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Calculation of the number of partitions with constraints on the fragment size
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This paper introduces recursive relations allowing the calculation of the number of partitions with con-
straints on the minimum and/or on the maximum fragment size.
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[. INTRODUCTION whereas the evaporation residue or the IMF form Iltgeid
phase[4]. This terminology is also used in the field of phase

A partition is an ensemble of positive integers with atransition models. Thus, in various fields, classes of frag-
given sumt A partition can also be seen as a way to break aments are defined by their size. Hence it is of interest to
piece of discrete matter intibagments The number of par- enumerate the number of partitions with constraints on the
titions of a given integer is a quantity which is useful in fragment size.
various fields. In the so-called minimal information model In Sec. | B some techniques used to calculate the number
[1], for example, all the partitions have the same probability of partitions of an integer without conditions on the size of
P(n)=1/N(S). This result is obtained by application of the the fragments will be reviewed. It will then be shown how
minimal information principlelor maximum entropy infor-  the partitions with constraints on the maximum size of the
mation being defined as,P(n)InP(n). When this equation fragments(Sec. Il A), on the minimum size of the fragments
is differentiated under the only constraiti;sn,=S, all  (Sec. Il B, and on a size rangeec. I Q can be enumer-
probabilities are found to be equd]. ated.

B. The number of unconstrained partitions

A. Physical Interest . . L
The total number of partitions of the integ8ris given

In many cases, it is interesting to distinguish one or moreypproximatively by the Ramanujan-Harff] formula whose
classes of fragments according to their size. In percolationeading term is

for instance, the subcritical events are defined by the fact that

they contain one particular fragment, which is referred to as 2S

infinite or percolativein the sense that it connects the two exp = 3

extremes of the latticg8]. In the case of conductive bonds, it N(S)~ (1)
allows an electric current to circulate between two electrodes 483

placed on opposite surfaces of the lattice. In the case of a

coffee machine, the percolative cluster defines a path that As can be seen, the number of partitions increases very
allows the vapor to traverse the grounds. In nuclear physicgapidly with S The exact value of the number of partitions
other classes of fragments are distinguished. ifitermedi- ~ can be obtained using one of the following recursive formu-
ate mass fragment$MF) are ions resulting from the violent las[the number of partitions of into M fragments is noted
fragmentation of a composite nucle(moduced by the col- N(S,M) andM is referred to as the multiplicity

lision of two atomic nuclei When the nucleus is weakly

excited, it “evaporates” some light particles so that, at the N(SSM)=N(S—1,M—=1)+N(S—M, M) 2

end of the process, we are left witight fragmentsand a

heavyevaporation residu¢hat contains almost all the charge M

of the initial nucleus. At very high excitation energies, the = E N(S—M,m). 3
nucleus is completely “vaporized” into light fragments. In m=1

the energy range between these two extremes, the nucleus . ) ) o

undergoes “multifragmentation” into a large number of frag- ~ From this relatior{6], the equation giving the total num-
ments of all sizes. The multifragmentation process is thud®er of partitions can be deduced,

characterized by the production of IMF. Some multifragmen-
tation models consider the light fragmeittgith charge less
than or equal to RPas nuclear matter in thgaseous phase N(S)=1+ME:2 kZO N(S-kM-1,M-1). (4

S In(S/M)—1

1 ) . The Euler[7] recursive relation leads to the same result,
For example, the integer 3 has three partitiof8; {2,1}, and

{1,1,1.

2 . - . 3k?—k 3k?+k
In the following, the total number of partitions of the integer  N(g)= 2 (—1D)KN| s~ +N| S—
will be notedN(S), a partition will be notech:(ny, ... ng), Ng k=1 2 2
being the number of integessin the partition. (5)
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II. NUMBER OF PARTITIONS WITH CONSTRAINTS
ON THE SIZE OF THE FRAGMENTS

A. Constraint on the maximum size

The number of partitions of an integ8iinto M fragments
with size less than or equal t®,,, wil be noted
sma{\(S,M). It is obtained using a modified version of the
recursive relation(2),

Sma\(S,M ) = maN(S—1,M — 1) +SmaN(S— M, M)

— SmaN(S— M — Sy, M— 1) QRN
M (St 1) Smax 29990
i o= Mol © ceees
M
S (S, M ) = SN (M (St 1) — S, M). (7)

