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Fragment size correlations in finite systems: Application to nuclear multifragmentation
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We present an exact method for the calculation of fragment size correlations in a discrete finite system in
which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce the
combinatorial model, which describes the fragmentation of a finite system as a sequence of independent
random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size.
The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic
probabilities associated with the fragment sizes. Any fragment size correlation function can be built by calcu-
lating the ratio between the partition probabilities in the data saifnpkilting from an experiment or from a
Monte Carlo simulationand the “independent emission” model partition probabilities. This technique is
applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the
nuclear statistical multifragmention model are almost independent emission models, whereas the nuclear spin-
odal decomposition model shows strong correlations corresponding to the breakup of the hot dilute nucleus
into nearly equal size fragments.
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[. INTRODUCTION Among these models, the spinodal nuclear decomposition
mechanism may dominate when the collision between two
The breakup of any finite composite systémomic clus- nuclei leads to a highly heated and sufficiently compressed
ters, atomic nuclei, fullerenes, molecules, ets.character- nucleonic system. The decompression phase leads the system
ized by a probability distribution that incorporates con-into the spinodal zongzone in which the incompressibility
straints imposed by dynamical or static conservation lawsmodulus ¢P/dp)g is negativeé where the density fluctua-
Thus, in the case of nuclear decay, the observed multifragions are exponentially amplified up to produce fragmenta-
mentation modes provide information on properties oftion [5]. The dynamics of the density waves in the system is
nuclear matter at high excitation energy. From a statisticajominated by the most unstable mode, whose wavelength is
point of view the simplest fragmentation model may be for-of the order of 10 fm. Thus the composite nucleus will dis-
mulated by attributing an independent emission probability,megrate into almost equal size fragmefits the rangeZ
to each type of fragmenimass, chargeIn the limit of infi- ~6—20 and, more particularlz~10— 15, see Sec. IV D
hite parent system size the resulting T"O.d‘“hiCh will be Binary sequential deexcitation mode|lSEMINI [6] or
referred to herein as thiadependent emission mogiekhib- g\ o [7.8]) do not exhibit, of course, any preferential de-
its no correlation between fragme_nts. I_:or finite systems, w ay into equal charges. Nor do instantaneous multifragmen-
show hergafter that thg c_orrelat|ons induced by the Stat'?ation models: the Copenhagen-Moscow mofihtistical
conservation laws, that is in mass and/or chhigereafter multifragmentation modelcodesm)] [9] (see Ref[10] for

referred to agrivial correlation$, can be exactly calculated.
In the independent emission model all the physical informall€ System Xe Sn at 32 MeV/nucleon, and the Sec. IV B of

tion is contained in the emission probabilities of the differentt® Present papgand the Berlin modef11] (code Mmmc)

types of particles. However, due to the static conservatioh12) _ S o
laws, theseintrinsic probabilities are not equal to the ob- ~ Experimentally, the charge distributions are privileged
served probabilities. tools for the study of nuclear multifragmentation. However,
Most theoretical multifragmentation models, which de-the yields of various charges alone do not permit a sufficient
scribe the process of instantaneous break-up of the atomiiscrimination of mechanisms. Model validations thus re-
nucleus submitted to extreme temperature and pressure co@dire the comparison of intraegvent charge correlations. In
ditions, introduce other forms of correlations between parthis context, a difficulty arises from the fact that the detected
ticle types. When these correlations are specific to a givefragments are not produced only at the multifragmentation
model, their experimental observation constitutes a cruciastage of the reaction. Certain light particles, for example, are
test of validation/invalidation. For example, several modelsemitted during the interpenetration of the nuclear spheres
describe the decay of hot nuclei by the development of denfpreequilibrium phase others are emitted, at the end of the
sity fluctuations (surface or volume instabilitie§1—-4]).  process, by the hot multifragmentation fragments. The final
(detectedl partitions have thus, in part, lost the memory of
the crucial moment of the reaction. Therefore, it may be
Yn practice, owing to the difficulties with mass measurementsnecessary to use statistical methods in order to detect the
studies are mainly carried out on charge partitions, noteccharge correlations induced by the initial multifragmentation.
n:i(ny, ... N, ) wheren, is the number of chargesin the parti-  One of these methods, proposed by Moretto and collabora-
tion. The charge conservation law reatign,= z. tors[13], was shown to be especially efficient for detecting
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the presence of the spinodal decay mechariigolume in-  sample with only trivial correlations will show a flat corre-
stabilitie9 of the nucleus. lation function.

The fragments formed during the spinodal decomposition (4) We will study more completely the independent emis-
phase have comparable sizeharges However, this effect Ssion model constrained by the charge conservation. The no-
is not visible in the charge spectra generated by a Mont&on of intrinsic probability of particles will be introduced.
Carlo Code(Brownian one body dynamicaOB code [5]) (5) Fina”y, this new method will be validated by its ap-
simulating this type of mechanism. The reasons are numeplication to three nuclear decomposition mod@#M, per-
ous: coalescence and primary fragment deexcitation, finité0ation[16], and BOB. It will be shown that these models
size effect inducing mode superpositions, etc. The same ré'€: 10 first order, independent emission models.
mark applies to the experimental charge distributions: no ex-
cess yield is visible in the expected charge domain. However, Il. THE CHARGE CORRELATION FUNCTION
the method of charge correlations reveals, for this model, a A. Algebraic calculation of the denominator
small “fossil” signal that corresponds to events in which the )
system breaks into similar size fragments and whose charges 1€ guantity R((2),0M)=P((Z),a|M)/P,{(2),
have not been modifietor reduced by the same quanjity ¢ M), where(Z) is the mean charge of the IMfg their

before detection. The method introduced by Moretto and Col_standard deviation arid their multiplicity, will be called the

laborators consists in calculatin . . fcharge correlatior The method traditionally used to calcu-
g the correlation function ofi . t0 qenominator of a correlation functidrg] consists in

the mean chargéZ) of the M IMF? and of their standard ate the ce O“ ator o aco"ea' on tunc ConsISts

