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In medium T matrix for superfluid nuclear matter
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We study a generalized ladder diagram resummation in the superfluid phase of nuclear matter. The approach
is based on a conserving generalization of the usualT-matrix approximation including also anomalous self-
energies and propagators. The approximation here discussed is a generalization of the usual mean-field BCS
approach to superfluidity. The numerical results in this work are obtained in the quasiparticle approximation.
Properties of the resulting self-energy, superfluid gap, and spectral functions are studied.
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I. INTRODUCTION

One of the most general properties of fermion syste
with attractive interactions is the transition to a superflu
state at finite density and low temperature. It is expected
such a phenomenon happens also for a strongly interac
system of nucleons, such as cold nuclear matter. Calculat
based on free nucleon-nucleon interactions predict very la
values of the superfluid gap. Typically they give arou
5–10 MeV for the isospin singlet (T50) 3S1-3D1 partial
wave@1–4#. The actual value of the superfluid gap is a m
ter of debate, because of the expected screening and
energy corrections. One has to note that also some of
phenomenological potentials fitted to the pairing proper
of finite nuclei give significant values of the superfluid gap
nuclear matter@5#. The study ofT50 pairing in the system-
atics ofN.Z nuclei became possible with advent of radi
active beam facilities. This led to a resurgence of the stud
the nuclear mass systematics@6–8#. Thus it is of importance
to obtain results on the nature of the nuclear pairing (T50 or
T51) and the value of the superfluid gap for symmet
nuclear matter at saturation density and below. It appears
the mean-field gap equation without medium modification
unrealistic@9–14# and hence the best strategy would be
calculate a density-dependent gap for nuclear matter~includ-
ing relevant many-body corrections! and use it in a local
density approximation for calculations in finite systems@5,7#.

The neutron-rich nuclear matter is used in modeling of
crust and of the core of neutron stars. It is generally belie
that such an asymmetric nuclear matter is superfluid, w
different kinds of superfluid gaps appearing in the vast ra
of densities present in the neutron star. The value of
superfluid gap is of importance for fundamental problems
neutron stars, the formation of glitches, the value of the v
cosity, and the cooling rates in different scenarios@15#.
Again one of the possible approaches is to calculate the
perfluid gap from the bareNN interaction using the
Brueckner-Hartree-Fock approximation to get single-part
energies for the gap equation@16,17,11,18,19,13,14,20#.
However, in order to obtain reliable estimates for the sup
fluid gap in the neutron matter we need to have under con
in medium many-body corrections to the gap equation.
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As noted above strong modifications of the mean-fi
result for the superfluid gap are expected in the nuclear m
ter due to screening effects@9–11#, modifications of the ef-
fective mass, and self-energy corrections@12,14,13#. One of
the motivations of the present study is to investigate ano
source of the in medium correction to the value of the g
These corrections occur in a generalization of the resum
tion of ladder diagrams to include anomalous propaga
also. In the following we study the formalism and give n
merical estimates of the corrections to the anomalous s
energy. These additional terms introduce an energy dep
dence in the superfluid gap, but the modifications of
value of the gap at the Fermi surface are not as dramati
from other in medium many-body effects.

The correction to the binding energy due to the superfl
rearrangement of the ground state is believed to be sm
@21#. However, some of the calculations using realis
nuclear forces predict quite large values of the superfluid
in nuclear matter. A large superfluid gap could lead to mo
fications of the normal part of the self-energy and the sp
tral function. In the following we study a consistent approx
mation treating on equal footing the normal and anomal
part of the self-energy. We find that important modificatio
of the single-particle and two-body propagators appear if
superfluid gap is large. These significant modifications in
superfluid present,a posteriori, an important reason to con
sider the generalized formalism discussed in this work. A
the expansion of the ground state energy or other quant
around the wrong ground state is not satisfactory for a the
aiming at the description of the many-body problem fro
first-principles, using free nucleon-nucleon potentials. T
incorrect ground state could also lead to instabilities in
actual iterative numerical solution of the many-body equ
tions, related to the appearance of the Cooper instability@22#.

Mean-field approaches give a qualitatively correct d
scription of the formation of the superfluid gap by the BC
mechanism, but fail in the resummation of the hard core
the NN potential. Recently superfluid nuclear matter w
studied in an approach starting from the in mediumT-matrix
approximation@23#. TheT-matrix approximation for the self-
energy was studied intensively in the last decade in nor
nuclear matter. The resummation of ladder diagrams in thT
matrix, which is different from the usualG-matrix approxi-
mation, can also be used to deal with the hard core in
interaction potential. TheT-matrix formalism, also called
©2002 The American Physical Society27-1
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P. BOŻEK PHYSICAL REVIEW C 65 034327
self-consistent Green’s function approach, can be used
rectly at high temperature, above the superfluid phase tra
tion @24–27#. It allows to study in a self-consistent way th
one-particle self-energies and spectral functions@24,26,28–
30#, the two-particle properties and in medium cross secti
@24–27,31,29#, the onset of superfluidity@32,33,20,23,29#,
the self-energy corrections to the superfluid gap@12#. The
treatment of the old question of saturation properties
nuclear matter in theT-matrix approximation is at the prese
stage not superior to the most recentG matrix or variational
calculations, including realistic interactions and three-bo
and three-body force corrections. However, theT-matrix
self-energy leads to reliable results for the single-part
properties; in particular it gives a consistent value for
Fermi energy fulfilling the Hugenholz–Van Hove theore
@34,27#.

