PHYSICAL REVIEW C, VOLUME 65, 034602

Effects of short-range correlations in(e,e’p) reactions and nuclear overlap functions
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A study of the effects of short-range correlations over thee'(p) reaction for low missing energy in
closed-shell nuclei is presented. We use correlated quasihole overlap functions extracted from the asymptotic
behavior of the one-body density matrix, containing central correlations of Jastrow type, up to first order in a
cluster expansion, and computed in the very high asymptotic region, up to 100 fm. The method to extract the
overlap functions is checked in a simple shell model, where the exact results are known. We find that the
single-particle wave functions of the valence shells are shifted to the right due to the short-range repulsion by
the nuclear core. The corresponding spectroscopic factors are reduced by only a few percent with respect to the
shell model. However, thee(e’p) response functions and cross sections are enhanced in the region of the
maximum of the missing momentum distribution due to short-range correlations.
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I. INTRODUCTION toration procedure performed [49], which is based on an
exponential fit of the OBDM, were pointed out ii5],

In the last few years, quasifree,g’p) reactions have namely, (i) the use of harmonic-oscillator single-particle
proved to be an ideal tool to study the spectral function ofvave functions, which do not have the correct exponential
nuclei[1,2]. Apart from the ambiguities coming from final- Pehavior in the asymptotic region, to construct the OBDM
state interactiongFS|) and off-shell effects in the electro- @nd(ii) the nature of the exponential fit allowed to obtain in
magnetic current, it is possible to extract valuable informal19] overlap functions for the unoccupied states, while in

tion about single-particle properties such as momenturh 1] it was demonstrated that such extraction is not possible

distributions and spectroscopic factors of the differentStartlng from a CBF(correlated basis functigrtype wave

nucleon shells near the Fermi lej&] function. : .
) : In Ref.[21] the same restoration procedure was applied to
The observed values of the spectroscopic factors fOEo

. mpute overlap functions using several correlated OBDM
closed shell nuclei are arour@#-0.6-0.7[4—6—yet theo-  axen from the literature. In particular, the one obtained in

retical studies appear to indicate that these values increagsgy) py a truncated cluster expansion of the radial multipoles
due to relativistic effect$7]. The small values of the spec- , (r r") of the OBDM. Using the above density, spectro-
troscopic factors are attributed to the departure from the eXscopic factors corresponding to the, andpay, shells of 160
treme single-particle model, where the nucleon is ejectegyere reported21] to be identical in this model and equal to
from a well-defined orbit within the target nucleus. 0.981. The equality of these values is probably due to the
Recent variational Monte Carlo calculations includingfact that the restoration procedure [i@1] started from a
short-range correlations in the nuclear wave function reporoBDM for | =1, which(i) was not separated in spin partners
spectroscopic factors differing from unity only by a few per- j=1/2,3/2 and(ii) was computed up to distances ofr’
cent[8-13. In addition, center of mass correlations can en-=11 fm, which are not large enough to separate asymptoti-
hance the spectroscopic factor by around 7% for the valenceally the two contributiong,,, andps,. This fact, together
shell of *°0 [15,16. Although it has been shown that these with the problems pointed out above, makes it possible that
values could be lowered by the inclusion of low-energy con-some of the effects attributed [21] to short-range correla-
figuration mixing in the wave functiorid4], the experimen- tions could actually be a consequence of the extraction pro-
tal spectroscopic factors, and hence the cross section ekdure of the overlap functions.
(e,e’p) reactions for low missing energy, are not satisfacto- One of the motivations for this work is to clarify this
rily explained by present theoretical models. situation, in particular, to explore the possibility of separat-
It has been shown recenfl§7] that the overlap functions ing the two spin-orbit partnerg=1+1/2 starting from al
between the nuclear ground state wKkmucleons and a re- multipole of the OBDM. Note that, in the correlated model
sidual state withA—1 nucleons—which are a main ingredi- of [22], the underlying Slater determinant was built with
ent in nucleon knockout calculations, including implicitly the Woods-Saxon single-particle wave functions including spin-
spectroscopic factor—can be obtained from the asymptotiorbit splitting, so the model can deal with different overlap
behavior of the one-body density mat®BDM). This was  functions, with different energies, corresponding to the
confirmed in an exactly solvable many-body system in oneand 1Ipg, shells in %0 or dg, andds, in *°Ca.
dimension with a zero-range interactiph8]. The theorem Another aim of this paper is to perform a numerical study
was applied irf19] to obtain the overlap functions and spec- of the convergence of the asymptotic methods used to extract
troscopic factors from a model OBDM including Jastrow the overlap functions from the OBDM. We first carry out
correlations, and latef20,21] applied to the calculation of such study in the nuclear shell model, where the exact over-
cross sections for several reactions, suchmd) (e,e’'p), lap functions are knowfthey are equal to the single-particle
and (y,p). However, some problems with the numerical res-wave functions This allows us to determine optimum upper
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incident electron with four-momentulis = (&,k,) interacts
with a target nucleus, exchanging a virtual photon with four-
momentum given byQ#=(K,—K})*=(w,q), with K *
=(e',k;) being the scattered electron four-momentum. The
outgoing proton with four-momentu®’#=(E’,p’) is de-
tected in coincidence with the scattered electron.

The wave function of the spin-zero target in the ground
state is denoted by®{V), with (nonrelativistio energy
E(()A’. We are interested in the low-missing-energy region,
where the residual nucleus is left in a bound state,
|®A-y=]3,M,), with (nonrelativisti energy EA~1).

We neglect recoil and assume parity conservation.
We work in the laboratory system, with tkexis pointing

values of the coordinates in which one should know thdnto theq direction and the< axis in the electron scattering
OBDM in order to obtain convergence in the extraction pro-pla”,e' In this reference system, the cross section for the
cedure. We continue evaluating more realistic overlap func{&€’P) reaction, assuming plane waves and the extreme
tions starting from the correlated OBDM f22], computed relativistic limit for the electron, can be written in the form
up to~100 fm, so that we can check the convergence of thé29]
results. In particular, we will be able to obtain precise values 5
of the spectroscopic factors for quasihole states. —d i =3+hA (D)

Finally, in this work the overlap functions resulting from de’'dQ¢dQ,, ’
the above task will be inserted in a model of theg p)
reaction, in order to evaluate the effects of short-range cowhere(), =(6",¢’) are the proton emission anglésis the
relations over nuclear response functions and cross sectionslectron helicity,% is the unpolarized cross section, akds
We use the distorted wave impulse approximatiDWIA)  the electron polarization power. These functions are given by
model of [23,24], which includes a new expansion of the
relativistic electromagnetic current in powers of the missing S=Koy[v,W-+v W' +v 1 Wcosg’
momentum, buit is notexpanded irg or . Combined with ,
relativistic kinematics, this relativistic model was shown in +orTWcos 2¢'], 2
Ref.[25] to give the same results as the relativistic Fermi gas ,
for the electromagnetic inclusive responses in nuclear matter. A=Koyvrp W sing’. 3
Moreover, the present model was compared26] with a
fully relativistic DWIA model of the reaction for|Q?| ,
=0.8 (GeVk)?, giving a reasonable description of thg, ~ UMP".
asymmetries recently measured O [27]. )

This paper is organized as follows. In Sec. Il we summa- K= p'M (4)
rize the DWIA model we use for coincidence electron scat- (27h)3’
tering, and its relation with the overlap functions, with some
details of the multipole analysis of response functions placeg,, is the Mott cross section, angc are factors containing

FIG. 1. One-photon exchange diagram for tlege(p) reaction.

Here the kinematical factdf is proportional to the momen-

in Appendix A. In Sec. Il we present the different the dependence on the electron kinematics,
asymptotic procedures to extract the overlap functions from

the exact OBDM, and the correlated model of the OBDM Q2 2 o Q2
including short-range correlations of the Jastrow type. In VL= ? . vT=tanz?—2—qz,

Sec. IV we present a study of the reliability and convergence
of the asymptotic methods in the shell model. The reader is
directed to Sec. V for discussion of the results obtained with Q2 0, Q7 Q2
the correlated model, where the effects of short-range corre- UTLT o tar??— 2 T o2 ®
lations over g,e'p) observables, overlap functions, and d q g

spectroscopic factors are analyzed, with a brief application of

2
the model to ¢,p) reactions. Finally, our conclusions are _Q° O
. . UTL! =—tan-.
summarized in Sec. VI. q®> 2
Il. DWIA MODEL OF (e,e’p) REACTIONS Note that in this work the)t, and v+, variables have an
. . extra /2 factor with respect to the corresponding definition
A. Cross section and response functions
of Ref.[29].
In this section we summarize those aspects of &he’p) The five exclusive nuclear response functiaé$ are de-

reaction that are of relevance to this paper. We consider thtned by the following linear combinations of longitudinal
process shown in the Feynman diagram of Fig. 1. Here, afL) and/or transvers€T) projections, with respect to the
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transfer momentung, of the relevant tensor describing the arbitrary values ofj, which can be bigger than 1 GeV. Note

hadronic part of the emission mechanism, that the usual nonrelativistic forms of the current, which are
also expanded in powers gf M, begin to fail for high val-
WE=W, W= W+ WY, ues ofq>500 MeV/c and cannot be applied faj~M.
The second approximation used in DWIA is the descrip-
cosg’ Wt =W+ W, cos 2" W' T=W/Y— W, tion of the ejected proton state as a single-particle wave func-

(6) tion x,/(r), obtained as the solution of the Sctimger equa-
o 0 tion with a complex optical potential fitted to elastic-
sing' W =i(W»—W°). scattering data. The final hadronic state is then written as

Here the hadronic tensoV*” is related to the transition
matrix elements of the nuclear electromagnetic current op- |q>(aA*1),Xp,>:J d3k}p,(k)aﬁ|q>g’*’l)), (9)
eratorJ“(q). It is defined by

1 A where[d3k y..(k)a] is the field operator creating a nucleon
e S (prm, @ U3K(@)of) Fa Xy (e ° 9

K mm,, in the state}p,(k), i.e., the wave function of the ejected
R proton in momentum space. From here we can write the
X(p'mg,®A Y| 37(q)| OV (7)  matrix element of the currer(8) as

and it represents the maximum information that can be ob-

(A-1) Ju (A)
tained in these kinds of experiments. Note that the depen- (0, 'Xp'|‘] (@] Pg™)

dence on the azimuthal angle of the emitted proigh, is .

given explicitly in Eqs(6). The final hadronic states entering = f d®k &k’ x7, (k") I“(q+k k)

in the definition of the hadronic tensdp’ ms,® "~ Y), are,

in principle, the exact scattering states with the correspond- (L Vlagal, al P§Y). (10)

ing boundary conditions, i.e., they correspond asymptotically

to a nucleon with momentump’ and third spin component Now we use the anticommutation rules of the Fermion op-
ms, and a daughter nucleus in the state” ™)), erators

B. DWIA and overlap functions ak,ag+k= S(k'—g—k)— azﬁkak, . (11

In this paper we consider a DWIA model of the current
matrix elements between hadronic states that enter into thEhe contribution of the second term in this equation,
hadronic tensof7). This model is based on the impulse ap- aaﬂ(ak,, can be neglected ifl) the momentum of the
proximation, in which we assume that the nuclear electroejected proton is much larger than the Fermi momentum of
magnetic current is a one-body operator. Hence we are ndhe initial nucleusp’>pg, this condition is usually fulfilled

glecting two-body contributions coming mainly from meson- jn the experiments; an(®) the wave functio&p,(k’) of the

exchange currents. The contribution from these tWO-bOd)éjected nucleon is negligible outside of an interval of mo-

currents was analyzed [80]. However, in this work we are  mentumAk’ around the central valug’ .
not including that contribution, since we are interested in |n such cases, we can write
studying the genuine short-range correlation effects.