_— . . ___constructing “pseudoevents” using randomly selected frag-
devatlon o. A peak appears therefore in this correlation s belonging to different events of the sample with a
function foro~0 and(Z)~10-15. Experimentally, a peak giyen |MF multiplicity. The global variable distributions
has been effectively observed for the X8n system at 32 (g|ative to the pseudoevents do not contain intraevent corre-
MeV/nucleon in central collisions with the INDRA multide- |ations. The numeratoP and the denominatoP,, of the
tector[10,14. Preferential decompositions in three approxi- correlation function are calculated in the same way, the first
mately equal size fragments were also observed in centrgyne from the sample events, the second one from the pseu-
Xe+Cu reactions at 45 MeV with the MULTICS multidetec- doevents. Since the denominator does not contain intraevent
tor [15]. correlations, its probability density function is written with

The goals of this paper are the following. an index uc(uncorrelategl

(1) We wish to make the interpretation of correlations The only experimental information required for the calcu-
more rigorous. Progress is necessary because the peak lation of the denominator is the charge distribution of the
lated to spinodal decomposition is often generated by a vergample. It is equivalent, and, from a computational point of
small number of experimental or synthesized events. It corview, faster, to sort charges with respect to the average
responds, as we will see, to the ratio of two very small quancharge distribution, rather than to select fragments among
tities and, therefore, will be characterized by a large erroevents. In fact, the random selection using the charge prob-
bar. Thesignificanceassociated with a peak must, therefore,ability distribution is not even necessary since the denomi-
be systematically evaluated. To this end, we show that thgator can be calculated algebraically in the form of a convo-
error in the denominator of the correlation function can belution product.
greatly reduced by substituting a convolution product for the One note?((Z)|M) the probability to obtain a valugZ)
random selection process proposed in the initial method. of the mean IMF charge for the multiplicit events

(2) The correlation peak corresponding to the spinodal =z P({(Z)|[M)=1, hereafter all conditional probabilities
decomposition(or to any other cauges superimposed on a Will be assumed to be normalized by a relation of the same
dominant structure due to the correlations induced by théypel. This conditional probability is given by the convolu-
total charge conservation lawtrivial correlationg. This  tion
structure often makes the interpretation of the peaks in terms
of physically interesting correlations difficult or ambiguous. Pud(Z)M)
Hence, it is important to correct the correlation function for
finite size effects. For this reason, it has been proposed to  _
construct the denominator of the correlation function in a zzl ZME,1 P2(Z4|M)- - P2(Zu 1 [M)P2(M(Z)
different way than that introduced in Rdf13] using the

minimum information model. It will be shown that this —(M=1)(Z)'|M), 1)
method can hide peaks corresponding to nontrivial correla-
tions. where(Z)' is the mean charge of the IMF except the last and

(3) We therefore introduce, in an algebraical exact way,P,(Z|M) the IMF charge probability distribution for a given
the effects of charge conservation using the independemhultiplicity. The last factor accounts for the IMF total charge
emission model. Thanks to this new method, any event

3In the following, the variables in capitals will be relative to the
2Intermediate mass fragments, i.e., fragments with charge greatéMF, the IMF partitions will be notedN, the complete partitions,

than or equal to a given limit4,,,,=3 or 5 in this work. and the total multiplicitym.
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conservation ¥/,Z;=M(Z)). The standard deviation is forwardly asP {((Z),o)=SuPu(M)P.{(Z),a|M) (where

calculated according to thmeasure Py is the multiplicity probability distribution of the IMF
ie.,
—\/l S (2))? 2
M= ' Pul(2),0)= > PM(E Nz)
{N[(Z), 0} z

The equations obtained with the unbiagstimatorof the

standard deviation, used in R¢L3] are listed in the Appen- <[> N T Pz(Z|Ez'Nz') z L ®)
dix. The choice of the expression of the standard deviation Z Z Nz!
will not have any influence on the shape of the correlation
functions nor on the conclusions of this study. It can be B. Statistical error bars
shown that the probability to obtain a standard deviation '
when the fragments are randomly selected, is Let us recall that the correlation function is defined by
P((Z),0|M)
M Zi{M)- - Pz(Zy_1|M 1+R(2Z),0|M)= 57— 7
UC(U| ) E E Z( l| ) Z( M l| ) (< > | ) PUC(<Z>10-|M) ( )
where the probability in the numerator is the number of
XPz|(Z)' +M ~ M sample events includinyl IMF, with mean chargéZ) and

standard deviatiomr, divided by the number of events with

IMF multiplicity M. To first order, the sampling variance of a
(2)' = M ' 3 proportion applied to Eq.7) gives the following error:

VP((Z),a|M)
except the last. If the term under the square root is negative, \/Wpuc(<z>,(f||\/|) ’
the probability is zero. Finally the correlation between the
mean charge and the standard deviation reads whereN(M) is the number of events witkl IMF in the data

sample. The use of formul®) reduces considerably the sta-
Pud(Z),a]M) tistical error. In the case of a Monte Carlo selection process,
it would be, to the same order,

X Pz

whereg’ is the standard deviation of the charges of the IMF A(L+R(Z),0|M))=

®

=ZE ZE P2(Zy|M)- - - P2(Zy_1|M)P(Zy|M)

AL+ R((Z) 0] M)) =~ (220 IM)
X 8z, M(Z)+M-1)2)' 02,, (2)" + M\[oZI(M—1)]— (o ZIM) - ' IN(M)P((Z),0|M)
@ P((2).0|M)
where &, ,, the Kronecker symbol, is equal to 1 when \/ Ny M)P((Z),0|M)3?’
=b and 0 otherwise. The multinomial decomposition leads ©)
to an equivalentbut more practicalform of this equation,
P,(Z|M)Nz whereN (M) is the number of pseudoevents generated by