Besides the above motivations to develop theT-matrix
approach for nuclear matter, this approximation seems to
the most natural starting point for the study of the superfl
phase of the nuclear matter. The appearance of a singul
in the T matrix at zero total momentum of the pair and
twice the Fermi energy signals the formation of a long ran
order and defines the Thouless criterion for the critical te
perature. It is in fact equivalent to the critical temperatu
corresponding to the appearance of a nontrivial solution
the BCS gap equation. The same is true if off-shell propa
tors are used in theT-matrix ladders. It corresponds to
generalization of the gap equation to one using full spec
functions, including the imaginary part of the normal se
energy @12#. The study of the singularity in theT-matrix
equations at finite temperature, in the normal phase allow
identify the critical temperature and the precritical modific
tions of the spectral function, in medium cross sections,
density of states@32,33,20,35,29,26,23,36#.

The generalization of theT-matrix approximation to the
superfluid phase appearingbelow Tc was discussed in Re
@23#. The approach is based on the observation that the
mation of the superfluid order parameter requires a lo
range order. This long range order, representing the for
tion of Cooper pairs at zero momentum and twice the Fe
energy, corresponds to a singularity in theT matrix for the
same energy and momentum as in the Thouless criter
Thus alsobelow Tc we expect to find a singularity in th
two-body propagator at twice the Fermi energy. The ker
of theT-matrix equation is modified in the superfluid so th
the singularity of theT-matrix equation is again equivalent t
the BCS gap equation for nonzero values of the order par
eter @23#.

In the present work we investigate a different approach
the T-matrix resummation in the superfluid. It is a genera
zation of the ordinaryT-matrix ladder diagrams, which in
cludes also anomalous propagators. Thus normal and an
lous self-energies are calculated in a unified way. T
approximation deals at the same time with ladder diagra
resummation for the self-energy and with the appearanc
the order parameter. The properties of the generalizedT ma-
trix, self-energy, and spectral function are discussed. A ju
fication of the heuristic procedure of Ref.@23# is then ob-
tained if the superfluid order parameter is restricted to
03432
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BCS contribution. The practice calculations are more di
cult in the generalized scheme discussed here. The numb
propagators andT-matrix components is doubled because
the appearance of the off-diagonal, anomalous propaga
The numerical results presented in this work are obtaine
the quasiparticle approximation, starting from mean-fie
BCS propagators.

II. GREEN’S FUNCTIONS IN THE SUPERFLUID

A. Notation and formulas for the normal phase

We consider infinite homogenous nuclear matter intera
ing through a two-body potential. The energies are defin
with respect to the chemical potentialm:

H5(
a

E d3xCa
†~x!S 2

D

2m
2m DCa~x!

1 (
a8,b8,a,b

1

2E d3xE d3yCa8
†

~x!Cb8
†

~y!

3Va8,b8,a,b~x,y!Cb~y!Ca~x!. ~1!

In the real time formalism the Green’s functions are defin
on a contour in the time plane@37#. It means that as function
of a single-valued time variable the Green’s functions
quire a matrix structure

Ĝab~x1 ,t1 ;x2 ,t2!

5S Gab
c ~x1 ,t1 ;x2 ,t2! Gab

, ~x1 ,t1 ;x2 ,t2!

Gab
. ~x1 ,t1 ;x2 ,t2! Gab

a ~x1 ,t1 ;x2 ,t2!
D , ~2!

where Gab
c (x1 ,t1 ;x2 ,t2)5 i ^TCa(x1 ,t1)Cb

†(x2 ,t2)& is the
chronological Green’s function,Ga is the antichronological
Green’s function, and Gab

, (x1 ,t1 ;x2 ,t2)5 i ^Ca(x1 ,t1)
3Cb

†(x2 ,t2)& and Gab
, (x1 ,t1 ;x2 ,t2)52 i ^Cb

†(x2 ,t2)
3Ca(x1 ,t1)& are the correlation functions. In a homog
neous system, after Fourier transforming in the relative
ordinate and time, single-particle Green’s functions depe
on a single energy and momentum. Noting that the Gree
functions are diagonal in the spin-isospin indices, we c
write

Ĝab~p,v!5dabĜ~p,v!. ~3!

A single scalar function~in spin-isospin indices! G is suffi-
cient to describe a spin and isospin symmetric nuclear m
ter. The scalar correlation functions are written using
spectral function

G,~p,v!5 i f ~v!A~p,v!, ~4!

G.~p,v!52 i @12 f ~v!#A~p,v!. ~5!

f (v)51/$11exp@2b(v2m)#% is the Fermi distribution at
the temperatureT51/b. The spectral functionA is related to
the retarded Green’s function
7-2
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A~p,v!522 ImG1~p,v!5 i @G.~p,v!2G,~p,v!# ~6!

