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Effects of short-range correlations in„e,e8p… reactions and nuclear overlap functions
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A study of the effects of short-range correlations over the (e,e8p) reaction for low missing energy in
closed-shell nuclei is presented. We use correlated quasihole overlap functions extracted from the asymptotic
behavior of the one-body density matrix, containing central correlations of Jastrow type, up to first order in a
cluster expansion, and computed in the very high asymptotic region, up to 100 fm. The method to extract the
overlap functions is checked in a simple shell model, where the exact results are known. We find that the
single-particle wave functions of the valence shells are shifted to the right due to the short-range repulsion by
the nuclear core. The corresponding spectroscopic factors are reduced by only a few percent with respect to the
shell model. However, the (e,e8p) response functions and cross sections are enhanced in the region of the
maximum of the missing momentum distribution due to short-range correlations.
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I. INTRODUCTION

In the last few years, quasifree (e,e8p) reactions have
proved to be an ideal tool to study the spectral function
nuclei @1,2#. Apart from the ambiguities coming from fina
state interactions~FSI! and off-shell effects in the electro
magnetic current, it is possible to extract valuable inform
tion about single-particle properties such as momen
distributions and spectroscopic factors of the differe
nucleon shells near the Fermi level@3#.

The observed values of the spectroscopic factors
closed shell nuclei are aroundS;0.6–0.7@4–6#—yet theo-
retical studies appear to indicate that these values incr
due to relativistic effects@7#. The small values of the spec
troscopic factors are attributed to the departure from the
treme single-particle model, where the nucleon is ejec
from a well-defined orbit within the target nucleus.

Recent variational Monte Carlo calculations includi
short-range correlations in the nuclear wave function rep
spectroscopic factors differing from unity only by a few pe
cent@8–13#. In addition, center of mass correlations can e
hance the spectroscopic factor by around 7% for the vale
shell of 16O @15,16#. Although it has been shown that the
values could be lowered by the inclusion of low-energy co
figuration mixing in the wave functions@14#, the experimen-
tal spectroscopic factors, and hence the cross sectio
(e,e8p) reactions for low missing energy, are not satisfac
rily explained by present theoretical models.

It has been shown recently@17# that the overlap functions
between the nuclear ground state withA nucleons and a re
sidual state withA21 nucleons—which are a main ingred
ent in nucleon knockout calculations, including implicitly th
spectroscopic factor—can be obtained from the asympt
behavior of the one-body density matrix~OBDM!. This was
confirmed in an exactly solvable many-body system in o
dimension with a zero-range interaction@18#. The theorem
was applied in@19# to obtain the overlap functions and spe
troscopic factors from a model OBDM including Jastro
correlations, and later@20,21# applied to the calculation o
cross sections for several reactions, such as (p,d), (e,e8p),
and (g,p). However, some problems with the numerical re
0556-2813/2002/65~3!/034602~23!/$20.00 65 0346
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toration procedure performed in@19#, which is based on an
exponential fit of the OBDM, were pointed out in@15#,
namely, ~i! the use of harmonic-oscillator single-partic
wave functions, which do not have the correct exponen
behavior in the asymptotic region, to construct the OBD
and~ii ! the nature of the exponential fit allowed to obtain
@19# overlap functions for the unoccupied states, while
@15# it was demonstrated that such extraction is not poss
starting from a CBF~correlated basis function!-type wave
function.

In Ref. @21# the same restoration procedure was applied
compute overlap functions using several correlated OBD
taken from the literature. In particular, the one obtained
@22# by a truncated cluster expansion of the radial multipo
r l(r ,r 8) of the OBDM. Using the above density, spectr
scopic factors corresponding to thep1/2 andp3/2 shells of16O
were reported@21# to be identical in this model and equal t
0.981. The equality of these values is probably due to
fact that the restoration procedure in@21# started from a
OBDM for l 51, which~i! was not separated in spin partne
j 51/2,3/2 and~ii ! was computed up to distances ofr ,r 8
511 fm, which are not large enough to separate asympt
cally the two contributionsp1/2 andp3/2. This fact, together
with the problems pointed out above, makes it possible t
some of the effects attributed in@21# to short-range correla
tions could actually be a consequence of the extraction p
cedure of the overlap functions.

One of the motivations for this work is to clarify thi
situation, in particular, to explore the possibility of separ
ing the two spin-orbit partnersj 5 l 61/2 starting from al
multipole of the OBDM. Note that, in the correlated mod
of @22#, the underlying Slater determinant was built wi
Woods-Saxon single-particle wave functions including sp
orbit splitting, so the model can deal with different overla
functions, with different energies, corresponding to thep1/2
and 1p3/2 shells in 16O or d3/2 andd5/2 in 40Ca.

Another aim of this paper is to perform a numerical stu
of the convergence of the asymptotic methods used to ex
the overlap functions from the OBDM. We first carry o
such study in the nuclear shell model, where the exact o
lap functions are known~they are equal to the single-partic
wave functions!. This allows us to determine optimum upp
©2002 The American Physical Society02-1
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values of the coordinates in which one should know
OBDM in order to obtain convergence in the extraction p
cedure. We continue evaluating more realistic overlap fu
tions starting from the correlated OBDM of@22#, computed
up to;100 fm, so that we can check the convergence of
results. In particular, we will be able to obtain precise valu
of the spectroscopic factors for quasihole states.

Finally, in this work the overlap functions resulting from
the above task will be inserted in a model of the (e,e8p)
reaction, in order to evaluate the effects of short-range
relations over nuclear response functions and cross sect
We use the distorted wave impulse approximation~DWIA !
model of @23,24#, which includes a new expansion of th
relativistic electromagnetic current in powers of the miss
momentum, butit is not expanded inq or v. Combined with
relativistic kinematics, this relativistic model was shown
Ref. @25# to give the same results as the relativistic Fermi g
for the electromagnetic inclusive responses in nuclear ma
Moreover, the present model was compared in@26# with a
fully relativistic DWIA model of the reaction foruQ2u
50.8 (GeV/c)2, giving a reasonable description of theATL
asymmetries recently measured in16O @27#.

This paper is organized as follows. In Sec. II we summ
rize the DWIA model we use for coincidence electron sc
tering, and its relation with the overlap functions, with som
details of the multipole analysis of response functions pla
in Appendix A. In Sec. III we present the differen
asymptotic procedures to extract the overlap functions fr
the exact OBDM, and the correlated model of the OBD
including short-range correlations of the Jastrow type.
Sec. IV we present a study of the reliability and converge
of the asymptotic methods in the shell model. The reade
directed to Sec. V for discussion of the results obtained w
the correlated model, where the effects of short-range co
lations over (e,e8p) observables, overlap functions, an
spectroscopic factors are analyzed, with a brief applicatio
the model to (g,p) reactions. Finally, our conclusions a
summarized in Sec. VI.

II. DWIA MODEL OF „e,e8p… REACTIONS

A. Cross section and response functions

In this section we summarize those aspects of the (e,e8p)
reaction that are of relevance to this paper. We consider
process shown in the Feynman diagram of Fig. 1. Here

FIG. 1. One-photon exchange diagram for the (e,e8p) reaction.
03460
e
-
-

e
s

r-
ns.

g

s
er.

-
-

d

n
e
is
h
e-

of

he
n

incident electron with four-momentumKe
m5(«,ke) interacts

with a target nucleus, exchanging a virtual photon with fo
momentum given byQm5(Ke2Ke8)

m5(v,q), with Ke8
m

5(«8,ke8) being the scattered electron four-momentum. T
outgoing proton with four-momentumP8m5(E8,p8) is de-
tected in coincidence with the scattered electron.

The wave function of the spin-zero target in the grou
state is denoted byuF0

(A)&, with ~nonrelativistic! energy
E0

(A) . We are interested in the low-missing-energy regio
where the residual nucleus is left in a bound sta
uFa

(A21)&5uJaMa&, with ~nonrelativistic! energy Ea
(A21) .

We neglect recoil and assume parity conservation.
We work in the laboratory system, with thez axis pointing

into theq direction and thex axis in the electron scatterin
plane. In this reference system, the cross section for
(e,e8p) reaction, assuming plane waves and the extre
relativistic limit for the electron, can be written in the form
@29#

d5s

d«8dVe8dVp8

5S1hD, ~1!

whereVp85(u8,f8) are the proton emission angles,h is the
electron helicity,S is the unpolarized cross section, andD is
the electron polarization power. These functions are given

S5KsM@vLWL1vTWT1vTLWTLcosf8

1vTTWTTcos 2f8#, ~2!

D5KsMvTL8W
TL8sinf8. ~3!

Here the kinematical factorK is proportional to the momen
tum p8,

K5
p8M

~2p\!3
, ~4!

sM is the Mott cross section, andvK are factors containing
the dependence on the electron kinematics,

vL5S Q2

q2 D 2

, vT5tan2
ue

2
2

Q2

2q2
,

vTL5
Q2

q2
Atan2

ue

2
2

Q2

q2
, vTT5

Q2

2q2
, ~5!

vTL85
Q2

q2
tan

ue

2
.

Note that in this work thevTL and vTL8 variables have an
extraA2 factor with respect to the corresponding definiti
of Ref. @29#.

The five exclusive nuclear response functionsWK are de-
fined by the following linear combinations of longitudina
~L! and/or transverse~T! projections, with respect to the
2-2
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EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
transfer momentumq, of the relevant tensor describing th
hadronic part of the emission mechanism,

WL5W00, WT5Wxx1Wyy,

cosf8WTL5W0x1Wx0, cos 2f8WTT5Wyy2Wxx,
~6!

sinf8WTL85 i ~W0y2Wy0!.

Here the hadronic tensorWmn is related to the transition
matrix elements of the nuclear electromagnetic current
eratorĴm(q). It is defined by

Wmn5
1

K (
msMa

^p8ms ,Fa
(A21)uĴm~q!uF0

(A)&

3^p8ms ,Fa
(A21)uĴn~q!uF0

(A)& ~7!

and it represents the maximum information that can be
tained in these kinds of experiments. Note that the dep
dence on the azimuthal angle of the emitted proton,f8, is
given explicitly in Eqs.~6!. The final hadronic states enterin
in the definition of the hadronic tensor,up8ms ,Fa

(A21)&, are,
in principle, the exact scattering states with the correspo
ing boundary conditions, i.e., they correspond asymptotic
to a nucleon with momentump8 and third spin componen
ms , and a daughter nucleus in the stateuFa

(A21)&.

B. DWIA and overlap functions

In this paper we consider a DWIA model of the curre
matrix elements between hadronic states that enter into
hadronic tensor~7!. This model is based on the impulse a
proximation, in which we assume that the nuclear elec
magnetic current is a one-body operator. Hence we are
glecting two-body contributions coming mainly from meso
exchange currents. The contribution from these two-bo
currents was analyzed in@30#. However, in this work we are
not including that contribution, since we are interested
studying the genuine short-range correlation effects.

The impulse approximation current operator can be w
ten in momentum space as

Ĵm~q!5E d3k Jm~q1k,k!aq1k
† ak , ~8!

where Jm(q1k,k) is the single-nucleon current for whic
we use a new nonrelativistic expansion to first order ink/M ,
first proposed in Refs.@25,31#. The time component of this
current contains charge and spin-orbit contributions, wh
the transverse current is given as the sum of magnetiza
plus convection pieces. However, each piece of the cur
differs from the traditional nonrelativistic one, containing,
addition to the nucleon form factors, relativistic correcti
factors that depend onq and v. In Ref. @25# it was shown
that, beginning with the usual nonrelativistic Fermi gas a
using relativistic kinematics plus the new currents, the sa
longitudinal and transverse inclusive response functions
obtained essentially as in the relativistic Fermi gas model
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arbitrary values ofq, which can be bigger than 1 GeV. Not
that the usual nonrelativistic forms of the current, which a
also expanded in powers ofq/M , begin to fail for high val-
ues ofq.500 MeV/c and cannot be applied forq;M .