P.(Z),0|M)=M! > 11 random selection for the calculation of the denominator. The

A Ng

N last term can be very important in the presence of correlation

E Nz=M peaks. The calculation of the error is crucial when the stan-
z dard deviation is zero, on the one hand, because it is these
; ZNz=M(2) events that we are interested in, and, on the other hand, be-

cause the number of events of this type is often very small.
In practical cases, the denominator may be evaluated with
(5) a very low uncertainty thanks to E(p) since only the very
low statistical fluctuations on the charge spectrum alter the
whereNy is the number of IMF with chargg andN an IMF  result. On the other hand, the precision of the numerator
partition. The product runs over all possible IMF charges.depends strongly on the number of events in the considered
The probabilities in the denominator respect the normalizasample. Furthermore, the error on the error [ag. (8)]
tion: 202<2>Puc(<z>,a||v|)=1. Hereafter, for notational depends also on the number of events. Therefore it can be
simplification, the sum sign of Eq5) will be written as inaccurate. It would, therefore, be interesting to obtain an
>iNM,(2),03 @nd the other sum signs will be formed accord-evaluation of the error bar using only the value of the de-
ing to the same logic. nominator. This is possible using the so-called null hypoth-
The extension of this formula of the denominator toesis, i.e., that the correlation function is equal to urgéip-
samples containing a variable number of IMF is useful whersence of correlationIn the frame of this hypothesis the error
the experimental statistics is reduced. It is expressed straighibar is

2 Z2Ny=M((2)%+0?)
z
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3. Correlation function

A1r-1(1+R((Z),0|M))= As indicated previously, the evaluation of the correlation
function in the case of equal size IMF is of considerable
physical interest. Unfortunately it often corresponds to the
ratio of two very small probabilities. If the number of events

The significance of a positive correlatigof a peak is . ; o .
defined as being the probability, in the frame of the null™m the sample IS too low, it is possible that no event corre-
' sponds to the given mean charghe correlation function

hypothesis, that the peak has a height lower than that ol
served. Therefore, the higher the peak, the higher the signifEannOt be calc_ulate)cbr that a very Sma” numbe_r of events
cance. An underestimation of the significar¢ean be ob- correspondwhich can lead to a spurious pgak is, there-

tained straightforwardly using the Schwarz inequality, fore, important to determine priort, the minimum n_umber
of events necessary to obtain a reliable evaluation of the

3 correlation function for a null standard deviation. An evalu-

_ N(M)P((Z),0|M) (11) ation of this number can be obtained making, once more, the
[P({(Z),0|M) =P ((Z),c|M)]? hypothesis that the correlation function is unity. The prob-
ability to obtain an event in which the IMF charges are all

. M . . .
Exact calculations of the significance as well as applica€dual to(Z) is Pz((Z)[M)™ (this quantity can be obtained

tions to experimental data will be presented in a forthcomingPrécisely even with a reduced event samplée minimum
publication[17]. sizeN(M) of the sample must be, therefore, of one order of

magnitude greater thaR,((Z)|M) M.

YN(M)P((Z),0]M)

C. Case where all IMF have the same charge IIl. DENOMINATOR CONDITIONED BY CHARGE

1. Numerator CONSERVATION

Since the spinodal decomposition peak is expected when The formation of the denominator as proposed by Moretto
all IMF have the same charge, we now consider the casgnd collaborator$that we will continue to call the pseudo-
wheres=0. For a fixed IMF mean charge, there is now only event method though the result is expressed by the algebraic
one IMF partition:Vi,Z;=(Z). Thus, differences between formula(5)] has many advantages: it is rigorous, it is simple
the complete partitions with sam&) are only due to the to evaluate, it takes into account the efficiency of the detec-

light fragments whose total chargezg,= zir— M(Z). tor, it uses only experimentally measured quantities and the
resulting correlation function shows all charge correlations,
2. Denominator whatever their origin. This latter advantage can become an

inconvenience when one wishes to study correlations in-
duced by only one physical cause. In the majority of cases,
P.((2),0|M) the main structure in 'ghe correlation.function is d.ue to t_he
U= total charge conservation law. We will see that this law in-
P-((Z)|M)M if (Z)is integer and Z) troduces a large structure, greater than unity, closéZjo
_ e [Zoi Zi— (M=1)Z, ] =zt0t{M. In Ref. [10], this structure was considered as a
min» tot min baseline on which was superimposed a peak due to the spin-
0 otherwise, odal decomposition mechanism.
(12) In this section we will discuss two different propositions
for calculating the denominator taking into account the
charge conservatiofin order to remove the corresponding

Wheno =0, the probabilities given by Ed5) become

where P2(Z|M) is the charge distribution for a given IMF structure from the correlation functinonThe first one con-
multiplicity [=2°, P(zZ|M)=1]. The mean charge being

Z=Zp sists in using partitions provided by the minimum informa-
equal to the charge of each IMF implies tki&} is always an  tion model(all the partitions of a given total charge have the
integer. The probability that the standard deviation is zero isame probability We will show that the denominator con-

structed in this way presents a spurious peak=a0 that can

Zrot~ (M~ 1)Zmin y conceal a possible physical peak in the correlation function
Pulo=0)= 222 P2((Z)|M)™. (13 (Sec. Il A). The second proposition consists in modifying
(2)=Zmin the expressiolf5) of the algebraic calculation of the denomi-

o . nator in order to introduce, in an exact way, the influence of
When the charge distribution of light IMF follows a charge conservation with the consequence that charge con-
power law or an exponential lawe will see that this is the  geryation influences both numerator end denominator.
case for the minimum information modgthe denominator

assumes very simple forngeespectively, A Minimum information model

PUC(<Z>,O|M)M<Z>‘TM, (14 1. Introduction
In this model, all partitions have the same probability:
Pud(Z),0|M)oce™(2), (15 P(n)=1/N(zy) WhereN(zyy) is the total number of parti-
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tions for total charge,,. This result is obtained by the ap- to divide the remaining chargggn= z,;— M(Z) into light
plication of the minimum information principleor maximal  fragments(i.e., fragments with charge less than or equal to

entropy, information being defined as Zimax= Zmin—1). This constrained number of partitions will
be noted“maN(z;q). Similarly, the number of partitions of

| = P(MInP(n). 16 chargez |r_1to M fragments with charge greater than or equal
; (min P(r) (16) to Zyin will be noted ZminN(z,M). These numbers can be

