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Calculation of the number of partitions with constraints on the fragment size

P. Désesquelles
Institut de Physique Nucle´aire, Batiment 100, 15 rue Georges Cle´menceau, F-91406 Orsay Cedex, France

~Received 25 September 2001; published 11 February 2002!

This paper introduces recursive relations allowing the calculation of the number of partitions with con-
straints on the minimum and/or on the maximum fragment size.
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I. INTRODUCTION

A partition is an ensemble of positive integers with
given sum.1 A partition can also be seen as a way to brea
piece of discrete matter intofragments. The number of par-
titions of a given integer is a quantity which is useful
various fields. In the so-called minimal information mod
@1#, for example, all the partitions have the same probabil2

P(n)51/N(S). This result is obtained by application of th
minimal information principle~or maximum entropy!, infor-
mation being defined as(nP(n)lnP(n). When this equation
is differentiated under the only constraint(ssns5S, all
probabilities are found to be equal@2#.

A. Physical Interest

In many cases, it is interesting to distinguish one or m
classes of fragments according to their size. In percolat
for instance, the subcritical events are defined by the fact
they contain one particular fragment, which is referred to
infinite or percolative in the sense that it connects the tw
extremes of the lattice@3#. In the case of conductive bonds,
allows an electric current to circulate between two electro
placed on opposite surfaces of the lattice. In the case
coffee machine, the percolative cluster defines a path
allows the vapor to traverse the grounds. In nuclear phys
other classes of fragments are distinguished. Theintermedi-
ate mass fragments~IMF! are ions resulting from the violen
fragmentation of a composite nucleus~produced by the col-
lision of two atomic nuclei!. When the nucleus is weakl
excited, it ‘‘evaporates’’ some light particles so that, at t
end of the process, we are left withlight fragmentsand a
heavyevaporation residuethat contains almost all the charg
of the initial nucleus. At very high excitation energies, t
nucleus is completely ‘‘vaporized’’ into light fragments. I
the energy range between these two extremes, the nuc
undergoes ‘‘multifragmentation’’ into a large number of fra
ments of all sizes. The multifragmentation process is t
characterized by the production of IMF. Some multifragme
tation models consider the light fragments~with charge less
than or equal to 2! as nuclear matter in thegaseous phase

1For example, the integer 3 has three partitions:$3%, $2,1%, and
$1,1,1%.

2In the following, the total number of partitions of the integerS
will be notedN(S), a partition will be notedn:(n1 , . . . ,nS), ns

being the number of integerss in the partition.
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whereas the evaporation residue or the IMF form theliquid
phase@4#. This terminology is also used in the field of pha
transition models. Thus, in various fields, classes of fr
ments are defined by their size. Hence it is of interest
enumerate the number of partitions with constraints on
fragment size.

In Sec. I B some techniques used to calculate the num
of partitions of an integer without conditions on the size
the fragments will be reviewed. It will then be shown ho
the partitions with constraints on the maximum size of t
fragments~Sec. II A!, on the minimum size of the fragment
~Sec. II B!, and on a size range~Sec. II C! can be enumer-
ated.

B. The number of unconstrained partitions

The total number of partitions of the integerS is given
approximatively by the Ramanujan-Hardy@5# formula whose
leading term is

N~S!'

expS pA2S

3 D
4SA3

. ~1!

As can be seen, the number of partitions increases v
rapidly with S. The exact value of the number of partition
can be obtained using one of the following recursive form
las @the number of partitions ofS into M fragments is noted
N(S,M ) andM is referred to as the multiplicity#:

N~S,M !5N~S21,M21!1N~S2M , M ! ~2!

5 (
m51

M

N~S2M ,m!. ~3!

From this relation@6#, the equation giving the total num
ber of partitions can be deduced,

N~S!511 (
M52

S

(
k50

Int(S/M )21

N~S2kM21,M21!. ~4!

The Euler@7# recursive relation leads to the same resu

N~S!5 (
k51

~21!k11FNS S2
3k22k

2 D1NS S2
3k21k

2 D G .
~5!
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II. NUMBER OF PARTITIONS WITH CONSTRAINTS
ON THE SIZE OF THE FRAGMENTS

A. Constraint on the maximum size

The number of partitions of an integerS into M fragments
with size less than or equal tosmax will be noted
smaxN(S,M ). It is obtained using a modified version of th
recursive relation~2!,

smaxN~S,M !5smaxN~S21,M21!1smaxN~S2M , M !

2 smaxN~S2M2smax, M21!

if S<
M ~smax11!