The second approximation used in DWIA is the descr
tion of the ejected proton state as a single-particle wave fu
tion xp8(r ), obtained as the solution of the Schro¨dinger equa-
tion with a complex optical potential fitted to elastic
scattering data. The final hadronic state is then written a

uFa
(A21) ,xp8&5E d3k x̃p8~k!ak

†uFa
(A21)&, ~9!

where*d3k x̃p8(k)ak
† is the field operator creating a nucleo

in the statex̃p8(k), i.e., the wave function of the ejecte
proton in momentum space. From here we can write
matrix element of the current~8! as

^Fa
(A21) ,xp8uĴ

m~q!uF0
(A)&

5E d3k d3k8 x̃p8
* ~k8!Jm~q1k,k!

3^Fa
(A21)uak8aq1k

† akuF0
(A)&. ~10!

Now we use the anticommutation rules of the Fermion o
erators

ak8aq1k
† 5d~k82q2k!2aq1k

† ak8 . ~11!

The contribution of the second term in this equatio
aq1k

† ak8 , can be neglected if~1! the momentum of the
ejected proton is much larger than the Fermi momentum
the initial nucleus,p8@pF , this condition is usually fulfilled
in the experiments; and~2! the wave functionx̃p8(k8) of the
ejected nucleon is negligible outside of an interval of m
mentumDk8 around the central valuep8.

In such cases, we can write

x̃p8
* ~k8!ak8uF0

(A)&.0. ~12!

This condition is equivalent to assuming that the wave fu
tion x̃p8 is orthogonal to the components of the initial sta
Nonorthogonality effects have been found to be small in
region of low missing momentum. However, the assumptio
made in this approximation are not valid for high missi
momentum, for which the region neglected by the appro
mation ~12! is explored.

We are interested here in the low-missing-momentum
gion so we can write the current matrix element as

^Fa
(A21) ,xp8uĴ

m~q!uF0
(A)&

5E d3k x̃p8
* ~k1q!Jm~q1k,k!^Fa

(A21)uakuF0
(A)&.

~13!
2-3
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In this equation we identify the single-particle overlap fun
tion between the statesF0

(A) and Fa
(A21) , defined, in mo-

mentum space, as the matrix element@1#

C̃a~k!5^Fa
(A21)uakuF0

(A)&. ~14!

Using this definition, we can write the many-body matr
element of the current~13! as a matrix element betwee
single-particle states, namely, between the overlap func
and the distorted wave of the final proton

^Fa
(A21) ,xp8uĴ

m~q!uF0
(A)&5^xp8uJ

m~q!uCa&. ~15!

This is the matrix element that we compute in the pres
work in order to obtain the (e,e8p) response functions. Th
information about short-range correlations is contained
side the overlap functionsCa , which are obtained from a
correlated OBDM by the asymptotic method explained in
following section. The matrix elements~15! are computed by
performing a multipole expansion of the current operators
terms of Coulomb, electric, and magnetic operators, and
the outgoing wave functionxp8 in partial waves. The corre
sponding response functions~6! are expanded in Legendr
functions of cosu8 ~the angle betweenp8 and q), and their
expressions are given in Appendix A.

The physical interpretation of the overlap function is cle
by writing it in the form

C̃a~k!5ASafa~k!, ~16!

wherefa is the overlap function normalized to unity, and
is usually identified with the effective single-particle wa
function of the ‘‘shell’’ occupied by the ejected nucleon. Th
spectroscopic factorSa5^CauCa& is the occupancy prob
ability of the shell.

The plane wave impulse approximation~PWIA! will be
useful for the physical interpretation of the correlation effe
shown below in terms of overlap functions. In PWIA sin
FSI is neglected, the wave function of the ejected proton
plane wave,x̃p8(k)5d(k2p8), and hence Eq.~13! becomes

^Fa
(A21) ,xp8uĴ

m~q!uF0
(A)&5Jm~p8,p!C̃a~p!, ~17!

where we have introduced the missing momentum,p[p8
2q, identified with the momentum of the proton before t
interaction. As a consequence of the above factoriza
property, the hadronic tensor~7! is proportional to the mo-
mentum distributionuC̃a(p)u2 of the overlap function

Wmn5wmn~p8,p!uC̃a~p!u2, ~18!

wherewmn(p8,p) is the hadronic tensor for a single nucleo
with initial momentump and final momentump8,

wmn~p8,p!5Jm~p8,p!* Jn~p8,p!. ~19!

In the same way, the response functions are also proporti
to the momentum distribution

WK5wK~p8,p!uC̃a~p!u2, ~20!
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wherewK(p8,p) are the response functions for electron sc
tering by a single proton with momentump.

When the FSI is turned on, the above factorization is
true anymore but the general behavior of the response fu
tions is preserved. The mean effect of the FSI is a reduc
of the responses due to the absorptive part of the opt
potential. We will see below that the effects of the sho
range correlations are decoupled from the FSI effects.

III. CORRELATED MODEL OF OBDM AND OVERLAP
FUNCTIONS

A. Overlap functions

The basic quantities of interest for our calculations are
overlap functions between nuclear states withA and A21
nucleons, Eq.~14!. We work in coordinate space, where th
overlap function is

Ca~x!5^Fa
(A21)ua~x!uF0

(A)&. ~21!

Herex5(r ,sz ,tz) is a generalized coordinate including sp
and isospin,r is the relative coordinate with respect to th
center of mass of the residual nucleusF f

(A21) , anda(x) is
the destruction operator of a nucleon at the pointx. We as-
sume that the initial nucleus is in the ground stateF0

(A) with
energyE0

(A) , while the residual nucleus remains in an arb
trary stateFa

(A21) with energyEa
(A21).

Using the Schro¨dinger equation verified by the initial an
final nuclear states, a system of integrodifferential equati
for the overlap functions can be written@28#. However in the
procedure explained below to compute these functions
the low-energy levels of the residual nucleus we only ma
use of its asymptotic behavior, which is based on the follo
ing equation verified by the overlap functions at large d
tances,r→`,

2
\2

2m
¹2Ca~r !1~A21!v~r !Ca~r !

5@E0
(A)2Ea

(A21)#Ca~r !, ~22!

wherev(r ) is theNN potential andr5r12r2 is the relative
coordinate. This equation means that the overlap func
behaves asymptotically as a single-particle interacting w
the A21 nucleons of the residual system as if they we
located at the same position, namely, at the center of mas
the residual nucleus. Of course this is only valid for su
large distances that it is not possible to take notice of
small separation distances of nucleons within the nucleu

In the cases when the initial nucleus has spin zero and
parity of nuclear states is a good quantum number, it is p
sible to separate the overlap function in radial and sp
angular parts@28#

Ca~r !5fnl j~r !Yl jm~u,f!, ~23!

with j 5Ja being the spin of the final nuclear stateFa
(A21)

and l 5 j 61/2 depending on the parity of this state. The r
dial overlap functionfnl j (r ) ~where the quantum numbern
is reminiscent of the later identification with shell-mod
2-4
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states! verifies for large distances a radial equation com
from Eq. ~22!, with an asymptotic eigenvalue given as t
difference between the energies of the initial and resid
nuclei E0

(A)2Ea
(A21) , which is a negative number for ever

value of the excitation energy of the residual nucleus. The
fore the overlap function behaves as a bound state and
the typical exponential decay

fnl j~r !;C
e2kr

r
, r→` ~24!

with

k5A2muEa
(A21)2E0

(A)u

\2
. ~25!

The exponential decay is modified by a logarithmic phase
the case of proton emission, where the Coulomb poten
plays a role. However this fact does not modify the followi
results.

The relation between the overlap functions and
OBDM follows from the definition of the density matrix o
the initial nucleus,

r~r1 ,r2!5(
s

^F0
(A)ua†~r1 ,s!a~r2 ,s!uF0

(A)&. ~26!

Inserting a complete set of statesuFa
(A21)& of the residual

nucleus between the two Fermi operators we obtain an
pansion of the OBDM in terms of overlap functions

r~r1 ,r2!5(
a

Ca
†~r1!Ca~r2!. ~27!

In this work we consider the OBDM expanded in multipo
densities with angular momentuml,

r~r1 ,r2!5
1

4p (
l

r l~r 1 ,r 2!Pl~cosu12!, ~28!

whereu12 is the angle betweenr1 and r2. Inserting the ex-
pression~23! into Eq. ~27! and performing the sums ove
third components, we find the corresponding expansion
the OBDM multipoles in terms of radial overlap functions

r l~r 1 ,r 2!5(
n j

~2 j 11!fnl j~r 1!fnl j~r 2!

5(
n j

cnl j~r 1!cnl j~r 2!, ~29!

where we have definedcnl j (r ) as the radial part of the over
lap function normalized with a factorA2 j 11,

cnl j~r !5A2 j 11fnl j~r !. ~30!
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B. Asymptotic methods for computing the overlap functions

We recall here the method presented in@17# to compute
the overlap functions by means of the exact OBDM for t
ground state of theA-particle system.

We consider a fixed value ofl, and denote the correspond
ing radial overlap functions with angular momentuml sim-
ply as ca(r ), a50,1,2, . . . , corresponding to bound state
of the residual nucleus ordered by increasing ene
E0

(A21),E1
(A21),•••, and with asymptotic behavior

ca~a!;Ca

e2kaa

a
, a→` ~31!

with ka5@2m(Ea
(A21)2E0

(A))#1/2/\.
The asymptotic behavior of the OBDM is, from Eq.~29!,

r l~r ,a!;(
a

ca~r !Ca

e2kaa

a
, a→`. ~32!

Now, due to the orderingk0,k1,•••, the above sum is
dominated by the first term, with the slowest exponen
decay, for long distancesa such thata(k12k0)@1,

r l~r ,a!;c0~r !C0

e2k0a

a
, a→`. ~33!

Combining this equation with the asymptotic behavior of t
diagonal part, which allows us to determine the constantC0,

r l~a,a!;uC0u2
e22k0a

a2
, a→`, ~34!

we can compute the overlap functionc0(r ) and the corre-
sponding separation energy. In order to obtain the sec
overlap function, we apply the procedure to the density
tained by subtracting the contribution of the first overlap,

r l~r ,a!2c0~r !c0~a!;c1~r !C1

e2k1a

a
, a→`. ~35!

In principle, all the overlap functions corresponding to bou
states of the residual nucleus may be obtained by repea
these steps. In the following section we check the validity
this procedure, which in the present paper we call ‘‘expon
tial decay method.’’

There is an alternative, equivalent way@15# of obtaining
the overlap functions from the asymptotic behavior of t
OBDM, without using explicitly the exponential decay pro
erty. We will illustrate it using the fact that the diagonal pa
of the OBDM has also an exponential decay given by E
~34!, from where we can write

Ar l~a,a!;uC0u
e2k0a

a
, a→`, ~36!

which is precisely the behavior of the first overlap functio
Eq. ~31!. Using this equation in the asymptotic form of th
OBDM, we obtain
2-5
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c0~r !5 lim
a→`

r l~r ,a!

Ar l~a,a!
. ~37!