The impulse approximation current operator can be writ- ~% L (A)
ten in momentum space as Xp (Kaw|®gV)=0. (12

This condition is equivalent to assuming that the wave func-

tion }}p, is orthogonal to the components of the initial state.

. . . Nonorthogonality effects have been found to be small in the
where J#(q+k,k) is the single-nucleon current for which re4ion of low missing momentum. However, the assumptions
we use a new nonrelativistic expansion to first ordek/iMl, - a4e in this approximation are not valid for high missing

first proposed in Refd.25,31. The time component of this i omentum, for which the region neglected by the approxi-
current contains charge and spin-orbit contributions, Wh”emation(12) is explored.

the transverse current is given as the sum of magnetization \ye are interested here in the low-missing-momentum re-

plus convection pieces. However, each piece of the currenfio so we can write the current matrix element as
differs from the traditional nonrelativistic one, containing, in

addition to the nucleon form factors, relativistic correction

(@)= [ P rarkKalay. ®)

factors that depend og and w. In Ref.[25] it was shown (@ 'Xp’|‘]ﬂ(q>|q)gA)>

that, beginning with the usual nonrelativistic Fermi gas and

using relativistic kinematics plus the new currents, the same =f d*k x5 (K+0)I#(q+k, k) (DL V]ay | D).
longitudinal and transverse inclusive response functions are

obtained essentially as in the relativistic Fermi gas model for (13

034602-3



M. MAZZIOTTA, J. E. AMARO, AND F. ARIAS DE SAAVEDRA PHYSICAL REVIEW C65 034602

In this equation we identify the single-particle overlap func-wherew®(p’,p) are the response functions for electron scat-
tion between the state®{" and ®*~1) defined, in mo- tering by a single proton with momentum

mentum space, as the matrix elemghit When the FSl is turned on, the above factorization is not
5 true anymore but the general behavior of the response func-
P, (k)=(PA Yja o). (14)  tions is preserved. The mean effect of the FSI is a reduction

of the responses due to the absorptive part of the optical
Using this definition, we can write the many-body matrix potential. We will see below that the effects of the short-
element of the currenf13) as a matrix element between range correlations are decoupled from the FSI effects.
single-particle states, namely, between the overlap function

and the distorted wave of the final proton lll. CORRELATED MODEL OF OBDM AND OVERLAP
. . FUNCTIONS
(@ xp |34 PFV) = (xp [ IV ). (15)

This is the matrix element that we compute in the present
work in order to obtain theg,e’p) response functions. The
information about short-range correlations is contained in
side the overlap function¥ ,, which are obtained from a
correlated OBDM by the asymptotic method explained in th
following section. The matrix element$5) are computed by W, (x)=(DPA Y)a(x) | d{V). (21)
performing a multipole expansion of the current operators in

terms of Coulomb, electric, and magnetic operators, and dHerex=(r,s,,t,) is a generalized coordinate including spin
the outgoing wave functiogy, in partial waves. The corre- and isospiny is the relative coordinate with respect to the
sponding response functiori6) are expanded in Legendre center of mass of the residual nucle(D$A’l), anda(x) is
functions of cog’ (the angle betweep’ andq), and their  the destruction operator of a nucleon at the painiVe as-

A. Overlap functions

The basic quantities of interest for our calculations are the
overlap functions between nuclear states witland A—1
nucleons, Eq(14). We work in coordinate space, where the
eoverlap function is

expressions are given in Appendix A. sume that the initial nucleus is in the ground st with
The physical interpretation of the overlap function is clearenergyEgA)’ while the residual nucleus remains in an arbi-
by writing it in the form trary stated ™1 with energyE(A_l).
~ B Using the Schidinger equation verified by the initial and
Wa(k)= \/S—ad’a(k)* (16) final nuclear states, a system of integrodifferential equations

for the overlap functions can be writt¢28]. However in the

procedure explained below to compute these functions for
the low-energy levels of the residual nucleus we only make
use of its asymptotic behavior, which is based on the follow-
ing equation verified by the overlap functions at large dis-

where ¢, is the overlap function normalized to unity, and it
is usually identified with the effective single-particle wave
function of the “shell” occupied by the ejected nucleon. The
spectroscopic facto8,=(¥,|¥,) is the occupancy prob-
ability of the shell.

The plane wave impulse approximatioRWIA) will be tancesy —e,
useful for the physical interpretation of the correlation effects 2
shown below in terms of overlap functions. In PWIA since - 2—V2\Pa(r)+(A—1)v(r)‘Ifa(r)
FSI is neglected, the wave function of the ejected proton is a M
plane wavey, (k)= 8(k—p’), and hence Eq13) becomes =[E®V—EA" W (), (22)

(@AY o |34 @) =34(p",p) T (p), (17)  wherev(r) is theNN potential and =r,—r, is the relative
coordinate. This equation means that the overlap function
where we have introduced the missing momentyp’ behaves asymptotically as a single-particle interacting with
—q, identified with the momentum of the proton before thethe A—1 nucleons of the residual system as if they were
interaction. As a consequence of the above factorizatiotocated at the same position, namely, at the center of mass of
property, the hadronic tensdv) is proportional to the mo- the residual nucleus. Of course this is only valid for such

mentum distributiof ¥ ,(p)|? of the overlap function large distances that it is not possible to take notice of the
small separation distances of nucleons within the nucleus.
W””zw“”(p’,p)|ﬁfa(p)|2, (18) In the cases when the initial nucleus has spin zero and the

parity of nuclear states is a good quantum number, it is pos-
wherew*”(p’,p) is the hadronic tensor for a single nucleon sible to separate the overlap function in radial and spin-

with initial momentump and final momentunp’, angular part$28]
wH(p’,p)=J(p",p)*3"(p",p). 19 W o(1)= (N Nijm( 6, 0), (23)
In the same way, the response functions are also proportionalith j=J, being the spin of the final nuclear sta@éj’l)
to the momentum distribution and| =]+ 1/2 depending on the parity of this state. The ra-
_ dial overlap functiong,;(r) (where the quantum number
WK=wK(p’,p)|¥ .(p)|?, (20 is reminiscent of the later identification with shell-model
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state$ verifies for large distances a radial equation coming B. Asymptotic methods for computing the overlap functions
from Eq. (22), with an asymptotic eigenvalue given as the  \ye recall here the method presented 1] to compute

difference between the energies of the initial and residua,e overlap functions by means of the exact OBDM for the
nuclei EV—EA"Y | which is a negative number for every ground state of thé-particle system.

value of the excitation energy of the residual nucleus. There- e consider a fixed value dfand denote the correspond-
fore the overlap function behaves as a bound state and hggy radial overlap functions with angular momentuirsim-

the typical exponential decay ply as ,(r), «=0,1,2 . . ., corresponding to bound states
of the residual nucleus ordered by increasing energy

B EQV<EA Y<... and with asymptotic behavior

e

¢nij(r)~C L B (24
—kya

with v.(a)~C, g av” (31)

2u[EAD_EP) with k,=[2u(EA D —EM) 1Y
k= s o (25) The asymptotic behavior of the OBDM is, from E9),
h2

e~ k,a

pi(r,a)~ 2 ¥a(r)C, a—. (32)

The exponential decay is modified by a logarithmic phase in a '’

the case of proton emission, where the Coulomb potential

plays a role. However this fact does not modify the following Now, due to the ordering,<k,;<---, the above sum is

results. dominated by the first term, with the slowest exponential
The relation between the overlap functions and thedecay, for long distances such thata(k; —kq)>1,

OBDM follows from the definition of the density matrix of

the initial nucleus, e koa
pi(r,a)~ ¢o(r)Co——,

a— o, (33

- (A 5T (A)
P(rl’rZ)_Es (@ la’(ry,s)a(rz,8)[®5”). (26 combining this equation with the asymptotic behavior of the
diagonal part, which allows us to determine the cons@yt

Inserting a complete set of statgh~ ) of the residual _2kpa
nucleus between the two Fermi operators we obtain an ex- pi(a,a)~|Cy|? —. a—w, (34)
pansion of the OBDM in terms of overlap functions a

: we can compute the overlap functiafy(r) and the corre-
p(r1,1)=2 W)W (ry). (27)  sponding separation energy. In order to obtain the second
“ overlap function, we apply the procedure to the density ob-

. . . . tained by subtracting the contribution of the first overlap,
In this work we consider the OBDM expanded in multipole y g P

densities with angular momentuim e kia
pi(r.8) = do(r) ho(@) ~ ¢ (r)Cy——,  a—=. (39
1
M2)=—-— 2P ; 28 . : .
p(rarz) 4w Z pi(f1.r2)Pi(cOSO:) 8 In principle, all the overlap functions corresponding to bound

states of the residual nucleus may be obtained by repeating

where 6, is the angle between, andr,. Inserting the ex- these steps. In the following section we check the validity of
pression(23) into Eq. (27) and performing the sums over this procedure, which in the present paper we call “exponen-
third components, we find the corresponding expansion ofial decay method.”
the OBDM multipoles in terms of radial overlap functions ~ There is an alternative, equivalent wgdb] of obtaining
the overlap functions from the asymptotic behavior of the
OBDM, without using explicitly the exponential decay prop-
p|(l’1,l’2)=2 (2] + 1) n)j(ry) nij(r2) erty. We will illustrate it using the fact that the diagonal part
n of the OBDM has also an exponential decay given by Eg.
(34), from where we can write

=2, ()Y (12), (29 s
e
Vn(@a)~|Col——, a-=, (36
where we have defineg,;(r) as the radial part of the over-
lap function normalized with a factoy2j+1, which is precisely the behavior of the first overlap function,
Eq. (31). Using this equation in the asymptotic form of the

(1) =2j + Leppy;(r). (300 OBDM, we obtain
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Short-range correlations are introduced within the model