5
22 ImS1~p,v!

@v2p2/2m2ReS1~p,v!1m#21Im S1~p,v!2
, ~7!

whereS1(p,v) is the retarded self-energy.
The T-matrix equation in the normal phase is

^puTa8b8ab
6

~P,v!up8&5Va8b8ab~p,p8!1(
gd

E d3k

~2p!3E d3q

~2p!3
Va8b8gd~p,k!^kuG 6~P,v!uq&^quTgdab

6 ~P,v!up8&, ~8!

whereG is the disconnected retarded two-particle propagator

^puG 6~P,v!up8&5~2p!3d3~p2p8!E dv8

2p E dv9

2p
@G,~P/21p,v92v8!G,~P/22p,v8!

2G.~P/21p,v92v8!G.~P/22p,v8!#/~v2v96 i e!

5~2p!3d3~p2p8!G 6~P,v,p!. ~9!
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Note that it is sufficient to solve a single equation for t
retardedT matrix instead of a matrix equation with indice
on the time contour in the complex time plane~2!.

A full structure in the spin-isospin indices and relati
angles of momenta must be kept. However, usually a pa
wave expansion of theT-matrix equation is performed:

^puTl 8 l
(JST)6

~P,v!up8&

5Vl 8 l
(JST)

~p,p8!1(
l 9

E k2dk

2p2
Vl 8 l 9

(JST)
~p,k!

3G 6~P,v,k!^kuTl 9 l
(JST)6

~P,v!up8& ~10!

after angle averaging the kernelG

G 6~P,v,p!5E dV

4p
G 6~P,v,p!. ~11!

B. Anomalous Green’s function

In the superfluid phase the ground state of the system
a nonzero order parameter, corresponding to bound Co
pairs @38#. This leads to new Green’s functions

F̂ab~x1 ,t1 ;x2 ,t2!

5S Fab
c ~x1 ,t1 ;x2 ,t2! Fab

, ~x1 ,t1 ;x2 ,t2!

Fab
. ~x1 ,t1 ;x2 ,t2! Fab

a ~x1 ,t1 ;x2 ,t2!
D . ~12!

Fc is the time-ordered anomalous Green’s function

Fab
c ~x1 ,t1 ;,x2 ,t2!5 i ^T@Ca~x1 ,t1!Cb~x2 ,t2!#&,

Fa the antichronological one, and

Fab
, ~x1 ,t1 ;,x2 ,t2!5 i ^Ca~x1 ,t1!Cb~x2 ,t2!&, ~13!
03432
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Fab
. ~x1 ,t1 ;,x2 ,t2!52 i ^Cb~x2 ,t2!Ca~x1 ,t1!&. ~14!

We consider a homogeneous infinite system so that
anomalous Green’s functions depend on a single momen
and energy. Analogously as for the normal Green’s functio
we can write

Fab
, ~p,v!5 i f ~v!Bab~p,v!, ~15!

Fab
. ~p,v!52 i @12 f ~v!#Bab~p,v!. ~16!

The anomalous spectral function is related to the imagin
part of the retarded propagator

Bab~p,v!52Im@Fab
1 ~p,v1 i e!2Fab

1 ~p,v2 i e!# ~17!

5 i @Fab
. ~p,v!2Fab

, ~p,v!#. ~18!

It should be noted that the spectral function for the diago
part of the Green’s function is modified in the presence of
off-diagonal self-energyD. We shall denote it by

As~p,v!522 ImG1~p,v! ~19!

and reserve the notationA(p,v) for the spectral function
obtained by settingD50 @Eq. ~7!#.

The spin-isospin structure of the anomalous Green’s fu
tion is assumed to be of the spin~isospin! singlet or triplet
kind. We write

Fab~p,v!5D̃abF~p,v!. ~20!

In general the matrixD̃ab could depend on the momentum
energy, and relative directions of spin, isospin, and mom
tum. To simplify we use in the following angle-average
double propagators in theT matrix ladder. The matrixD̃ in
spin-isospin indices fulfills
7-3
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P. BOŻEK PHYSICAL REVIEW C 65 034327
D̃ab
† D̃bg5uDu2dag ~21!

for time-reversal invariant states. Without loss of genera
we can putuDu251. More specifically the spin~isospin! part
of D̃ab is

S dx1 idy 2 idz

2 idz dx2 idy
D ~22!

for the triplet gap (dx
21dy

21dz
251) and

S 0 i

2 i 0D ~23!

for the singlet one. Together with the choice of a diago
normal Green’s function we describe the propagators us
scalar functions in spin-isospin indicesF,.(p,v) and
G,.(p,v) as well as the corresponding retarded propa
tors, self-energies, and spectral functions.