. - . calculated exacthy{19]. With our notation, the numerator
Setting the derivative off equal to zero, under the single reads

constraint of charge conservation, one obtains that all prob-

abilities are equal. The total number of charge partitions of a ZmaN ( Zjiy)

charge z, nucleus is approximately given by the P((Z),0|M)= = .
Ramanujan-Hardy formulgl8] whose leading term is > 2 N(M(Z)", M) maN(zo— M(Z)")

(z)!
F{ 2Ztot) (18
exp 7/ 3
N(Zyp) ~ —————. (17) b. DenominatorWe have seefEq. (12)] that the denomi-
47,3 nator is written a$,((Z)|M)™ when the standard deviation

- ) _is zero. The conditional probability afZ) given M is the
The number of partitions increases therefore very rapidly,ymber of partitions wittM IMF weighted by the proportion

with the charge. Thus, studies of large systems, by systeénys charges(z) that they contain, divided by the number of
atic generation of all partitions, are not possible. The Ca|CU'partiti0n5 containindvl IMF, so that

lation of the number of IMF partition&ll fragments have a
charge greater than a certain lilénd of light fragments P.{(Z),0|M)

(fragments with charge lower than a certain lindt exposed Zigt/M M
in the companion pap¢d9]. Some examples of applications < Z Nz N (20— M(Z))
of the minimum information mode{possibly modified by @&t Ny M ot
combinatorial factorsto nuclear fragmentation are given in =| =z ;
Refs.[20-24 > 2, NM(Z) M)maN(z—M(Z)")

(2)' =Zmin

2. Case where all IMF have the same charge g
1
In this section, the correlation function for the minimum (19

information model in the case=0 will be calculated ex- in which the sum over all partitions containing IMF has
actly. It will be shown that this function presents a combina-been written

torial peak dl_Je to an intrinsic feature'of the model, namely, Zd/M R/(M—k+1)

the nonordering of the charges. We will introduce an alterna- E _ 2 B E (20)

tive model in which this effect is corrected. @S NEwm 5 25,
a. Numerator The numeratoP({Z),0|M) of the correla-

tion function is calculated as the number of partitions with ~ with Zo=2,,, and szztot—E!‘;llZi . The charges of the

IMF, each of charg€Z), divided by the total number of IMF are notedz; and are written in increasing order.

partitions withM IMF. The charges of the IMF being fixed, c. Correlation functionThe charge correlation function is

the number of partitions will be equal to the number of waysthus given by

M

M-1
Nz~ M(Z))| 20 7 N(M(Z)",M)=maN(ziq— M(Z)")

(z)!
[ { 7oV M : (21

M (2)=Zn INI{Z) M}

1+R((Z),0|M)=

N??;DN (Zior— M(Z))

The latter result is, of course, free of error since it resultsserved experimentally: similar correlation functions have
from the numbering of all possible partitions. Results for twobeen observed for very different systems in central collisions
total charges, two multiplicities, and two definitions of the [10,25.

IMF are presented in Fig. 1. (2) The denominators are exponentially decreasing. This
We observe the following. is due to the fact that the charge distributions are also expo-
(1) The behavior of the correlation function depends onlynentially decreasing betwe@y,i, andz,,,— (M — 1)Z i, [EQ.

weakly on the size of the system. This result has been ob4)].
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FIG. 1. Numeratofupper row, denominatofmedian rowy, and FIG. 2. Charge correlation function, for a null standard devia-
correlation function(lower row) for total charges 56left columny ~ tion, obtained by formuld21) in the framework of the minimum
and 104(right column. The bold lines correspond to IMF with information model. Heavy traces correspond to IMF with charges
minimum charge 5 and the thin lines to IMF with minimum charge greater than 5 and light traces to IMF with charges greater than 3.

3. The dotted lines correspond to the events with 5 IMF and the fulll € correlation functions for an IMF multiplicity of 3 are presented
lines to those with 3 IMF. on the left-hand column in which the total charges of systems are,

from top to bottom, 79, 104, and 400. The three graphs on the
right-hand column correspond to the total charge 79 and the IMF
(3) The abscissa of the maximum of the correlation func-multiplicity runs from 4(top) to 6 (bottom). The horizontal lines are
tion is a few units lower thaz,,/M, this property can be placed at + R=M!.
used to provide an experimental determination of the total

charge of the composite nucleus, after preequilibrium emisgyme i poth cases. Besides, the charge conservation con-

sionA: q_iasuringllorgy thfe IhMF' lation f L straint is weak when the IMF have small charges hence 1
(4) The amplitude of the correlation function increases R({6,7,8)~1 (one finds 1.1 Consequently 1

strongly as the minimum charge of the IMF diminishes and+ R({7,7,7)~3! (one finds 6.1
their multiplicity increases. . X '

. . _ . _ It can be conjectured that this effect would occur for all
Figure 2 presents the correlation function obtained for dif-

¢ + multiplicity 3 : left col d for the total nonordered fragment models. If one multiplies every parti-
ehren ”;g P 'g'g’.ﬁ syst emslét_er (':tq “mﬂta"‘l or the total  jop by a factor equal to the number of charge permutations
charge and different multiplicitiegight column). (MI/TI;N,!), the peak disappears. On the other hand, prob-

The Ieft-hand column.shows th.at'the correlation fl."nCt'OnSabiIities for other sigma values are little modified because the
are homothetic for a given multiplicity. On each figure a

. . N, are then almost always equal to O ofik.,[I,N,!=1).
horizontal line has bee.“ placed atR((Z},O|.M) =M! ’ On? Tkz1is latter model will be Elefer(r]ed to as the ordezreé min?mum
oberves that the maximum of the correlation function is al-; ;