2
, ~6!

smaxN~S,M !5smaxN„M ~smax11!2S,M …. ~7!

The boundary condition is

smaxN~0,1!51. ~8!

These relations lead to the calculation ofsmaxN for any
value ofS andM. The three right-hand terms in Eq.~6! are
explained as follows. The partition ensemble can be sha
into two subgroups. The first one contains all the partitio
including at least one size-1 fragment. One of these siz
fragments can be removed from each partition in the s
group. It follows that the number of partitions in the su
group can be written assmaxN(S21,M21). The second
group includes the partitions with no size-1 fragment. Hen
one unit can be removed from each fragment without mo
fying the multiplicity. In the absence of any condition on th
maximum size, the number of partitions in the second gro
would beN(S2M ,M ). However, among the partitions int
M fragments of the integerS2M , some have one or mor
fragments with sizesmax. It is not possible to add one unit t
these fragments, thus the corresponding partitions should
be counted. The number of these invalid partitions is
tained by removing one fragment with sizesmax. The other
fragments can have any size less than or equal tosmax and
their multiplicity is M21. The number of invalid partitions
is thus smaxN(S2M2smax,M21).

The symmetry relation~7! can be demonstrated graph
cally using the so-called Ferrers diagram in which a sizs
fragment is representated by a column ofs dots and a parti-
tion by its set of fragments sorted in a decreasing order.
complete the Ferrers diagrams with open dots as indicate
Fig. 1. The number of partitions of the integerS into M parts
with sizes less than or equal tosmax is equal to the number o
ways of arranging the dots in the thin line box. As the m
tiplicity is fixed, the bottom row is necessarily full. By
180° rotation the open dots play the same role as the b
dots. The open dots partition will be refered to ascomple-
mentary partition of the black dots~which should not be
confused with the conjugate partition, which is obtained
invertingM andsmax). Thus, to each multiplicityM partition
of the integerS corresponds exactly one multiplicityM par-
tition of the M (smax11)2S open dots.
03460
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For example, in the frame of the minimal informatio
model, it can be interesting to know the number of partitio
containing a given setN:(Nsmin

, . . . ,NS) of ‘‘large’’ frag-

ments~i.e., fragments with size greater than or equal tosmin)
supplemented by ‘‘small’’ fragments,

N~N!5smin21NS S2 (
s5smin

S

sNsD . ~9!

An alternative method for enumerating the partitions w
constraint on the maximum size consists in using the equ
lent of Eq.~3! that takes the following form in this case:

smaxN~S,M !5 (
m51

M

smax21N~S2M ,m!. ~10!

This equation can be applied recursivelysmax21 times so
that the maximum size in the right-hand term is 1. Usi
1N(S,M )51 if S5M and 0 otherwise, one obtains

smaxN~S,M !5(
m1

. . . (
mk5Int[(Rk21)/(smax2k)] 11

Min(mk21 ,Rk)

. . . (
msmax22

1,

~11!

with m05M and Rk5S2( i 50
k21mi . In this equation,mk is

the multiplicity of fragments with size strictly greater thank.
The determination of the range formk is illustrated in Fig. 2.

Using the same line of thought on the conjugate partiti
one obtains the following equation:

smaxN~S,M !5(
s1

. . . (
sk5Int[(Rk21)/(M2k11)]11

Min(sk21 ,Rk2M11)

. . . (
sM21

1,

~12!

FIG. 1. Graphical sketches of the three partitions~$3,3,1,1,1%,
$3,2,2,1,1%, $2,2,2,2,1%! of the integer 9 into five fragments with siz
less than or equal to 3~thin line boxes!. The bold line boxes contain
all the complementary partitions ~$3,3,3,1,1%, $3,3,2,2,1%,
$3,2,2,2,2%! of the 11 open dots with the same multiplicity an
maximum size. The hatched dots do not participate in the enum
tion of partitions~due to the multiplicity constraint!.
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with s05smax and Rk5S2( i 51
k21si , si being the size of the

i th largest fragment. The same equations hold forN(S,M ),
fixing smax5S.

B. Constraint on the minimum size

The number of partitions of the integerS into M frag-
ments with size greater than or equal tosmin will be noted
smin

N(S,M ). In each event,Msmin units are imposed~in Fig.
3 they correspond to the two lower rows!. The number of
partitions only depends on theS2Msmin remaining units, for
multiplicities ranging from 1 toM

smin
N~S,M !5 (

m51

M

N~S2Msmin ,m!. ~13!

