
Z1

••• (
Zk5Zk21

Rk /(M2k11)

•••(
ZM

, ~20!

with Z05Zmin and Rk5ztot2( i 51
k21Zi . The charges of the

IMF are notedZi and are written in increasing order.
c. Correlation function. The charge correlation function i

thus given by
11R~^Z&,0uM !5

zmaxN~ztot2M ^Z&!F (
^Z&8

Zmin
N~M ^Z&8,M !zmaxN~ztot2M ^Z&8!GM21

F 1

M (
^Z&5Zmin

ztot /M

(
$Nu^Z&,M %

N^Z&
zmaxN~ztot2M ^Z&!GM . ~21!
ve
ns

his
po-
The latter result is, of course, free of error since it resu
from the numbering of all possible partitions. Results for tw
total charges, two multiplicities, and two definitions of th
IMF are presented in Fig. 1.

We observe the following.
~1! The behavior of the correlation function depends o

weakly on the size of the system. This result has been
s

b-

served experimentally: similar correlation functions ha
been observed for very different systems in central collisio
@10,25#.

~2! The denominators are exponentially decreasing. T
is due to the fact that the charge distributions are also ex
nentially decreasing betweenZmin andztot2(M21)Zmin @Eq.
~14!#.
4-5
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~3! The abscissa of the maximum of the correlation fun
tion is a few units lower thanztot /M , this property can be
used to provide an experimental determination of the to
charge of the composite nucleus, after preequilibrium em
sion, measuring only the IMF.

~4! The amplitude of the correlation function increas
strongly as the minimum charge of the IMF diminishes a
their multiplicity increases.

Figure 2 presents the correlation function obtained for d
ferent multiplicity 3 systems~left column! and for the total
charge 79 and different multiplicities~right column!.

The left-hand column shows that the correlation functio
are homothetic for a given multiplicity. On each figure
horizontal line has been placed at 11R(^Z&,0uM )5M !. One
oberves that the maximum of the correlation function is
ways of the order ofM !. This property is due to the multi
nomial factors of the denominator@Eq. ~5!#. When the stan-
dard deviation is null, the product)ZNZ! is identically equal
to M !, it factorizes therefore in the numerator of the corr
lation function. When the standard deviation increases,
product decreases rapidly down to 1 when all charges
different. To illustrate this point, let us consider two ve
similar partitions of the total charge 21 into 3 IMF:$7,7,7%
and $6,7,8%. The numerator of the correlation function fo
both partitions is the same: 1/N(21,3)(51/249). The de-
nominator is, in the former case,P(7u3)3(56.631024) and,
in the latter case, 3!P(6u3)P(7u3)P(8u3)(53!6.04
31024). Therefore the probability product is almost th

FIG. 1. Numerator~upper row!, denominator~median row!, and
correlation function~lower row! for total charges 56~left column!
and 104~right column!. The bold lines correspond to IMF with
minimum charge 5 and the thin lines to IMF with minimum char
3. The dotted lines correspond to the events with 5 IMF and the
lines to those with 3 IMF.
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same in both cases. Besides, the charge conservation
straint is weak when the IMF have small charges henc
1R($6,7,8%)'1 ~one finds 1.1!. Consequently 1
1R($7,7,7%)'3! ~one finds 6.1!.

It can be conjectured that this effect would occur for
nonordered fragment models. If one multiplies every pa
tion by a factor equal to the number of charge permutati
(M !/ )ZNZ!), the peak disappears. On the other hand, pr
abilities for other sigma values are little modified because
NZ are then almost always equal to 0 or 1~i.e., )ZNZ! 51).
This latter model will be referred to as the ordered minimu
information model.

