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In medium T matrix for superfluid nuclear matter
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We study a generalized ladder diagram resummation in the superfluid phase of nuclear matter. The approach
is based on a conserving generalization of the uSualatrix approximation including also anomalous self-
energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS
approach to superfluidity. The numerical results in this work are obtained in the quasiparticle approximation.
Properties of the resulting self-energy, superfluid gap, and spectral functions are studied.
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I. INTRODUCTION As noted above strong modifications of the mean-field
result for the superfluid gap are expected in the nuclear mat-
One of the most general properties of fermion systemser due to screening effecf9—11], modifications of the ef-
with attractive interactions is the transition to a superfluidfective mass, and self-energy correcti¢tg,14,13. One of
state at finite density and low temperature. It is expected thahe motivations of the present study is to investigate another
such a phenomenon happens also for a strongly interactingburce of the in medium correction to the value of the gap.
system of nucleons, such as cold nuclear matter. CalculationEhese corrections occur in a generalization of the resumma-
based on free nucleon-nucleon interactions predict very largggon of ladder diagrams to include anomalous propagators
values of the superfluid gap. Typically they give aroundalso. In the following we study the formalism and give nu-
5-10 MeV for the isospin singletT(=0) 3S,-3D, partial  merical estimates of the corrections to the anomalous self-
wave[1-4]. The actual value of the superfluid gap is a mat-energy. These additional terms introduce an energy depen-
ter of debate, because of the expected screening and setfence in the superfluid gap, but the modifications of the
energy corrections. One has to note that also some of thealue of the gap at the Fermi surface are not as dramatic as
phenomenological potentials fitted to the pairing propertiesrom other in medium many-body effects.
of finite nuclei give significant values of the superfluid gap in  The correction to the binding energy due to the superfluid
nuclear mattef5]. The study ofT=0 pairing in the system- rearrangement of the ground state is believed to be small
atics of N=Z nuclei became possible with advent of radio-[21]. However, some of the calculations using realistic
active beam facilities. This led to a resurgence of the study ofiuclear forces predict quite large values of the superfluid gap
the nuclear mass systemat[6s-8]. Thus it is of importance in nuclear matter. A large superfluid gap could lead to modi-
to obtain results on the nature of the nuclear pairifigsQ or  fications of the normal part of the self-energy and the spec-
T=1) and the value of the superfluid gap for symmetrictral function. In the following we study a consistent approxi-
nuclear matter at saturation density and below. It appears thatation treating on equal footing the normal and anomalous
the mean-field gap equation without medium modifications iart of the self-energy. We find that important modifications
unrealistic[9—-14] and hence the best strategy would be toof the single-particle and two-body propagators appear if the
calculate a density-dependent gap for nuclear métielud-  superfluid gap is large. These significant modifications in the
ing relevant many-body correctionand use it in a local superfluid presenta posteriorj an important reason to con-
density approximation for calculations in finite systdB¥]. sider the generalized formalism discussed in this work. Also
The neutron-rich nuclear matter is used in modeling of thehe expansion of the ground state energy or other quantities
crust and of the core of neutron stars. It is generally believe@dround the wrong ground state is not satisfactory for a theory
that such an asymmetric nuclear matter is superfluid, wittaiming at the description of the many-body problem from
different kinds of superfluid gaps appearing in the vast rangérst-principles, using free nucleon-nucleon potentials. The
of densities present in the neutron star. The value of théncorrect ground state could also lead to instabilities in the
superfluid gap is of importance for fundamental problems imactual iterative numerical solution of the many-body equa-
neutron stars, the formation of glitches, the value of the vistions, related to the appearance of the Cooper instab2y
cosity, and the cooling rates in different scenar[d$]. Mean-field approaches give a qualitatively correct de-
Again one of the possible approaches is to calculate the siscription of the formation of the superfluid gap by the BCS
perfluid gap from the bareNN interaction using the mechanism, but fail in the resummation of the hard core of
Brueckner-Hartree-Fock approximation to get single-particlehe NN potential. Recently superfluid nuclear matter was
energies for the gap equatiofl6,17,11,18,19,13,14,20 studied in an approach starting from the in mediGimatrix
However, in order to obtain reliable estimates for the superapproximatiori23]. The T-matrix approximation for the self-
fluid gap in the neutron matter we need to have under contranergy was studied intensively in the last decade in normal
in medium many-body corrections to the gap equation. nuclear matter. The resummation of ladder diagrams ifTthe
matrix, which is different from the usu&-matrix approxi-
mation, can also be used to deal with the hard core in the
*Electronic address: bozek@solaris.ifj.edu.pl interaction potential. Theél-matrix formalism, also called
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self-consistent Green’s function approach, can be used dBCS contribution. The practice calculations are more diffi-

rectly at high temperature, above the superfluid phase transtult in the generalized scheme discussed here. The number of

tion [24—27. It allows to study in a self-consistent way the propagators and-matrix components is doubled because of

one-particle self-energies and spectral functif2®,26,28— the appearance of the off-diagonal, anomalous propagators.