Note that in the caseC0,0 we obtain a minus sign that i
just a global phase that can be inserted in the overlap fu
tion. The application of this expression, which we call t
‘‘ Ar method,’’ has clear advantages over the exponential
cay one when it is used to compute the overlap functi
from a model OBDM without the correct asymptotic beha
ior ~for instance, constructed with harmonic-oscillator sing
particle wave functions!.

C. Model of correlated OBDM

In this work we compute the overlap functions of clos
shell nuclei by applying the last method explained to a c
related OBDM. We use the model of Ref.@22#, which in-
cludes short-range correlations up to first order in a clu
expansion of the OBDM. The density and momentum dis
butions were compared with the FHNC~Fermi hypernetted
chain! calculation of Ref.@32#, with a good agreement be
tween both models.

We begin with the OBDM of the initial nucleusuF0
(A)&

written as

r~x1 ,x2!5
A

^F0
(A)uF0

(A)&
E dx2•••dxAF0

(A) * ~x1 , . . . ,xA!

3F0
(A)~x1 , . . . ,xA!. ~38!

For the applications to (e,e8p) reactions, we will only need
the proton density, this is obtained by inserting in the pre
ous equation the projection operatorQ(1)5 1

2 @11tz(1)#.
n

ai

03460
c-

e-
s

-
-

r-

r
i-

i-

Short-range correlations are introduced within the mo
by the Jastrow ansatz for the nuclear wave function

F0
(A)~1,2, . . . ,A!5F~1,2, . . . ,A!FSl

(A)~1,2, . . . ,A!.
~39!

HereFSl
(A) is a Slater determinant andF is a correlation func-

tion containing two-body central correlations

F~1, . . . ,A!5 )
i . j 51

A

f ~r i j !, ~40!

where r i j 5ur i2r j u, and the functionf (r i j ) has a Gaussian
functional dependence

f ~r !512A exp~2Br2!. ~41!

We use the parametersA50.7 and B52.2 fm22, which
were fixed in@32# by minimizing the nuclear binding ener
gies for the Afnan and Tang S3 interaction. In Ref.@22# up to
six spin-isospin correlation channels were included. Ho
ever, the numerical effort grows in the present case, since
have computed the OBDM up to distances as large as
fm, essential for separating the first overlap function in so
cases. This fact compeled us to reduce the number of co
lation channels and to use a Gaussian dependence, in ord
perform analytically the multipole expansion of the corre
tion function f (r ).

The OBDM is calculated by a cluster expansion, writin
the correlation function as

F~1, . . . ,A!511)
i . j

h~r i j ! ~42!

and performing an expansion up to second order inh. The
resulting OBDM for protons can then be written as
r1
p~r1 ,r18!5r0

p~r1 ,r18!1A~r1 ,r18!2B~r1 ,r18!2C~r1 ,r18!1D~r1 ,r18!

5r0
p~r1 ,r18!1r0~r1 ,r18!E d3r 2H~r1 ,r18 ,r2!r0~r2 ,r2!

2E d3r 2r0~r1 ,r2!H~r1 ,r18 ,r2!r0~r2 ,r18!

2E d3r 2E d3r 3r0~r1 ,r2!r0~r2 ,r18!r0~r3 ,r3!H~r2 ,r2 ,r3!

1E d3r 2E d3r 3r0~r1 ,r2!r0~r2 ,r3!r0~r3 ,r18!H~r2 ,r2 ,r3!, ~43!
t

s
-
ent
where the new correlation functionH can be expressed i
terms of the correlation functionf (r ),

H~r i ,r j ,r k!5Q~1!@ f ~r ik! f ~r jk!21#. ~44!

This function contains the correlations between the two p
 rs

of particles (ik) and (jk). The operatorQ(1) guarantees tha
the particle 1 is a proton.

The functionsA,B,C,D corresponding to the correction
to the uncorrelated OBDM,r0(r1 ,r18), are represented dia
grammatically in Fig. 2. Therein, the open circles repres
the two coordinatesr1 and r18 , while the solid dots refer to
2-6
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EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
coordinates of inner nucleons, which are correlated to
rest. A continuous line represents a noncorrelated OB
r0(r1 ,r2), while the dashed lines join the different particl
involved in the new correlation functionH. Thus in the dia-
gramsA and B, the particles 1 and 18 are simultaneously
correlated to a third particle 2. On the other hand, in d
gramsC andD there are two inner particles 2 and 3, whic
are correlated between them.

Using the above expression a multipole expansion is p
formed to obtain the radial densities,r l(r ,r 8), needed to
compute the overlap functions for different angular m
menta. We refer to@22# for details on this expansion. Not
that, contrary to Ref.@15#, in this model we do not separat
the multipolesr l j (r ,r 8) of the density in spin-orbit partner
j 5 l 61/2 explicitly. However these two contributions are i
cluded in r l . Since our correlated OBDM is based on
single-particle basis obtained with a Woods-Saxon poten
including spin-orbit interaction, the two overlap function
cnl j corresponding to an occupied shell have different en
gies from the beginning and, in principle, they can be se
rated in the asymptotic region.

IV. TEST OF THE ASYMPTOTIC METHODS IN THE
SHELL MODEL

Before computing the overlap functions using the cor
lated model of Sec. III C, it is convenient to perform a test
the asymptotic methods using a nuclear model where
exact solution is knowna priori. In this way we will be able
to determine~i! which of the algorithms introduced below
more adequate to extract the overlap functions and~ii ! the
asymptotic distance needed to separate the several ov
functions.

We perform this analysis in the extreme shell mod
~SM!, where the overlap functions are just the single-parti
wave functions of the occupied shells. Apart from its si
plicity, another reason to choose the SM is that it cor
sponds to the zero order of the correlated model. Under
assumption that the Jastrow correlations, as a first-order

FIG. 2. Diagrams considered in the cluster expansion of
OBDM. The dashed lines indicate the dynamical correlationsf (r i j )
and the solid lines indicate the uncorrelated density.
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rection to the SM, do not drastically change the asympto
behavior of the OBDM, we expect that the convergence c
ditions found in the SM will be valid in the correlated mode

The single-particle wave functions in the SM are obtain
by solving the Schro¨dinger equation for a nucleon in
Woods-Saxon potential

VWS~r !52
V0

11expS r 2R

a0
D 2 lW•sW S \

mpcD 21

r

d

dr

3F Vls

11expS r 2R

als
D G1VC~r !, ~45!

whereVC(r ) is the Coulomb potential for protons, of a un
form charge distribution with radiusR. The parameters of the
potential are given in Table I for the closed-shell nuclei co
sidered in this work.

We have solved numerically the radial equation up to d
tances ofr 5100 fm, in order to compute the correspondin
OBDM in a wide asymptotic region, where we will be ab
to check the convergence of the methods. First, we comp
our wave functions with the ones obtained integrating
equation up to 11 fm, as is done traditionally, obtaining
sentially the same answer in both cases up to the region c
to r;11 fm. The energy eigenvalues of the proton shells
shown in the third column of Table II. For each value ofl, we
construct the shell-model OBDM as a sum of the cor
sponding single-particle radial densities of the occup
states with angular momentum equal tol.

A. Exponential decay methods

We first focus on the asymptotic decay method, in wh
the overlap functions are obtained by fitting the exponen
decay of the OBDM, Eq.~33!. This can be done in severa
ways.

a. Logarithm fit. Taking the logarithm on both sides o
Eqs.~33! and ~34! we have asymptotically

e

TABLE I. Parameters of the Woods-Saxon potential.

Nucleus V0 ~Mev! Vls ~Mev! R ~fm! a0 ~fm! als ~fm!

P 62.00 3.20 2.74 0.57 0.57
12C

N 60.00 3.15 2.74 0.57 0.57

P 52.50 7.00 3.02 0.53 0.53
16O

N 52.50 6.54 3.02 0.53 0.53

P 57.50 11.11 4.10 0.53 0.53
40Ca

N 55.00 8.50 4.10 0.53 0.53

P 59.50 8.37 4.36 0.53 0.53
48Ca

N 50.00 7.54 4.36 0.53 0.53
2-7
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ln$aur l~r ,a!u%5 ln$C0uc0~r !u%2k0a, ~46!

ln$a2r l~a,a!%5 ln C0
222k0a. ~47!

We first computeC0 by fitting a straight line to ln$a2rl(a,a)%
~we assumeC0.0 since this is just a global phase!. Then
uc0(r )u is computed by fitting another straight line
ln$aurl(r,a)u% and dividing byC0. Finally, the sign ofc0(r ) is
obtained from Eq.~33! as that ofr l(r ,a).

b. Trace minimization. The overlap function is calculate
by dividing the OBDM by an exponential

c0~r !5
r l~r ,a!

C0

e2k0a

a

~48!

with C0 andk0 determined from the diagonal partr l(a,a) as
in the logarithm fit method. The remaining parametera is
chosen by imposing that the overlap densityr l

0(r ,r 8)
5c0(r )c0(r 8) be as close as possible to the OBDM
r l(r ,r 8), for every value of r and r 8 contained in an
asymptotic interval@al ,au#. This condition is achieved by
minimizing the trace functional

F~a![Tr@r l2r l
0#

5E
0

au
drE

al

au
dr8F r l~r ,r 8!2

r l~r ,a!r l~r 8,a!

C0
2 exp~22k0a!

a2
G 2

.

~49!

TABLE II. Energies of the proton single particles in the sh
model,Ews .

Nucleus nl j uEwsu ~Mev!

12C 1s1/2 32.27
1p3/2 15.49

16O 1s1/2 27.36
1p3/2 13.92
1p1/2 9.29

40Ca 1s1/2 35.54
2s1/2 9.80
1p3/2 26.12
1p1/2 22.63
1d5/2 15.83
1d3/2 8.37

48Ca 1s1/2 39.25
2s1/2 14.73
1p3/2 30.15
1p1/2 28.00
1d5/2 19.92
1d3/2 15.14
03460
c. Trace minimization with three parameters. This third
method is a variation of fitb, which considersC0 andk0 as
additional parameters in the trace functional. So the th
parameters are now fixed by computing the absolute m
mum of this functional.

The fit procedureb is similar to that applied in Ref.@19#.
In the following we compare the results provided by the
methods for different choices of the asymptotic interv
@al ,au# where the fit is performed. We shall study the case
40Ca in the shell model, where the OBDM containsl
50,1,2 multipoles.

In Fig. 3 we show results forl 50, corresponding to the
overlap functions of the shells 2s1/2 ~first overlap function!
and 1s1/2 ~second overlap!. Panel~a! shows an example o
what is obtained using an OBDM computed up toau

511 fm. In addition we have usedal52.3 fm, which is the
point where the densityr0(r ,r ) reaches 10% of its maxi
mum. This value is not large enough to be conside
asymptotic and the resulting overlap functions are clea
incorrect. In this figure we note a misbehavior of fita
~dashed lines! in the region close to the node, where Eq.~33!
is not valid, since the OBDM is dominated there by thesec-
ondoverlap function. This misbehavior is not found in fitsb
~dot-dashed lines! andc ~dotted lines! because in both case
the exponential fit is done globally and not point by poin
Since the first overlap has not been adequately extracted
also obtain an incorrect result for the second overlap, sho
in panel~b!. We note in this panel that the displayed curv
stop around 2–2.5 fm. The reason is that the subtracted
agonal partr0(r ,r )2f0(r )2 becomes negative in this regio
as a consequence of the incorrect value off0(r ).

The results for the first overlap function improve when w
increaseau to 15 fm andal to 5.9 fm, corresponding this
last distance to the point where the density is 1% of its ma
mum value, as is shown in panel~c!. Even though there is a
clear improvement with respect to the results of panel~a!,
there is still a small difference with respect to the exact res
~solid line!, which is larger for the results of fita. These
small differences are amplified when the second over
function, shown in panel~d!, is computed. Nevertheless the
is also a clear improvement with respect to the former res
of ~b!.