C. Ladder resummation in the superfluid

Ladder resummations in the superfluid have been con
ered in the description of high-Tc superconductors@39#. A
thermodynamically consistent scheme that reduces to
usual T-matrix equation aboveTc can be constructed. Th
simplest way is to introduce a generalizedT matrix with
additional indices indicating if the incoming line is anom
lous or normal, following the Nambu formalism for supe
conductors. Restricting oneself to two normal or two anom

FIG. 1. The generalizedT-matrix equation in the superfluid.
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lous propagators in the ladder leads to the followi
additional matrix structure in theT matrix,

S ^puTa8b8ab
6

~P,V!up8& ^puLa8b8ab
6

~P,V!up8&

^puLa8b8ab
6 †

~P,2V!up8& ^puTa8b8ab
6†

~P,2V!up8&
D

5S V~p,p8!a8b8ab 0

0 V~p,p8!a8b8ab
D

1E d3q

~2p!3 (
gd

S V~p,q!a8b8g8d8 0

0 V~p,q!a8b8g8d8
D

3S dgg8ddd8G 6~P,V,q! H g8d8gd
6

~P,V,q!

H g8d8gd
6†

~P,2V,q! dgg8ddd8G 6~P,2V,q!
D

3S ^quTgdab
6 ~P,V!up8& ^quLgdab

6 ~P,V!up8&

^quLgdab
6 † ~P,2V!up8& ^quTgdab

6† ~P,2V!up8&
D ,

~24!

where

H abgd
6 ~P,V,p!5E dv8

2p E dv9

2p
@Fag

, ~P/21p,v92v8!

3Fbd
, ~P/22p,v8!2Fag

. ~P/21p,v92v8!

3Fbd
. ~P/22p,v8!]/ ~V2v96 i e!

~25!

denotes two disconnected anomalous propagators.L6 is
the off-diagonal part of the generalized retardedT matrix
~Fig. 1!.

The anomalous part of the ladderHabgd does not mix
different values of the total spin~isospin! of the pair. It
can be seen by writing the matrix structure ofHab in the
basis of the total spin~isospin! of the pair and of its third
component:

FIG. 2. The normal part of the self-energy in theT-matrix ap-
proximation.
H5S ~dx1dy!2 2 iA2dz~dx1 idy! 2dz
2 0

2 iA2dx~dx1 idy! dx
21dy

22dz
2 2 iA2dz~dx2 idy! 0

2dz
2 2 idz~dx2 idy! ~dx2 idy!2 0

0 0 0 D2

D H ~26!
7-4
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IN MEDIUM T MATRIX FOR SUPERFLUID NUCLEAR MATTER PHYSICAL REVIEW C65 034327
for the triplet pairing with the matrix in the componen
11,10,12,00 of the total spin~isospin! of the pair and

H5S 0 0 21 0

0 1 0 0

21 0 0 0

0 0 0 1

D H ~27!

for the singlet pairing. Using the structure of the anomalo
Green’s function@Eq. ~20!# and assuming a dependence
the angle-averaged spin-isospin structure@the matrices in
Eqs. ~26! and ~27!# only on the value of total momentum
one finds

(
gd

Ha8b8gd3Hgdab5da8bdab8H
†3H, ~28!

where3 stands for momentum integrals with the interacti
potential or theT matrix that appears in the iteration of th
Eq. ~24!. A partial wave decomposition approximation ca
be applied after angular averaging of the intermediate un
related two normal or two anomalous propagators in the
der ~it is exact forS50 partial waves!. The resulting gener-
alized T-matrix equation has a matrix structu
corresponding to@Eq. ~24!# in each partial wave:

S ^puT(JST)
6 ~P,V!up8& ^puL (JST)

6 ~P,V!up8&

^puL (JST)
6 ~P,V!up8& ^puT(JST)

6† ~P,2V!up8&
D

5S V(JST)~p,p8! 0

0 V(JST)~p,p8!
D

1E q2dq

2p2 S V(JST)~p,q! 0

0 V(JST)~p,q!
D

3S G 6~P,V,q! H 6~P,V,q!

H 6†~P,2V,q! G 6~P,2V,q!
D

3S ^quT(JST)
6 ~P,V!up8& ^quL (JST)

6 ~P,V!up8&

^quL (JST)
6 ~P,V!up8& ^quT(JST)

6† ~P,2V!up8&
D .

~29!

We used alsô puL6(P,V)uq&5^puL6†(P,2V)uq&. In the
following we skip the spin-isospin indices in the equatio
assuming a partial wave decomposition in the generalizeT
matrix. The contribution from the off-diagonalT matrix and
the anomalous propagators is the most important around
Cooper pair singularity in theT matrix. At the singularity the
partial wave expansion becomes exact for an angle inde
dent gap.

D. Self-energy

The self-energy can be defined generalizing the s
energy in theT-matrix approximation for the normal phas
The diagonal part of the self-energy is defined by
T-matrix approximation to the two-particle Green’s functio
~Fig. 2!:
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STM
,.~p,v!5 i E dv8

2p

d3k

~2p!3
^~p2k!/2uTA

,.

3~v1v8,p1k!u~p2k!/2&G,.~k,v8!. ~30!

Analogously we can define theT-matrix part of the off-
diagonal self-energy~Fig. 3!:

DTM
,.~p,v!5 i E dv8

2p

d3k

~2p!3
^„p2k…/2uLA

,.