_pi(r,a) :
Po(r)= lim ——=. (37 by the Jastrow ansatz for the nuclear wave function
a—=\pi(a,a) (A) (A)
dP(12,.. . A=F(12,... AdL(12,... A).
Note that in the cas€,<0 we obtain a minus sign that is (39

{:Jc;sr: aTgr;]Igb:l Fiiti?ii;hg; '::hailg 25 IPeSSeSritoer? 'Vr\'/;rli (\),tl/g”;p" ftl;]r;(ﬁerefb(sﬁ) is a Slater determinant arfielis a correlation func-
. - p[i P ' . tion containing two-body central correlations
Jp method,” has clear advantages over the exponential de-

cay one when it is used to compute the overlap functions A

from a model OBDM without the correct asymptotic behav- F(L,...A= I fry, (40)

ior (for instance, constructed with harmonic-oscillator single- 1Z1=1

particle wave functions wherer;;=|r;—r;|, and the functionf(r;;) has a Gaussian
functional dependence

C. Model of correlated OBDM f(r)=1—Aexp(— Br?). (41)

In this work we compute the overlap functions of closed .
shell nuclei by applying the last method explained to a cor'Ve use the parameters=0.7 andB=2.2 fm"*, which
related OBDM. We use the model of RéR2], which in-  Were fixed in[32] by minimizing the nuclear binding ener-

cludes short-range correlations up to first order in a clustei€S for the Afnan and Tang S3 interaction. In Rég] up to

expansion of the OBDM. The density and momentum distri-SX SPin-isospin correlation channels were included. How-

. . : the numerical effort grows in the present case, since we
butions were compared with the FHNEermi hypernetted ever, . ’
chain calculation of Ref[32], with a good agreement be- have computed the OBDM up o distances as large as 100

tween both models fm, essen;ial for separating the first overlap function in some
L . A) cases. This fact compeled us to reduce the number of corre-
_We begin with the OBDM of the initial nucleusbg™) lation channels and to use a Gaussian dependence, in order to
written as perform analytically the multipole expansion of the correla-
tion functionf(r).
The OBDM is calculated by a cluster expansion, writing
the correlation function as

—2

A (A) %
P(lexz)zw dxp- - - dXa Py * (Xq, - .. Xa)

(A)
X Py (X, - - Xa). (38) F(L ... A=1+ ] hery) (42)
For the applications tog(e’p) reactions, we will only need -
the proton density, this is obtained by inserting in the previ-and performing an expansion up to second ordeh.iiThe

ous equation the projection opera@(1)=3[1+ 7,(1)]. resulting OBDM for protons can then be written as

pl(ri,r)=p8(ry,r)) +A(ry,r))—B(rq,r])—C(rq,ry)+D(rq,ry)

:Pg(rlari)"‘Po(rlyri)f dsrzH(rl,ri,rz)Po(erz)
_f d3r2p0(r1,r2)H(r1,r1,r2)po(r2,r1)
_fdsrzf dr3p0(r1.12)po(r2.r1)po(ra,ra)H(r,rz,r3)

+f d3r2f d3r3po(r1,12)po(r2,r3)po(ra,r)H(r,,12,r3), (43

where the new correlation functiod can be expressed in of particles (k) and (jk). The operatoQ(1) guarantees that

terms of the correlation functiof(r), the particle 1 is a proton.
The functionsA,B,C,D corresponding to the corrections
H(ri r nd =Q(L)[f(ry) f(rj)—1]. (44  to the uncorrelated OBDMp°(r,,r}), are represented dia-

grammatically in Fig. 2. Therein, the open circles represent
This function contains the correlations between the two pairshe two coordinates, andr;, while the solid dots refer to
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Q TABLE |. Parameters of the Woods-Saxon potential.
// \\ Nucleus Vo (Mev) Vi (Mev) R (fm) agp (fm) a5 (fm)
f A Q 7 e P 62.00 320 274 057 057
po ) (B) N  60.00 3.15 274 057 057
P 52.50 7.00 3.02 0.53 0.53
160
N 5250 6.54 3.02 0.53 0.53
P 57.50 11.11 4.10 0.53 0.53
40Ca
N  55.00 8.50 4.10 0.53 0.53
©) D) P 59.50 8.37 4.36 0.53 0.53
48,
FIG. 2. Diagrams considered in the cluster expansion of the N 50.00 754 436 0.53 0.53

OBDM. The dashed lines indicate the dynamical correlatiqng)
and the solid lines indicate the uncorrelated density.

. i ] rection to the SM, do not drastically change the asymptotic
coordinates of inner nucleons, which are correlated to th@ehavior of the OBDM, we expect that the convergence con-
rest. A continuous line represents a noncorrelated OBDMjitions found in the SM will be valid in the correlated model.

po(r1.r2), while the dashed lines join the different particles  The single-particle wave functions in the SM are obtained
involved in the new correlation functiod. Thus in the dia- by solving the Schidinger equation for a nucleon in a

gramsA and B, the particles 1 and "lare simultaneously \noods-Saxon potential
correlated to a third particle 2. On the other hand, in dia-

gramsC andD there are two inner particles 2 and 3, which Vo .. h \%1 d
are correlated between them. Vws(r)=— T =R\ - "’(m) Y dr
Using the above expression a multipole expansion is per- 1+ex;{ a_) N
formed to obtain the radial densitieg;(r,r’), needed to 0
compute the overlap functions for different angular mo- Vie
+V(r), (45

that, contrary to Refl15], in this model we do not separate '
the multipolesp,j(r,r’) of the density in spin-orbit partners

j=1%=1/2 explicitly. However these two contributions are in-
cluded inp,. Since our correlated OBDM is based on a

isrllgﬂgi'ﬁargcﬁ_z?s;ts i(r)l?et?;r::?ignwntuea tvv\\f gog\?jlgxo?uﬁgtti%?g otential are given in Table | for the closed-shell nuclei con-
g sp ' b sidered in this work.

Ymi; corresponding to an occupied shell have different ener-"yy. 1,3y6 solved numerically the radial equation up to dis-

?;ta: dezThg]Zst;/?ngi?cgrzg%nln principle, they can be S€P3ances of =100 fm, in order to compute the corresponding
' OBDM in a wide asymptotic region, where we will be able
to check the convergence of the methods. First, we compared
IV. TEST OF THE ASYMPTOTIC METHODS IN THE our wave functions with the ones obtained integrating the
SHELL MODEL equation up to 11 fm, as is done traditionally, obtaining es-

Before computing the overlap functions using the corre sentially the same answer in both cases up to the region close
. . tor~11 fm. The energy eigenvalues of the proton shells are
lated model of Sec. Il C, it is convenient to perform a test of gy €ig b

the asymptotic methods using a nuclear model where thshown in the third column of Table Il. For each valud ofie
lution is knowsa priori. In this way we will be able 8onstrgct th_e shell-model OBDM as a sum of the corre-

exzct solutior hich f% I. ith ay duced below | sponding single-particle radial densities of the occupied

to determing(i) which of the algorithms intro luced below is .o \with angular momentum equallto

more adequate to extract the overlap functions @ndthe

asymptotic distance needed to separate the several overlap

functions.

We perform this analysis in the extreme shell model We first focus on the asymptotic decay method, in which
(SM), where the overlap functions are just the single-particlehe overlap functions are obtained by fitting the exponential
wave functions of the occupied shells. Apart from its sim-decay of the OBDM, Eq(33). This can be done in several
plicity, another reason to choose the SM is that it correways.
sponds to the zero order of the correlated model. Under the a. Logarithm fit Taking the logarithm on both sides of
assumption that the Jastrow correlations, as a first-order coEgs. (33) and(34) we have asymptotically

menta. We refer t¢22] for details on this expansion. Note X T Ir—R.
1+ex;{

Is

whereV(r) is the Coulomb potential for protons, of a uni-
form charge distribution with radiuR. The parameters of the

A. Exponential decay methods
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TABLE II. Energies of the proton single particles in the shell

model,E,.

Nucleus nlj |Ews (Mev)

2c 1s, 32.27
1pssm 15.49

180 1s1 27.36
1p3p 13.92
1pyys 9.29

40ca 15, 35.54
251/ 9.80
1psp 26.12
1pip 22.63
1ds, 15.83
1ds 8.37

“8ca 151 39.25
251 14.73
1pspm 30.15
1pyj 28.00
1ds, 19.92
1dsp, 15.14

In{alp(r,a)[}=In{Cq| o(r)[} —koa, (46)
In{a?p,(a,a)}=InC3— 2kya. (47)

We first computeC, by fitting a straight line to Ifap(a,a)}
(we assumeC,>0 since this is just a global phas&hen
|4o(r)| is computed by fitting another straight line to
In{alp(r,a)|} and dividing byC,. Finally, the sign ofy(r) is
obtained from Eq(33) as that ofp(r,a).

b. Trace minimizationThe overlap function is calculated
by dividing the OBDM by an exponential

pi(r,a)

Yo(N="—5Fa (48)

a

Co

with Cy andk, determined from the diagonal paij(a,a) as
in the logarithm fit method. The remaining paramedeis
chosen by imposing that the overlap densjj(r,r’)

=o(r)io(r') be as close as possible to the OBDM, 4

p(r,r"), for every value ofr and r’ contained in an
asymptotic interval a, ,a,]. This condition is achieved by
minimizing the trace functional

F(a)=Trlp;—p/]

p(r.a)p(r',a)
jer drfl pi(rr) = 2= 2kea)

a2

(49

PHYSICAL REVIEW C65 034602

c. Trace minimization with three parametefEhis third
method is a variation of fib, which considersC, andk, as
additional parameters in the trace functional. So the three
parameters are now fixed by computing the absolute mini-
mum of this functional.

The fit proceduré is similar to that applied in Ref19].

In the following we compare the results provided by these
methods for different choices of the asymptotic interval
[a;,a,] where the fit is performed. We shall study the case of
4%Ca in the shell model, where the OBDM contaihs
=0,1,2 multipoles.

In Fig. 3 we show results fdr=0, corresponding to the
overlap functions of the shellssg, (first overlap function
and 1s,,, (second overlap Panel(a) shows an example of
what is obtained using an OBDM computed up &Q
=11 fm. In addition we have usaj=2.3 fm, which is the
point where the densityq(r,r) reaches 10% of its maxi-
mum. This value is not large enough to be considered
asymptotic and the resulting overlap functions are clearly
incorrect. In this figure we note a misbehavior of &t
(dashed linesin the region close to the node, where E3R)
is not valid, since the OBDM is dominated there by Hee-
ondoverlap function. This misbehavior is not found in fits
(dot-dashed linesandc (dotted line$ because in both cases
the exponential fit is done globally and not point by point.
Since the first overlap has not been adequately extracted, we
also obtain an incorrect result for the second overlap, shown
in panel(b). We note in this panel that the displayed curves
stop around 2-2.5 fm. The reason is that the subtracted di-
agonal parpo(r,r) — ¢o(r)? becomes negative in this region
as a consequence of the incorrect valuebg(r).