. ) .~ information model.
ways of the order oM!. This property is due to the multi-
nomial factors of the denominatfEq. (5)]. When the stan-
dard deviation is null, the produ€t,N,! is identically equal B. Algebraic calculation of the denominator with charge
to M!, it factorizes therefore in the numerator of the corre- conservation
lation function. When the standard deviation increases, this
product decreases rapidly down to 1 when all charges are 1. Method
different. To illustrate this point, let us consider two very  The goal of this section is to introduce the exact method
similar partitions of the total charge 21 into 3 IMEZ,7,7  for the evaluation of the denominator that eliminates the ef-
and {6,7,8. The numerator of the correlation function for fects due to charge conservation from the correlation func-
both partitions is the same: N(21,3)(=1/249). The de- tion. This denominator is obtained by an extension of the
nominator is, in the former casB(7|3)3(=6.6x10 %) and, formula (5) to the whole chargéi.e. including light frag-
in the latter case, 3(6|3)P(7|3)P(8|3)(=3!6.04 ments. In the first step, we suppose that there is no correla-
X 10 %). Therefore the probability product is almost the tion at all between charges. This means that each charge is
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described by a probabilitf'"P,(z) (that will be referred to <10
as intrinsic probability of the chargeThe conditional prob- a0t a)
ability of a partitionn (including the IMF and the light par- 107
ticles) with total multiplicity mis given then by the multino- 107°
mial formula 10 12
0
intrp (Z)nz 10 ]
P(njm)=m![] —=— (22 10
‘ z 10
28
. . o 10 31 \
These conditional probabilities obey the normalization con- 10 IR T N
dition = ,P(n|m)=1. If one introduces the constraint of total 0 20 40 60 80 100
charge conservation, partition constrained conditional prob- “
abilities are given byan index cc will be applied to prob- 5 1 E
abilities constrained solely by the charge conservation Al = b)
intr n B ° =
P,(2)"
Pectnlm) =k(mymt [ —5— Oy (2D
with
intrP (Z) n, ;
-1 — z III|III|III|III|III|"
k (m)_m!{n\m,ztm} 5 n,! (24 0 20 40 60 80 100

V4

FIG. 3. Charge distributions obtained in the ordered minimum

On the other hand, the multiplicity probability distribution is : X _ -~
information model(a) and in the charge equiprobability modgl)

iven b
g y constrained by the total charge conservation. Circles correspond to
intr . a total charge of 20, squaresZg,= 56, and points t@,,;= 104. The
P (m)=am! 2 P,(2) Z, 25 full lines are the intrinsic probability distributions.
{nim.zio ~ z n,!
b 1 Nz, 5
with z(Zo|m)—m{%} T Ped)
intr n intrp (z)"2
_ P,(2)" z
o ; (Z ”Z>!H — (26) {n\mzz ) Nl —
{nlzyott z z n; _ 1Zto z (28)
|ntrPZ(an) .
Finally, the partition probabilities are given by {nimzed 2z n,!
int
pm=al S n |11 'sz(Z)n25 5 27 Owing to correlations, the intrinsic probabilities are not
e 7 )% n,! Fov £y 21 equal to the probabilities to observe the chardke conser-

vation constraint favors small charges, see Fig)3Equal-

- . . . _ ity between intrinsic probabilities and observed probabilities
These probabilities contain all the information relative to theig | 4jig only for an infinite system.

charges and to their correlations. For exampEserved The intrinsic probabilities are quantities that are not di-

charge and conditional charge probability distributions argeciy measurable, they must be calculated by inversion of

given, respectively, by Eq. (27), where theP.(n) are the measured frequencies of
the partitions. The set of Eq&8) constitutes an underdeter-
mined system. It is thus not possible to obtain an unique

En: Nz4PeN) solution.
P.(zp) = However, inversion of Eq27) is possible if the nontrivial
> (E nz> P.d(N) correlations between the charges in the studied sample are
n z weak. When the intrinsic probabilities are determined, the

probabilities of the denominator can be calculated by sum-
_* ; (2 n ),H ’ ming the complete partition probabilities having the same
(m) iz ©\F %) n,! IMF mean charge and standard deviation
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1 b. Model of charge equiprobabilityrhe minimum infor-
Ped(Z),0IM)= P (M) > Pedn). (29  mation model is taken as implying the equiprobability of the
M {nlM.(2).} partitions. In this context it is also interesting to see results
given by another elementary model obtained by assuming
Finally we can write the denominator as a function of theintrinsic equiprobability of the charges. The resulting charge
intrinsic probabilities distribution is, of course, not uniform due to the constraint of
conservation of the total charge.
The Eq.(27), for "'P,(2) =1/z,, gives

intrp (Z)nZ
nlz %@ }(2 nz>!1_zl x
tot s V12410 z
Ped(Z),0|M)= : intr n, - 1\
S (S i 22 -
{nlzgo,M} \ "z ) n,! PN =a 2 n, !H S 7 E z
(30 7t e
. . . . . am!
This new denominator takes explicitly into account the =—5Ztot,2 zn,- (31
charge conservation. Structures observed in the correspond- Zt”StH n,! z

ing correlation function will necessarily arose from other
causes.

In other words, if one generates partitions by imposing
charge conservation and if all charges have the same intrinsic
probability to be selectioned, then the partition weight is
. o . m!/(zgll,n,!). Examples of observed charge spectra are
A sample of events without nontrivial correlations may begiven for different values of the total charge in FighB
synthesized by the following procedure. Chargesire se-  These spectra are very different from that of the intrinsic
lected randomly according to their intrinsic probabilities un-probabilities. Indeed one observes an almost exponential de-
til 2iz=z. The event is preserved only ¥izi=z. The  crease. Only the last charge has a probability that is not
resulting charge spectra are those given by EB8). The  consistent with this tendency. This behavior is due to the fact
alternative procedure that would consist in randomly Selectthat the Chargetot_l can appear accompanied on|y by a
ing M—1 charges, and deducing the last charge using charggharge 1, whereas the chargg, is never rejected. More
conservation would introduce a bias since the distribution ofrecisely, Eq.(28) gives P,(zi) = (Ziof2)P,(Zio—1). One
the last charge would be different from the preceding onesnotices that the greater the total charge the less the influence
of the constraint of conservation and consequently the
3. Combinatorial independent emission models smaller the slope of the exponential.