3~v1v8,p1k!u~p2k!/2&F,.~k,v8!.

~31!

The above definition of the self-energy is aF-derivable ap-
proximation@40# ~Fig. 4!. It leads to thermodynamically con
sistent results. In Eqs.~31! and ~30! the subscriptA denotes
antisymmetrization and we have not written explicitly th
spin-isospin indices. It can be checked that formula~31! con-
serves the singlet~triplet! structure of the order paramete
given by F. The approximation~31! does not include the
usual BCS part of the anomalous self-energy

DBCS~p!52 i E dv

2pE d3k

~2p!3
V~p,k!F,~k,v!. ~32!

This term can be added explicitly to the off-diagonal part
the self-energy~Fig. 3! without spoiling theF derivability of
the approximation. We will see that the BCS part of t
anomalous self-energy is dominant, and in the first appro
mation one can neglect the two-body contribution~31! to the
superfluid gap. However, the approximation scheme, wh

FIG. 3. The off-diagonal part of the self-energy in the gener
ized T-matrix approximation with the BCS contribution.

FIG. 4. Diagrams contributing to the generating functionalF in
the generalizedT-matrix approximation.
7-5
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keeps theT-matrix form of the diagonal self-energy and th
BCS form of the off-diagonal self-energy, is notF-derivable.

E. Quasiparticle approximation

The full solution of the set of equations~24! for the gen-
eralizedT matrix, the normal self-energy, and the superflu
gap requires a self-consistent iterative solution. Below
present results of a simpler calculation. It starts with
mean field approximation for the normal self-ener
~Hartree-Fock approximation! and the BCS approximation
for the superfluid gap

DBCS~p!5Dp52E d3k

~2p!3
V~p,k!

122 f ~Ek!

2Ek
DBCS~k!.

~33!

The starting spectral function for the calculation of theT
matrix is
e

t
p

un

b
w
le
r

03432
e
e

ABCS~p,v!52pS Ep1jp

2Ep
d~v2Ep!1

Ep2jp

2Ep
d~v1Ep! D ,

~34!

wherejp5p2/2m1SHF(p)2m andEp5Ajp
21Dp

2. The cor-
responding off-diagonal spectral function is

B~p,v!522p
Dp

2Ep
@d~v2Ep!2d~v1Ep!#. ~35!

The generalizedT-matrix equation is solved for the
S-wave Yamaguchi interaction@41#. This oversimplified in-
teraction is used to reduce the numerical difficulties involv
in the solution ofT-matrix equations and in the calculation o
the self-energies. First the imaginary parts of the diago
and off-diagonal self-energies are calculated:
Im S~p,v!5E d3k

~2p!3 S Ep1jp

2Ep
@ f ~Ep!1b~v1Ep!#^~p2k!/2uIm T~p1k,v1Ep!u~p2k!/2&A

1
Ep2jp

2Ep
@ f ~2Ep!1b~v2Ep!#^~p2k!/2uIm T~p1k,v2Ep!u~p2k!/2&AD ~36!
ta-
of

At

ri-

tral
and similarly for ImDTM @b(v) is the Bose distribution#.
Then from the dispersion relations the real part of the disp
sive contribution to the self-energy can be obtained:

S ReS~p,v!disp

ReD~p,v!TM
D 5PE dv8

p S Im S~p,v8!disp

Im D~p,v8!TM
D 1

v2v8
. ~37!

To the dispersive part of the self-energies one has to add
mean-field self-energySHF and the mean field superfluid ga
DBCS

ReS~p,v!5ReS~p,v!disp1SHF~p!

ReD~p,v!5ReD~p,v!TM1DBCS~p! ~38!

that have been calculated already to obtain the spectral f
tions ~34! and ~35!.

III. RESULTS FOR THE T MATRIX

A. Energy gap in the T matrix
and the two-particle spectral function

The equations for the generalizedT matrix are solved
with the quasiparticle ansatz for the spectral functionsA and
B. We present results at the temperature of 3 MeV with
BCS gap of 10.1 MeV. The results do not change apprecia
when reducing the temperature further. In Fig 5 are sho
the imaginary parts of the diagonal and off-diagonal e
ments of the generalizedT matrix. From the BCS ansatz fo
r-

he

c-

a
ly
n
-

the spectral functions follows a gap in two-particle exci
tions around the Fermi energy. For zero total momentum
the pair, this forbidden region is twice the superfluid gap.
the edge of the two-particle gap the generalizedT matrix has
a singularity as a function of energy, similar to the singula
ties in the density of states in the BCS approximation.