The results for the first overlap function improve when we
increasea, to 15 fm anda; to 5.9 fm, corresponding this
last distance to the point where the density is 1% of its maxi-
mum value, as is shown in pan@). Even though there is a
clear improvement with respect to the results of paagl
there is still a small difference with respect to the exact result
(solid line), which is larger for the results of fia. These
small differences are amplified when the second overlap
function, shown in pandH), is computed. Nevertheless there
is also a clear improvement with respect to the former results
of (b).

In order to find a reasonable agreement with the exact
result we have to usey=13.7 fm, where the density
reaches 10’% of its maximum value. The corresponding
results are shown in pané), where we have used again
=15 fm. Although not seen in the scale of the figure, the
results of fitsb andc are closer to the exact result than that
corresponding to fia. Finally, the second overlap function is
shown in panelf), where we still note small differences with
the exact result specially for low The results for the second
overlap rely heavily on the adequacy of the computed first
overlap function. These small differences can be further
minimized if a higher value for the asymptotic poiratg,a,
is utilized in computing the first overlap. We will see this
when we discuss thep method.

In the case of the second overlap ferO we use a dif-
ferent interval[a/ ,a,] from that considered in the corre-

034602-8



EFFECTS OF SHORT-RANGE CORRELATIONS IN . .. PHYSICAL REVIEWGS 034602

0.8 T T L) L} T L) ]
0.6 (a) 251/2 u (b) 131/2
04 . J
:E 0.2 _- e
= 0 1
T o2} \V ] |
—04}F |‘/ i
06 r T T r T T r FIG. 3. Overlap functions of°Ca for =0 in
X (¢) 21/ (@) 1812 ] shell model, computed with the exponential de-
0.6 ” ! . )
— ’ ] cay methodha (dashed lines b (dot-dashed lines
‘?E 0.4 . andc (dotted line$. With solid lines we show the
& 0a | 1 radial functions, corresponding to the exact re-
% ’ . sult. The several panels refer to different
0 J asymptotic interval$a, ,a,] considered in the fit
02 AN , \ , , \ of the first overlap function, namef2.3 fm, 11
' i : : i : : i fm] for (a,b, [5.9 fm, 15 fm for (c,d), and[13.7
06} (e) 25172 | (0) Lsra | fm, 15 fm] for (e,f).
E 04l ; -
= o2} . -
=4
i \\/i ]
Ty 4 6 s 10 s 10

r [fm] 7 [fm]

sponding first overlap. The upper limét, is chosen as the changinga/ . On the other hand, in the cases in which we
point where the subtracted density(r,r) — o(r)? becomes obtain a reasonable result for the first overlap function, the
negative, since this is a clear indication that the first overlapesult for the second one is already quite good for low values
is incorrect at this point. The lower limé, is chosen as the of a/. This is a consequence of the simplicity of the shell
point where the subtracted density is 10% of its maximummodel where we are working since in this case the subtracted
value. This value is not critical in the cases in which the firstdensity is factorizable as a product of single-particle wave
overlap function is incorrect, as there is no improvement byfunctions of the %/, shell,

0.6 [——T—T—T—T—T—T— 04—
0.5F (@) 1pyy2 /‘ \ (b) 1ds/2
s k 03 ]
£ o3 1 o2 -
= 02 N \ ] FIG. 4. First overlap functions of°Ca for |
0.1 . =1 andl=2 in shell model, computed with the
0 exponential decay methad With solid lines we
0.4 show the radial functions of thepl,, and 1d5,
shells, corresponding to the exact results. The
& 03 ] i asymptotic interval§a, ,a,] considered in the fit
’f’g 0 | for |=1 are[4.0 fm, 11 fni (dashed} [5.9 fm, 15
= v fm] (dot-dashef and[13.0 fm, 20 fnj (dotted;
=4 01 ] 1 for I =2 they are[4.5 fm, 11 fm (dasheg, [6.6
fm, 15 fm] (dot-dashey and[17.2 fm, 20 fn]
0 (dotted. In panels(c) and (d) the overlap func-
8 8 tions have been “averaged” dividing bj2(2l
, , +1)]¥2 instead of 2j + 1]*2, and also the wave
10 10 functions of the P, and 1dsg), shells are shown
— 1072 10-2 with short-dashed lines. In pangl® and (f) the
& » » asymptotic behavior of thg and d wave func-
g 10 tions has been displayed.
§ 10- 10-
10-8 10-8 . . .
0 5 10 15 20
r [fm]
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por. 1) = o) Pro(r) = 2Ry (NRys ('), (50) normalized with a factof2(2l+1)]2 and we assume an
asymptotic exponential behaviory,,(r)~C exp(—kr)/r.

and it is not necessary to separate a third overlap function. d#ence we have for the OBDM
course in the correlated case, where there are extra contribu- kr!
tions to the OBDM, one should be careful and choose a p,(r,r’)~¢n|(r)Ce ,
value ofa, for which there is convergence. r'

In Fig. 4 we show the first overlap functions 6iCa for
[=1,2, corresponding to the shellp4l, () and 1d;, (b).
The exact results are shown with solid lines, while wit

dashed, dot-dashed and dotted lines we show, respectivefyiNCtion asen(r) = (r)/[2(21+1) ,
the results of the fitb performed for three different Results for the averaged overlap functions of tipeahd

asymptotic intervals with upper limita,=11, 15, and 20 1d shells of 40ca obtained by this procedure are shown in
fm, and lower limits corresponding to the points where thePanels(c) and(d) of Fig. 4. The meaning of the lines and the
OBDM reaches 10%, 0.1%, and 1% of its maximum asymptotic intervals used in the fits are the same as in panels

value. In panel(a), corresponding to thef, shell, the three (@ and (b), but here we also include, for comparison, the

fits give a similar result, which is around a factor of 2 higher'adial wave functions of the g, and Ids;, shells with
than the exact answer. The results do not show a noticeab ort-dashed lines. Note that the overlap functions displayed

improvement when the asymptotic interval is increased fronil Panels(c) and(d) are related to }gose &) and(b) just by
[5.9,19 fm to [13,20 fm. In panel(b), the results of fith & global factor (2 +1)/2(2 +1)]"~ _
corresponding to the dy, shell are again above the exact e begin discussing the results for the hell shown in
answer, although we note a convergence trend in going frofR2nel(c). The fits shown with dashed and short dashed lines
the interval[6.6,19 (dot-dasheylto [17.2,20 fm (dotted. are on average in the intermediate region between the 1
The results obtained with fita and ¢ are not shown in the and Ips, curves. However for higher values of the
figure; fitc gives essentially the same result adfitvhile fit ~ aSymptotic interva(dotted lines the fit begin to move out of

a is worse than fib. this region—it is now similar to the s, wave function—

It is clear from these results that it is not possible to ex-2nd the possibility of obtaining an average value breaks
tract the first overlap function for the andd shells, using down. The case of thedlshell(d) is more intriguing. While
asymptotic distances up to 20 fm. This is related to the facfl@shed and short dashed lines are betweenijheandds,
that the energies of the spin-orbit partnerp{3, 1ps,) and ~ CUrves, the dotted lines are well below them. The conclusion
(1ds,, 1dg,) have close values, their difference being extracted from these results is that only for low values of the
around 3.5 MeV and 7.5 MeV, respectivelgee Table )i asymptotic interve}[a, zau] u;ed in the fit a mean value of
Hence, at 20 fm the contribution of the second overlap functhe overlap function is provided. However the results are
tion is still important[see panelge) and (f) in the same unstable, since they change when another interval in the fit is
figure], especially in the case of theshell where distances Used, and depend on the particulahell.
close to 100 fm must be used in order to get convergence, as This behaw_or can be easily explained in the shell mgdel.
we will discuss when we study thép method. Since in all FOr €xample, in the case of tieshell, the exact OBDM is
these cases it was not possible to extract reasonable valug@mputed as
for the first overlap function, we do not show the incorrect "N— /
results for the second overlap function. PaN ) =2Rap, (MR, (1) F 4R1py (1) R1pg ().

Recently Gaidarowet al. [21] have presented results for (53

the _overlap functions of the shell in 16Q using a method As seen in panele) of Fig. 4, the wave functions of the two
similar to fitb. The procedure was applied to the correlatedpariners p,,, and Ips, are quite similar for lowr. We note
OBDM of [32] computed up to 11 fm, which uses the sameinat they are also similar in the asymptotic region up to
shell model we are considering here, with similar energies_ 11 fm, since their energies are very close. So we obtain

and wave functions for i, /; and Ips/,. An averaged value  the following approximation for the OBDM up te-11 fm:
for the 1p wave function was extracted in that reference; we

will explore this possibility in the shell model. In order to pa(r,a)=6Ry(r)Ryp(a) (549
compute an averaged overlap function we first assume that

the multipoles of the OBDM?29) can be approximated by and fora large, but not exceeding-11 fm, the two wave
functions have a similar exponential behavior so we can

write

r’'—oo, (52

Now we can proceed as before, by fitting an exponential

pdecay to the OBDM and computing the averaged overlap
]1/2.

m(rl,rz)z;j 2(214 1) (1 1) (1)

e ka

pl(r,a)~\/§Rlp(r)C o a—11 fm (55

=§ Yi(F 1) (1), (51)

and then it is possible to extra&;,(r) between the two
partners, as is shown in pan@) with dashed lines, where
where ¢,(r) is a mean value of the two spin-orbit partnersa<11 fm. For larger values o& the two wave functions
¢nij(r), with j=1=1/2. The overlap function,(r) is now  begin to separate due to the different exponential decay. For
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the interval[6.6, 15 fm [dot-dashed lines in panét)] the 0.4 T T T T T —
two wave functions are still quite close and E§5) remains 150, 1p
approximately valid. However, for the dotted lines the

asymptotic interval i$13,20 fm, where the two wave func- 5 03 )
tions are clearly different and E@55) is not valid. In this &

case the exact asymptotic behavior £ 0.2 .
=

~kia e kod = 0.1 -

pi(r@)~4Ryy (1)C1——+2Ryp, (NCo—
4C e "%+ 2C e ko 0 '
lep(r) (56) 0 1 2 3 4 5 6 7 8

a

should be used. The exponential fit of this equation may be
performed, but the result will not be the searched quantity
Rip(r) and will depend on the intervah, ,a,] used and on
the fitting method. In addition, in the very far limit where the
second overlap can be neglected, the fit procedure will con-
verge to the exact first overlap functiongy(r)
=\/2j+1R1p1/2(r)=\/§Rlp1/2(r). Since the promediated
overlap function is computed dividing bj2(2l +1)]*2
=6, by this procedure the “averaged” overlap function
will converge to the wrong resuis(r) = \1/3Ry, .