30], the two-particle properties and in medium cross sectiond he numerical results presented in this work are obtained in

[24-27,31,29 the onset of superfluidity32,33,20,23,2p  the quasiparticle approximation, starting from mean-field

the self-energy corrections to the superfluid gag]. The BCS propagators.

treatment of the old question of saturation properties of

nuclear matter in th&-matrix approximation is at the present Il. GREEN'S FUNCTIONS IN THE SUPERFLUID

stage not superior to the most rec&matrix or variational

calculations, including realistic interactions and three-body

and three-body force corrections. However, thenatrix We consider infinite homogenous nuclear matter interact-

self-energy leads to reliable results for the single-particleng through a two-body potential. The energies are defined

properties; in particular it gives a consistent value for thewith respect to the chemical potentjal

Fermi energy fulfilling the Hugenholz—Van Hove theorem

[34,27. _ 3yt
Besides the above motivations to develop tenatrix H‘% f dXW ()

approach for nuclear matter, this approximation seems to be 1

the most natural starting point for the study of the superfluid 3 3. app T T

phase of the nuclear matter. The appearance of a singularity * ) BE’ 8 2 d Xf dYW o ()W (y)

in the T matrix at zero total momentum of the pair and at e

twice the Fermi energy signals the formation of a long range XV g7 (Y (Y)W 4(X). (1)

order and defines the Thouless criterion for the critical tem-

perature_ It is in fact equiva|ent to the critical temperatureln the real time formalism the Green’s functions are defined

corresponding to the appearance of a nontrivial solution oPn & contour in the time plai@7]. It means that as functions

the BCS gap equation. The same is true if off-shell propagaOf -a Single-yalued time variable the Green’s functions ac-

tors are used in th@-matrix ladders. It corresponds to a duire a matrix structure

generalization of the gap equation to one using full spectral

functions, including the imaginary part of the normal self- Gap(X1,t1:X2,t5)

energy[12]. The study of the singularity in th&-matrix

A. Notation and formulas for the normal phase

A
—ﬁ—u)wa(m

equations at finite temperature, in the normal phase allows to _ Gop(Xiit1iXa,ta)  Gog(Xy tyiXa,to) @
identify the critical temperature and the precritical modifica- N Gzﬁ(xlrtl;XthZ) Giﬁ(xl,tl;xz,tz) ’

tions of the spectral function, in medium cross sections, and

density of state$32,33,20,35,29,26,23,36 where GZB(Xl.tlixz,tz):i<T‘I’a(X1,t1)‘I’};(Xz,t2)> is the

The generalization of th@-matrix approximation to the ., -onological Green's functiorG? is the antichronological
superfluid phase appearifgelow T, was discussed in Ref Green’s function, and GZB(Xl,tlixz,tz)Ii(‘l’a(Xl,tl)

[23]. The approach is based on the observation that the for>-<\I,;(X2,t2)> and GZB(Xlatl;XthZ): _i<\1,}3(x2,t2)

mation of the superfluid order parameter requires a Iong&q, (x,.t,)) are the correlation functions. In a homoge-
a 1 .

range order. This long range order, representing the formaﬁeous system, after Fourier transforming in the relative co-
tion of Cooper pairs at zero momentum and twice the Fermi y ! 9

energy, corresponds to a singularity in thematrix for the ordinat_e and time, single-particle Green_’s functions depend
same energy and momentum as in the Thouless criterio n a_smgle energy and momentum. Noting _tha_t the Green's
Thus alsobelow T, we expect to find a singularity in the ur)ctlons are diagonal in the spin-isospin indices, we can
two-body propagator at twice the Fermi energy. The kerneYvrlte

of the T-matrix equation is modified in the superfluid so that

the singularity of thél-matrix equation is again equivalent to Gap(P, @) =3,5G(p,0). 3
the BCS gap equation for nonzero values of the order param- o o L ] .
eter[23]. A single scalar functioriin spin-isospin indicesG is suffi-

In the present work we investigate a different approach t&ient to describe a spin and isospin symmetric nuclear mat-
the T-matrix resummation in the superfluid. It is a generali- t€r- The scalz_ir correlation functions are written using the
zation of the ordinaryT-matrix ladder diagrams, which in- SPectral function
cludes also anomalous propagators. Thus normal and anoma-

lous self-energies are calculated in a unified way. The G=(p,w)=if(w)A(p,0), 4
approximation deals at the same time with ladder diagrams
resummation for the self-energy and with the appearance of G7(p,w)=—i[1—f(w)]A(p,w). (5)

the order parameter. The properties of the generallzeth-

trix, self-energy, and spectral function are discussed. A justif (w)=141+exd —B(wo—w)]} is the Fermi distribution at
fication of the heuristic procedure of R¢23] is then ob- the temperatur@ = 1/8. The spectral functioi is related to
tained if the superfluid order parameter is restricted to thehe retarded Green’s function

034327-2



IN MEDIUM T MATRIX FOR SUPERFLUID NUCLEAR MATTER PHYSICAL REVIEW (65 034327

A(p,w)==2ImG"(p,w)=i[G”(p,w) =G~ (p,)] (6)

3 —2Im3*(p,w)
[w—p?2m—ReS*(p,w)+ul2+Im3 " (p,w)?’