We stated previously that models can be characterized by
the term “independent emission” if they contain no correla-
tions, other than those induced by the conservation of the 4. Multiplicity constrained independent emission model
total charge. This definition implies that partition probabili-  \we now consider the model for which probabilities of
ties generated_by such models can be written in the form. Oﬁartitions with fixed multiplicity are given by Eq22), but
Eq. (27). We give here two examples of independent emisthe multiplicity probability distribution is not given by the
sion models. _ _ combinatorial Eq(25). The multiplicity probability distribu-

a. Ordered minimum information modeéihe model pro-  tjon P, (m) is imposeda priori. This model has been studied
duced by weighting partitions by a facton!/II,n,! is an  extensively by Cole and collaboratdi24]. The main differ-
independent emission model._One notes that this Weighting iSnce between the quoted papers and the study presented in
the same as the one of EQ7) if the productll,""P,(2)™iS  this paragraph resides in the interpretation of quantities noted
constant. This condition is fulfilled if and Only ilmeZ(Z) XZ by Coleet al. and, here'imrpz as, respective|y' adjustab|e
=a’ (the intrinsic probability product ia“>). Thus, the nor-  harameters and intrinsic probabilities. However, ¥epa-
malization of the probabilities i&¥,a’=1. For a sufficiently  ameters being defined to a faca; it is always possible to
large total chargéin practice, superior to 0the normaliza-  grmalize them. Indeed, the produég(a?X,)™ is equal to

tion_c_:ondition .impliesaz 1/2. The model in whic_h every ihe productl, X" to within a constant4?). Equation(22)
partition is weighted by the number of permutations of its z o .
and the normalizations give

charges !/11,n,!) is, therefore, an independent emission
model with intrinsic probabilities™P,(z) =22 The result-

2. Monte Carlo generation of events without nontrivial charge
correlations

ing charge distributions are almost exponentially decreasingiD Pm(m) P (z)"

[Fig. 3(@]. Conversely, the minimum information model is o) = intrp (z)“ﬁ : n,! Ziot: 24 2Ny
not an independent emission moditlis not possible to find Z 27 ‘

a set of intrinsic probabilities such that all partition probabili- (n'|m,zo 2 n,!

ties would be the same (32
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with instantaneous statistical mechanism. The probability of a par-

tition in the mass and in the chargg , for an excitation
energyE* is given by
F adna, A2
In the same way as for charges, one can introduce an intrin- $ az Na!
sic probability for multiplicities {""P,,). The partition prob-
ability is then written as X Ba, >, any 9200 > 7, (37)
a,z

a,z

m=> n,. (33

P(n|E*)=P,(E*)

intr n,
Pedm)=k"P (mm! ] Pl

] n,! Zots Dy 2Ny (34) The two Kronecker symbols account for the conservation
. z

of the mass and the charge. The de Broglie wavelength of the
nucleon A= +27h/(Mm,T) depends on the temperature,
which is roughly constant at fixed excitation energy. The
intrp_( 7\, density of states corresponding to the internal excitation en-
k~1=> nrp_(m)m > H ( ) . (35 ergy of the fragmentd,(E*) is also constant at a given
m {n\mztm} z excitation energy. In this model, as in comparable models,
the multiplicity is correlated linearly with the excitation en-
One deduces the relation between observed probabilities efrgy, a prediction that is verified by experimental observa-

with

multiplicities and those of the intrinsic probabilities, tion. The first two factors can be considered, therefore, to be
_ constant for a given multiplicity. The volume of the nucleus
Pm(m)=""P(m) at the time of fragmentatioN'r is supposed to be indepen-
ntp_(7)Mz dent of the partition(or, according to the version of the
m! 27 model, dependent only on the multiplicitylf we disregard
{nim.ziot 2 n,! the conservation of the mass, the emission probability of a
X , 'ntrpz(z) * fragment is proportional t@®% P,(z)=aa%? so that the
> mpymomt > [ —5— product I1,P,(z)"z= «™1,a%"7? involves a new factor de-
m’ {nim".zio 2 na! pending only on the multiplicity. The equation can, therefore,

(36) be rewritten as

Intrinsic probabilities and observed probabilities possess the Nz

)
same distributions in the limit of an infinite system size. P(n|m)ocH 0200 >, 2y (38)

IV. APPLICATION . .
CATIONS so that we recover the same expression as that obtained for

A. Introduction the independent emission model. We thus expect that the
dcorrelation function is everywhere equal to 1 and if the de-

In this section we show the charge correlation obtaine ; .
Aé‘ommator is calculated from pseudoevents, we expect that

for several nuclear decay models, using the denominat
given by the independent emission hypothesis. The first ste
of the procedure consists in determining the intrinsic prob
abilities of the charges for each model sample. These pro
abilities are obtamed by a recursive procedure of minimiza-
tion of the x? between probabilities of partitions in the
synthesized sample and those given by 8). The conver-
gence of the procedure is possible only if nontrivial correla-
tions between the charges are weak. The minimyis
therefore an indication of the strength of these correlations!
The second step, calculation of the denominator by th
method presented in Sec. Il B 1, E&0), would also not be
possible in the presence of strong correlations. We will se
that this condition is fulfilled by the three models that we are™.
going to study. Results of the application of this procedure toS on.

the experimental events will be presented in forthcoming pa- The charge correlation functions calculated with the de-
pers[17,25. nominators of formulag5) and (30) are presented in the

Figs. 5 and 6. In the first case, the main structures are due to
the conservation of the charge, in the second, the correlation
function is practically flat. Nontrivial correlations between
The Copenhagen modg9,26] is a hot liquid drop model charges are therefore very weak for this model and no pref-
that describes the multifragmentation of the nucleus as aarential fragmentation into equal charge is observed. The

e shape of the correlation function is determined by charge
onservation. However, this conclusion is based on a simpli-
tped form of the model. The correlation function may thus
exhibit weak modulations. Moreover, one does not expect a
peak for small values of the standard deviation.