FIG. 1. Graphical sketches of the three partitid{®3,1,1,3,
{3,2,2,1,3,{2,2,2,2,}) of the integer 9 into five fragments with size
less than or equal to @hin line boxe$. The bold line boxes contain
all the complementary partitions({3,3,3,1,3, {3,3,2,2,1,

Sma\(0,1) = 1. (8) {3,2,2,2,2) of the 11 open dots with the same multiplicity and
maximum size. The hatched dots do not participate in the enumera-

These relations lead to the calculation &N for any tion of partitions(due to the multiplicity constraint
value of SandM. The three right-hand terms in E(f) are ) o . )
explained as follows. The partition ensemble can be shared For example, in the frame of the minimal information
into two subgroups. The first one contains all the partitiongnodel, it can be interesting to know the number of partitions
including at least one size-1 fragment. One of these size-gontaining a given seN:(Ns . ... Ns) of “large” frag-
fragments can be removed from each partition in the subments(i.e., fragments with size greater than or equad {Q)
group. It follows that the number of partitions in the sub- supplemented by “small” fragments,
group can be written asmaN(S—1,M—1). The second

The boundary condition is

group includes the partitions with no size-1 fragment. Hence . S
one unit can be removed from each fragment without modi- N(N)=Smin™*N| S— S_ES:_ SNs|. ©)

fying the multiplicity. In the absence of any condition on the
maximum size, the number of partitions in the second group
would beN(S—M,M). However, among the partitions into
M fragments of the intege8— M, some have one or more
fragments with size,,,,. It is not possible to add one unit to

An alternative method for enumerating the partitions with
constraint on the maximum size consists in using the equiva-
lent of Eq.(3) that takes the following form in this case:

these fragments, thus the corresponding partitions should not M
be counted. The number of these invalid partitions is ob- smaN(S,M )= 2 Smac IN(S—M,m). (10)
tained by removing one fragment with sigg.,. The other m=1

fragments can have any size less than or equal,tg and

their multiplicity is M — 1. The number of invalid partitions This equation can be applied recursively,,— 1 times so

is thus *maN(S—M — s, M — 1). that the maximum size in the right-hand term is 1. Using
The symmetry relatior{7) can be demonstrated graphi- *N(S,M)=1 if S=M and 0 otherwise, one obtains

cally using the so-called Ferrers diagram in which a size-

fragment is representated by a columnsafots and a parti- < Min(my—1.Ri)
tion by its set of fragments sorted in a decreasing order. We"‘aXN(S-M):; e (R s K] 41 -mz 1,
complete the Ferrers diagrams with open dots as indicated in ! « K Tma Smax 2

Fig. 1. The number of partitions of the integgmto M parts 1D

with sizes less than or equal $g,,, is equal to the number of
ways of arranging the dots in the thin line box. As the mul-
tiplicity is fixed, the bottom row is necessarily full. By a
180° rotation the open dots play the same role as the bla
dots. The open dots partition will be refered to @smple-
mentary partition of the black dotgwhich should not be

with my=M and Rk=S—2ik;01mi. In this equationmy is

the multiplicity of fragments with size strictly greater thian

C'E;he determination of the range for is illustrated in Fig. 2.
Using the same line of thought on the conjugate partition,

one obtains the following equation:

confused with the conjugate partition, which is obtained by Min(s,_ 1 ,R— M +1)

invertingM ands,,,,) - Thus, to each multiplicityvl partition SmaN(S,M) = E 1

of the integerS corresponds exactly one multiplicityl par- ' ST SR DTM—k+1)]+1  syoq
tition of the M (S 1)— S open dots. (12
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FIG. 2. Ferrers diagrams illustrating the determination of the

minima and maxima of the sums in EQ.1). The goal is to deter-
mine the range ofm, whenmy=m;=4 andS=11 (thusR,=3).
The fragments are sorted in decreasing order, &S .,—2)
=R,, that is, the minimum value ah, is 2. The number of frag-

ments with size greater thanis necessarily lower than the number

of fragments with size greater thdn-1, thusm,=m;,. Further-
more, there are onlRR, units left, thusm,<R,. Finally, the maxi-
mum value form, is the minimum ofm; andR, (i.e., 3. More
generally, the sum fom, runs from Int[ (R,—1)/(Spma— k) ]+ 1 to
Min(my_4,Ry).

with sp=Sn,a and Rk:S—Eikgllsi , Si being the size of the
ith largest fragment. The same equations holdN¢E, M),
fiXing Smax= S.