B. Algebraic calculation of the denominator with charge
conservation

1. Method

The goal of this section is to introduce the exact meth
for the evaluation of the denominator that eliminates the
fects due to charge conservation from the correlation fu
tion. This denominator is obtained by an extension of
formula ~5! to the whole charge~i.e. including light frag-
ments!. In the first step, we suppose that there is no corre
tion at all between charges. This means that each charg

ll

FIG. 2. Charge correlation function, for a null standard dev
tion, obtained by formula~21! in the framework of the minimum
information model. Heavy traces correspond to IMF with charg
greater than 5 and light traces to IMF with charges greater tha
The correlation functions for an IMF multiplicity of 3 are present
on the left-hand column in which the total charges of systems
from top to bottom, 79, 104, and 400. The three graphs on
right-hand column correspond to the total charge 79 and the I
multiplicity runs from 4~top! to 6 ~bottom!. The horizontal lines are
placed at 11R5M !.
4-6
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described by a probabilityintrPz(z) ~that will be referred to
as intrinsic probability of the charge!. The conditional prob-
ability of a partitionn ~including the IMF and the light par
ticles! with total multiplicity m is given then by the multino-
mial formula

P~num!5m!)
z

intrPz~z!nz

nz!
. ~22!

These conditional probabilities obey the normalization c
dition (nP(num)51. If one introduces the constraint of tot
charge conservation, partition constrained conditional pr
abilities are given by~an index cc will be applied to prob
abilities constrained solely by the charge conservation!

Pcc~num!5k~m!m!)
z

intrPz~z!nz

nz!
dztot ,(

z
znz

, ~23!

with

k21~m!5m! (
$num,ztot%

)
z

intrPz~z!nz

nz!
. ~24!

On the other hand, the multiplicity probability distribution
given by

Pm~m!5am! (
$num,ztot%

)
z

intrPz~z!nz

nz!
, ~25!

with

a215 (
$nuztot%

S (
z

nzD !)
z

intrPz~z!nz

nz!
. ~26!

Finally, the partition probabilities are given by

Pcc~n!5aS (
z

nzD !)
z

intrPz~z!nz

nz!
dztot ,(

z
znz

. ~27!

These probabilities contain all the information relative to t
charges and to their correlations. For example,~observed!
charge and conditional charge probability distributions
given, respectively, by

Pz~z0!5

(
n

nz0
Pcc~n!

(
n

S (
z

nzD Pcc~n!

5
a

^m& (
$nuztot%

nz0S (z
nzD !)

z

intrPz~z!nz

nz!
,

03460
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Pz~z0um!5
1

Pm~m! (
$num%

nz0

m
Pcc~n!

5

(
$num,ztot%

nz0)z

intrPz~z!nz

nz!

m (
$num,ztot%

)
z

intrPz~znz!

nz!

. ~28!

Owing to correlations, the intrinsic probabilities are n
equal to the probabilities to observe the charges@the conser-
vation constraint favors small charges, see Fig. 3~b!#. Equal-
ity between intrinsic probabilities and observed probabilit
is valid only for an infinite system.

The intrinsic probabilities are quantities that are not
rectly measurable, they must be calculated by inversion
Eq. ~27!, where thePcc(n) are the measured frequencies
the partitions. The set of Eqs.~28! constitutes an underdete
mined system. It is thus not possible to obtain an uniq
solution.

However, inversion of Eq.~27! is possible if the nontrivial
correlations between the charges in the studied sample
weak. When the intrinsic probabilities are determined,
probabilities of the denominator can be calculated by su
ming the complete partition probabilities having the sa
IMF mean charge and standard deviation

FIG. 3. Charge distributions obtained in the ordered minim
information model~a! and in the charge equiprobability model~b!
constrained by the total charge conservation. Circles correspon
a total charge of 20, squares toztot556, and points toztot5104. The
full lines are the intrinsic probability distributions.
4-7
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P. DÉSESQUELLES PHYSICAL REVIEW C 65 034604
Pcc~^Z&,suM !5
1

PM~M ! (
$nuM ,^Z&,s%

Pcc~n!. ~29!

Finally we can write the denominator as a function of t
intrinsic probabilities

Pcc~^Z&,suM !5

(
$nuztot ,M ,^Z&,s%

S (
z

nzD !)
z

intrPz~z!nz

nz!

(
$nuztot ,M %

S (
z

nzD !)
z

intrPz~z!nz

nz!

.

~30!