)

where3, " (p,w) is the retarded self-energy.
The T-matrix equation in the normal phase is

d3k f d3q

<p|T§’,3'aB(P,w)|p’>:Va’ﬁ'af3(p’p’)+2 f (27)3

vo (277.)3 Va’ﬁ’yﬁ(pvk)<k|gi(P,w)|q><q|T$5a'3(P,w)|p'>, (8

whereg is the disconnected retarded two-particle propagator
=+ ’ 3 ’ dw/ dw” < ” ’ < ’
(plG*(P,w)|p")=(2m)%8*(p—p') 5 | 2. LG (PI2+p,0"—w")G™(P2=p,0’)

—G7(PI2+p,0"— 0 )G (PI2—p,0") ] (v—0"*i€)

=(2m)*6%(p—p")G*(P,,p). 9)
|
Note that it is .su_fficient to solve a single .equat.ion_ for the Fjﬁ(xl,tl;,xz,tz): — (W (X, 1) W o(Xq, 1)) (14)
retardedT matrix instead of a matrix equation with indices
on the time contour in the complex time pla(®. We consider a homogeneous infinite system so that the

A full structure in the spin-isospin indices and relative anomalous Green'’s functions depend on a single momentum
angles of momenta must be kept. However, usually a partiednd energy. Analogously as for the normal Green’s functions

wave expansion of th&-matrix equation is performed: we can write
(PITEEP=(Pw)lp) Foa(P@)=if(0)Bug(p.w), (15
k?dk FZu(pw)=—i[1-f(0)]B.s(p, o). 16
:VI(;Jls-D(p,pr)_F% J' 2772 Vl(;]ﬁ-n(p,k) a,B(p ) [ ( )] aﬁ(p ) ( )

The anomalous spectral function is related to the imaginary
xgi(p,w,k)<k|Tl(ﬂ|SDi(p,w)|pf> (10)  part of the retarded propagator

after angle averaging the kerngl Bug(P.w)=—IM[F 4(p,0+ie)=F, gzpo—ie)] (17
=i[F_4(p,0)—F 4(p,®)]. (18)

It should be noted that the spectral function for the diagonal
part of the Green’s function is modified in the presence of the

gi(vavp):J‘Egi(le!p)' (11)

B. Anomalous Green’s function off-diagonal self-energy\. We shall denote it by
In the superfluid phase the ground state of the system has N
a nonzero order parameter, corresponding to bound Cooper As(p,w)==2ImG"(p,w) (19

pairs[38]. This leads to new Green’s functions . .
and reserve the notatioA(p,w) for the spectral function

obtained by settingh =0 [Eq. (7)].
The spin-isospin structure of the anomalous Green'’s func-
Fzﬁ(xl,tl;xz,tz) Fjﬁ(xl,tl;xz,tz) tion is assumed to be of the spiisospin singlet or triplet

= . (12 «kind. We write
Fas(X1,t1iXa,ta)  Fop(Xy,tiixa,to)

Fap(X1,t1:%2,15)

F¢ is the time-ordered anomalous Green’s function Fap(P,@)=A4F(p, o). (20)
Fzﬁ(xl,tl;,x2,t2)=i<T[‘I’a(x1,t1)\Pﬁ(x2,t2)]>, In general the miatrixNk.aﬁ cpuld depe_nd on th_e momentum,
energy, and relative directions of spin, isospin, and momen-
F2 the antichronological one, and tum. To simplify we use in the following angle-averaged

_ ) double propagators in tHe matrix ladder. The matrixA in
Fap(X1,t15, %2, ) = I(W (X1, 1) Wp(X2,t2)), (13 spin-isospin indices fulfills
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DO Q
T|=¢+ T
®- [T

-y
+ L FIG. 2. The normal part of the self-energy in thematrix ap-
proximation.

lous propagators in the ladder leads to the following
L L additional matrix structure in th& matrix,

<<plT§,B,a5<P,m|p'> (PIL 3 g s (PP
(PILopap(P= )Py (PIT Y 4P~ Q) D")

LT

V(p!p’)a'ﬂ’aﬁ 0 )
FIG. 1. The generalize@-matrix equation in the superfluid. = ,
0 V(p;p )a’B’a,B
At R —1pl2
AaﬁABy_|D| 50{‘}/ (21) f d3q Z V(plq)a’ﬁ’y’ﬂ’ 0 )
+
for time-reversal invariant states. Without loss of generality (2m)?3 % 0 V(P,Q) gy o
we can pufD|?=1. More specifically the spifisospin part
Oan,B |S 6yy’6§5’gt(Pyﬂyq) H;réryé‘(Paﬂyq)