In order to find a reasonable agreement with the ex
result we have to useal513.7 fm, where the density
reaches 1027% of its maximum value. The correspondin
results are shown in panel~e!, where we have used agai
au515 fm. Although not seen in the scale of the figure, t
results of fitsb andc are closer to the exact result than th
corresponding to fita. Finally, the second overlap function i
shown in panel~f!, where we still note small differences wit
the exact result specially for lowr. The results for the secon
overlap rely heavily on the adequacy of the computed fi
overlap function. These small differences can be furt
minimized if a higher value for the asymptotic pointsal ,au
is utilized in computing the first overlap. We will see th
when we discuss theAr method.

In the case of the second overlap forl 50 we use a dif-
ferent interval@al8 ,au8# from that considered in the corre
2-8



e-

e-
nt

EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
FIG. 3. Overlap functions of40Ca for l 50 in
shell model, computed with the exponential d
cay methoda ~dashed lines!, b ~dot-dashed lines!
andc ~dotted lines!. With solid lines we show the
radial functions, corresponding to the exact r
sult. The several panels refer to differe
asymptotic intervals@al ,au# considered in the fit
of the first overlap function, namely@2.3 fm, 11
fm# for ~a,b!, @5.9 fm, 15 fm# for ~c,d!, and@13.7
fm, 15 fm# for ~e,f!.
la

um
rs
b

e
the
ues
ell
cted
ve
sponding first overlap. The upper limitau8 is chosen as the
point where the subtracted densityr0(r ,r )2c0(r )2 becomes
negative, since this is a clear indication that the first over
is incorrect at this point. The lower limital8 is chosen as the
point where the subtracted density is 10% of its maxim
value. This value is not critical in the cases in which the fi
overlap function is incorrect, as there is no improvement
03460
p

t
y

changingal8 . On the other hand, in the cases in which w
obtain a reasonable result for the first overlap function,
result for the second one is already quite good for low val
of al8 . This is a consequence of the simplicity of the sh
model where we are working since in this case the subtra
density is factorizable as a product of single-particle wa
functions of the 1s1/2 shell,
he
FIG. 4. First overlap functions of40Ca for l
51 and l 52 in shell model, computed with the
exponential decay methoda. With solid lines we
show the radial functions of the 1p1/2 and 1d3/2

shells, corresponding to the exact results. T
asymptotic intervals@al ,au# considered in the fit
for l 51 are@4.0 fm, 11 fm# ~dashed!, @5.9 fm, 15
fm# ~dot-dashed!, and @13.0 fm, 20 fm# ~dotted!;
for l 52 they are@4.5 fm, 11 fm# ~dashed!, @6.6
fm, 15 fm# ~dot-dashed!, and @17.2 fm, 20 fm#
~dotted!. In panels~c! and ~d! the overlap func-
tions have been ‘‘averaged’’ dividing by@2(2l
11)#1/2 instead of@2 j 11#1/2, and also the wave
functions of the 1p3/2 and 1d5/2 shells are shown
with short-dashed lines. In panels~e! and ~f! the
asymptotic behavior of thep and d wave func-
tions has been displayed.
2-9



. O
rib

ith
ve
t

h

e
ab
om

ct
ro

x

a

g

nc

s
,

alu
c

r

e
e

ie

we
o
th

rs

tial
lap

in
e
nels
he

yed

es

e

aks

ion
the
f
re
t is

el.

to
tain

an

For

M. MAZZIOTTA, J. E. AMARO, AND F. ARIAS DE SAAVEDRA PHYSICAL REVIEW C65 034602
r0~r ,r 8!2c0~r !c0~r 8!52R1s1/2
~r !R1s1/2

~r 8!, ~50!

and it is not necessary to separate a third overlap function
course in the correlated case, where there are extra cont
tions to the OBDM, one should be careful and choose
value ofal8 for which there is convergence.

In Fig. 4 we show the first overlap functions of40Ca for
l 51,2, corresponding to the shells 1p1/2 ~a! and 1d3/2 ~b!.
The exact results are shown with solid lines, while w
dashed, dot-dashed and dotted lines we show, respecti
the results of the fitb performed for three differen
asymptotic intervals with upper limitsau511, 15, and 20
fm, and lower limits corresponding to the points where t
OBDM reaches 10%, 0.1%, and 1029% of its maximum
value. In panel~a!, corresponding to the 1p1/2 shell, the three
fits give a similar result, which is around a factor of 2 high
than the exact answer. The results do not show a notice
improvement when the asymptotic interval is increased fr
@5.9,15# fm to @13,20# fm. In panel~b!, the results of fitb
corresponding to the 1d3/2 shell are again above the exa
answer, although we note a convergence trend in going f
the interval @6.6,15# ~dot-dashed! to @17.2,20# fm ~dotted!.
The results obtained with fitsa and c are not shown in the
figure; fit c gives essentially the same result as fitb, while fit
a is worse than fitb.

It is clear from these results that it is not possible to e
tract the first overlap function for thep and d shells, using
asymptotic distances up to 20 fm. This is related to the f
that the energies of the spin-orbit partners (1p1/2, 1p3/2) and
(1d3/2, 1d5/2) have close values, their difference bein
around 3.5 MeV and 7.5 MeV, respectively,~see Table II!.
Hence, at 20 fm the contribution of the second overlap fu
tion is still important @see panels~e! and ~f! in the same
figure#, especially in the case of thep shell where distance
close to 100 fm must be used in order to get convergence
we will discuss when we study theAr method. Since in all
these cases it was not possible to extract reasonable v
for the first overlap function, we do not show the incorre
results for the second overlap function.

Recently Gaidarovet al. @21# have presented results fo
the overlap functions of thep shell in 16O using a method
similar to fit b. The procedure was applied to the correlat
OBDM of @32# computed up to 11 fm, which uses the sam
shell model we are considering here, with similar energ
and wave functions for 1p1/2 and 1p3/2. An averaged value
for the 1p wave function was extracted in that reference;
will explore this possibility in the shell model. In order t
compute an averaged overlap function we first assume
the multipoles of the OBDM~29! can be approximated by

r l~r 1 ,r 2!.(
n j

2~2l 11!fnl~r 1!fnl~r 2!

5(
n

cnl~r 1!cnl~r 2!, ~51!

wherefnl(r ) is a mean value of the two spin-orbit partne
fnl j (r ), with j 5 l 61/2. The overlap functioncnl(r ) is now
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normalized with a factor@2(2l 11)#1/2, and we assume an
asymptotic exponential behaviorcnl(r );C exp(2kr)/r.
Hence we have for the OBDM

r l~r ,r 8!;cnl~r !C
e2kr8

r 8
, r 8→`. ~52!

Now we can proceed as before, by fitting an exponen
decay to the OBDM and computing the averaged over
function asfnl(r )5cnl(r )/@2(2l 11)#1/2.

Results for the averaged overlap functions of the 1p and
1d shells of 40Ca obtained by this procedure are shown
panels~c! and~d! of Fig. 4. The meaning of the lines and th
asymptotic intervals used in the fits are the same as in pa
~a! and ~b!, but here we also include, for comparison, t
radial wave functions of the 1p3/2 and 1d5/2 shells with
short-dashed lines. Note that the overlap functions displa
in panels~c! and~d! are related to those of~a! and~b! just by
a global factor@(2 j 11)/2(2l 11)#1/2.

We begin discussing the results for the 1p shell shown in
panel~c!. The fits shown with dashed and short dashed lin
are on average in the intermediate region between the 1p1/2
and 1p3/2 curves. However for higher values of th
asymptotic interval~dotted lines! the fit begin to move out of
this region—it is now similar to the 1p3/2 wave function—
and the possibility of obtaining an average value bre
down. The case of the 1d shell ~d! is more intriguing. While
dashed and short dashed lines are between thed3/2 andd5/2
curves, the dotted lines are well below them. The conclus
extracted from these results is that only for low values of
asymptotic interval@al ,au# used in the fit a mean value o
the overlap function is provided. However the results a
unstable, since they change when another interval in the fi
used, and depend on the particularl shell.

This behavior can be easily explained in the shell mod
For example, in the case of thep shell, the exact OBDM is
computed as

r1~r ,r 8!52R1p1/2
~r !R1p1/2

~r 8!14R1p3/2
~r !R1p3/2

~r !.
~53!

As seen in panel~e! of Fig. 4, the wave functions of the two
partners 1p1/2 and 1p3/2 are quite similar for lowr. We note
that they are also similar in the asymptotic region up
;11 fm, since their energies are very close. So we ob
the following approximation for the OBDM up to;11 fm:

r1~r ,a!.6R1p~r !R1p~a! ~54!

and for a large, but not exceeding;11 fm, the two wave
functions have a similar exponential behavior so we c
write

r1~r ,a!;A6R1p~r !C
e2ka

a
, a→11 fm ~55!

and then it is possible to extractR1p(r ) between the two
partners, as is shown in panel~c! with dashed lines, where
a<11 fm. For larger values ofa the two wave functions
begin to separate due to the different exponential decay.
2-10
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EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
the interval@6.6, 15# fm @dot-dashed lines in panel~c!# the
two wave functions are still quite close and Eq.~55! remains
approximately valid. However, for the dotted lines t
asymptotic interval is@13,20# fm, where the two wave func
tions are clearly different and Eq.~55! is not valid. In this
case the exact asymptotic behavior

r l~r ,a!;4R1p3/2
~r !C1

e2k1a

a
12R1p1/2

~r !C0

e2k0a

a

.R1p~r !
4C1e2k1a12C0e2k0a

a
~56!

should be used. The exponential fit of this equation may
performed, but the result will not be the searched quan
R1p(r ) and will depend on the interval@al ,au# used and on
the fitting method. In addition, in the very far limit where th
second overlap can be neglected, the fit procedure will c
verge to the exact first overlap functionc0(r )
5A2 j 11R1p1/2

(r )5A2R1p1/2
(r ). Since the promediated

overlap function is computed dividing by@2(2l 11)#1/2

5A6, by this procedure the ‘‘averaged’’ overlap functio
will converge to the wrong resultf(r )5A1/3R1p1/2

.

Finally, in the l 52 case, the energy difference betwe
the 1d3/2 and 1d5/2 shells is bigger than in the case of thep
shell. This makes the two wave functions separate at sho
distances;8 fm, as seen in Fig. 4, panel~f!. This implies
that the results are less satisfactory than for thep shell for the
high asymptotic interval@see dot-dashed lines in panel~d!#.
These are clear indications of the impossibility of extract
an averaged overlap function using this method.

The interesting example of thep shell in 16O is shown in
Fig. 5. Therein we show with solid and dashed lines
corresponding wave functions of the 1p1/2 and 1p3/2 shells,
which are very close below 5 fm, where they begin to se
rate. In the upper panel we also show with dotted lines
averaged overlap function obtained with fitb in the
asymptotic region@3.5,11# fm, which should correspond to
the mentioned calculation by Gaidarovet al., in Ref. @21#.
The dotted line is between the twop-shell wave functions,
but if the same fit is applied to higher asymptotic interv
we obtain the dot-dashed and short dashed curves of
figure, which are below the exact result.

This example clarifies why the results of Ref.@21# are not
far wrong in this particular case of16O, since they used an
OBDM computed up to 11 fm. However the way in whic
the average is done is not under control. So in the correla
case one should be careful in the interpretation of the res
because the exact ones are not knowna priori, and the ef-
fects due to correlations cannot be unambiguously separ
from the fit procedure.