This new denominator takes explicitly into account t
charge conservation. Structures observed in the corresp
ing correlation function will necessarily arose from oth
causes.

2. Monte Carlo generation of events without nontrivial charge
correlations

A sample of events without nontrivial correlations may
synthesized by the following procedure. Chargeszi are se-
lected randomly according to their intrinsic probabilities u
til ( izi>ztot . The event is preserved only if( izi5ztot . The
resulting charge spectra are those given by Eqs.~28!. The
alternative procedure that would consist in randomly sele
ing M21 charges, and deducing the last charge using ch
conservation would introduce a bias since the distribution
the last charge would be different from the preceding on

3. Combinatorial independent emission models

We stated previously that models can be characterized
the term ‘‘independent emission’’ if they contain no corre
tions, other than those induced by the conservation of
total charge. This definition implies that partition probabi
ties generated by such models can be written in the form
Eq. ~27!. We give here two examples of independent em
sion models.

a. Ordered minimum information model. The model pro-
duced by weighting partitions by a factorm!/ )znz! is an
independent emission model. One notes that this weightin
the same as the one of Eq.~27! if the product)z

intrPz(z)nz is
constant. This condition is fulfilled if and only ifintrPz(z)
5az ~the intrinsic probability product isaztot). Thus, the nor-
malization of the probabilities is(za

z51. For a sufficiently
large total charge~in practice, superior to 10!, the normaliza-
tion condition impliesa51/2. The model in which every
partition is weighted by the number of permutations of
charges (m!/ )znz!) is, therefore, an independent emissi
model with intrinsic probabilitiesintrPz(z)522z. The result-
ing charge distributions are almost exponentially decreas
@Fig. 3~a!#. Conversely, the minimum information model
not an independent emission model~it is not possible to find
a set of intrinsic probabilities such that all partition probab
ties would be the same!.
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b. Model of charge equiprobability. The minimum infor-
mation model is taken as implying the equiprobability of t
partitions. In this context it is also interesting to see resu
given by another elementary model obtained by assum
intrinsic equiprobability of the charges. The resulting cha
distribution is, of course, not uniform due to the constraint
conservation of the total charge.

The Eq.~27!, for intrPz(z)51/ztot , gives

Pcc~n!5aS (
z

nzD !)
z

S 1

ztot
D nz

nz!
dztot ,(

z
znz

5
am!

ztot
m )

z
nz!

dztot ,(
z

znz
. ~31!

In other words, if one generates partitions by imposi
charge conservation and if all charges have the same intri
probability to be selectioned, then the partition weight
m!/(ztot

m )znz!). Examples of observed charge spectra a
given for different values of the total charge in Fig. 3~b!.
These spectra are very different from that of the intrin
probabilities. Indeed one observes an almost exponentia
crease. Only the last charge has a probability that is
consistent with this tendency. This behavior is due to the f
that the chargeztot21 can appear accompanied only by
charge 1, whereas the chargeztot is never rejected. More
precisely, Eq.~28! gives Pz(ztot)5(ztot/2)Pz(ztot21). One
notices that the greater the total charge the less the influe
of the constraint of conservation and consequently
smaller the slope of the exponential.

4. Multiplicity constrained independent emission model

We now consider the model for which probabilities
partitions with fixed multiplicity are given by Eq.~22!, but
the multiplicity probability distribution is not given by the
combinatorial Eq.~25!. The multiplicity probability distribu-
tion Pm(m) is imposeda priori. This model has been studie
extensively by Cole and collaborators@24#. The main differ-
ence between the quoted papers and the study present
this paragraph resides in the interpretation of quantities no
Xz by Coleet al. and, here,intrPz as, respectively, adjustabl
parameters and intrinsic probabilities. However, theXz pa-
rameters being defined to a factoraz, it is always possible to
normalize them. Indeed, the product)z(a

zXz)
nz is equal to

the product)zXz
nz to within a constant (aztot). Equation~22!

and the normalizations give

Pcc~n!5
Pm~m!

(
$n8um,ztot%

)
z

intrPz~z!nz8

nz8!