X
d,+id, —id, ) ) H;,Tg,y(;(P,—Q,Q) 8, 855G (P,—Q,q)
—id dy—id + , + ,
S ( (AT55apP. P (alLys0p(P.O)IP")
. 2, 42, 42 X . . ,
for the triplet gap ¢ +dj+d;=1) and <q|L;5JB(P,_Q)|pr> <q|T;§aﬁ(P,—Q)|p’>
U 24
W o
-0 where

for the singlet one. Together with the choice of a diagonal do' [ do”
normal Green’s function we describe the propagators usingt »z,s(P.,p) = f Ef E[FEY(P/Z-F po"—w’)
scalar functions in spin-isospin indiceB~~(p,w) and
G=~(p,w) as well as the corresponding retarded propaga- ><F§5(P/2— p,w')—F;(P/2+ p,w'—w")
tors, self-energies, and spectral functions.
X F;,g(PIZ— P,/ (Q—w"*ie€)
C. Ladder resummation in the superfluid (25

Ladder resummations in the superfluid have been consicddenotes two disconnected anomalous propagators.is
ered in the description of highz superconductor§39]. A  the off-diagonal part of the generalized retardBdnatrix
thermodynamically consistent scheme that reduces to th@ig. 1).
usual T-matrix equation abov@ . can be constructed. The The anomalous part of the laddef,;z,; does not mix
simplest way is to introduce a generaliz&dmatrix with  different values of the total spiisospin of the pair. It
additional indices indicating if the incoming line is anoma- can be seen by writing the matrix structure Hf,z in the
lous or normal, following the Nambu formalism for super- basis of the total spiriisospin of the pair and of its third
conductors. Restricting oneself to two normal or two anomacomponent:

(detdy)?  —iy2d,(d+id,) —d; 0
—iv2d,(dy+id,) di+dj—d? —iv2d,(d,—idy) O

H= H (26)
—d? —id,(dy—id,) (dy—idy)? 0
0 0 0 D2
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for the triplet pairing with the matrix in the components ('Hj
1%,1°,17,0° of the total spin(isospin of the pair and @ L .
0O 0 -1

H @7 = 6

FIG. 3. The off-diagonal part of the self-energy in the general-
é'zed T-matrix approximation with the BCS contribution.

0
0

I

H
o o Bk
» O o O

for the singlet pairing. Using the structure of the anomalou
Green’s function Eqg. (20)] and assuming a dependence of
the angle-averaged spin-isospin struct{ilee matrices in < . <>
Egs. (26) and (27)] only on the value of total momentum, >v (P.@)=i| 5— (277)3<(p_k)/2|TA
one finds

' 3

X(0+ o p+i)|(p—K)I2G< (ko). (30
11 ysX =8, 56,5 H XH, 28 . .
% Har 176> Hyoap™= O’ pOap 28) Analogously we can define th&matrix part of the off-

. _ . ~diagonal self-energyFig. 3):
where X stands for momentum integrals with the interaction

potential or theT matrix that appears in the iteration of the do’
Eq. (24). A partial wave decomposition approximation can A5 (p, ) =i f —
be applied after angular averaging of the intermediate uncor- 27 (2m)*
related two normal or two anomalous propagators in the lad- , - ,
der (it is exact forS=0 partial waves The resulting gener- X(wto',p+kl(p=kI2F=" (ko).
alized T-matrix equation has a matrix structure (31
corresponding tdEq. (24)] in each partial wave:

d3k

((pP—k)/2Lx~

. . The above definition of the self-energy isbaederivable ap-
(PITGsn(P.O)p")  (pILsy(P.2)[p") ) proximation[40] (Fig. 4). It leads to thermodynamically con-
- / +1t _ / sistent results. In Eq$31) and(30) the subscripA denotes
(PlLasn(P.OIP") (pITsn(P. = D)lp") antisymmetrization and we have not written explicitly the
Vasn(p,p’) 0 spin-isospin indices. It can be checked that forn{8th con-
= 0 Vi3sn(p,p’) serves the singlettriplet) structure of the order parameter
(ST given by F. The approximation31) does not include the

qqu<V(JS'l)(p7q) 0 ) usual BCS part of the anomalous self-energy
e e sacsor——1 [ 2] L prortan. 2

X( G=(P,Q,q) H*(P,Q,q)> ses(P)=—1 ] 5 2m) (P.0F (ko). (32
H=(P,—0Q,q) G7(P.—Q,q)

. . This term can be added explicitly to the off-diagonal part of
(AlTasn(P.Q)[p")  (dlLsy(P.D)[p") the self-energyFig. 3) without spoiling thedb derivability of
<q||_(1:]S_D(p’Q)|p/> <q|TagD(p'_Q)|p/> ' the approximation. We will see that the BCS part of the

anomalous self-energy is dominant, and in the first approxi-
(29) mation one can neglect the two-body contribut{8a) to the
We used alsqp|L*(P,2)|a)=(p|L=T(P,~Q)|q). In the superfluid gap. However, the approximation scheme, which

following we skip the spin-isospin indices in the equations
assuming a partial wave decomposition in the generalized
matrix. The contribution from the off-diagonal matrix and

the anomalous propagators is the most important around the

Cooper pair singularity in th& matrix. At the singularity the PR + e
partial wave expansion becomes exact for an angle indepen- F -4
dent gap.