Finally, in thel=2 case, the energy difference between
the 1d3, and 1ds, shells is bigger than in the case of the FIG. 5. Averaged overlap function of theshell of %0 in shell
shell. This makes the two wave functions separate at shortefiodel, computed using fit in the asymptotic intervalg3.5,11 fm
distances~8 fm, as seen in Fig. 4, pané). This implies  (dotted line$, [9.5,19 fm (dot-dashed lings and [12.2, 20 fm
that the results are less satisfactory than foitlsbell for the  (short-dashed lings The exact functions of the, and Ips,
high asymptotic intervasee dot-dashed lines in pard)]. shells are shown with solid and long-dashed lines respectively.
These are clear indications of the impossibility of extracting
an averaged overlap function using this method. p(r,a)

The interesting example of teshell in %0 is shown in Po(r) = ——,
Fig. 5. Therein we show with solid and dashed lines the vp(a,a)
corresponding wave functions of the4, and 1ps, shells, )
which are very close below 5 fm, where they begin to sepafor @ value ofa large enough to reach convergence, which
rate. In the upper panel we also show with dotted lines th&an be easily checked by computing for several values of
averaged overlap function obtained with fii in the This method has several advantages over the exponential fits

The dotted line is between the tweshell wave functions, the OBDM has not to be calculated in an interyal ,a,],

but if the same fit is applied to higher asymptotic intervalsPut only in a few asymptotic pointa. This is preferable in

we obtain the dot-dashed and short dashed curves of tHg€ correlated case, where the computation of OBDM be-

figure, which are below the exact result. comes longer. Moreover, when the density is factorizable
This example clarifies why the results of REf1] are not ~ P(".r")=#(r)¥(r’), then Eq.(57) always provides the ex-

far wrong in this particular case dfO, since they used an act overlap function for any value ad. This makes this

OBDM computed up to 11 fm. However the way in which method exact in the shell model for all the shells'f€ and

the average is done is not under control. So in the correlatefr the s-shell in °O. N ...

case one should be careful in the interpretation of the results, In Fig. 6 we show results for the nontrivial case‘d€a in

because the exact ones are not knawpriori, and the ef- Which two overlap functions are present for edchn this

fects due to correlations cannot be unambiguously separaté@se the asymptotic expression of the OBDM can be written

from the fit procedure. as

R(r) [fm=%/?]

7 [fn]

(57)

—koa

B. Jp method pi(r,a)~ [4o(r)Co+ 1 (r)Cretko~kia]  (58)

Next we examine the alternative method based on Eq.
(37), where the overlap function is directly computed as theanda should be chosen large enough in order to neglect the
quotient, second overlap function. An appropriate valueaotan be

a
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FIG. 6. Overlap functions of‘°Ca in shell
0.2 T T T T T 0.16 T T T T model computed with the/p method. All the
— sk N ©1ppe (d) 1ps/2 functions are normalized with a factor
§ / \ 012 1 7 V(2j+1)/4m. In each panel we use the three in-
£ omzp LA =120,60,99 fm o =19,59,98 fm dicated values of the asymptotic poiat which
@ 0.08 i 0.08 b correspond in ascending order to the dashed, dot-
= 0.04 | dashed, and dotted lines, respectively. The exact
= 004 1 result is shown with solid lines. The second over-
0 \ \ 0 ) \ lap functions (panels on the righthave been
computed using the first overlap function from
0.2 T T T T T 02 T T T T T the corresponding left panel and a second
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5 J/ \ a=15,25,61 fm o' =14, 24,60 fm
£ o012} \ 4 012 s
= [/ \
§ 4 \
> 0| \ 4 o008 -
& \
s omf \ 4 004 -
0 1 1 1 0 L 1
0 2 4 6 8 10 0 2 4 6 8 10

7 [fm] r [fm]

obtained by imposing exfk,—k;)a]=10 3. This makes the 6 have been computed for asymptotic pairit=a—1 fm.
second overlap function contribution to be of the order ofAgain for the biggest value shown, the extracted overlap

0.1%. The estimated value afso obtained is function almost coincides with the exact result shown with
solid lines.
6.9 Results for the remaining shells-1,2 are shown in pan-
a= ki— Ko (59) els (c)—(f). As before, we show in each panel three curves

corresponding to three ascending valuea ofdicated in the

However, in practice the convergence will be reached at 49ure with dashed, dot-dashed, and dotted lines, respec-
different value, depending on the relative value of the condively. In the case of the second overlap functipanels on
stantsC, and C;. In the shell model we will determine the the right we use the corresponding first overlap function of
adequate value af by comparing with the exact result. the left panel and the asymptotic poiat=a—1 fm. The

The case of the®,, shell of *°Ca is shown in paneh) of yalugs ofa for which convergence of the first overlap func-
Fig. 6. Therein we represent the first overlap function norion is obtained are shown in Table Ill. In the case of fhe
malized with a factor/(2] + 1)/4w, and computed from Eq. Shell [panels (c) and (d)], we find convergence for
(57) for three different values of. Namely, we show the ~100 fm. Usmg_the single-particle energies of Table Il and
results fora=4 fm with dashed linesa=7 fm with dot-  Ed. (59), we obtaina=86 fm for thep shell anda=60 for
dashed lines, and=12 fm with dotted lines. Using this last thed shell.
value we already reproduce, within the scale of the figure, We have performed the same study of the proton overlap
the exact overlap function shown with solid lines. This valuefunctions using the/p method for other closed-shell nuclei.
is in agreement witta=11.5 fm provided by Eq(59). The results of the convergence values 160 and “®Ca are

For each one of the curves presented in pé@elve com-  summarized in Table lIl. In the case &0 we only show the
pute the second overlap function using an asymptotic poinfiontrivial case of thep shell. The corresponding overlap
a’ that must be less tham This is clear if we remember that
the method matches the asymptotic behaviors of the OBD
and of the first overlap function for distances=a. Then
when we build the subtracted density, the asymptotic contni\lucleus % 1 1q
bution will vanish in this region. This is equivalent to say 12 P2 312

M TABLE IIl. Values of the asymptotic points for which conver-
gence of the first overlap function is reached with tfxe method.

that the pointa effectively acts as the infinite poiat=c, so 160 80
in this numerical method there is no sense in computing theocg 12 100 61
second overlap function faa’>a. For this reason, the sec- 4scy 12 >100 98

ond overlap functions for=0 displayed in panelb) of Fig.
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functions can be separated by using the OBDM computed up A. Quasihole overlap functions

= i i 8 ;
to a=80 fm. Finally, in the case of“Ca, the_s(geparatmn We start with the correlated OBDM of closed-shell nuclei,
energy within thep andd shells is smaller than if°Ca (see defined by Eq(43), and compute the multipoleg,(r,r'), as
Table ). As a consequence, the convergence values arg,qun in Ref[22]. The zero-order density®(r,r’) in Eq.

Iarger than '3 the former case. In lpar;ucular, ﬁ}FldOO f(rjn h (43) corresponds to the noncorrelated shell model of Sec. IV.
the 1p,/, an 1p|3/2 are ntothcomp_ et:ahy tsebplar&}Fﬁ ant_ t teThe correlated overlap functions for quasihole states can be
convergence value is not snown In the table. The estima egbtained by using the/p method discussed in the preceding

valxg gfscor:\r/near?eZ(f:?hf.grstgést.sgell?{fégf frrgéent stud S_section. We apply Eq(57) to the correlated OBDM for
ina th z I yd | ! h : ,hWI tLrj] P liabilit ufytﬁ asymptotic pointsa, large enough to reach convergence. In
Ing the snell model, we have shown the reliabiiity of they, o present case the exact results are not kreynori, but
asymptotlc methods to compute the_overlap functions of NUye are guided by a former study performed in the shell
clei from the knowledge of thé mult_lpoles of the OBDM. model. It is expected that the values of the convergence
Our results have ShOV_V” the necessity of stud_ylng the COm/ef':isymptotic points in the correlated case do not change too
gence of the results in each case and that in many of the

hould caloulate the OBDM up t hh dist uch with respect to the shell model ones. This can be un-
one should caiculate the up 10 such huge distances ag, 464 in our model by studying the correlated OBDM, Eq.
100 fm in order to separate the overlap functions. In relatio

to the several methods studied, all of them provide the corrt43)' Using the fact that the correlation functié(r) -1 for

rect result if the asymptotic intervdl, ,a,] is within the r—ec, we have for the functioht defined in Eq(44)

region of convergence. However, due to its simplicity, the H(ry,r) r)~Q(L)[f(ri)—1], rj—oo. (60)

Jp method is preferable in the general case in which the

OBDM is the solution of a correlated many-body problem,On the other hand, the noncorrelated density is dominated
and this is the method we will use in the following section to asymptotically by the first overlap function of the shell
compute the correlated overlap functions. model

V. RESULTS FOR (e,e’'p) OBSERVABLES AND OVERLAP Po(r1,r)~do(ry) do(ry), ri—. (62)

FUNCTIONS IN THE CORRELATED CASE _ . _ _
From these equations it is straightforward to obtain the fol-

In this section we present results for overlap functionsjowing asymptotic expression for the correlated dengg)
spectroscopic factorsg(e’p) response functions, and cross for r)—o:
sections, using the correlated model introduced in Sec. Ill.

Thus we go beyond the single-particle model and will be ph(ri,r)~K(ry) éo(ry), ri—oe, (62
able to identify the effects of short-range correlations on
these quantities and observables. where the functiorkK(r,) is defined as

K(r1)5¢0(r1)+¢0(r1)j dger(l)[f(rlz)_1]Po(r2,"2)_f d3r2p0(r1,r2)Q(l)[f(r12)—1]¢>0(r2)

_f d3r2f dsrspo(rlarz)fﬁo(l’z)Po(rs:rs)H(rz-rzars)+f d3r2f d3r3po(r1,72)po(r2,r3) do(ra)H(rz,rp,r3).