)
z

intrPz~z!nz

nz!
dztot ,(

z
znz

,

~32!
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FRAGMENT SIZE CORRELATIONS IN FINITE . . . PHYSICAL REVIEW C 65 034604
with

m5(
z

nz . ~33!

In the same way as for charges, one can introduce an in
sic probability for multiplicities (intrPm). The partition prob-
ability is then written as

Pcc~n!5kintrPm~m!m!)
z

intrPz~z!nz

nz!
dztot ,(

z
znz

, ~34!

with

k215(
m

intrPm~m!m! (
$num,ztot%

)
z

intrPz~z!nz

nz!
. ~35!

One deduces the relation between observed probabilitie
multiplicities and those of the intrinsic probabilities,

Pm~m!5 intrPm~m!

3F m! (
$num,ztot%

)
z

intrPz~z!nz

nz!

(
m8

intrPm~m8!m8! (
$num8,ztot%

)
z

intrPz~z!nz

nz!
G .

~36!

Intrinsic probabilities and observed probabilities possess
same distributions in the limit of an infinite system size.

IV. APPLICATIONS

A. Introduction

In this section we show the charge correlation obtain
for several nuclear decay models, using the denomin
given by the independent emission hypothesis. The first
of the procedure consists in determining the intrinsic pr
abilities of the charges for each model sample. These p
abilities are obtained by a recursive procedure of minimi
tion of the x2 between probabilities of partitions in th
synthesized sample and those given by Eq.~23!. The conver-
gence of the procedure is possible only if nontrivial corre
tions between the charges are weak. The minimumx2 is
therefore an indication of the strength of these correlatio
The second step, calculation of the denominator by
method presented in Sec. III B 1, Eq.~30!, would also not be
possible in the presence of strong correlations. We will
that this condition is fulfilled by the three models that we a
going to study. Results of the application of this procedure
the experimental events will be presented in forthcoming
pers@17,25#.

B. The Copenhagen model

The Copenhagen model@9,26# is a hot liquid drop model
that describes the multifragmentation of the nucleus as
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instantaneous statistical mechanism. The probability of a
tition in the mass and in the chargena,z for an excitation
energyE* is given by

P~nuE* !5PI~E* !FVF

lT
3 GmF)

a,z

a3na,z/2

na,z!
G

3datot ,(
a,z

ana,z
dztot ,(

a,z
zna,z

. ~37!

The two Kronecker symbols account for the conservat
of the mass and the charge. The de Broglie wavelength of
nucleon lT5A2p\/(mnT) depends on the temperatur
which is roughly constant at fixed excitation energy. T
density of states corresponding to the internal excitation
ergy of the fragmentsPI(E* ) is also constant at a give
excitation energy. In this model, as in comparable mod
the multiplicity is correlated linearly with the excitation en
ergy, a prediction that is verified by experimental obser
tion. The first two factors can be considered, therefore, to
constant for a given multiplicity. The volume of the nucle
at the time of fragmentationVF is supposed to be indepen
dent of the partition~or, according to the version of th
model, dependent only on the multiplicity!. If we disregard
the conservation of the mass, the emission probability o
fragment is proportional toa3/2: Pz(z)5aa3/2, so that the
product )zPz(z)nz5am)za

3nz/2 involves a new factor de-
pending only on the multiplicity. The equation can, therefo
be rewritten as

P~num!})
z

Pz~z!nz

nz!
dztot,(

z
znz

, ~38!

so that we recover the same expression as that obtaine
the independent emission model. We thus expect that
correlation function is everywhere equal to 1 and if the d
nominator is calculated from pseudoevents, we expect
the shape of the correlation function is determined by cha
conservation. However, this conclusion is based on a sim
fied form of the model. The correlation function may th
exhibit weak modulations. Moreover, one does not expe
peak for small values of the standard deviation.

Using theSMM code, 35 million events have been gene
ated for the 138Ba nucleus excited to 5 MeV/nucleon. W
built, from this sample, the charge correlation function f
the IMF. The Copenhagen model produces results~almost!
consistent with independent emission as shown in Fig
Discrepancies can be explained notably by the fact that
hot fragments, produced during the multifragmentation ph
described by Eq.~37!, thereafter decay by light particle emis
sion.