Following Eq.~3!, this expression can be simplified to

smin
N~S,M !5N„S2M ~smin21!, M …. ~14!

The same property can be directly deduced by conside
the complementary partition~see open dots in Fig. 3!.

The total number of partitions is

FIG. 2. Ferrers diagrams illustrating the determination of
minima and maxima of the sums in Eq.~11!. The goal is to deter-
mine the range ofm2 when m05m154 andS511 ~thus R253).
The fragments are sorted in decreasing order, thusm2(smax22)
>R2, that is, the minimum value ofm2 is 2. The number of frag-
ments with size greater thank is necessarily lower than the numb
of fragments with size greater thank21, thusm2<m1. Further-
more, there are onlyR2 units left, thusm2<R2. Finally, the maxi-
mum value form2 is the minimum ofm1 and R2 ~i.e., 3!. More
generally, the sum formk runs from Int@(Rk21)/(smax2k)#11 to
Min(mk21 ,Rk).
03460
g

smin
N~S!5 (

M51

S/smin

N„S2M ~smin21!,M …. ~15!

The boundary conditions are

N~0,MÞ1!50

and

N~0,1!51. ~16!

C. Constraint on the minimum and maximum sizes

When both the minimum and the maximum size of t
fragments are fixed, the counting of the partitions is carr
out in the same way as previously:Msmin units play no role.
The number of partitions is the same as that of the inte
S2Msmin into fragments with size less than or equal
smax2smin ~Fig. 4!. Thus, the number of doubly conditione

e

FIG. 3. Graphical sketches of all the partitions~$5,2,2%, $4,3,2%,
$3,3,3%! of the integer 9 into three fragments with size greater
equal to 2. The two lower rows play no role in the counting of t
partitions. The bold line box includes all the partitions of the integ
3 ~i.e., S2Msmin) with multiplicities less than or equal to 3.

FIG. 4. Graphical sketch of one partition~$5,4,3,2%! of the inte-
ger 14 into fragments with size included between 2 and 5. The
lower rows play no role in the partition counting. The bold line b
contains all the partitions of the integer 6~i.e., S2Msmin) into
fragments with size less than or equal to 3 and multiplicity less t
or equal to 4.
3-3



g

rin

la
xi-

of
ned
of

iso-
the

n
n

um

by

he
ly
ent
r-
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partitions is obtained as a sum over the number of sin
conditioned partitions

smin

smaxN~S,M !5 (
m51

M

smax2sminN~S2Msmin ,m!. ~17!

An alternative expression can be obtained by conside
the complementary partitions~see Fig. 4!

smin

smaxN~S,M !5 (
m51

M

smax2sminN~Msmax2S,m!. ~18!

Applying Eq. ~10! to Eqs.~17! and ~18! one obtains, re-
spectively,

smin

smaxN~S,M !5smax2smin11N„S2M ~smin11!,M …, ~19!

5smax2smin11N„M ~smax11!2S,M …. ~20!

Finally,

smin

smaxN~S!5 (
M51

S/smin

smin

smaxN~S,M !. ~21!

III. CONCLUSION

In this paper, we have provided formulas for the calcu
tion of the number of partitions with conditions on the ma
.
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mum fragment size@Eqs.~6! and~7!#, with conditions on the
minimum fragment size@Eq. ~15!# and with conditions on
both the minimum and the maximum fragment size@Eq. ~19!
and ~20!#. To demonstrate these formulas, the notion
complementary partitions was introduced. The constrai
partition numbers are notably useful in the analysis
nuclear multifragmentation. Moretto and collaborators@8#
have introduced an elegant combinatorial procedure to
late rare events corresponding to the fragmentation of
atomic nucleus in a number of nearly equal size IMF~frag-
ments with charge greater than or equal toZmin) supple-
mented by light fragments~fragments with charge less tha
or equal toZmin21). This procedure requires the evaluatio
of the number of partitions corresponding to a given s
Zimf of the charges of a given numberM of IMF. This num-
ber of partitions is given asZmin

N(ZIMF ,M ) Zmin21N(Ztot

2ZIMF). The total number of partitions can be evaluated
the following convolution:N(S)5(s smin

N(s) smin21N(S

2s). In the following article@9# we will show how the Mor-
etto charge correlation can be calculated explicitly in t
frame of the minimal information model. More general
these formulas are useful in domains where the fragm
classes~infinite fragments, evaporation residues, light pa
ticles, intermediate mass fragments, liquid, and gaseous
phases, etc.! are defined with respect to their sizes.
.
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