(63

We can also determine the asymptotic behavior of this functsing now thep method, the first correlated overlap func-
tion K(r4) by using the particular Gaussian for#l) of the  tion reads
correlation function, so for,— o the second and third terms

in Eg. (63) can be neglected with respect to the other terms K(r)éo(r’) K(r)
due to its Gaussian decay. Then we can write ho(r)=lim : == : (66)
y oK) o)
K(ry)~mneo(ry), ri—=, (64)

Since the functiorK(r) ~ n¢o(r) for r—o, we see that this
correlated overlap function behaves asymptotically as the
noncorrelated one multiplied by the constahy,

where the constany is defined as

”El_j d3r2f d3r 3| do(r2)[%po(ra,ra)H(r2,r2,r3)
Yo(1)~\no(r), r1—00. (67)

+ [ d3 fd?’r r Mo, r3)H(ro,ro,r3).
f 2 300(r2)pol(2.T3) do(ra)H(r2.r2.13) Hence in the present model the short-range correlations do
(65 not modify the energy of the first overlap function with re-
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TABLE IV. For each one of the quasihole states in the closedtions we have checked numerically the convergence of the
shell nuclei studied we show: the asymptotic distaader which  results for the different overlap functions. For this reason, the
convergence of the correlated overlap function is reacftieild  correlated OBDM has been computed for values of the
column), the relative difference between correlated and uncorre-asymptotiC point as high as 100 fm in order to separate the
lated separation energié®urth column, and the computed Spec- &4 oarjap function in the cases in which the energies of
troscopic factor(fifth column). For comparison we show also the Wo overlap functions are close in the shell model. The val-
experimental value of the spectroscopic factors extracted frorrli P . - o
(e,e'p) experiments. ues of the asymptotic poirg where convergence is reached

are given in the third column of Table IV. We first note that

Nucleus nlj a(fm) |Ec—Eud/Ews(®)  Sn  Seqt the convergence values of the asymptotic paiare similar
1 — to those obtained in the shell modebmpare with Table I
c 1sy, 7 4x10 0.985 059  Tpereby, in order to extract thepl,, overlap function, we
1ps, 8 <10° 0986 056  need to go up to-86 fm for %0 and up to~100 fm for
160 1sy, 7 2%10°5 0.985 40Ca, while in the case of thedl, overlap function for
1pss 7% 104 0986 059 “°Ca, convergence is found fa~64 fm. This indicates
1p,, 86 4% 1075 0986 057 that in fact the separation energies of correlated overlap
o - functions are close to the ones of the shell model.

Ca 11 6x10 0.988 0.75 The results for the correlated overlap functions of the nu-
2s, 14 2x10°° 0992 0.64  (lgj 12C, 160, and“*°Ca are shown in Figs. 7—9, respectively.
1psp 3x1072 0.985 0.72 | each one of these figures we show with solid lines the
1py, 100 3x10°? 0.985  0.72  radjal densityr2y(r)? of the correlated overlap function and
1dsp, 2x10°° 0.985 0.74  jth dashed lines the noncorrelated result corresponding to
1dy, 64 3x10°° 0.985 0.74  the shell model. We do not show the overlap functions of the

480g 1y, 6x 104 0.986 also studied nucleu¥Ca. Having stopped our calculation at
25175 16 1x10~1 0.991 100 fm, it was not possible to obtain convergence in this
1pa 2% 10-1 0.946 nucleus for the overlap function of the shell, which re-
1py, >100 3x 10! 1.058 quires higher values ai.
1dg 1%10°3 0.983 In Fig. 7 we show the first overlap functions &fC for
1dy, 100 6x 10 0.983 I=0,1. In both cases convergence is reached for relatively

small values ofa=7 and 8 fm, respectively, due to the fact
that in the shell model there are no second overlap functions
spect to the shell model, since the asymptotic behavior of theontributing to the OBDM. Short-range correlations intro-
OBDM is determined by the exponential decay of the singleduce extra contributions in the OBDM. However, these extra
particle wave functionpy(r). Note that for shorter distances, contributions decay much faster than the exponential one,
the above proportionality67) does not hold because, in that and very large distances are not needed to extract the first
case, the functioK(r) includes other terms depending on overlap function. As we can see in Fig. 7, the inclusion of
the noncorrelated density and on the correlation functiorshort-range correlations produces in both cases a reduction of
f(r), as can be seen in E(3). the maximum of the overlap function in coordinate space,
The same procedure can be applied to each one of thehile there is an increase for highwhich is better seen in
multipolesp,(r,r’) to show that the energy of the first over- the case of the shell, since it lies at higher distancigsnel
lap function for each value dfdoes not change with respect (b)]. In this last case we observe in addition that the overlap
to the uncorrelated case. The same conclusion was also ofunction undergoes a small shift to the right due to the cor-
tained in Ref[15] in a model similar to ours by starting with relations.
the OBDM py;(r,r'). However in our model it is not pos- Similar effects are observed in Fig. 8 f8f0 and Fig. 9
sible to prove easily a similar result for the energy of thefor “°Ca. In all cases there is a reduction of the overlap
secondoverlap function. function at intermediate distancés most of them coincid-
These arguments indicate that the asymptotic pointsng with the maximum of the radial densjtand an increase
needed to compute the overlap functions are similar to théor more large distances. As fC, we also observe a shift to
ones found in the shell model. In any case, in our calculathe right of the overlap functions corresponding to the outer

1.2

1
0.8
0.6
0.4
0.2

T T 2.5 T T T T T T

(a) 1s172 1 2k () 1pssz

. FIG. 7. Solid lines: radial density of overlap
functions for Y2C computed from the correlated
OBDM. With dashed lines we show the noncor-
related results in the shell model.
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shells. This is the case of the shellp;, and 1p,, in 0 one produced by the external shells. The net effect depends
and Xy, 1ds,, and Wds, in “°Ca. on the particular nucleus and on the shell involved. For in-

This shift effect over the outer shells can be understood if§tance, in the case of thesgl, shell in “%Ca, shown in panel
terms of the repulsive nature of theN interaction for short  (b) of Fig. 9, the correlations produce a shift of the overlap
distances, implicit in the correlation functidi{r), and the function to the left, i.e., into the nucleus, since the short-
well-known healing property of the wave function for the range repulsion by the outer shells tends to compressshe 1
two-nucleon system. The correlation function produces avave. The same compression effect is observed in the inner
wound in theNN wave function¥, and what we are seeing lobe of the 2, [see panela) of Fig. 9].
in the overlap function is the average effect of healing due to In the cases of the intermediate shells;4 and Ips/, for
the interaction of the outer nucleons with the nucleons in the°Ca, the joint effect of repulsion by the inner and outer
core. shells produces a shift to the left in the lawegion and a

However the inner shells do not show this effect becausshift to the right for large. Hence the net effect of correla-
the short-range repulsion due to the core partially cancels th#gons over these shells is a widening of the overlap function,
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0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

(b) 1172 |

(2§ + 1)r2R(r)? [fm~Y]

- A =
! L (o) 1pise | !
g 08 ] i
T oef 1 %
5: 04} J ﬁf i FIG. 9. The same as Fig. 7 for the nucleus
= = | 40ca.
ooz} - +
& 8

0 1

0 1 2 3 4 5 6 7 8 8
r [fm]

2 3
T wooasf .
£ 15} 4 &
b o 2F E
= S
T 1F . [ 1 4
E s 1k
T oosb 4 i
S L oosf 1

0 0

0 8 0 8

v [fm]

034602-15



M. MAZZIOTTA, J. E. AMARO, AND F. ARIAS DE SAAVEDRA PHYSICAL REVIEW C65 034602

as seen in panelg) and (d) of Fig. 9. in the ground state due to nuclear correlations. We have in-
Once the overlap functions have been extracted, we cavestigated if the overlap functions for quasiparticles can be
compute the corresponding separation energy by a fit to &xtracted from our OBDM using the asymptotic method.
function Ce X"~ 7I"Kr for large distances. We have per- ~ This study is motivated by a recent calculation done in
formed this fit in the interval between 11 and 28 fm for the[19] where results for the quasiparticle overlap function for
correlated and uncorrelated overlap functions obtaining eghe 1d shell in 1% and for the % shell in “*Ca are pre-
sentially the same energies. The inclusion of the logarithn$€nted. These authors begin with an OBDM including Ja-
Coulomb phase is important in this fit for protons, since itStrow correlations and apply an asymptotic procedure similar
can modify the extracted energies by more than 2 MeV in thd® fit b in order to extract the overlap functions. For instance,
case of4%Ca. The relative difference between correlated andn€y report a \/L‘%Iue o6=0.01 for the spectroscopic factor of
uncorrelated energies is shown in the fourth column of Tabldhe 1f shell in "Ca. Neither the asymptotic interval used for
IV. In all cases the differences are less than 0.5% even in thi!® fit nor the convergence distance are indicated1®l.
case of the“®Ca shells where convergence was still notAPParently they should not have used very high asymptotic
found for the overlap function. These numerical results COnyall_Jes since they_ use a harmonic-oscillator basis that falls off
firm that short-range correlations do not change the meaffPidly at large distances. o
field values of the separation energies for quasihole states. However these results were criticized in Ref5], where
Results for the spectroscopic factors resulting from ouft Was shown that it is not possible, starting from a CBF-type
model are shown in the fifth column of Table IV. These haveWave function, to generate bound-state overlap functions

been computed as the norm of the corresponding correlatedfith quantum numbers that are unoccupied in the Slater de-
overlap function terminant. The reason is that the overlap functions decay

exponentially with the same decay constant as the hole
S= . 68 single-particle orbital.
(4l9) 8 In fact, when we apply thep method to compute a qua-

As seen in Table IV, all of the computed spectroscopic faC_siparticle overlap function from our radial OBDM for high

tors are slightly less than 1, being in most of the cases aroun lues oft we do not obtain convergence Within the _100-fm .
S~0.985. The only exception found in Table IV is the value 'ange and instead the results decrease rapidly, being negli-

s, —1.058 for#8Ca. which is not a definitive number since gible for highr. We must conclude that in our model it is not
12 ’ !

. L . possible to obtain such quasiparticle states.
the asymptotic poina=100 fm used is not large enough t0 * Thjs result can be understood by examining the following
reach convergence in this case.

o ) asymptotic expression of the OBDM for unoccupied multi-
Our results indicate that short-range correlations of th

Jastrow type reduce the shell-model occupation probability
no more than 2%. This reduction is not enough to explajn the pi(ry,r)~CH(ry,ry), rq,rj—, (69)
experimental values extracted from the,& p) analysis ) ) o

shown in column 5 of Table IV. This is in agreement with WhereC is a constant and the functidifr,r’) is given by
other studies that report values similar to ours for the spec-

2
troscopic factors. Van Necét al. found in[15] that central exp(—2kr1)exp(—2kr1)exp< M)
correlations generate a reduction around 1-2 % of the occu- " 2
pancy probability in'%0. More recently Fabrocini and Co’ (ry,ry) r2r12(r, +1])2
[33] have computed overlap functions within the FHNC/ (70)

SOC(single operator chajrtheory and report values around _ )