In fact the imaginary part of theT matrix is related to the
two-particle propagator. The one-time two-particle spec
function is

FIG. 5. The imaginary part of the diagonal~solid line! and off-
diagonal~dashed line! part of the generalizedT matrix in the 3S1

channel.
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S ^puA2~P,V!up8& ^puB2~P,V!up8&

^puB2~P,2V!up8& ^puA2~P,2V!up8&
D

522 ImE d3q

~2p!3E d3k

~2p!3 S V21~p,q! 0

0 V21~p,q!
D

3S ^quT6~P,V!uk& ^quL6~P,V!uk&

^quL6~P,2V!uk& ^quT6†~P,2V!uk&
D

3S V21~k,p8! 0

0 V21~k,p8!
D . ~39!

The spin-isospin indices are omitted, and the two-part
spectral function can be projected on a definite total spin
isospin of the pair. Also the relative momentum can be p
jected on states with definite angular momentum. In Fig
we present the two-particle spectral function projected
partial waves occurring in our separable interaction

^A2~P,V!&5E d3k d3p

~2p!6
g~k!g~p!^kuA2~P,V!up&, ~40!

whereg(k)51/(k21b2) is the form factor of the Yamaguch
interaction @41#. We use the same projection for the o
diagonal two-particle spectral functionB2 in different chan-
nels and for the uncorrelated BCS two-particle propagato

The energy gap present in the two-particle BCS propa
tor is visible also in theT-matrix approximation~Fig. 6!. It
corresponds to a minimal energy to excite a two-particle p
This energy is twice the single-particle energy gap. A sim
gap appears in the two-particle anomalous propagator~Fig.
7! and for nonzero momentum of the pair~Figs. 8 and 9!.

FIG. 6. The two-body spectral function for normal propagat
obtained from the generalizedT matrix ~solid line! and from two
uncorrelated BCS propagators~dashed line!. Projected on the3S1

channel~upper panel! and 1S0 channel~lower panel!.
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B. Singularity in the T matrix

The T matrix is singular for the total energy of the pa
equal to twice the Fermi energy and zero total momentum
is a generalization of the Thouless criterion for the critic
temperature to the superfluid phase. Indeed the imagin
part of T and L is always zero atV50 and P50 and the
inverse of the real part of the generalizedT matrix

Rê k8uS T L

L T†D
P50,V50

uk&21 ~41!

has a zero eigenvalue

s FIG. 7. The two-body spectral function for anomalous propa
tors obtained from the generalizedT matrix ~solid line! and from
two uncorrelated BCS anomalous propagators~dashed line!. Pro-
jected on the3S1 channel~upper panel! and 1S0 channel~lower
panel!.

FIG. 8. The two-body spectral function for normal propagato
obtained from the generalizedT matrix ~solid line! and from two
uncorrelated BCS propagators~dashed line! for nonzero total mo-
mentum of the pair (P5525 MeV), projected on the3S1 channel.
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E d3k^k8uS T L

L T†D
P50,V50

uk&21S D~k!

2D†~k!
D 50. ~42!

D(k) ~with spin-isospin indices omitted! is the solution of
the mean-field gap equation

D~p!2E d3k

~2p!3
V~p,k!

dvdv8

~2p!2

A~k,v!As~k,v!

v1v8

3@12 f ~v!2 f ~v8!#D~k!50 ~43!

if As(k,v) is the full spectral function with only the energy
independent BCS contributionDBCS(k) to the off-diagonal
self-energyD(k,v). In particular the inverse generalizedT
matrix with mean-field quasiparticle propagators~34! and
~35! has a zero eigenvalue corresponding to the BCS me
field superfluid gap~33!. In Fig. 10 is shown the real part o
the inverse determinant of the generalizedT matrix for the
two S partial waves. Clearly the superfluid gap is formed
the 3S1 channel~for the chosen interaction!. The generalized

FIG. 9. The two-body spectral function for anomalous propa
tors obtained from the generalizedT matrix ~solid line! and from
two uncorrelated BCS anomalous propagators~dashed line! for
nonzero total momentum of the pair (P5525 MeV), projected on
the 3S1 channel.

FIG. 10. The real part of the determinant of the inverseT matrix
for the 3S1 ~solid line! and the1S0 channel~dashed line!.
03432
n-

T matrix in this channel shows a singularity at zero to
momentum and at twice the Fermi energy for all tempe
tures belowTc .

IV. SELF-ENERGIES AND SPECTRAL FUNCTIONS

A. Single-particle energies

The position of the single-particle polevp when including
only the real part of the self-energy can be obtained as
solution of

vp5
p2

2m
1ReS~p,vp!2m. ~44!

In Fig. 11 it is compared to the position of the quasipartic
pole jp when including only the Hartree-Fock self-energ
There is a significant difference between the mean-fi
single-particle energy and the single-particle energy~44! for
low momenta, due to the dispersive part of the self-energy
obtained in theT-matrix approximation. It is a reflection o
the presence of short-range correlations in the nuclear ma
This modification of single-particle energies below the Fer
energy leads to important corrections to the binding ene
per particle. A resummation of ladder diagrams in the fo
of the G matrix ~or theT matrix! is necessary to obtain reli
able results for the binding energy@42,21#.

In the superfluid the presence of the off-diagonal se
energyD(p,v) leads to the splitting of quasiparticle peaks
the spectral functionAs(p,v):

v56Ep56A@jp1ReS~p,Ep!#21uD~p,Ep!u2. ~45!