D. Self-energy

The self-energy can be defined generalizing the self-
energy in theT-matrix approximation for the normal phase. + %
The diagonal part of the self-energy is defined by the

T-matrix approximation to the two-particle Green’s function  FIG. 4. Diagrams contributing to the generating functiofain
(Fig. 2): the generalized-matrix approximation.
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keeps thel-matrix form of the diagonal self-energy and the +& —¢
. ; . p p p
BCS form of the off-diagonal self-energy, is nbtderivable.  Agcs(P,®)= 277 2E Slo—Ep)+—

Sw+Ep) |,

(34
E. Quasiparticle approximation
The full solution of the set of equatiorig4) for the gen-

eralizedT matrix, the normal self-energy, and the superflwd
gap requires a self-consistent iterative solution. Below we
present results of a simpler calculation. It starts with the
mean field approximation for the normal self-energy A,
(Hartree-Fock approximationand the BCS approximation B(p,w)= —277—[5(w Ep)—d(w+Ep]. (39
for the superfluid gap

where¢,=p%/2m+3 e(p) — 1 andE,= \/§2+ Azp. The cor-
responding off-diagonal spectral funct|on is

d3k 1-2f(Eyp) The generalizedT-matrix equation is solved for the
Ages(P)=Ap= _J (277)3V(p k)—ABCS(k) Swave Yamaguchi interactiopdl1]. This oversimplified in-
(33) teraction is used to reduce the numerical difficulties involved
in the solution ofT-matrix equations and in the calculation of
The starting spectral function for the calculation of fhe the self-energies. First the imaginary parts of the diagonal

matrix is and off-diagonal self-energies are calculated:
d*k [Ep+ gp
ImE(p,w):f(zTr)3 [f(Ep) +b(w+Ep)((p—k)/2IMmT(p+k,o+Ey)|(p—k)/2)a
Ep—&p
+ =g [f(=Ep)+blo—Ep) K(p=K)/2ImT(p+k,0—Ep)|(p=K)/2)a (36)
P

and similarly for Im\ty [b(w) is the Bose distribution  the spectral functions follows a gap in two-particle excita-
Then from the dispersion relations the real part of the dispertions around the Fermi energy. For zero total momentum of

sive contribution to the self-energy can be obtained: the pair, this forbidden region is twice the superfluid gap. At
the edge of the two-particle gap the generaliZadatrix has
ReE(p,w)diSp dw’ {Im E(p,w’)disp 1 a singularity as a function of energy, similar to the singulari-
ReA(p, @)y f T IMAD.© ) ) oo (37  ties in the density of states in the BCS approximation.

In fact the imaginary part of th& matrix is related to the

To the dispersive part of the self-energies one has to add tH¥/0-particle propagator. The one-time two-particle spectral
mean-field self-energy. - and the mean field superfluid gap fUnction is

Agcs x10°
Rez(p!w):Rez(plw)disp+2HF(p) ‘}‘; 0.1 -
©
ReA(p,w)=ReA(p,»)my+Ascs(P) (38) £ -
A, 005 -
that have been calculated already to obtain the spectral func- X
tions (34) and(35). =
o
Ill. RESULTS FOR THE T MATRIX é
A. Energy gap in the T matrix g‘
and the two-particle spectral function £
The equations for the generaliz&dd matrix are solved - T
with the quasiparticle ansatz for the spectral functidrend -50 25 [} 25 50
B. We present results at the temperature of 3 MeV with a ® (MeV)

BCS gap of 10.1 MeV. The results do not change appreciably

when reducing the temperature further. In Fig 5 are shown FIG. 5. The imaginary part of the diagon@blid line) and off-
the imaginary parts of the diagonal and off-diagonal ele-diagonal(dashed ling part of the generalized matrix in the 3S;
ments of the generalized matrix. From the BCS ansatz for channel.
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5
x10

0.25

> (MeV™)

<A,(w,P=

NS N T N
50 25 0 25 50 50 25 0 25 50

o (MeV) o (MeV)

FIG. 6. The two-body spectral function for normal propagators FIG. 7. The two-body spectral function for anomalous propaga-
obtained from the generalized matrix (solid line) and from two  tors obtained from the generalizdmatrix (solid line) and from
uncorrelated BCS propagatofgashed ling Projected on thé’S; two uncorrelated BCS anomalous propagat@ashed ling Pro-
channel(upper panéland S, channel(lower panel. jected on the®S; channel(upper paneéland 'S, channel(lower

pane).

( (PlA(P.Q)[p")  (pIB2AP.Q)[p") ) o .
B. Singularity in the T matrix

PIB2(P,—Q)[p")  (p|A(P,—Q)|p’
(pIE: P (plAe P The T matrix is singular for the total energy of the pair
| J d3q d3k (Vl(p,q) 0 ) equal to twice the Fermi energy and zero total momentum. It
- 3 3 0 v-i(p, is a generalization of the Thouless criterion for the critical
(2m)°) (2m) (p.9) temperature to the superfluid phase. Indeed the imaginary
(q|T=(P,Q)|k) (q|L=(P,Q)|K) part of T and L is always zero afl=0 andP=0 and the
X((q|L+(P — )k <q|Tﬂ(P — )k inverse of the real part of the generaliZzEdnatrix

(Vl(k'p') 0 )
“I' 0 vikp))

.
Re(k'l| TT) [l (41)

P=0=0

(39

The spin-isospin indices are omitted, and the two-particléhas a zero eigenvalue
spectral function can be projected on a definite total spin or
isospin of the pair. Also the relative momentum can be pro-
jected on states with definite angular momentum. In Fig. 6
we present the two-particle spectral function projected on
partial waves occurring in our separable interaction

0.6

o
kS

d3k d®p
2 a(k)a(p)(k|Ax(P,Q)|p), (40

<A2(P,Q)>:f 77.)6

o
M)

whereg(k) = 1/(k?+ 82) is the form factor of the Yamaguchi
interaction[41]. We use the same projection for the off-
diagonal two-particle spectral functidy, in different chan-
nels and for the uncorrelated BCS two-particle propagators. . .