Using thesmm code, 35 million events have been gener-
ated for the®®Ba nucleus excited to 5 MeV/nucleon. We
built, from this sample, the charge correlation function for
the IMF. The Copenhagen model produces res{atnos)
onsistent with independent emission as shown in Fig. 4.
iscrepancies can be explained notably by the fact that the
got fragments, produced during the multifragmentation phase
described by Eq37), thereafter decay by light particle emis-

B. The Copenhagen model
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FIG. 4. Comparison of charge spectra for several multiplicities
for smm (circles and for the independent emission hypothesis
(lines). The dashed line corresponds to the intrinsic probabilities.
The multiplicity probability distributiond?,(m) given by the two
models are also shown in the figure.

) ) ) FIG. 6. Denominator(upper figur¢ and correlation function
small modulations of the correlation function are due tO(lower figure of [(Z),c] for the Copenhagen modéhe numerator
physical causes and statistical fluctuations. is presented at the top of the Fig. $he denominator is calculated

using the independent emission hypothesis, via forni@
C. Percolation

The same study has been carried out on a sample obtainétflicated by a dotted line The very good agreement indi-
with a percolation codg16]. A sample of 18 events has cates that the correlations between charges are very weak in
been generated using a three-dimensional percolation prdis model. . . _
gram on a simple cubic44x 4 periodic frame, for a bond Figures 8_and 9 present perco_latlon correla’_uon functions
breaking probability of 70%. The result of thé minimiza- ~ OPtained using denominators given, respectively, by the
tion process is presented Fig. 7 in which charge distribution@Seudoevent methddq. (5)] and by the independent emis-
for various multiplicities in percolation and those given by Sion hypothesigEq. (30)]. These figures were constructed

the formula(23) are comparedthe intrinsic probabilities are ~ for all possible values of the number of IMF. In the first case,
structures are almost entirely due to the conservation of the

charge(to each IMF multiplicity corresponds an edge line

0 When the denominator is calculated using the intrinsic prob-
8 10, abilities, the correlation function is flat and equal tgFig.
l§ 10 9). The small peaks on the sides of the correlation function
X 10 g are due to the statistical fluctuations.
10 The model of percolation can, therefore, be assimilated to
knowledge of the intrinsic probabilities.
Figure 10 presents the correlation function of the perco-
1 lation calculation when the denominator is calculated with
1o, the minimum information modejupper figure and with the
2 18 -3 ordered minimum information modébwer figure for same
@Q 10 :‘5‘ total charge £,,;= 64). In both cases, the correlation function
& 10
£
5
g_fio -1 m=4
102
B 10 (RG0S 2
2 o (=01
% 0 U | A 3
210 X /"l!!h ol 10 4
4
FIG. 5. Upper and lower figures present, in order, the numerator, oo b b Lo el
denominator, anfi(Z), o] correlation function for the Copenhagen 1020 30 40 50 60,
model. The denominator is calculated by the method of pseudoev-
ents[formula (5)]. FIG. 7. Percolatiorfsame conventions as in Fig).4
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‘_5 FIG. 10. Correlation function of(Z),o] for the percolation

process(the numerator is presented at the top of Fig.[Benomi-
nators are given by the models of the minimum informatiopper
figure) and of the ordered minimum informatigtower figure.

FIG. 8. Percolatiorisame conventions as in Fig).5 )
the Boltzmann-Nordheim-Viasov typ28] for the system

12%e+11%n at 32 MeV/nucleon. This calculation shows
that, for the most central collisions, a compressed single
source is formed, after a weak pre-equilibrium emission,
within 40 fm/c. The decompression phase, the entrance into

The last model to be studied in this work is characterizedhe spinodal zone and the formation of the fragments are
by nontrivial correlations, even though, as mentioned in thehen followed by thesoB code that simulates Boltzmann-
introduction, they are partly masked by different processed.angevin density fluctuation29] and the evolution of the
The preferential decomposition of the system into almossystem density submitted to spinodal instabilities. In a third
equal chargesin the rangd 10,20)), which characterizes the step, fragments are formed using an algorithm that regroups
BOB model, is not visible, for example, in the inclusive contiguous cells that numbers of test partic{é® test par-
charge spectrérig. 11). ticles are used to simulate a nucleds greater than a given

Our simulated sample was obtained via a four-step prothreshold. The resulting nuclei are hot, their statistical decay
cess[27]. The collision entrance channel has been simulate@nd their Coulomb expansion are, in a last step, simulated by
using a one-body semiclassical microscopic calculation ofhe siMoN code[7,8]. The event samples are eventually fil-
tered using the INDRA response functif®0].

The regrouping of pseudoparticles generated by the model
is possible only for fragments of charge superior or equal to

presents large structures, which are not easily interpreted.

D. The Brownian one body dynamical model

) 5" 5. The light fragments are not known. This difficulty must be
A
Y
mg 10 \ g E
; SN S
10 ‘\\\\\\\\;‘\ =107 [
il = N
1015 ZEI‘
10 &
-~ 8 SF
e}
) 10 =
g ¢ -
¥ LE
L 2 10 4;—
0 ':I'II|IIII|IIII|IIII|IIII|IIII|II I‘IIII TIII|III

5 10 15 20 25 30 35 40 4SZ

FIG. 11. Model Brownian one bodgsame conventions as in
FIG. 9. Percolatiorisame conventions as in Fig).6 Fig. 4).
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sults in decreased error bars in the correlation function nota-
bly those associated with correlation pedRBs The exten-

§2§ sion of the calculation of the correlation function to samples
@é including a variable number of IMF presents no particular
21 difficulty (6).

0-8 (2) Correlation functions thus obtained for the different

models studied in this pap€BMM, percolation, minimum
information, BOB all possess one maximum far) smaller

by a few units tharz,,,/M. This property leads to the evalu-
ation of the size of the composite nuclei for which decays
have been observed experimentally.