B. Constraint on the minimum size

The number of partitions of the integ& into M frag-
ments with size greater than or equalsg, will be noted
SminN(S,M). In each eventM s, units are imposedn Fig.
3 they correspond to the two lower rowdhe number of
partitions only depends on ti&- M s,,, remaining units, for
multiplicities ranging from 1 tdM

M

smmN(S,M):mE:l N(S—MsSpin,m). (13)

Following Eg.(3), this expression can be simplified to

s, N(S;M)=N(S—M(Sin—1), M). (14)

PHYSICAL REVIEW &5 034603

S—MSmin =3

FIG. 3. Graphical sketches of all the partitio§s,2,2, {4,3,2,
{3,3,3) of the integer 9 into three fragments with size greater or
equal to 2. The two lower rows play no role in the counting of the
partitions. The bold line box includes all the partitions of the integer
3 (i.e., S—Ms,;,) with multiplicities less than or equal to 3.

S/Smin
s N(S)= 2 N(S-M(smp=1),M). (19
The boundary conditions are
N(OM=#1)=0
and
N(0,1)=1. (16)

C. Constraint on the minimum and maximum sizes

When both the minimum and the maximum size of the
fragments are fixed, the counting of the partitions is carried
out in the same way as previousiMs,,, units play no role.
The number of partitions is the same as that of the integer
S—Ms,,, into fragments with size less than or equal to
Smax— Smin (Fig. 4). Thus, the number of doubly conditioned

Smax = S ‘Smax — Smin = 3
L 1 1®l®
(X X )

Smin = 2
M=4

FIG. 4. Graphical sketch of one partiti¢(5,4,3,2) of the inte-
ger 14 into fragments with size included between 2 and 5. The two
lower rows play no role in the partition counting. The bold line box

The same property can be directly deduced by consideringontains all the partitions of the integer (Be., S—Msy;,) into

the complementary partitiosee open dots in Fig.)3
The total number of partitions is

fragments with size less than or equal to 3 and multiplicity less than
or equal to 4.
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partitions is obtained as a sum over the number of singlymum fragment sizgEqgs.(6) and(7)], with conditions on the

conditioned partitions
M

SmaN(S,M)= >, Smax SminN(S—MSp,,m).  (17)
min m=1

minimum fragment siz¢ Eq. (15)] and with conditions on
both the minimum and the maximum fragment dize. (19)

and (20)]. To demonstrate these formulas, the notion of
complementary partitions was introduced. The constrained

An alternative expression can be obtained by considerin§@'tition numbers are notably useful in the analysis of

the complementary partitionsee Fig. 4
M

NS M) = 3 Smax SmiN(MSpg—S,m). (18)
min m=1

Applying Eqg. (10) to Egs.(17) and(18) one obtains, re-
spectively,

:m.axN(S'M):Smax_smin+lN(S— M(Smin+ 1),M), (19)
min

= Smax~Smin " IN(M (Spaxt 1) — S,M).  (20)
Finally, g
Smin
maN(S)= >, TEN(S,M). (21)
min M=1 min

IIl. CONCLUSION

nuclear multifragmentation. Moretto and collaborat)&3
have introduced an elegant combinatorial procedure to iso-
late rare events corresponding to the fragmentation of the
atomic nucleus in a number of nearly equal size IMifag-
ments with charge greater than or equalZg;,) supple-
mented by light fragmentdragments with charge less than
or equal toZ,,;,—1). This procedure requires the evaluation
of the number of partitions corresponding to a given sum
Zin¢ Of the charges of a given numbkr of IMF. This num-

ber of partitions is given ag_ N(Zpe,M) “min*N(Zo
—Zve)- The total number of partitions can be evaluated by
the following convolution:N(S)=2X4 SminN(s) Smin~IN(S
—s). In the following article[9] we will show how the Mor-
etto charge correlation can be calculated explicitly in the
frame of the minimal information model. More generally
these formulas are useful in domains where the fragment
classes(infinite fragments, evaporation residues, light par-

In this paper, we have provided formulas for the calcula-ticles, intermediate mass fragments, liquidnd gaseous
tion of the number of partitions with conditions on the maxi- phasesetc) are defined with respect to their sizes.
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