The energy gap present in the two-particle BCS propaga- 50 0 50 (M1eo\‘;)
tor is visible also in thel-matrix approximation(Fig. 6). It @
corresponds to a minimal energy to excite a two-particle pair. F|G. 8. The two-body spectral function for normal propagators
This energy is twice the single-particle energy gap. A similarobtained from the generalizeBl matrix (solid line) and from two
gap appears in the two-particle anomalous propag&i®.  uncorrelated BCS propagatofgashed ling for nonzero total mo-
7) and for nonzero momentum of the pé#k¥igs. 8 and @ mentum of the pair P=525 MeV), projected on théS; channel.

<A,(,P=525)> (MeV?)

o
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<B,(w,P=525MeV)> (MeV?)

-0.2

o- 0 200 300 400
o (MeV) p (MeV)

FIG. 9. The two-body spectral function for anomalous propaga-
tors obtained from the generaliz&dmatrix (solid line) and from
two uncorrelated BCS anomalous propagat@tashed ling for
nonzero total momentum of the paiP €525 MeV), projected on
the 3S, channel.

A(k)

T L
jd3k<k’|(L Tt |k>l(—A*(k)):o' (42)

A(k) (with spin-isospin indices omittgeds the solution of
the mean-field gap equation

FIG. 11. The position of the quasiparticle pole for the normal
propagator with the Hartree-Fock self-enetgglid line) and for the
propagator including the normal self-energy from fhenatrix cal-
culation (dashed ling The positions of quasiparticle poles of the
full propagator including the normal and the off-diagonal self-
energies in thél-matrix approximation are denoted by the dotted
lines.

P=00=0 T matrix in this channel shows a singularity at zero total
momentum and at twice the Fermi energy for all tempera-

tures belowT, .

IV. SELF-ENERGIES AND SPECTRAL FUNCTIONS

A(p) f d3k V(P dwdw’ Ak, w)Aqk,®)
p (2m)? P, (2m)? ot o A. Single-particle energies
) The position of the single-particle poig, when including
X[1-f(w)—f(0")]A(k)=0 (43 only the real part of the self-energy can be obtained as the

. _ _ _ solution of
if Ag(k,w) is the full spectral function with only the energy-

independent BCS contributiongcg(k) to the off-diagonal
self-energyA (k, ). In particular the inverse generalizdd
matrix with mean-field quasiparticle propagatd®) and
(35 has a zero eigenvalue corresponding to the BCS mearnn Fig. 11 it is compared to the position of the quasiparticle
field superfluid gag33). In Fig. 10 is shown the real part of pole ¢, when including only the Hartree-Fock self-energy.
the inverse determinant of the generaliZednatrix for the  There is a significant difference between the mean-field
two S partial waves. Clearly the superfluid gap is formed insingle-particle energy and the single-particle enddyy for
the 3S; channel(for the chosen interactionThe generalized low momenta, due to the dispersive part of the self-energy as
obtained in theT-matrix approximation. It is a reflection of
the presence of short-range correlations in the nuclear matter.
This modification of single-particle energies below the Fermi
energy leads to important corrections to the binding energy
per particle. A resummation of ladder diagrams in the form
of the G matrix (or the T matrix) is necessary to obtain reli-
able results for the binding enerd#2,21].

In the superfluid the presence of the off-diagonal self-
energyA(p,w) leads to the splitting of quasiparticle peaks in
the spectral functios(p,w):

2

p
wp=ﬁ+ReE(p,wp)—,u. (44)

-
o

0)) (MeV™)

Fd
o

det(T(w,P

0.5 w=*E,=*[£{+ReX(p,Ep)*+|A(p.Ep)]?. (45

a00 B0 0 50 100 As shown in Fig. 11 the superfluid quasiparticles, have a gap
o (MeV) in excitations around the Fermi momentum. Far from from
the Fermi momentum the dominant quasiparticle peak of
FIG. 10. The real part of the determinant of the invéFsmatrix ~ As(p, @) approaches the quasiparticle peakof A(p,w). In
for the 33, (solid line) and the'S, channel(dashed ling Fig. 12 the position of the quasiparticle poles obtained in-
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0 100 200 300 400

260 I 270 I 2;0 I 290
p (MeV) p (MeV)

FIG. 12. The positions of quasiparticle poles of the full propa-  F|G. 14. The single-particle width at the quasiparticle peak of