The charge correlation functions calculated with the d
nominators of formulas~5! and ~30! are presented in the
Figs. 5 and 6. In the first case, the main structures are du
the conservation of the charge, in the second, the correla
function is practically flat. Nontrivial correlations betwee
charges are therefore very weak for this model and no p
erential fragmentation into equal charge is observed. T
4-9
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P. DÉSESQUELLES PHYSICAL REVIEW C 65 034604
small modulations of the correlation function are due
physical causes and statistical fluctuations.

C. Percolation

The same study has been carried out on a sample obta
with a percolation code@16#. A sample of 108 events has
been generated using a three-dimensional percolation
gram on a simple cubic 43434 periodic frame, for a bond
breaking probability of 70%. The result of thex2 minimiza-
tion process is presented Fig. 7 in which charge distributi
for various multiplicities in percolation and those given
the formula~23! are compared~the intrinsic probabilities are

FIG. 5. Upper and lower figures present, in order, the numera
denominator, and@^Z&,s# correlation function for the Copenhage
model. The denominator is calculated by the method of pseud
ents@formula ~5!#.

FIG. 4. Comparison of charge spectra for several multiplicit
for SMM ~circles! and for the independent emission hypothe
~lines!. The dashed line corresponds to the intrinsic probabilit
The multiplicity probability distributionsPm(m) given by the two
models are also shown in the figure.
03460
ed
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s

indicated by a dotted line!. The very good agreement ind
cates that the correlations between charges are very wea
this model.

Figures 8 and 9 present percolation correlation functio
obtained using denominators given, respectively, by
pseudoevent method@Eq. ~5!# and by the independent emis
sion hypothesis@Eq. ~30!#. These figures were constructe
for all possible values of the number of IMF. In the first cas
structures are almost entirely due to the conservation of
charge~to each IMF multiplicity corresponds an edge line!.
When the denominator is calculated using the intrinsic pr
abilities, the correlation function is flat and equal to 1~Fig.
9!. The small peaks on the sides of the correlation funct
are due to the statistical fluctuations.

The model of percolation can, therefore, be assimilated
knowledge of the intrinsic probabilities.

Figure 10 presents the correlation function of the per
lation calculation when the denominator is calculated w
the minimum information model~upper figure! and with the
ordered minimum information model~lower figure! for same
total charge (ztot564). In both cases, the correlation functio

r,

v-

FIG. 6. Denominator~upper figure! and correlation function
~lower figure! of @^Z&,s# for the Copenhagen model~the numerator
is presented at the top of the Fig. 5!. The denominator is calculate
using the independent emission hypothesis, via formula~30!.

FIG. 7. Percolation~same conventions as in Fig. 4!.

s

.
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FRAGMENT SIZE CORRELATIONS IN FINITE . . . PHYSICAL REVIEW C 65 034604
presents large structures, which are not easily interprete

D. The Brownian one body dynamical model

The last model to be studied in this work is characteriz
by nontrivial correlations, even though, as mentioned in
introduction, they are partly masked by different process
The preferential decomposition of the system into alm
equal charges~in the range@10,20#!, which characterizes the
BOB model, is not visible, for example, in the inclusiv
charge spectra~Fig. 11!.

Our simulated sample was obtained via a four-step p
cess@27#. The collision entrance channel has been simula
using a one-body semiclassical microscopic calculation

FIG. 8. Percolation~same conventions as in Fig. 5!.

FIG. 9. Percolation~same conventions as in Fig. 6!.
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the Boltzmann-Nordheim-Vlasov type@28# for the system
129Xe1119Sn at 32 MeV/nucleon. This calculation show
that, for the most central collisions, a compressed sin
source is formed, after a weak pre-equilibrium emissi
within 40 fm/c. The decompression phase, the entrance
the spinodal zone and the formation of the fragments
then followed by theBOB code that simulates Boltzmann
Langevin density fluctuations@29# and the evolution of the
system density submitted to spinodal instabilities. In a th
step, fragments are formed using an algorithm that regro
contiguous cells that numbers of test particles~40 test par-
ticles are used to simulate a nucleon! is greater than a given
threshold. The resulting nuclei are hot, their statistical de
and their Coulomb expansion are, in a last step, simulated
the SIMON code@7,8#. The event samples are eventually fi
tered using the INDRA response function@30#.