As shown in Fig. 11 the superfluid quasiparticles, have a
in excitations around the Fermi momentum. Far from fro
the Fermi momentum the dominant quasiparticle peak
As(p,v) approaches the quasiparticle peakvp of A(p,v). In
Fig. 12 the position of the quasiparticle poles obtained

- FIG. 11. The position of the quasiparticle pole for the norm
propagator with the Hartree-Fock self-energy~solid line! and for the
propagator including the normal self-energy from theT-matrix cal-
culation ~dashed line!. The positions of quasiparticle poles of th
full propagator including the normal and the off-diagonal se
energies in theT-matrix approximation are denoted by the dott
lines.
7-8
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cluding the full off-diagonal self-energy@Eq. ~45!# is com-
pared to one where only the BCS part of the superfluid ga
taken:

v56Ep56A@jp1ReS~p,Ep!#21uDBCS~p!u2. ~46!

The two energies are very close. At the scale of Fig. 11 t
cannot be distinguished and only close to the Fermi mom
tum a small difference can be seen in Fig. 12. It is due to
fact that the dispersive part of the off-diagonal self-ene
DTM(p,v) introduces only a small correction to the mea
field superfluid gapDBCS(p).

B. Imaginary part of the self-energy

In Fig. 13 we plot the energy dependence
2Im S1(p,v) for several values of the momentump. A
characteristic feature is the very strong reduction of
damping in the region around the Fermi energy, already
T53 MeV. It is related to the appearance of an energy g

FIG. 12. The positions of quasiparticle poles of the full prop
gator including the normal and the off-diagonal self-energies in
T-matrix approximation are denoted by the dashed lines. The s
line represents the positions of the poles when taking the BCS f
only for the off-diagonal self-energy.

FIG. 13. The imaginary part of the retarded self-energy as fu
tion of energy forp50, 140, 280, and 420 MeV~solid, dashed,
dotted, and dash-dotted lines!.
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for excitations of twice the value of the superfluid gap. O
top of that the usual reduction of damping due to the rest
tion of the phase space appears, leading to the formatio
quasiparticles around the Fermi surface.

The quasiparticle nature of the excitations can be jud
by plotting the single-particle width

G~p,v!522 ImS~p,v! ~47!

at the quasiparticle poles. The single-particle width is sm
around the Fermi energy for the quasiparticle polev5vp
and the polesv56Ep ~Fig. 14!. The formation of the en-
ergy gap for excitation of particle pairs and the reduction
the phase space around the Fermi surface leads to the ap
ance of sharp quasiparticles for momenta close to the Fe
momentum.

C. Superfluid gap

The superfluid gap acquires a contributionDTM from the
T matrix diagram~Fig. 3!. The real part of theT-matrix gap
is obtained from the dispersion relation~37!. In Fig. 15 is

-
e
id
m

-

FIG. 14. The single-particle width at the quasiparticle peak
A(p,v) ~solid line! and at the quasiparticle peaks ofAs(p,v)
~dashed lines!.

FIG. 15. The real part of theT-matrix contribution to the super
fluid gap as function of energy forp50, 116, 233, and 350 MeV
~solid, dashed, dotted, and dash-dotted lines!.
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P. BOŻEK PHYSICAL REVIEW C 65 034327
shown ReDTM(p,v) for several values of momenta. It
value is small for energies corresponding to the Fermi ene
and for momenta close to the Fermi momentum.

In Fig. 16 is shown the imaginary part of theT-matrix
contribution to the superfluid gap. The imaginary part of t
dispersive contribution to the superfluid gap ImDTM(p,v)
shows a gap around the Fermi energy similarly as the im
nary part of the diagonal self-energy. It means that the ima
nary part ofDTM is not modifying the value of the superflui
gap around the Fermi surface.

In Fig. 17 the mean-field superfluid gapDBCS(p) is com-
pared to the superfluid gapD(p,v) containing also the
T-matrix contribution at the quasiparticle polesv5vp or
Ep . Close to the Fermi momentum the mean-field value
the superfluid gap is not modified significantly. Only f
small momenta does theT-matrix contribution toD(p,Ep)
show up.

D. Spectral functions

The quasiparticle nature of the excitations around
Fermi momentum can be judged from the spectral functi

FIG. 16. The imaginary part of theT-matrix contribution to the
superfluid gap as function of energy forp50, 116, 233, and 350
MeV ~solid, dashed, dotted, and dash-dotted lines!.

FIG. 17. The value of the superfluid gap at the quasiparticle p
of vp ~dotted line! and at the poleEp ~dashed line! compared to the
BCS gap~solid line!.
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A(p,v) and As(p,v). In the upper panel of Fig. 18 ar
shown the spectral functions forp50 ~below the Fermi sur-
face!. The main strength of the spectral function is conce
trated around the quasiparticle peak atv5256 MeV5vp
.2Ep . However, for this momentum the spectral functio
is relatively spread. The quasiparticle approximation wo
be of limited validity. Above the Fermi energy the strength
the spectral function is small. It is slightly larger forAs than
for A because of the contribution of the second quasipart
pole of the full spectral functionAs(p,v) in the superfluid.