T-matrix approximation are denoted by the dashed lines. The soliggashed lines

line represents the positions of the poles when taking the BCS form
only for the off-diagonal self-energy. for excitations of twice the value of the superfluid gap. On

} ) ) top of that the usual reduction of damping due to the restric-
cluding the full off-diagonal self-energhEq. (45)] is com- o of the phase space appears, leading to the formation of
pared to one where only the BCS part of the superfluid gap I§uasiparticles around the Fermi surface.

taken: The quasiparticle nature of the excitations can be judged
by plotting the single-particle width
0= +E,=+\[£,7ReS(p.Ey) '+ [Apcsp)>. (46 7 PO geP

The two energies are very close. At the scale of Fig. 11 they F(p,w)==2Im2(p,w) “7
cannot be distinguished and only close to the Fermi momengt the quasiparticle poles. The single-particle width is small
tum a small dif_ferenc_e can be seen in Fig. 12. Itis due to thgyround the Fermi energy for the quasiparticle pole w,,
fact that the dispersive part of the oﬁ-dlqgonal self-energyand the polesv= +E, (Fig. 14. The formation of the en-
Atym(p,w) introduces only a small correction to the mean-ergy gap for excitation of particle pairs and the reduction of

field superfluid gapdgc(P)- the phase space around the Fermi surface leads to the appear-
ance of sharp quasiparticles for momenta close to the Fermi
B. Imaginary part of the self-energy momentum.

In Fig. 13 we plot the energy dependence of
—Im3*(p,w) for several values of the momentum A C. Superfluid gap
characteristic feature is the very strong reduction of the The superfluid gap acquires a contributiar, from the
damping in the region around the Fermi energy, already at matrix diagram(Fig. 3. The real part of th&-matrix gap
T=3 MeV. It is related to the appearance of an energy gaps obtained from the dispersion relati¢87). In Fig. 15 is

> >
® ®
= = o2
40 — —
) g
o o
S g
e F o
£ w 2
1
00 L 02 |
04 |
1 " N S T T
0 €00 100 0 100 200
o (MeV) o (MeV)

FIG. 13. The imaginary part of the retarded self-energy as func- FIG. 15. The real part of th&matrix contribution to the super-
tion of energy forp=0, 140, 280, and 420 MeVsolid, dashed, fluid gap as function of energy fgg=0, 116, 233, and 350 MeV
dotted, and dash-dotted lines (solid, dashed, dotted, and dash-dotted lines
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ImA(p,») (MeV)
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100 200

o (MeV)
FIG. 16. The imaginary part of th&matrix contribution to the

superfluid gap as function of energy fp=0, 116, 233, and 350
MeV (solid, dashed, dotted, and dash-dotted lines

shown ReAry(p,w) for several values of momenta. Its
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A(p,0) (MeV™)

1
-1| p=350MeV
10

I T | 1

3
10

-100

50 0 50 100

o (MeV)
FIG. 18. The spectral functioA(p,w) including only the diag-

onal self-energysolid lineg and the full spectral functioAy(p,®)
(dashed lingsas a function of the energy.

value is small for energies corresponding to the Fermi energy

and for momenta close to the Fermi momentum.
In Fig. 16 is shown the imaginary part of tHematrix

A(p,w) and A¢(p,w). In the upper panel of Fig. 18 are
shown the spectral functions fpr=0 (below the Fermi sur-

contribution to the superfluid gap. The imaginary part of thegacq The main strength of the spectral function is concen-

dispersive contribution to the superfluid gap Afy(p,w)

nary part ofA, is not modifying the value of the superfluid
gap around the Fermi surface.

In Fig. 17 the mean-field superfluid géyc<(p) is com-
pared to the superfluid gap(p,w) containing also the
T-matrix contribution at the quasiparticle poles=w, or

. . < / trated around the quasiparticle peakust —56 MeV=
shows a gap around the Fermi energy similarly as the imagi-_ d b P @

nary part of the diagonal self-energy. It means that the imagi

—E,. However, for this momentum the spectral function
is relatively spread. The quasiparticle approximation would
be of limited validity. Above the Fermi energy the strength of
the spectral function is small. It is slightly larger fAg than

for A because of the contribution of the second quasiparticle
pole of the full spectral functiolg(p,) in the superfluid.
The situation is reversed in the lower panel of Fig. 18

Ep. Close to the Fermi momentum the mean-field value ofyhere the spectral functions are plotted for the momentum

the superfluid gap is not modified significantly. Only for
small momenta does thé-matrix contribution toA(p,Ep)
show up.

D. Spectral functions

p=350 MeV (above the Fermi momentymiTrhe quasiparti-
cle pole ofA and the dominant quasiparticle pole &f are
located above the Fermi energy. Below the Fermi energy
there is a small contribution from the background strength of
the spectral function té\ and Ag and a small contribution

The quasiparticle nature of the excitations around thérom the second pole to the full spectral functiag.
Fermi momentum can be judged from the spectral functions In the middle panel of Fig. 18 are shown the spectral

|Al(p,E,,) (MeV)

0 L 1 L 1 L 1 . 1
0 100 200 300 400

p (MeV)

functions for a momentum close to the Fermi momentum.
Very sharp quasiparticle peaks are visible &(p,w) at o
=wp and forAg(p,w) at w==E,. For this momentum the
difference betweerA and A is the most pronounced, be-
causew, is different fromE, and both poles ofAs have
comparable strength.