B. Ar method

Next we examine the alternative method based on
~37!, where the overlap function is directly computed as
quotient,
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c0~r !5
r~r ,a!

Ar~a,a!
, ~57!

for a value ofa large enough to reach convergence, whi
can be easily checked by computing for several values oa.
This method has several advantages over the exponentia
previously analyzed. First it has no adjustable paramet
and no numerical minimization has to be carried out. Seco
the OBDM has not to be calculated in an interval@al ,au#,
but only in a few asymptotic pointsa. This is preferable in
the correlated case, where the computation of OBDM
comes longer. Moreover, when the density is factoriza
r(r ,r 8)5c(r )c(r 8), then Eq.~57! always provides the ex
act overlap function for any value ofa. This makes this
method exact in the shell model for all the shells in12C and
for the s-shell in 16O.

In Fig. 6 we show results for the nontrivial case of40Ca in
which two overlap functions are present for eachl. In this
case the asymptotic expression of the OBDM can be writ
as

r l~r ,a!;
e2k0a

a
@c0~r !C01c1~r !C1e(k02k1)a# ~58!

anda should be chosen large enough in order to neglect
second overlap function. An appropriate value ofa can be

FIG. 5. Averaged overlap function of thep shell of 16O in shell
model, computed using fitb in the asymptotic intervals@3.5,11# fm
~dotted lines!, @9.5,15# fm ~dot-dashed lines!, and @12.2, 20# fm
~short-dashed lines!. The exact functions of the 1p1/2 and 1p3/2

shells are shown with solid and long-dashed lines respectively.
2-11



r
-

ot-
act
r-

nd

M. MAZZIOTTA, J. E. AMARO, AND F. ARIAS DE SAAVEDRA PHYSICAL REVIEW C65 034602
FIG. 6. Overlap functions of40Ca in shell
model computed with theAr method. All the
functions are normalized with a facto
A(2 j 11)/4p. In each panel we use the three in
dicated values of the asymptotic pointa, which
correspond in ascending order to the dashed, d
dashed, and dotted lines, respectively. The ex
result is shown with solid lines. The second ove
lap functions ~panels on the right! have been
computed using the first overlap function from
the corresponding left panel and a seco
asymptotic pointa85a21 fm.
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obtained by imposing exp@(k02k1)a#51023. This makes the
second overlap function contribution to be of the order
0.1%. The estimated value ofa so obtained is

a.
6.9

k12k0
. ~59!

However, in practice the convergence will be reached a
different value, depending on the relative value of the c
stantsC0 andC1. In the shell model we will determine th
adequate value ofa by comparing with the exact result.

The case of the 2s1/2 shell of 40Ca is shown in panel~a! of
Fig. 6. Therein we represent the first overlap function n
malized with a factorA(2 j 11)/4p, and computed from Eq
~57! for three different values ofa. Namely, we show the
results fora54 fm with dashed lines,a57 fm with dot-
dashed lines, anda512 fm with dotted lines. Using this las
value we already reproduce, within the scale of the figu
the exact overlap function shown with solid lines. This val
is in agreement witha.11.5 fm provided by Eq.~59!.

For each one of the curves presented in panel~a! we com-
pute the second overlap function using an asymptotic p
a8 that must be less thana. This is clear if we remember tha
the method matches the asymptotic behaviors of the OB
and of the first overlap function for distancesr>a. Then
when we build the subtracted density, the asymptotic con
bution will vanish in this region. This is equivalent to sa
that the pointa effectively acts as the infinite pointa.`, so
in this numerical method there is no sense in computing
second overlap function fora8.a. For this reason, the sec
ond overlap functions forl 50 displayed in panel~b! of Fig.
03460
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6 have been computed for asymptotic pointa85a21 fm.
Again for the biggest value shown, the extracted over
function almost coincides with the exact result shown w
solid lines.

Results for the remaining shellsl 51,2 are shown in pan-
els ~c!–~f!. As before, we show in each panel three curv
corresponding to three ascending values ofa indicated in the
figure with dashed, dot-dashed, and dotted lines, resp
tively. In the case of the second overlap function~panels on
the right! we use the corresponding first overlap function
the left panel and the asymptotic pointa85a21 fm. The
values ofa for which convergence of the first overlap fun
tion is obtained are shown in Table III. In the case of thep
shell @panels ~c! and ~d!#, we find convergence fora
;100 fm. Using the single-particle energies of Table II a
Eq. ~59!, we obtaina.86 fm for thep shell anda.60 for
the d shell.

We have performed the same study of the proton ove
functions using theAr method for other closed-shell nucle
The results of the convergence values for16O and 48Ca are
summarized in Table III. In the case of16O we only show the
nontrivial case of thep shell. The corresponding overla

TABLE III. Values of the asymptotic points for which conve
gence of the first overlap function is reached with theAr method.

Nucleus 2s1/2 1p1/2 1d3/2

16O 80
40Ca 12 100 61
48Ca 12 .100 98
2-12
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EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
functions can be separated by using the OBDM computed
to a.80 fm. Finally, in the case of48Ca, the separation
energy within thep andd shells is smaller than in40Ca ~see
Table II!. As a consequence, the convergence values
larger than in the former case. In particular, fora5100 fm
the 1p1/2 and 1p3/2 are not completely separated and t
convergence value is not shown in the table. The estima
value of convergence for this shell isa5138 fm.

As a summary of this section, with our present study
ing the shell model, we have shown the reliability of t
asymptotic methods to compute the overlap functions of
clei from the knowledge of thel multipoles of the OBDM.
Our results have shown the necessity of studying the con
gence of the results in each case and that in many of t
one should calculate the OBDM up to such huge distance
100 fm in order to separate the overlap functions. In relat
to the several methods studied, all of them provide the c
rect result if the asymptotic interval@al ,au# is within the
region of convergence. However, due to its simplicity, t
Ar method is preferable in the general case in which
OBDM is the solution of a correlated many-body proble
and this is the method we will use in the following section
compute the correlated overlap functions.

V. RESULTS FOR „e,e8p… OBSERVABLES AND OVERLAP
FUNCTIONS IN THE CORRELATED CASE

In this section we present results for overlap functio
spectroscopic factors, (e,e8p) response functions, and cros
sections, using the correlated model introduced in Sec.
Thus we go beyond the single-particle model and will
able to identify the effects of short-range correlations
these quantities and observables.
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A. Quasihole overlap functions

We start with the correlated OBDM of closed-shell nucl
defined by Eq.~43!, and compute the multipoles,r l(r ,r 8), as
shown in Ref.@22#. The zero-order densityr l

0(r ,r 8) in Eq.
~43! corresponds to the noncorrelated shell model of Sec.
The correlated overlap functions for quasihole states can
obtained by using theAr method discussed in the precedin
section. We apply Eq.~57! to the correlated OBDM for
asymptotic points,a, large enough to reach convergence.
the present case the exact results are not knowna priori, but
we are guided by a former study performed in the sh
model. It is expected that the values of the converge
asymptotic points in the correlated case do not change
much with respect to the shell model ones. This can be
derstood in our model by studying the correlated OBDM, E
~43!. Using the fact that the correlation functionf (r )→1 for
r→`, we have for the functionH defined in Eq.~44!

H~r1 ,r18 ,r2!;Q~1!@ f ~r 12!21#, r 18→`. ~60!

On the other hand, the noncorrelated density is domina
asymptotically by the first overlap function of the she
model

r0~r1 ,r18!;f0~r1!f0~r18!, r 18→`. ~61!

From these equations it is straightforward to obtain the f
lowing asymptotic expression for the correlated density~43!
for r 18→`:

r1
p~r1 ,r18!;K~r1!f0~r18!, r 18→`, ~62!

where the functionK(r1) is defined as
K~r1![f0~r1!1f0~r1!E d3r 2Q~1!@ f ~r 12!21#r0~r2 ,r2!2E d3r 2r0~r1 ,r2!Q~1!@ f ~r 12!21#f0~r2!

2E d3r 2E d3r 3r0~r1 ,r2!f0~r2!r0~r3 ,r3!H~r2 ,r2 ,r3!1E d3r 2E d3r 3r0~r1 ,r2!r0~r2 ,r3!f0~r3!H~r2 ,r2 ,r3!.

~63!
c-

the

do
e-
We can also determine the asymptotic behavior of this fu
tion K(r1) by using the particular Gaussian form~41! of the
correlation function, so forr 1→` the second and third term
in Eq. ~63! can be neglected with respect to the other ter
due to its Gaussian decay. Then we can write

K~r1!;hf0~r1!, r 1→`, ~64!

where the constanth is defined as

h[12E d3r 2E d3r 3uf0~r2!u2r0~r3 ,r3!H~r2 ,r2 ,r3!

1E d3r 2E d3r 3f0~r2!r0~r2 ,r3!f0~r3!H~r2 ,r2 ,r3!.

~65!
-

s

Using now theAr method, the first correlated overlap fun
tion reads

c0~r !5 lim
r 8→`

K~r !f0~r 8!

AK~r 8!f0~r 8!
5

K~r !

Ah
. ~66!

Since the functionK(r );hf0(r ) for r→`, we see that this
correlated overlap function behaves asymptotically as
noncorrelated one multiplied by the constantAh,

c0~r !;Ahf0~r !, r→`. ~67!

Hence in the present model the short-range correlations
not modify the energy of the first overlap function with r
2-13
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spect to the shell model, since the asymptotic behavior of
OBDM is determined by the exponential decay of the sing
particle wave functionf0(r ). Note that for shorter distance
the above proportionality~67! does not hold because, in th
case, the functionK(r ) includes other terms depending o
the noncorrelated density and on the correlation funct
f (r ), as can be seen in Eq.~63!.

The same procedure can be applied to each one of
multipolesr l(r ,r 8) to show that the energy of the first ove
lap function for each value ofl does not change with respe
to the uncorrelated case. The same conclusion was also
tained in Ref.@15# in a model similar to ours by starting wit
the OBDM r l j (r ,r 8). However in our model it is not pos
sible to prove easily a similar result for the energy of t
secondoverlap function.

These arguments indicate that the asymptotic po
needed to compute the overlap functions are similar to
ones found in the shell model. In any case, in our calcu

TABLE IV. For each one of the quasihole states in the clos
shell nuclei studied we show: the asymptotic distancea for which
convergence of the correlated overlap function is reached~third
column!, the relative difference between correlated and unco
lated separation energies~fourth column!, and the computed spec
troscopic factor~fifth column!. For comparison we show also th
experimental value of the spectroscopic factors extracted f
(e,e8p) experiments.

Nucleus nl j a ~fm! uEc2Ewsu/Ews ~%! Sth. Sexpt.

12C 1s1/2 7 431025 0.985 0.59
1p3/2 8 ,1026 0.986 0.56

16O 1s1/2 7 231025 0.985
1p3/2 731024 0.986 0.59
1p1/2 86 431025 0.986 0.57

40Ca 1s1/2 631022 0.988 0.75
2s1/2 14 231023 0.992 0.64
1p3/2 331022 0.985 0.72
1p1/2 100 331023 0.985 0.72
1d5/2 231023 0.985 0.74
1d3/2 64 331025 0.985 0.74

48Ca 1s1/2 631024 0.986
2s1/2 16 131021 0.991
1p3/2 231021 0.946
1p1/2 .100 331021 1.058
1d5/2 131023 0.983
1d3/2 100 631024 0.983
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tions we have checked numerically the convergence of
results for the different overlap functions. For this reason,
correlated OBDM has been computed for values of
asymptotic point as high as 100 fm in order to separate
first overlap function in the cases in which the energies
two overlap functions are close in the shell model. The v
ues of the asymptotic pointa where convergence is reache
are given in the third column of Table IV. We first note th
the convergence values of the asymptotic pointa are similar
to those obtained in the shell model~compare with Table III!.
Thereby, in order to extract the 1p1/2 overlap function, we
need to go up to;86 fm for 16O and up to;100 fm for
40Ca, while in the case of the 1d3/2 overlap function for
40Ca, convergence is found fora;64 fm. This indicates
that in fact the separation energies of correlated ove
functions are close to the ones of the shell model.