(3) This type of denominator possesses many advantages.
However, correlations induced by charge conservation are
always important. They may conceal other less trivial corre-
lations, or distort the evaluation of their amplitude. It would,
therefore, be useful to define a conventional method for cal-
culation of the denominator including effects induced by the
charge conservation.

(4) It has been proposed to evaluate the denominator us-
ing the minimum information moddhall possible partitions
) of a given total charge have the same probabiliffhis
The calculation of these probabilities can be accelerated conpggel incorporates charge conservation but possesses a
siderably by noticing that they can be written in the form  ,;rely combinatorial correlation peakat=0 so that there is
a risk of concealing a physical peak present in the data

FIG. 12. Brownian one body model correlation functi@ame
conventions as in Fig.)6

taken into account in the routine of intrinsic probability op-
timization: the probability of a partition df1 IMF is the sum
of probabilities of all partitions containing thesd IMF
(solely) together with the corresponding light particles

PN)=a >, (E nz>!1:[

{nlzgr N} z

intrpz( Z) n,

n}!

(39

i N
P(N)=a M'H "P(2)"z sample(this effect can be corrected by the weighting of the
7z Nz! partition probability by the number of its permutations:
M+ m!/II,n,). Furthermore, the numerat(hysical sampleand
m

denominator(given by this model may correspond to dis-
tinct charge and multiplicity distributions. Finally, the corre-
lation function presents numerous structures, which are dif-
The last factor depends only on the sum of charges of thécult to interpret.
IMF and on their multiplicity[ k is given by Eq.(24)]. The (5) The two previous conclusions lead us to propose a
result of the fit of the intrinsic probabilities is given in Fig. new calculation of the denominator, the goal being to repli-
11. cate all features of partitions of the numerator excluding in-
One notices that, in spite of the absence of light particle irtraevent correlations due to other reasons than charge con-
the sample, the intrinsic probabilities have a realistic distri-servation. In the case where these nontrivial correlations are
bution for all charges. The resulting correlation function isweak, this goal is reached exactly using the independent
presented in Fig. 12. The partition probabilities are correctlyemission hypothesis constrained by the conservation of the
reproduced by the independent emission hypothesis, henefiarge. Probabilities of partitions are given by the formula
the correlation function is practically flat. However, in con- (27), which is based on the specification of intrinsic prob-
trast with the previous models, it includes strong correlatiorabilities for each charge. These values represent probabilities
peaks neaw=0, and, to a lesser extent, for the maximal for a charge to be observed if the constraint of charge con-
values of o for given (Z). These latter peakés well as servation played no role. The intrinsic probabilities are not
those corresponding to=0, (Z)<9) have a low signifi- observables, so that they must be searched for by a procedure
cance, so they can only be due to the statistical fluctuation®f minimization between probabilities of partitions in the
Peaks air=0, (Z)=10, on the other hand, are meaningful data sample and those given by the form(@a). If the re-

x[z

m

)k( M, Zyo— ; ZNZ> } (40)

m

(significance greater than 98%They signify the spinodal
decomposition of nucleus produced by #®8 code.

V. CONCLUSIONS

sulting x? is low, it means that the studied sample is essen-
tially composed of events corresponding to independent
emission. The partition correlation functigne., the set of
ratios of the probabilities of the sample divided by the prob-
abilities given by Eq(27)] must then be always near unity

The main goal of this paper was to present a new methoéxcept possibly for a reduced number of partitions corre-
for the evaluation of the nontrivial correlations between thesponding to the nontrivial correlations. In this work, only the
fragment sizes of a finite size system. The conclusions arg(Z),o] correlation has been studied, but the same procedure

the following.

(1) The Monte Carlo calculation of the denominator pro-

can apply to any type of correlation.
(6) The proposed method has been applied to three mod-

posed by Moretto and collaborators can be replaced by a fasis of nuclear multifragmentation. It has been shown that all
algebraic calculation, which is equivalent to the selection othree models correspond to almost independent emission.

an infinite number of pseudoever(s). This calculation re-

The first two(percolation and thesmm statistical multifrag-
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mentation coderesult in correlation functions everywhere Eq. (3)—= Py o M)
equal to 1(to within 10%. TheBOB code, on the other hand,
exhibits a flat correlation function everywhere exceptrat
=0. These correlation peaks are due to the mechanism of
spinodal decomposition that favors partitions that include
IMF of the same charge. These results legitimate the use of ) \/ , M(M-=2)
the charge correlation function method for the experimental (Z)'+ \Mopp— “M—1 b M
search for spinodal decomposition.

In forthcoming papers we will study problems related to ) \/ , M(M=2) ,
the application of this method to experimental event samples (2)' = \[Mogy— “M—1 “nb MJ,
(superposition of sources, distribution of total charge, pre-
equilibrium emission, experimental efficiency, calculation of (A2)
the significance of the resuland we will present results
obtained by the INDRA collaboration for heavy ion central

=; -'-ZE PA(Z1IM)- - PZ(Zy_1|M)

X Pz

X Pz

collisions near the Fermi energy. EQ. (4)—Pud(Z),00M)
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XPZ(ZyM) 8z, miz)+m-1)2)"

X8z, (2) = \[MoZ, - IM(M—2)/(M~ D)]o’2s (A3)

APPENDIX: EQUATIONS RESULTING FROM THE

UTILIZATION OF THE NONBIASED ESTIMATOR OF THE EQ. (5)—Pud(Z),00/M)=M!
STANDARD DEVIATION PZ(Z| M )Nz
In this paper, we used the usual definition of the standard x % 1;[ N!

deviation(2). The authors of Refl13] preferred to use the > Np=m
nonbiased estimatdin this sense that the mean of its sam- z
pling function is equal to the real valueln writing this E ZNy=M(Z)
paper,o being used as a measure and not as an evaluation of Z
the standard deviation of an unknown distribution we re- > Z2Ny=M(2)2+ (M- 1)0?,
stricted ourselves to its usual definition. In this appendix we z
give the equations that result from the use of the nonbiased (A4)
value o,

1 M . -

Eq. (2)— onp= \/M — IZl (Z—(2))?, (A1) The other equations are not modified.
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