The situation is reversed in the lower panel of Fig.
where the spectral functions are plotted for the moment
p5350 MeV ~above the Fermi momentum!. The quasiparti-
cle pole ofA and the dominant quasiparticle pole ofAs are
located above the Fermi energy. Below the Fermi ene
there is a small contribution from the background strength
the spectral function toA and As and a small contribution
from the second pole to the full spectral functionAs .

In the middle panel of Fig. 18 are shown the spect
functions for a momentum close to the Fermi momentu
Very sharp quasiparticle peaks are visible forA(p,v) at v
5vp and forAs(p,v) at v56Ep . For this momentum the
difference betweenA and As is the most pronounced, be
causevp is different from Ep and both poles ofAs have
comparable strength.

In Fig. 19 is plotted the off-diagonal spectral functio
B(p,v). The anomalous spectral function is an odd functi
of energy.B(p,v) has two quasiparticle poles on both sid
of the Fermi energy. The quasiparticle poles are very sh
for momenta close to the Fermi momentum. Only for sm
momenta does the off-diagonal spectral function show t
relatively broad peaks.

V. CONCLUSIONS

We present an approach that allows for the resumma
of ladder diagrams in the form of the in mediumT matrix
and the treatment of the superfluid phase of the nuclear m

le

FIG. 18. The spectral functionA(p,v) including only the diag-
onal self-energy~solid lines! and the full spectral functionAs(p,v)
~dashed lines! as a function of the energy.
7-10
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ter at the same time. The approximation presented in S
II C is a generalization of the usualT-matrix resummation in
medium to temperatures belowTc . In the superfluid phase
the Green’s functions, self-energies, and theT matrix acquire
additional indices corresponding to anomalous propagat
The approach isF-derivable and hence it is thermodynam
cally consistent, like the self-consistentT-matrix approxima-
tion.

The self-energy is calculated assuming theT-matrix ap-
proximation for the two-particle propagator and the tw
particle anomalous propagator. The off-diagonal self-ene
can be supplemented with the mean-field BCS contribut
which turns out to be dominant. The addition of the BC
gap to the off-diagonal self-energy does not spoil
F-derivability of the approximation. The spin-isospin stru
ture of theT-matrix part of the superfluid order parameter
the same as its mean-field part.

In this exploratory work we use a simple separable int
action to illustrate the method by numerical results. The c
culations are performed in the approximation where the n
mal and anomalous propagators in the generalizedT-matrix
ladder and in the self-energy diagrams are of the BCS me
field form. It represents the first iteration in the calculation
the self-consistent set of equations with off-shell normal a
anomalous propagators. It turns out that the real part of
diagonal self-energy changes in the first iteration sign
cantly from its mean-field form. On the other hand, the va
of the superfluid gap is only slightly modified by the additio
of the T-matrix contribution in the first iteration. The imag
nary part of the diagonal self-energy is reduced around
Fermi energy due to the appearance of an energy gap
excitation of twice the value of the superfluid gap. The qu

FIG. 19. The off-diagonal spectral functionB(p,v) for p50,
280, and 350 MeV~dotted, solid, and dashed lines, respectively!.
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siparticle approximation is a reasonable description of ex
tations close to the Fermi surface, with single-particle en
gies modified by the resummation of ladder diagrams.

Let us comment on the influence of the use of more re
istic forces on the results. The ladder diagram resumma
for the real part of the self-energy is of course important
any realistic interactions@42,21,32,36,26#. The value of the
superfluid gap is expected to be much smaller for reali
nuclear potentials at normal nuclear density than the va
used in this work. The validity of the partial wave expansi
in the superfluid remains to be checked. However, since
dominant part of the off-diagonal self-energy comes from
BCS diagram, the use of the partial wave expansion in
generalizedT-matrix calculation does not introduce impo
tant errors for final self-energies.

Another open question is the effect of the self-consiste
of the calculation on the spectral functions and self-energ
The equations for the self-energies and the generalizeT
matrix should be iterated instead of using only the quasip
ticle mean-field propagators. In the self-consistent iterat
the superfluid gap is reduced@12# and the energy gap in th
superfluid is no longer sharp. The imaginary part of the s
energy will also be reduced around the Fermi energy but
as sharply as in Fig. 14. We note that only the use of s
consistent propagators and self-energies in the genera
T-matrix approximation guarantees the thermodynamic c
sistency of the results@27#. As a result of the self-consistenc
in the off-diagonal self-energy, the generalizedT matrix will
not have a singularity at twice the Fermi energy and z
total momentum. As described in Sec. III B this singularity
present only if the mean-field BCS off-diagonal self-ener
is used in propagators of the ladder. The inclusion of
two-particle contribution to the order parameter modifies t
criterion for long-range order in the two-particle propagat

Finally, comparing to results of Ref.@23# we find a similar
behavior of the real part of the generalizedT matrix, i.e., a
singularity at twice the Fermi energy and zero total mom
tum. However, the imaginary part of theT matrix is very
different from the results in Ref.@23#. The generalized
T-matrix approximation shows an excitation gap around
Fermi energy, which leads to similar gaps in the one-part
and two-particle spectral functions. This feature is very co
forting since it is a manifestation of the energy gap for t
excitation of particle pairs in the superfluid.
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