The results for the correlated overlap functions of the n
clei 12C, 16O, and40Ca are shown in Figs. 7–9, respective
In each one of these figures we show with solid lines
radial densityr 2c(r )2 of the correlated overlap function an
with dashed lines the noncorrelated result correspondin
the shell model. We do not show the overlap functions of
also studied nucleus48Ca. Having stopped our calculation a
100 fm, it was not possible to obtain convergence in t
nucleus for the overlap function of thep shell, which re-
quires higher values ofa.

In Fig. 7 we show the first overlap functions of12C for
l 50,1. In both cases convergence is reached for relativ
small values ofa57 and 8 fm, respectively, due to the fa
that in the shell model there are no second overlap functi
contributing to the OBDM. Short-range correlations intr
duce extra contributions in the OBDM. However, these ex
contributions decay much faster than the exponential o
and very large distances are not needed to extract the
overlap function. As we can see in Fig. 7, the inclusion
short-range correlations produces in both cases a reductio
the maximum of the overlap function in coordinate spa
while there is an increase for highr, which is better seen in
the case of thep shell, since it lies at higher distances@panel
~b!#. In this last case we observe in addition that the over
function undergoes a small shift to the right due to the c
relations.

Similar effects are observed in Fig. 8 for16O and Fig. 9
for 40Ca. In all cases there is a reduction of the over
function at intermediate distances~in most of them coincid-
ing with the maximum of the radial density! and an increase
for more large distances. As in12C, we also observe a shift to
the right of the overlap functions corresponding to the ou

-

-

m

p
d
r-
FIG. 7. Solid lines: radial density of overla
functions for 12C computed from the correlate
OBDM. With dashed lines we show the nonco
related results in the shell model.
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FIG. 8. The same as Fig. 7 for the nucleu
16O.
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shells. This is the case of the shells 1p1/2 and 1p3/2 in 16O
and 2s1/2, 1d3/2, and 1d5/2 in 40Ca.

This shift effect over the outer shells can be understoo
terms of the repulsive nature of theNN interaction for short
distances, implicit in the correlation functionf (r ), and the
well-known healing property of the wave function for th
two-nucleon system. The correlation function produces
wound in theNN wave functionC, and what we are seein
in the overlap function is the average effect of healing due
the interaction of the outer nucleons with the nucleons in
core.

However the inner shells do not show this effect beca
the short-range repulsion due to the core partially cancels
03460
in
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he

one produced by the external shells. The net effect depe
on the particular nucleus and on the shell involved. For
stance, in the case of the 1s1/2 shell in 40Ca, shown in panel
~b! of Fig. 9, the correlations produce a shift of the overl
function to the left, i.e., into the nucleus, since the sho
range repulsion by the outer shells tends to compress ths
wave. The same compression effect is observed in the in
lobe of the 2s1/2 @see panel~a! of Fig. 9#.

In the cases of the intermediate shells 1p1/2 and 1p3/2 for
40Ca, the joint effect of repulsion by the inner and out
shells produces a shift to the left in the lowr region and a
shift to the right for larger. Hence the net effect of correla
tions over these shells is a widening of the overlap functi
s
FIG. 9. The same as Fig. 7 for the nucleu
40Ca.
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as seen in panels~c! and ~d! of Fig. 9.
Once the overlap functions have been extracted, we

compute the corresponding separation energy by a fit
function Ce2kr2h ln kr/r for large distances. We have pe
formed this fit in the interval between 11 and 28 fm for t
correlated and uncorrelated overlap functions obtaining
sentially the same energies. The inclusion of the logarit
Coulomb phase is important in this fit for protons, since
can modify the extracted energies by more than 2 MeV in
case of40Ca. The relative difference between correlated a
uncorrelated energies is shown in the fourth column of Ta
IV. In all cases the differences are less than 0.5% even in
case of the48Ca shells where convergence was still n
found for the overlap function. These numerical results c
firm that short-range correlations do not change the m
field values of the separation energies for quasihole stat

Results for the spectroscopic factors resulting from
model are shown in the fifth column of Table IV. These ha
been computed as the norm of the corresponding correl
overlap function

S5^fuf&. ~68!

As seen in Table IV, all of the computed spectroscopic f
tors are slightly less than 1, being in most of the cases aro
S;0.985. The only exception found in Table IV is the val
Sp1/2

51.058 for 48Ca, which is not a definitive number sinc

the asymptotic pointa5100 fm used is not large enough
reach convergence in this case.

Our results indicate that short-range correlations of
Jastrow type reduce the shell-model occupation probab
no more than 2%. This reduction is not enough to explain
experimental values extracted from the (e,e8p) analysis
shown in column 5 of Table IV. This is in agreement wi
other studies that report values similar to ours for the sp
troscopic factors. Van Necket al. found in @15# that central
correlations generate a reduction around 1–2 % of the o
pancy probability in16O. More recently Fabrocini and Co
@33# have computed overlap functions within the FHN
SOC~single operator chain! theory and report values aroun
0.97–0.99 for the spectroscopic factors with Jastrow corr
tions. Spin-isospin and tensor correlations~not included in
our calculation! produce additional reduction of these valu
to S;0.86–0.9 for the valence shells. The discrepancy w
experimental values could be further reduced by the inc
sion of long-range correlations@14#. Center of mass correc
tions, however, produce an enhancement of;7% of thep
shell in 16O @9#. Further investigation including all of thes
effects in a consistent way is needed in order to clarify
situation.

B. Quasiparticles and the continuum

Up to now we have restricted our study to overlap fun
tions corresponding to quasihole states. Our correla
OBDM model allows us to compute also the multipol
r l(r ,r 8) for high values ofl, which are expected to contai
contributions coming from quasiparticle states, i.e., states
occupied in the shell model but which are partially popula
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in the ground state due to nuclear correlations. We have
vestigated if the overlap functions for quasiparticles can
extracted from our OBDM using the asymptotic method.

This study is motivated by a recent calculation done
@19# where results for the quasiparticle overlap function
the 1d shell in 16O and for the 1f shell in 40Ca are pre-
sented. These authors begin with an OBDM including
strow correlations and apply an asymptotic procedure sim
to fit b in order to extract the overlap functions. For instan
they report a value ofS50.01 for the spectroscopic factor o
the 1f shell in 40Ca. Neither the asymptotic interval used f
the fit nor the convergence distance are indicated in@19#.
Apparently they should not have used very high asympto
values since they use a harmonic-oscillator basis that falls
rapidly at large distances.

However these results were criticized in Ref.@15#, where
it was shown that it is not possible, starting from a CBF-ty
wave function, to generate bound-state overlap functi
with quantum numbers that are unoccupied in the Slater
terminant. The reason is that the overlap functions de
exponentially with the same decay constant as the h
single-particle orbital.

In fact, when we apply theAr method to compute a qua
siparticle overlap function from our radial OBDM for hig
values ofl we do not obtain convergence within the 100-f
range and instead the results decrease rapidly, being n
gible for highr. We must conclude that in our model it is no
possible to obtain such quasiparticle states.

This result can be understood by examining the followi
asymptotic expression of the OBDM for unoccupied mu
pole l:

r l~r 1 ,r 18!;C f~r 1 ,r 18!, r 1 ,r 18→`, ~69!

whereC is a constant and the functionf (r ,r 8) is given by

f ~r 1 ,r 18!5

exp~22kr1!exp~22kr18!expS 2B~r 12r 18!2

2 D
r 1

2r 18
2~r 11r 18!2

.

~70!

Here k is the wave number of the~occupied! valence shell
and B is the parameter of the correlation function. This e
pression is proved in Appendix B for the simplest case of
multipole l 52 for the nucleus12C.

In Fig. 10 we show with solid lines the computed rad
densityr2(r ,r 8) for 12C as a function ofr for several fixed
values ofr 8. In addition we show with dashed lines the fun
tion f (r ,r 8) multiplied by a convenient constantC fitted to
the density. We see that in fact the above asymptotic exp
sion is approximately verified by the computed density
high values ofr and r 8.

If we now try to compute a quasiparticle overlap functio
using theAr method we obtain

c l~r !5
r l~r ,a!

Ar l~a,a!
;

2a

r 2~r 1a!2
r0~r !e2B(r 2a)2/2. ~71!

This expression goes to zero fora→`, since the diagona
part of r l has an exponential decay, while the nondiago
2-16
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part has an additional Gaussian behavior correspondin
the correlation function. This explains why in our results t
extracted overlap function for quasiparticles are zero. T
in our model of correlated OBDM it is not possible to obta
the overlap functions for quasiparticles since the correspo
ing information of single-particle states above the Fer
level ~configuration mixing! has not been included into th
model. Moreover, when one subtracts from the correla
OBDM the contribution of the quasihole states, the rema
ing density contains only the contributions coming from t
continuumstates of the residual nucleus. These contributi
are implicit in the expansion~27! in terms of overlap func-
tions and they can be expressed as an integral over the
ergy.

r~r ,r 8!2rquasihole~r ,r 8!5E dECE~r !†CE~r 8!. ~72!

With the asymptotic method studied here it is not possible
extract these overlap functions of the continuum. For thi
practical inversion method of the integral~72! in the
asymptotic region is needed. The knowledge of these ove
functions would be of interest, for instance, to compute
(e,e8p) cross section for high missing energy.

C. Exclusive response functions and cross sections

In Figs. 11–13 we show the five exclusive responses
proton knockout from the valence shells of the nuclei12C,
16O, and40Ca as a function of the missing momentum. In
the cases, the kinematics correspond to a fixed value of
momentum transferq5460 MeV/c andv fixed around the
quasielastic peak. In each panel of Figs. 11–13 we show
curves corresponding to different models for the init
and/or final wave functions that enter the current matrix
ement~7!. We show results for PWIA and DWIA with and
without short-range correlations in the initial-state over
functions. The DWIA results have been obtained using
the FSI the optical potential of Ref.@35#. Specifically, the
solid lines have been computed with the DWIA model us
correlated overlap functions, while the dashed lines do

FIG. 10. The solid lines are the correlated OBDM,r2(r ,r 8) for
l 52 in 12C, as a function ofr for different values ofr 856, 7, 8, 9,
10, and 11 fm. The dashed lines are a fit to an asymptotic appr
mation f (r ,r 8) defined in Eq.~70!.
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include correlations. Thus comparison between solid a
dashed lines shows the effect of short range correlation
the responses. Results in PWIA with and without correlatio
are shown with short dashed and dotted lines, respective

In all the cases we note in the regionp,200 MeV/c an
increase of theL, T, andTL responses due to correlation
which is around 5% near the maximum. This increase
quite independent of the FSI since it is also present in PW
The reason for this fact is that correlations between
ejected proton and the residual nucleus have not been
cluded. The increase seen in the responses can be easil
derstood in PWIA, where we basically see the moment
distribution of the shell, as a consequence of the harden
effect seen in the overlap functions in Figs. 7–9 for the v
lence shells. Since in momentum space the low-p region is
sensitive to the high-r region, the increase of the overla
function for highr translates into an increase of the Four
transform for lowp (;100 MeV/c) where the maximum
of the momentum distribution is located. Since the corre
tions in the ground state are in some degree decoupled f
the FSI, the same effect is propagated to the case of
DWIA.

i-

FIG. 11. Response functions for proton knockout from thep3/2

shell in 12C, for q5460 MeV/c and v at the quasielastic peak
Results are shown in DWIA with~solid lines! and without~dashed
lines! correlations in the hole overlap function, and in PWIA wi
~short dashed lines! and without~dotted lines! correlations.
2-17
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In the case of theTT response, we also find an increase
its absolute value due to correlations in DWIA, which is n
seen in PWIA, because the leading-order magnetization
rents do not contribute to this response@23#, and the resulting
factorized single-nucleonTT response is of the order o
(p/M )2 in a nonrelativistic expansion~this is the reason why
this response function is so small!. This kinematical depen
dence comes exclusively from the convection current, p
ducing a hardening of the maximum of the momentum d
tribution toward higherp values;150 MeV/c, where the
correlated and uncorrelated results are closer. In DWIA,
FSI breaks the factorization property and the magnetiza
current gives a contribution, which, therefore, is much lar
than the PWIA result.