The regrouping of pseudoparticles generated by the mo
is possible only for fragments of charge superior or equa
5. The light fragments are not known. This difficulty must

FIG. 10. Correlation function of@^Z&,s# for the percolation
process~the numerator is presented at the top of Fig. 8!. Denomi-
nators are given by the models of the minimum information~upper
figure! and of the ordered minimum information~lower figure!.

FIG. 11. Model Brownian one body~same conventions as in
Fig. 4!.
4-11
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P. DÉSESQUELLES PHYSICAL REVIEW C 65 034604
taken into account in the routine of intrinsic probability o
timization: the probability of a partition ofM IMF is the sum
of probabilities of all partitions containing theseM IMF
~solely! together with the corresponding light particles

P~N!5a (
$nuztot ,N%

S (
z

nzD !)
z

intrPz~z!nz

nz!
. ~39!

The calculation of these probabilities can be accelerated
siderably by noticing that they can be written in the form

P~N!5aS M !)
Z

intrPZ~Z!NZ

NZ! D
3F(

m
S M1m

m D kS m,ztot2(
Z

ZNZD G . ~40!

The last factor depends only on the sum of charges of
IMF and on their multiplicity@k is given by Eq.~24!#. The
result of the fit of the intrinsic probabilities is given in Fig
11.

One notices that, in spite of the absence of light particle
the sample, the intrinsic probabilities have a realistic dis
bution for all charges. The resulting correlation function
presented in Fig. 12. The partition probabilities are correc
reproduced by the independent emission hypothesis, h
the correlation function is practically flat. However, in co
trast with the previous models, it includes strong correlat
peaks nears50, and, to a lesser extent, for the maxim
values ofs for given ^Z&. These latter peaks~as well as
those corresponding tos50, ^Z&<9) have a low signifi-
cance, so they can only be due to the statistical fluctuati
Peaks ats50, ^Z&>10, on the other hand, are meaningf
~significance greater than 98%!. They signify the spinoda
decomposition of nucleus produced by theBOB code.

V. CONCLUSIONS

The main goal of this paper was to present a new met
for the evaluation of the nontrivial correlations between
fragment sizes of a finite size system. The conclusions
the following.

~1! The Monte Carlo calculation of the denominator pr
posed by Moretto and collaborators can be replaced by a
algebraic calculation, which is equivalent to the selection
an infinite number of pseudoevents~5!. This calculation re-

FIG. 12. Brownian one body model correlation function~same
conventions as in Fig. 6!.
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sults in decreased error bars in the correlation function n
bly those associated with correlation peaks~8!. The exten-
sion of the calculation of the correlation function to samp
including a variable number of IMF presents no particu
difficulty ~6!.

~2! Correlation functions thus obtained for the differe
models studied in this paper~SMM, percolation, minimum
information, BOB! all possess one maximum for^Z& smaller
by a few units thanztot /M . This property leads to the evalu
ation of the size of the composite nuclei for which deca
have been observed experimentally.

~3! This type of denominator possesses many advanta
However, correlations induced by charge conservation
always important. They may conceal other less trivial cor
lations, or distort the evaluation of their amplitude. It woul
therefore, be useful to define a conventional method for c
culation of the denominator including effects induced by t
charge conservation.

~4! It has been proposed to evaluate the denominator
ing the minimum information model~all possible partitions
of a given total charge have the same probability!. This
model incorporates charge conservation but possess
purely combinatorial correlation peak ats50 so that there is
a risk of concealing a physical peak present in the d
sample~this effect can be corrected by the weighting of t
partition probability by the number of its permutation
m!/ )znz). Furthermore, the numerator~physical sample! and
denominator~given by this model! may correspond to dis
tinct charge and multiplicity distributions. Finally, the corr
lation function presents numerous structures, which are
ficult to interpret.