0.97-0.99 for the spectroscopic factors with Jastrow correlatierek is the wave number of théoccupied valence shell
tions. Spin-isospin and tensor correlatiomet included in ~ andB is the parameter of the correlation function. This ex-
our calculation produce additional reduction of these valuesPression is proved in Appendix B for the simplest case of the
to S~0.86-0.9 for the valence shells. The discrepancy witHmultipole!=2 for the nucleus'“C. | .
experimental values could be further reduced by the inclu- In Fig. 10 we show with solid lines the computed radial
sion of long-range correlatiofd4]. Center of mass correc- densityp(r,r’) for *2C as a function of for several fixed
tionsy however, produce an enhancement-af% of thep values ofr’. In addition we show with dashed lines the func-
shell in 10 [9]. Further investigation including all of these tion f(r,r") multiplied by a convenient constaft fitted to

effects in a consistent way is needed in order to clarify thehe density. We see that in fact the above asymptotic expres-
situation. sion is approximately verified by the computed density for

high values ofr andr’.
If we now try to compute a quasiparticle overlap function

B. Quasiparticles and the continuum using the\/E method we obtain

Up to now we have restricted our study to overlap func-

tions corresponding to quasihole states. Our correlated _ p(r,a) 2a —B(r-a)22
OBDM model allows us to compute also the multipoles h(r)= ’—pl(a,a)wrz(r+a)2p0(r)e - (71

p(r,r") for high values ofl, which are expected to contain
contributions coming from quasiparticle states, i.e., states ndkhis expression goes to zero far—«, since the diagonal
occupied in the shell model but which are partially populatedpart of p; has an exponential decay, while the nondiagonal
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FIG. 10. The solid lines are the correlated OBDp4(r,r') for a
=2 in 12C, as a function of for different values of '=6, 7, 8, 9, B orF
10, and 11 fm. The dashed lines are a fit to an asymptotic approxi- - S
mationf(r,r’) defined in Eq(70). 0
part has an additional Gaussian behavior corresponding to £ '
the correlation function. This explains why in our results the & —2r
extracted overlap function for quasiparticles are zero. Thus B -3F
in our model of correlated OBDM it is not possible to obtain 4 I I
the overlap functions for quasiparticles since the correspond- ' /',,\
ing information of single-particle states above the Fermi EN 0F
level (configuration mixing has not been included into the £ 5L i
model. Moreover, when one subtracts from the correlated 2
OBDM the contribution of the quasihole states, the remain- B —-10 | -
ing density contains only the contributions coming from the _15 f !
continuumstates of the residual nucleus. These contributions 0 100 200 300
are implicit in the expansio(27) in terms of overlap func- p [MeV/c]

tions and they can be expressed as an integral over the en- _
FIG. 11. Response functions for proton knockout from phg

eroy- shell in 'C, for =460 MeV/c and w at the quasielastic peak.
Results are shown in DWIA witlisolid lineg and without(dashed
p(r,r’)—pquasihole(r,r’)zJ dE\I’E(r)T\IfE(r'). (72 lines) correlations in the hole overlap function, and in PWIA with
(short dashed lingsand without(dotted line$ correlations.

With the asymptotic method studied here it is not possible to

extract these overlap functions of the continuum. For this dnclude correlations. Thus comparison between solid and
practical inversion method of the integrdl2) in the dashed lines shows the effect of short range correlations in

asymptotic region is needed. The knowledge of these overlal'€ résponses. Results in PWIA with and without correlations
functions would be of interest, for instance, to compute the2'® Shown with short dashed and dotted lines, respectively.
(e,e’'p) cross section for high missing energy. _ In all the cases we note in the regipra200 MeVic an
increase of thed, T, andTL responses due to correlations,
_ ) ) which is around 5% near the maximum. This increase is
C. Bxclusive response functions and cross sections quite independent of the FSI since it is also present in PWIA.
In Figs. 11-13 we show the five exclusive responses foffhe reason for this fact is that correlations between the
proton knockout from the valence shells of the nuci&t, ejected proton and the residual nucleus have not been in-
160, and“°Ca as a function of the missing momentum. In all cluded. The increase seen in the responses can be easily un-
the cases, the kinematics correspond to a fixed value of théerstood in PWIA, where we basically see the momentum
momentum transfeq=460 MeV/c andw fixed around the distribution of the shell, as a consequence of the hardening
guasielastic peak. In each panel of Figs. 11-13 we show fowgffect seen in the overlap functions in Figs. 7-9 for the va-
curves corresponding to different models for the initiallence shells. Since in momentum space the fowegion is
and/or final wave functions that enter the current matrix el-sensitive to the high- region, the increase of the overlap
ement(7). We show results for PWIA and DWIA with and function for highr translates into an increase of the Fourier
without short-range correlations in the initial-state overlaptransform for lowp (~2100 MeV/c) where the maximum
functions. The DWIA results have been obtained using forof the momentum distribution is located. Since the correla-
the FSI the optical potential of Ref35]. Specifically, the tions in the ground state are in some degree decoupled from
solid lines have been computed with the DWIA model usingthe FSI, the same effect is propagated to the case of the
correlated overlap functions, while the dashed lines do noDWIA.
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FIG. 12. Response functions for proton knockout from the va- p [MeV/c] p [MeV/c]
lence shells py, and 1p,,in 0, forq=460 MeV/c andw at the

quasielastic peak. The meaning of the lines is the same as in Fig. 1%nF|G' 13. Response functions for proton knockout from the va-

ce shells @, and 1d,, in *°Ca, forq=460 MeV/c andw at

. . the quasielastic peak. The meaning of the lines is the same as in Fig.
In the case of th@ T response, we also find an increase of 4 d P g g

its absolute value due to correlations in DWIA, which is not
seen in PWIA, because the leading-order magnetization cuplayed together with the experimental data of R86]. Here
rents do not contribute to this respori88], and the resulting the kinematics correspond to fixed momentum transfer
factorized single-nucleo T response is of the order of =570 MeV/c and energy transfew=170 MeV at the
(p/M)? in a nonrelativistic expansiofthis is the reason why quasielastic peak. The energy of the electron beam is 580
this response function is so smallhis kinematical depen- MeV and the proton is emitted in the scattering plane. In Fig.
dence comes exclusively from the convection current, proi4 we show with solid lines our DWIA results using the
ducing a hardening of the maximum of the momentum discorrelated overlap functions for thepi, and Ip, shells,
tribution toward highemp values~150 MeV/c, where the while with dashed lines we show the uncorrelated results. We
correlated and uncorrelated results are closer. In DWIA, th@ote an enhancement of the cross section due to correlations,
FSI breaks the factorization property and the magnetizatiomhich is of the same order of magnitude as was found for the
current gives a contribution, which, therefore, is much largerresponse functions, and which clearly increases the disagree-
than the PWIA result. ment between theory and experiment. In the same figure we
Regarding the fifth response functidrL’, which only  show with short dashed and dotted lines the computed cross
can be measured using polarized electrons, it is exactly zersections multiplied by the factors 0.6§1,) and 0.5 (Ps,)
in the absence of FSI. In DWIA, however, it produces ain the correlated case and 0.64p(L) and 0.53 (Jps,) in
contribution to the total cross section and the correlations inhe uncorrelated one.
the ground state produce an increase, which is, in general, of Hence the scaling factor needed to reproduce the experi-
the same order as in the unpolarized responses. This increasental cross section @mallerfor correlated than for uncor-
is even larger {- 15%) in the case of thedy, shell in “°Ca  related overlap functions even though the computed spectro-
(see Fig. 13 scopic factors for these shells are smaller thai$<0.985
State-independent short-range correlations produce an irisee Table IV. This fact does not necessarily imply a de-
crease of thed,e’p) cross section, since the latter is a linear crease of theexperimentakpectroscopic factors since these
combination of the several response functions appearing iare obtained by a simultaneous fit of the parameters of the
Eg. (1). An example is shown in Fig. 14, where results of single-particle potential also. In other words, experimentally
DWIA calculations for the reaction'®O(e,e’p) are dis- one searches for the best phenomenological overlap function,
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FIG. 14. Computedd,e’p) cross section for the valence shells
of 0. The solid lines include correlated overlap functions while  FIG. 15. Computed ¢,p) cross section for the fi;, shell of
the dashed lines do not. These calculations have been scaled to git80. The solid lines include correlated overlap functions while the
the dashed and dotted lines in order to reproduce the experimentdhshed lines do not. Experimental data are from RB:].

data from Ref[36].
136] presented in the DWIA description of the,(p) reaction for

such low energies and high missing momenta, where, in par-

which when included into an uncorrelated DWIA code repro-ticular, the orthogonality approximatiofl2) is no longer
duces the experimental data. Our model has no adjustabtfue and other effect§38] of the same order as the ones
parameters since the correlations are already included and a@ising from correlations could appreciably change the re-
are the spectroscopic factors. Our results are showing thaults of Fig. 15.
short-range correlations of the central type in the ground
state do not produce an improvement of theee(p) data VI. SUMMARY AND CONCLUSIONS
description. Tensor correlations and long-range correlations
are obvious candidates for a reconciliation between theory |n this work the effects of short-range correlations on
and experiment. (e,e’p) observables and overlap functions have been stud-

To end the discussion we give in Fig. 15 another applicaied. The starting point for the present calculation has been
tion of our DWIA model in photonuclear reactions. Therein the OBDM, including short-range correlations of the central
we show the computedyp) cross section from thep,  Jastrow type, and which has been computed by a cluster
shell in %0 for two beam energies @&, =60 and 72 MeV  expansion to leading order in the correlation function. Cor-
together with the experimental data of RE37]. Again we  related overlap functions corresponding to quasihole states in
show with solid and dashed lines the correlated and uncorreslosed-shell nuclei have been extracted from the asymptotic
lated results, respectively. No scaling factors are includedOBDM multipoles, p,(r,r’), computed at large asymptotic
The impact of central correlations in this case is completelydistancesr’<100 fm. The reliability of the extraction
different from the ¢,e’p) reaction. In this case they produce method has been tested in the shell model, where a detailed
a large reduction of the cross section. The difference betweestudy of the different fit procedures and of the convergence
the two reactions lies in the different kinematical region,distances has been performed. These distances have been
which is being probed by photons. In the case ¢ff) the  found to be very large in the cases in which two single-
energy-momentum transfer verifies=q and we are far particle states of close energies are present. In those cases the
from the quasielastic peak region. As a consequence thasymptotic distances considered in our calculation of the
missing momentum is well above 200 MeV/c. Thus apartOBDM have been enough to separate the corresponding
from the small values of;, the photon is exploring here the overlap functions of the nuclef’C, 0, and“°Ca. As also
high-momentum tail of the overlap function where correla-has been found in other workg2,33,39, short-range corre-
tions produce a reduction of the momentum distribution lations produce small effects on the density distribution and
Such reduction can also be appreciated in Figs. 11-13ikewise on the OBDM. Our results given in Figs. 7—9 show
where the correlated transverse respaftise one contribut- that these effects are more noticeable in the overlap functions
ing to photoreactionsis below the uncorrelated one far  since they are determined by the asymptotic behavior of the
>200 MeV/c. One should also be aware of the difficulties OBDM. Short-range correlations produce a redistribution of
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the single-particle densities in coordinate space. Their valueSpair) under Contract Nos. PB/98-1367, PB/98-1318, and
are reduced at the maximum and increased for large didy the Junta de Andallmi(Grant Nos. FQM225 and
tances. In the case of the valence shells we find a hardenirgQm220.
of the distribution related to the collective effect of tNeN
repulsion at short distances.