Regarding the fifth response functionTL8, which only
can be measured using polarized electrons, it is exactly
in the absence of FSI. In DWIA, however, it produces
contribution to the total cross section and the correlation
the ground state produce an increase, which is, in genera
the same order as in the unpolarized responses. This incr
is even larger (;15%) in the case of the 1d3/2 shell in 40Ca
~see Fig. 13!.

State-independent short-range correlations produce a
crease of the (e,e8p) cross section, since the latter is a line
combination of the several response functions appearin
Eq. ~1!. An example is shown in Fig. 14, where results
DWIA calculations for the reaction16O(e,e8p) are dis-

FIG. 12. Response functions for proton knockout from the
lence shells 1p3/2 and 1p1/2 in 16O, for q5460 MeV/c andv at the
quasielastic peak. The meaning of the lines is the same as in Fig
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played together with the experimental data of Ref.@36#. Here
the kinematics correspond to fixed momentum transfeq
5570 MeV/c and energy transferv5170 MeV at the
quasielastic peak. The energy of the electron beam is
MeV and the proton is emitted in the scattering plane. In F
14 we show with solid lines our DWIA results using th
correlated overlap functions for the 1p1/2 and 1p3/2 shells,
while with dashed lines we show the uncorrelated results.
note an enhancement of the cross section due to correlat
which is of the same order of magnitude as was found for
response functions, and which clearly increases the disag
ment between theory and experiment. In the same figure
show with short dashed and dotted lines the computed c
sections multiplied by the factors 0.6 (1p1/2) and 0.5 (1p3/2)
in the correlated case and 0.64 (1p1/2) and 0.53 (1p3/2) in
the uncorrelated one.

Hence the scaling factor needed to reproduce the exp
mental cross section issmallerfor correlated than for uncor
related overlap functions even though the computed spec
scopic factors for these shells are smaller than 1,S50.985
~see Table IV!. This fact does not necessarily imply a d
crease of theexperimentalspectroscopic factors since the
are obtained by a simultaneous fit of the parameters of
single-particle potential also. In other words, experimenta
one searches for the best phenomenological overlap func

-

11. FIG. 13. Response functions for proton knockout from the
lence shells 1d5/2 and 1d3/2 in 40Ca, for q5460 MeV/c andv at
the quasielastic peak. The meaning of the lines is the same as in
11.
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EFFECTS OF SHORT-RANGE CORRELATIONS IN . . . PHYSICAL REVIEW C65 034602
which when included into an uncorrelated DWIA code rep
duces the experimental data. Our model has no adjust
parameters since the correlations are already included an
are the spectroscopic factors. Our results are showing
short-range correlations of the central type in the grou
state do not produce an improvement of the (e,e8p) data
description. Tensor correlations and long-range correlati
are obvious candidates for a reconciliation between the
and experiment.

To end the discussion we give in Fig. 15 another appli
tion of our DWIA model in photonuclear reactions. There
we show the computed (g,p) cross section from the 1p1/2
shell in 16O for two beam energies ofEg560 and 72 MeV
together with the experimental data of Ref.@37#. Again we
show with solid and dashed lines the correlated and unco
lated results, respectively. No scaling factors are includ
The impact of central correlations in this case is complet
different from the (e,e8p) reaction. In this case they produc
a large reduction of the cross section. The difference betw
the two reactions lies in the different kinematical regio
which is being probed by photons. In the case of (g,p) the
energy-momentum transfer verifiesv5q and we are far
from the quasielastic peak region. As a consequence
missing momentum is well above 200 MeV/c. Thus ap
from the small values ofq, the photon is exploring here th
high-momentum tail of the overlap function where corre
tions produce a reduction of the momentum distributio
Such reduction can also be appreciated in Figs. 11–
where the correlated transverse response~the one contribut-
ing to photoreactions! is below the uncorrelated one forp
.200 MeV/c. One should also be aware of the difficultie

FIG. 14. Computed (e,e8p) cross section for the valence she
of 16O. The solid lines include correlated overlap functions wh
the dashed lines do not. These calculations have been scaled to
the dashed and dotted lines in order to reproduce the experim
data from Ref.@36#.
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presented in the DWIA description of the (g,p) reaction for
such low energies and high missing momenta, where, in
ticular, the orthogonality approximation~12! is no longer
true and other effects@38# of the same order as the one
arising from correlations could appreciably change the
sults of Fig. 15.

VI. SUMMARY AND CONCLUSIONS

In this work the effects of short-range correlations
(e,e8p) observables and overlap functions have been s
ied. The starting point for the present calculation has b
the OBDM, including short-range correlations of the cent
Jastrow type, and which has been computed by a clu
expansion to leading order in the correlation function. C
related overlap functions corresponding to quasihole state
closed-shell nuclei have been extracted from the asympt
OBDM multipoles,r l(r ,r 8), computed at large asymptoti
distances r 8<100 fm. The reliability of the extraction
method has been tested in the shell model, where a deta
study of the different fit procedures and of the converge
distances has been performed. These distances have
found to be very large in the cases in which two sing
particle states of close energies are present. In those case
asymptotic distances considered in our calculation of
OBDM have been enough to separate the correspon
overlap functions of the nuclei12C, 16O, and 40Ca. As also
has been found in other works@22,33,39#, short-range corre-
lations produce small effects on the density distribution a
likewise on the OBDM. Our results given in Figs. 7–9 sho
that these effects are more noticeable in the overlap funct
since they are determined by the asymptotic behavior of
OBDM. Short-range correlations produce a redistribution

ive
tal

FIG. 15. Computed (g,p) cross section for the 1p1/2 shell of
16O. The solid lines include correlated overlap functions while t
dashed lines do not. Experimental data are from Ref.@37#.
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the single-particle densities in coordinate space. Their va
are reduced at the maximum and increased for large
tances. In the case of the valence shells we find a harde
of the distribution related to the collective effect of theNN
repulsion at short distances.

The values of the computed spectroscopic factors in
present work are around 0.985, in accord with the findin
obtained with other techniques. It is known that tensor a
long-range correlations can reduce these values but
present, no model is able to reproduce the experimental
ues extracted from (e,e8p) data.

The computed overlap functions have been included
DWIA model of the (e,e8p) reaction, and exclusive re
sponse functions and cross sections have been compute
quasielastic kinematics. Although the computed spec
scopic factors are less than 1, we have found an incre
(;5%) of the response functions and, accordingly, of
cross section in the region of the maximum of the miss
momentum distribution for knockout from the valence she
This reduction is independent of the FSI and is a con
quence of the increase of the single-particle densities
large distances. Thus the inclusion of central correlation
worsening the description of the experimental data in
model. This again proves that central correlations alone
not enough to describe this reaction successfully. Apart fr
spin-isospin and tensor correlations, not included here
computational reasons, we would like to remark the nec
sity of a model including, in addition, long-range correl
tions in a consistent way.

The later correlations are related to the presence o
admixture of multi-\v configurations into the valence wav
functions of the residual nucleus@40#. For instance, in the
case of the40Ca nucleus, the residual states correspond to
nucleus39K. It is known that the transverse form factors
the measured elastic and inelastic transitions in39K show
significant departures from the single-particle picture a
that a modification of the extreme shell-model wave fun
tions through the effect of core polarization is needed
describe the electron scattering cross section@40#. When
computing the (e,e8p) reaction in 40Ca one uses a wav
function that reproduces the elastic-electron-scattering
or equivalently, the charge density, corresponding to the
tial state~the ground state of40Ca), ignoring the necessity o
a proper description of the residual states also, usu
treated as single holes in the core.

Concerning the (g,p) reaction, central correlations pla
here a more important role, producing a large reduction
the cross section, since this reaction is sensitive to the h
momentum components of the wave function where corr
tion effects are maximized.

In this paper we have demonstrated with a realistic mo
that the asymptotic method to compute the OBDM is feas
and that convergence of the results can be obtained: there
it rises as an alternative reliable starting point to be app
to other kinds of correlated densities.
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APPENDIX A: MULTIPOLE ANALYSIS OF EXCLUSIVE
RESPONSE FUNCTIONS

The general multipole analysis of the (e,e8p) responses
including polarization degrees of freedom of the targ
nucleus and electron was presented in Refs.@23,29#. The
formalism can also be applied to the present case ofJ50
nuclei, where some simplification of the multipoles given
Ref. @23# can be done. The following equations we write
this appendix have been obtained, after some work, from
corresponding equations of Ref.@23# for the particular case
J50 @J being in @23# the angular momentum correspon
ing to a multipole expansion in terms of spherical harmon
YJM(u* ,f* ) of the nuclear polarization angles#.

We expand the nuclear electromagnetic current as a
of Coulomb~for the time component! and electric and mag
netic ~for the transverse three-vector current! multipole op-
erators of rankJ. The final hadronic state is also expanded
partial waves of the ejected proton as a combination of h
ronic states with total angular momentumJ, denoted asus&
[u( l j )Ja ;J&, which represents a nucleon in the continuu
with asymptotic angular momental j coupled with the re-
sidual nuclear stateuFa

(A21)&5uJa&. The exclusive respons
functions can be written in the form

WL5
1

K (
L>0

@L#PL
0~cosu8!WL

L , ~A1!

WT5
1

K (
L>0

@L#PL
0~cosu8!WL

T , ~A2!

WTL52
1

K (
L>1

@L#

AL~L11!
PL

1~cosu8!WL
TL , ~A3!

WTL85
1

K (
L>1

@L#

AL~L11!
PL

1~cosu8!WL
TL8 , ~A4!

WTT5
1

K (
L>2

@L#

A~L21!L~L11!~L12!
PL

2~cosu8!WL
TT

~A5!

with @L#5A2L11. Note that the whole dependence on t
emitted proton angleu8 is given through the Legendre func
tions PL

M(cosu8) and that the present response functions
divided by the factorK5Mp8/(2p\)3 with respect to those
of Ref. @23#. The reduced response functionsWL

K , defined as
the coefficients in the expansions~A1!–~A5! are given by

WL
L5(

s8s

Fs8s~L !S J J8 L

0 0 0D jJ82 l 8,J2 l
1 Rs8s

L , ~A6!
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WL
T52(

s8s

Fs8s~L !S J8 J L

1 21 0D ~jJ82 l 8,J2 l
1 Rs8s

T1

1jJ82 l 8,J2 l
2 Rs8s

T2
!, ~A7!