~5! The two previous conclusions lead us to propose
new calculation of the denominator, the goal being to rep
cate all features of partitions of the numerator excluding
traevent correlations due to other reasons than charge
servation. In the case where these nontrivial correlations
weak, this goal is reached exactly using the independ
emission hypothesis constrained by the conservation of
charge. Probabilities of partitions are given by the formu
~27!, which is based on the specification of intrinsic pro
abilities for each charge. These values represent probabil
for a charge to be observed if the constraint of charge c
servation played no role. The intrinsic probabilities are n
observables, so that they must be searched for by a proce
of minimization between probabilities of partitions in th
data sample and those given by the formula~27!. If the re-
sulting x2 is low, it means that the studied sample is ess
tially composed of events corresponding to independ
emission. The partition correlation function@i.e., the set of
ratios of the probabilities of the sample divided by the pro
abilities given by Eq.~27!# must then be always near unit
except possibly for a reduced number of partitions cor
sponding to the nontrivial correlations. In this work, only th
@^Z&,s# correlation has been studied, but the same proced
can apply to any type of correlation.

~6! The proposed method has been applied to three m
els of nuclear multifragmentation. It has been shown that
three models correspond to almost independent emiss
The first two~percolation and theSMM statistical multifrag-
4-12
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FRAGMENT SIZE CORRELATIONS IN FINITE . . . PHYSICAL REVIEW C 65 034604
mentation code! result in correlation functions everywher
equal to 1~to within 10%!. TheBOB code, on the other hand
exhibits a flat correlation function everywhere except ats
50. These correlation peaks are due to the mechanism
spinodal decomposition that favors partitions that inclu
IMF of the same charge. These results legitimate the us
the charge correlation function method for the experimen
search for spinodal decomposition.

In forthcoming papers we will study problems related
the application of this method to experimental event samp
~superposition of sources, distribution of total charge, p
equilibrium emission, experimental efficiency, calculation
the significance of the result! and we will present results
obtained by the INDRA collaboration for heavy ion centr
collisions near the Fermi energy.
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APPENDIX: EQUATIONS RESULTING FROM THE
UTILIZATION OF THE NONBIASED ESTIMATOR OF THE

STANDARD DEVIATION

In this paper, we used the usual definition of the stand
deviation~2!. The authors of Ref.@13# preferred to use the
nonbiased estimator~in this sense that the mean of its sam
pling function is equal to the real value!. In writing this
paper,s being used as a measure and not as an evaluatio
the standard deviation of an unknown distribution we
stricted ourselves to its usual definition. In this appendix
give the equations that result from the use of the nonbia
valuesnb,

Eq. ~2!→snb5A 1

M21 (
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M
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Eq. ~3!→Puc~snbuM !

5(
Z1

••• (
ZM21

PZ~Z1uM !•••PZ~ZM21uM !

3PZS ^Z&81AMsnb
2 2

M ~M22!

M21
snb8

2UM D
3PZS ^Z&82AMsnb

2 2
M ~M22!

M21
snb8

2UM D ,

~A2!

Eq. ~4!→Puc~^Z&,snbuM !
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ZM

PZ~Z1uM !•••PZ~ZM21uM !

3PZ~ZMuM !dZM ,M ^Z&1(M21)^Z&8

3dZM ,^Z&86AMs
nb
2 2[ M (M22)/(M21)]s

nb8
2, ~A3!

Eq. ~5!→Puc~^Z&,snbuM !5M !

3 (
N

(
Z

NZ5M

(
Z

ZNZ5M ^Z&

(
Z

Z2NZ5M ^Z&21(M21)snb
2

)
Z

PZ~ZuM !NZ

NZ!
.

~A4!

The other equations are not modified.
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@10# G. Tăbăcaru et al., INDRA Collaboration, inCommunication
to the XXXVIII International Winter Meeting on Nuclear Phy
.

ics, Bormio, Italy, edited by I. Iori and A. Moroni, Ricerca
Scientifica ed Educazione Permanente, Supplemento No.
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