The values of the computed spectroscopic factors in the APPENDIX A: MULTIPOLE ANALYSIS OF EXCLUSIVE
present work are around 0.985, in accord with the findings RESPONSE FUNCTIONS
obtained with other techniques. It is known that tensor and  The general multipole analysis of the,&'p) responses
long-range correlations can reduce these values but, @ciyding polarization degrees of freedom of the target
present, no model is able to reproduce the experimental valcleus and electron was presented in REZ8,29. The
ues extracted frome(e’p) data. _ _ formalism can also be applied to the present casé=00

The computed overlap functions have been included in gy clei, where some simplification of the multipoles given in
DWIA model of the @,e’p) reaction, and exclusive re- Ref [23] can be done. The following equations we write in
sponse functions and cross sections have been computed igfis appendix have been obtained, after some work, from the
quasielastic kinematics. Although the computed spectrogqgrresponding equations of RER3] for the particular case
scopic factors are less than 1, we have found an increases_ g [ 7 peing in[23] the angular momentum correspond-
(~5%) of the response functions and, accordingly, of théng tg a multipole expansion in terms of spherical harmonics
cross section in the region of the maximum of the mlssngjM(e*’gb*) of the nuclear polarization angles
momentum distribution for knockout from the valence shells. “\ye expand the nuclear electromagnetic current as a sum
This reduction is independent of the FSI and is a consept coulomb(for the time componehand electric and mag-
quence of the increase of the single-particle densities fopetic (for the transverse three-vector curfemtultipole op-
large distances. Thus the inclusion of central correlations ig 40rs of rankl. The final hadronic state is also expanded in
worsening the description of the experimental data in oUhaytial waves of the ejected proton as a combination of had-
model. This again proves that central correlations alone arg)nic states with total angular momentulndenoted ago’)
not enough to describe this reaction successfully. Apart from=_|(|j)Ja;J>, which represents a nucleon in the continuum

spin-isospin and tensor correlations, not included here fog,p, asymptotic angular momenta coupled with the re-
computational reasons, we would like to remark the Necesziy,al nuclear Statb:D(Afl)>:|‘] ). The exclusive response
a al*

sity of a model including, in addition, long-range correla- functions can be written in the form
tions in a consistent way.
The later correlations are related to the presence of an

admixture of multiz v configurations into the valence wave WLZE 2 [L1P°(cosh’ )Wt (A1)
functions of the residual nucledyd0]. For instance, in the K =0 - '

case of the®®Ca nucleus, the residual states correspond to the

nucleus®%. It is known that the transverse form factors of 1

the measured elastic and inelastic transitions*#i6 show WT=R LEO [L1P?(coso" W], (A2)

significant departures from the single-particle picture and
that a modification of the extreme shell-model wave func-
tions through the effect of core polarization is needed to L 1 1 T

describe the electron scattering cross secfiéd. When W =_RL>1\/—7+1)PL(0059 W=, (A3)
computing the ¢,e’p) reaction in *°Ca one uses a wave -
function that reproduces the elastic-electron-scattering data

or equivalently, the charge density, corresponding to the ini- " [L] 1 o TL!
tial state(the ground state of°Ca), ignoring the necessity of W=k =N PL(cosO)W ™, (Ad)
a proper description of the residual states also, usually
treated as single holes in the core.
Concerning the {,p) reaction, central correlations play WTTIE [L] P2(cosf’ )W T
here a more important role, producing a large reduction of K& J(L-1L(L+1)(L+2) - -
the cross section, since this reaction is sensitive to the high- (A5)
momentum components of the wave function where correla-
tion effects are maximized. with [L]= 2L+ 1. Note that the whole dependence on the

In this paper we have demonstrated with a reali;tic queémitted proton anglé’ is given through the Legendre func-
that the asymptotic method to compute the OBDM is feasibléo g pM(cos) and that the present response functions are
and that convergence of the results can be obtained: therefoyg . - by the factoK =M p'/(274)? with respect to those
it rises as an alternative reliable starting point to be applietfiVRe]c [23]. The reduced response function , defined as
to other kinds of correlated densities. the coefficients in the expansiof&l)—(A5) are given by
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JJ L
1 -1 0

W==2 @,,(L) )(f}.,_JlREg

0’(7) ’

+§}—|',J—|RT2 (A7)

JJ L
wWit=—23 (I)U,U(L)< _1)(ffr_.r,J_|R3i

ot 0 1

TL2
R

_g\;’fl’,Jfl o"o’)’ (A8)

!

! ‘] L
W-II_—L :_22, (DU'IU'(L)< 0 1 _1)(§I’I’,J||1—'I’_3—'

ITL2

_g.l_'—l’,J—l 0"0')’ (Ag)

!

J oL
TT1
W'=-2 <I>grg(L)(1 1 _2)(§j,_,,,J_|RU,(,

TT2
R

_g.;’fl’,J*l 0"0')' (AlO)

Note that theTL andTL’ reduced response functions of Ref.

PHYSICAL REVIEWGS 034602

Rﬁ,’c andli,’o in Egs.(A6)—(A10) are then defined by the
following quadratic forms constructed with these multipoles:

RS, =RgC*,C,], (A18)
R} =R4EE,+M*M,], (A19)
Rl =R{E*M,~M*E,], (A20)

RII=RgC* E,], (A21)

RIZ=RegC*M,], (A22)

1T =1m[C* E,], (A23)

I12=Im[C*,M,], (A24)
Rl =R{EXE,~M%M,], (A25)
RIZ=RdE*M,+M* E,]. (A26)

[23] include an extra factog2 due to the different definiton TheL, T, TL, andTT responses include only the real parts of
of the vy, and vy, factors. The coupling coefficient the quadratic combinations of the various multipole matrix

®,.,(L) includes the internal sums over third componentselements, while the fifth response functidn.” is a linear

and it is defined as

D, (L)=P [0 IL]

im0 L
X (—1)3+d FI U2+l 1 1
(—1) 1y
2 2
i 7 L
X 3y 3l (A11)
We also use the parity functions
L1 i
P =5[1=(-1)'], (A12)
& =(-1)0-bepf (A13)
& =(—1tiepr (A14)

In order to define the functior8;, andl’;, _in Egs.(A6)-

combination of the imaginary part&23) and(A24). There-

fore the TL' response is zero in PWIA, where the matrix
elements(A15)—(A17) are real numbers. In the presence of
an interaction, however, the matrix elemeisl5)—(A17)

are, in general, complex numbers due to the asymptotic com-
plex phasee'?i introduced by the nuclear interaction in the
wave function, and as a consequence, the fifth response func-
tion is different from zero in DWIA. The sum over the quan-
tum numberso=(l,j,J), o'=(I",j’,J"), and L in Egs.
(A1)—(A10) is only restricted by angular momentum conser-
vation. In practical calculations we fix the number of multi-
poles involved in the sums by comparing our results with the
ones corresponding to the factorized PWIA in the impulse
approximation where, as known, the nuclear responses can
be computed exactly.

The outgoing proton wave function corresponds to a so-
lution of the Schrdinger equation for positive energies using
a complex optical potential fitted to elastic proton-nucleus
scattering data. The partial wavge with energyE>0 and
wave numberk=2ME is determined by the asymptotic
condition

(A10), we introduce the Coulofnb, electric, and magnetic 2M .
Rij(k,r)~ ﬁzke"("'”lj)
T

multipole matrix elements,

C,=(allM,(q)[0), (A15)
E,=(o]T5(q)]0), (A16)
M,=(oiT]*Ya)]0), (A17)

X sin

a
kr—nInZkr—IE+a,+5ﬁ ,
(A27)

where g); is the complex phase shift ang is the Coulomb
phase shift. In the limit in which the imaginary part of the

whereM,(q), T5'(a), and TT*¥q) are the usual Coulomb, optical potential is zero and the phase shiftis a real num-
electric, and magnetic multipole operators. The functionger, the continuum radial wave functions are normalized with
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a Dirac delta function containing the energisse Ref[23)).
The imaginary (absorptive part of the optical potential

PHYSICAL REVIEW C65 034602

f d c0s61,C0801f (115 = —AJ d cosalzcosalze‘Briz

modifies the normalization of the continuum states since the

flux of the outgoing particles in the elastic channel is re-

duced.

APPENDIX B: ASYMPTOTIC OBDM FOR UNOCCUPIED
STATES

A
2Brqr,

e B(frfz)z_ (B2)

Hence the asymptotic behavior of the=2 multipole for
rq,r{—oo is

We consider as an example the simplest case of the mquA(rl,r1)|:2~R1p3l2(r1)R1p3/2(r1)

tipole =2 for the nucleus'“C. More details are given in
[34]. We use the expressida3) for the correlated contribu-
tions to the OBDM. First we exclude the contribution of

diagramsC and D of Fig. 2, since the dependence of these

terms on the density coordinates’ is done across the non-
correlated density(r,r’), which only contains the multi-
polesl=0,1 in the case of?C. In other words, the external
pointsr andr’ in diagramsC andD are connected with the
others with density lines only, which cannot modify its mul-
tipolarity I =0,1.

In the case of diagram of Fig. 2, it can be written in a
multipole expansion a22]

pa(r1, )= 2 (2j1+ DRy (TR (1)

nilajy
2l3+1
2l,+1

o1, |
0 0 0

x>

I

2
) P,(cosf,1)

XJO drar3po(ra)fi(ra,r2)fi(ri.ra),

(B1)

where the functiorf, (ry,r,) is the multipole of the corre-
lation function for angular momenturty. The sum over
nq,lq,j1 corresponds to the occupied statsg,dand 1ps, in
12C. The multipolel =2 of the OBDM is obtained as the
coefficient of the Legendre polynomi#d,(cos#;,/) in the

above equation. Since we are interested in the asymptotic

behavior forr,,r;—o we only consider the contribution
coming from thel,=1 term, i.e., (4l4j1)=1p3». Hence
the 3j coefficient gives a nonzero result for=1 only. The
corresponding multipolé,=1 for the correlation function is
proportional to the integral

e B(r1—r2)? g=B(r;—ry)?

o]
2
XJ draropo(rz) ;
0 s rars

(B3)
Changing to the variabler,=r,—r,,, where r,=(r;
+r7)/2 is the midpoint between, andr;, we arrive at
Pa(r1,r)i=2~Ryp (r)Ryp, (1)

e—B(rl—ri)ZIZ

————po(I'm)

* 12
X f drye 282,
— o0

(B4)

Finally, introducing the asymptotic behavior of the radial
functions

e Kn
Ripg,(F1)~ o (B5)
e 2krp efk(r1+ri)
Pl = 0
we obtain the following asymptotic expression:
Par1,r1)i=2
exp:(—Zerexri—Zkri)ex;{M)

- r2ri2(ry+rp)? ’
ry,ri—ce. (B7)

A similar expression can be obtained for diagrBrof Fig. 2.
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