WL
TL522(

s8s

Fs8s~L !S J8 J L

0 1 21D ~jJ82 l 8,J2 l
1 Rs8s

TL1

2jJ82 l 8,J2 l
2 Rs8s

TL2
!, ~A8!

WL
TL8522(

s8s

Fs8s~L !S J8 J L

0 1 21D ~jJ82 l 8,J2 l
1 I s8s

TL1

2jJ82 l 8,J2 l
2 I s8s

TL2
!, ~A9!

WL
TT52(

s8s

Fs8s~L !S J8 J L

1 1 22D ~jJ82 l 8,J2 l
1 Rs8s

TT1

2jJ82 l 8,J2 l
2 Rs8s

TT2
!. ~A10!

Note that theTL andTL8 reduced response functions of Re
@23# include an extra factorA2 due to the different definition
of the vTL and vTL8 factors. The coupling coefficien
Fs8s(L) includes the internal sums over third compone
and it is defined as

Fs8s~L !5Pl 1 l 81L
1

@J#@J8#@ j #@ j 8#@L#

3~21!J1J81Ja11/21LS j 8 j L

1

2
2

1

2
0D

3H j 8 j L

J J8 Ja
J . ~A11!

We also use the parity functions

Pi
65

1

2
@16~21! i #, ~A12!

j i j
15~21!( i 2 j )/2Pi 1 j

1 , ~A13!

j i j
25~21!( i 2 j 11)/2Pi 1 j

2 . ~A14!

In order to define the functionsRs8,s
K andI s8,s

K in Eqs.~A6!–
~A10!, we introduce the Coulomb, electric, and magne
multipole matrix elements,

Cs[^siM̂ J~q!i0&, ~A15!

Es[^siT̂J
el~q!i0&, ~A16!

Ms[^si i T̂J
mag~q!i0&, ~A17!

whereM̂ J(q), T̂J
el(q), and T̂J

mag(q) are the usual Coulomb
electric, and magnetic multipole operators. The functio
03460
s

c

s

Rs8,s
K and I s8,s

K in Eqs.~A6!–~A10! are then defined by the
following quadratic forms constructed with these multipole

Rs8s
L

5Re@Cs8
* Cs#, ~A18!

Rs8s
T1

5Re@Es8
* Es1Ms8

* Ms#, ~A19!

Rs8s
T2

5Re@Es8
* Ms2Ms8

* Es#, ~A20!

Rs8s
TL1

5Re@Cs8
* Es#, ~A21!

Rs8s
TL2

5Re@Cs8
* Ms#, ~A22!

I s8s
TL1

5Im@Cs8
* Es#, ~A23!

I s8s
TL2

5Im@Cs8
* Ms#, ~A24!

Rs8s
TT1

5Re@Es8
* Es2Ms8

* Ms#, ~A25!

Rs8s
TT2

5Re@Es8
* Ms1Ms8

* Es#. ~A26!

TheL, T, TL, andTT responses include only the real parts
the quadratic combinations of the various multipole mat
elements, while the fifth response functionTL8 is a linear
combination of the imaginary parts~A23! and~A24!. There-
fore the TL8 response is zero in PWIA, where the matr
elements~A15!–~A17! are real numbers. In the presence
an interaction, however, the matrix elements~A15!–~A17!
are, in general, complex numbers due to the asymptotic c
plex phaseeid l j introduced by the nuclear interaction in th
wave function, and as a consequence, the fifth response f
tion is different from zero in DWIA. The sum over the qua
tum numberss5( l , j ,J), s85( l 8, j 8,J8), and L in Eqs.
~A1!–~A10! is only restricted by angular momentum conse
vation. In practical calculations we fix the number of mul
poles involved in the sums by comparing our results with
ones corresponding to the factorized PWIA in the impu
approximation where, as known, the nuclear responses
be computed exactly.

The outgoing proton wave function corresponds to a
lution of the Schro¨dinger equation for positive energies usin
a complex optical potential fitted to elastic proton-nucle
scattering data. The partial wavel j with energyE.0 and
wave numberk5A2ME is determined by the asymptoti
condition

Rl j ~k,r !;A 2M

p\2k
e2 i (s l1d l j* )

3sinS kr2h ln 2kr2 l
p

2
1s l1d l j* D ,

~A27!

whered l j is the complex phase shift ands l is the Coulomb
phase shift. In the limit in which the imaginary part of th
optical potential is zero and the phase shiftd l j is a real num-
ber, the continuum radial wave functions are normalized w
2-21
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a Dirac delta function containing the energies~see Ref.@23#!.
The imaginary ~absorptive! part of the optical potentia
modifies the normalization of the continuum states since
flux of the outgoing particles in the elastic channel is
duced.

APPENDIX B: ASYMPTOTIC OBDM FOR UNOCCUPIED
STATES

We consider as an example the simplest case of the m
tipole l 52 for the nucleus12C. More details are given in
@34#. We use the expression~43! for the correlated contribu
tions to the OBDM. First we exclude the contribution
diagramsC and D of Fig. 2, since the dependence of the
terms on the density coordinatesr ,r 8 is done across the non
correlated densityr0(r ,r 8), which only contains the multi-
polesl 50,1 in the case of12C. In other words, the externa
pointsr andr 8 in diagramsC andD are connected with the
others with density lines only, which cannot modify its mu
tipolarity l 50,1.

In the case of diagramA of Fig. 2, it can be written in a
multipole expansion as@22#

rA~r1 ,r18!5 (
n1l 1 j 1

~2 j 111!Rn1l 1 j 1
~r 1!Rn1l 1 j 1

~r 18!

3(
l l 2

2l 311

2l 211 S l 1 l 2 l

0 0 0D
2

Pl~cosu118!

3E
0

`

dr2 r 2
2r0~r 2! f l 2

~r 1 ,r 2! f l 2
~r 18 ,r 2!,

~B1!

where the functionf l 2
(r 1 ,r 2) is the multipole of the corre-

lation function for angular momentuml 2. The sum over
n1 ,l 1 , j 1 corresponds to the occupied states 1s1/2 and 1p3/2 in
12C. The multipolel 52 of the OBDM is obtained as th
coefficient of the Legendre polynomialP2(cosu118) in the
above equation. Since we are interested in the asymp
behavior for r 1 ,r 18→` we only consider the contribution
coming from thel 151 term, i.e., (n1l 1 j 1)51p3/2. Hence
the 3j coefficient gives a nonzero result forl 251 only. The
corresponding multipolel 251 for the correlation function is
proportional to the integral
n

03460
e
-

l-

tic

E d cosu12cosu12f ~r12!52AE d cosu12cosu12e
2Br12

2

;2
A

2Br1r 2
e2B(r 12r 2)2

. ~B2!

Hence the asymptotic behavior of thel 52 multipole for
r 1 ,r 18→` is

rA~r 1 ,r 18! l 52;R1p3/2
~r 1!R1p3/2

~r 18!

3E
0

`

dr2 r 2
2r0~r 2!

e2B(r 12r 2)2

r 1r 2

e2B(r 182r 2)2

r 18r 2

.

~B3!

Changing to the variabler 285r 22r m , where r m5(r 1

1r 18)/2 is the midpoint betweenr 1 and r 18 , we arrive at

rA~r 1 ,r 18! l 52;R1p3/2
~r 1!R1p3/2

~r 18!

3
e2B(r 12r 18)2/2

r 1r 18
r0~r m!E

2`

`

dr28e
22Br28

2
.

~B4!

Finally, introducing the asymptotic behavior of the rad
functions

R1p3/2
~r 1!;

e2kr1

r 1
, ~B5!

r~r m!;
e22krm

r m
2

54
e2k(r 11r 18)

~r 11r 18!2
, ~B6!

we obtain the following asymptotic expression:

rA~r 1 ,r 18! l 52

;

exp~22kr1!exp~22kr18!expS 2B~r 12r 18!2

2 D
r 1

2r 18
2~r 11r 18!2

,

r 1 ,r 18→`. ~B7!

A similar expression can be obtained for diagramB of Fig. 2.
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@13# H. Müther and A. Polls, Prog. Part. Nucl. Phys.45, 243~2000!.
@14# W. J. W. Geurts, K. Allaart, W. H. Dickhoff, and H. Mu¨ther,

Phys. Rev. C53, 2207~1996!.
@15# D. Van Neck, L. Van Daele, Y. Dewulf, and M. Waroquie

Phys. Rev. C56, 1398~1997!.
@16# A. E. L. Dieperink and T. de Forest, Jr., Phys. Rev. C10, 543

~1974!.
@17# D. Van Neck, M. Waroquier, and K. Heyde, Phys. Lett. B314,

255 ~1993!.
@18# D. Van Neck, A. E. L. Dieperink, and M. Waroquier, Phy

Rev. C53, 2231~1996!.
@19# M. V. Stoitsov, S. S. Dimitrova, and A. N. Antonov, Phys. Re

C 53, 1254~1996!.
@20# S. S. Dimitrova, M. K. Gaidarov, A. N. Antonov, M. V

Stoitsov, P. E. Hodgson, V. K. Lukyanov, E. V. Zemlyanay
and G. Z. Krumova, J. Phys. G23, 1685~1997!.

@21# M. K. Gaidarov, K. A. Pavlova, A. N. Antonov, M. V. Stoitsov
S. S. Dimitrova, and C. Giusti, Phys. Rev. C61, 014306
~2000!.

@22# F. Arias de Saavedra, G. Co’, and M. M. Renis, Phys. Rev
55, 673 ~1997!.

@23# J. E. Amaro and T. W. Donnelly, Ann. Phys.~N.Y.! 263, 56
~1998!.

@24# J. E. Amaro and T. W. Donnelly, Nucl. Phys.A646, 187
~1999!.
03460
,

@25# J. E. Amaro, J. A. Caballero, T. W. Donnelly, A. M. Lallena, E
Moya de Guerra, and J. M. Udı´as, Nucl. Phys.A602, 263
~1996!.

@26# J. M. Udı́as, J. A. Caballero, E. Moya de Guerra, J. E. Ama
and T. W. Donnelly, Phys. Rev. Lett.83, 5451~1999!.

@27# J. Gaoet al., Phys. Rev. Lett.84, 3265~2000!.
@28# T. Berggren, Nucl. Phys.72, 337 ~1965!.
@29# A. S. Raskin and T. W. Donnelly, Ann. Phys.~N.Y.! 191, 78

~1989!.
@30# J. E. Amaro, A. M. Lallena, and J. A. Caballero, Phys. Rev.

60, 014602~1999!.
@31# J. E. Amaro, J. A. Caballero, T. W. Donnelly, and E. Moya

Guerra, Nucl. Phys.A611, 163 ~1996!.
@32# F. Arias de Saavedra, G. Co’, A. Fabrocini, and S. Fanto

Nucl. Phys.A605, 359 ~1996!.
@33# A. Fabrocini and G. Co’, Phys. Rev. C63, 044319~2001!.
@34# M. Mazziotta, thesis, University of Pisa, 2001.
@35# P. Schwandtet al., Phys. Rev. C26, 55 ~1982!.
@36# L. Chinitz et al., Phys. Rev. Lett.67, 568 ~1991!.
@37# G. J. Miller et al., Nucl. Phys.A586, 125 ~1995!.
@38# J. I. Johansson, H. S. Sherif, and F. Ghoddoussi, Nucl. P

A665, 403 ~2000!.
@39# A. Fabrocini, F. Arias de Saavedra, and G. Co’, Phys. Rev

61, 044302~2000!.
@40# P. G. Blunden, Phys. Lett.164B, 258 ~1985!; P. G. Blunden

and B. Castel, Nucl. Phys.A445, 742 ~1985!.
2-23