In Fig. 19 is plotted the off-diagonal spectral function
B(p,w). The anomalous spectral function is an odd function
of energy.B(p,w) has two quasiparticle poles on both sides
of the Fermi energy. The quasiparticle poles are very sharp
for momenta close to the Fermi momentum. Only for small
momenta does the off-diagonal spectral function show two
relatively broad peaks.

V. CONCLUSIONS

FIG. 17. The value of the superfluid gap at the quasiparticle pole We present an approach that allows for the resummation

of w,, (dotted ling and at the polé&,, (dashed lingcompared to the
BCS gap(solid line).

of ladder diagrams in the form of the in mediummatrix
and the treatment of the superfluid phase of the nuclear mat-
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siparticle approximation is a reasonable description of exci-
tations close to the Fermi surface, with single-particle ener-
gies modified by the resummation of ladder diagrams.
Let us comment on the influence of the use of more real-
istic forces on the results. The ladder diagram resummation
for the real part of the self-energy is of course important for
any realistic interactionf42,21,32,36,2p The value of the
superfluid gap is expected to be much smaller for realistic
nuclear potentials at normal nuclear density than the value
used in this work. The validity of the partial wave expansion
in the superfluid remains to be checked. However, since the
B~ ST dominant part of the off-diagonal self-energy comes from the
® (MeV) BCS diagram, the use of the partial wave expansion in the

generalizedT-matrix calculation does not introduce impor-

FIG. 19. The off-diagonal spectral functid(p,e) for p=0,  tant errors for final self-energies.

280, and 350 Me\(dotted, solid, and dashed lines, respectiyely Another open question is the effect of the self-consistency
of the calculation on the spectral functions and self-energies.

ter at the same time. The approximation presented in Sed.n® equations for the self-energies and the generalized
Il C is a generalization of the usu@matrix resummation in  Matrix should be iterated instead of using only the quasipar-
medium to temperatures beloW.. In the superfluid phase ticle mean-field propagators. In the self-consistent iteration
the Green’s functions, self-energies, and Theatrix acquire  the superfluid gap is reduc¢d2] and the energy gap in the
additional indices corresponding to anomalous propagator§UPerfluid is no longer sharp. The imaginary part of the self-
The approach ig-derivable and hence it is thermodynami- €Nergy will alsc_) be. reduced around the Fermi energy but not
cally consistent, like the self-consistéhmatrix approxima- @S Sharply as in Fig. 14. We note that only the use of self-
tion. conSISFent propggatprs and self-energies in the gengrahzed
The self-energy is calculated assuming thenatrix ap- T_-matrlx approximation guarantees the thermodyna_mlc con-
proximation for the two-particle propagator and the tWO__S|stency of_the resul{®7]. As a result of the _self-con_smtgncy
particle anomalous propagator. The off-diagonal self-energy the off-diagonal self-energy, the generalizedatrix will
can be supplemented with the mean-field BCS contribution0t have a singularity at twice the Fermi energy and zero
which turns out to be dominant. The addition of the Bcstotal momentl_Jm.As descrl_bed in Sec. III'B this singularity is
gap to the off-diagonal self-energy does not spoil the_present (_)nly if the mean-field BCS off-dlagqnal se_zlf-energy
®-derivability of the approximation. The spin-isospin struc- 'S used in propagators of the ladder. The inclusion of the
ture of theT-matrix part of the superfluid order parameter istw_o-partlcle contribution to thg order parame.ter modifies this
the same as its mean-field part. criterion for long-range order in the two-particle propagator.
In this exploratory work we use a simple separable inter- Finally, comparing to results of Ref23] we find a similar
action to illustrate the method by numerical results. The calPehavior of the real part of the generaliz€dnatrix, i.e., a
culations are performed in the approximation where the norSingularity at twice the Fermi energy and zero total momen-
mal and anomalous propagators in the generalizedatrix M. However, the imaginary part of the matrix is very
ladder and in the self-energy diagrams are of the BCS meadlifferent from the results in Ref|23]. The generalized
field form. It represents the first iteration in the calculation of -Matrix approximation shows an excitation gap around the
the self-consistent set of equations with off-shell normal and™€'™M! €nergy, which leads to similar gaps in the one-particle
anomalous propagators. It turns out that the real part of th@nd two-particle spectral functions. This feature is very com-
diagonal self-energy changes in the first iteration signifi-fort'_”g_S'nCe it is a manifestation of the energy gap for the
cantly from its mean-field form. On the other hand, the value®Xcitation of particle pairs in the superfluid.
of the superfluid gap is only slightly modified by the addition
of the T-matrix contribution in the first iteration. The imagi-
nary part of the diagonal self-energy is reduced around the
Fermi energy due to the appearance of an energy gap for This work was partly supported by the KBN under Grant
excitation of twice the value of the superfluid gap. The quaNo. 2P03B02019.
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