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Strength of the double-phonon state within an exactly solvable model
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The deviation of the energy-weight sum rule~EWSR! and the energy shift for the two-phonon state from the
prediction of the independent-phonon picture~the harmonic limit! are studied within the exactly solvable
Lipkin-Meskov-Glick model. The exact results are used to compare with the estimations given within the
random-phase approximation~RPA! and the renormalized RPA~RRPA!. The analysis of the numerical results
shows that the source of the ‘‘enhancement’’ of the two-phonon ESWR compared to the value given by the

harmonic limit is the violation of the condition†D̂,@V,D̂#‡50 for the interaction partV of the model Hamil-

tonian and the operatorD̂ generating the electromagnetic transition. As a result, the EWSR for the two-phonon
excitation exceeds its value in the harmonic limit by a factor of;1.8 atN.136 andx50.8. It is also shown
that the energy shift of the two-phonon energy compared to its value in the harmonic limit decreases with
increasing the particle numberN following a power law, which is more complicated than the simple approxi-
mation;N2x. The RPA and RRPA underestimate the exact EWSR of the two-phonon excitation by about 30%
at a given interaction in the region where the RPA is valid.

DOI: 10.1103/PhysRevC.65.034325 PACS number~s!: 24.30.Cz, 21.60.Jz, 23.20.2g
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I. INTRODUCTION

The double giant dipole resonance~DGDR! has been ob-
served recently in the relativistic heavy-ion reactions
Coulomb excitation @1–3# and pion-induced charge
exchange reactions. The results of these experiments are
of controversial with respect to the conventional understa
ing of multiphonon resonances within the independe
phonon picture~IPP! ~also called the harmonic limit!. Ac-
cording to the latter, a DGDR is assumed to be a two-dipo
phonon resonance, which is a giant dipole resonance~GDR!
built on top of another GDR. As such, the DGDR paramet
can be calculated by folding two independent GDRs@4#.
Hence, the DGDR energyEDGDR is expected to be 2EGDR

(EGDR is the GDR energy!, and the DGDR full width at the
half-maximumGDGDR is equal to 2GGDR (GGDR is the GDR
FWHM!, if folding Lorentzian photoabsorption cross se
tions is used, or toA2GGDR, if Gaussians are folded. In
reality, because of the anharmonicities, the energy and w
of DGDR will differ slightly from these values. This featur
has been observed in experiments@2,3#, where it has been
found that the energy shiftDE[2EGDR2EDGDR is few hun-
dred keV for 136Xe, while a relation A2GGDR<GDGDR
<2GGDR holds. However, the controversy is seen in t
value of the experimentally extracted cross section of e
tromagnetic~EM! ~or Coulomb! excitation for the DGDR,
which turns out to be much larger than that given by
folding model. The ‘‘enhancement’’ is found to be aroun
178–200 % in the reactions with136Xe projectiles at 700-
MeV/nucleon kinetic energy@3#, and around 133% using
208Pb projectiles at 640-MeV/nucleon kinetic energy, bo
barding 208Pb target@2#. Several microscopic approache
have been recently developed to study the multiphonon g
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resonances@5#, however none of them can describe the ‘‘e
hancement’’ of the DGDR cross section without artificial
increasing the GDR integrated strength to a value m
higher than the experimental one. Recently, the pho
damping model~PDM!, proposed in@6#, has been applied to
calculate the multiple-phonon resonances@7–9#. The PDM
can describe the EM cross sections of DGDR simultaneou
for both 136Xe and 208Pb cases along with the DGDR widt
and energy@9#. Since the PDM uses two phenomenologic
parameters to reproduce the GDR, a question still remain
the reason why the other microscopic models strongly und
estimate the EM cross section of the DGDR. The aim of
present work is to shed light on this issue. For the clarity
the answer it is desirable to use a simple but exactly solva
model, with which the results of well-established micr
scopic approaches, such as the random-phase approxim
~RPA!, can be compared with. A candidate is the Lipki
Meskov-Glick ~LMG! @10# model, which has been widely
used in literature to test the validity of various many-bo
approximation methods. The LMG model was used recen
to study the anharmonicity in the energy of the single- a
double-phonon states in Ref.@11#, where, however, the ‘‘en-
hancement’’ in the energy-weight sum rule~EWSR! of the
DGDR was not considered.

The paper is organized as follow. Section II discusses
EWSR of the double-phonon excitation and its application
the LMG model. Section III analyzes the results of numeri
calculations. The last section summarizes the paper, w
conclusions are drawn.

II. ENERGY-WEIGHT SUM RULE OF DOUBLE-PHONON
EXCITATION WITHIN THE LMG MODEL

The quantity that is directly related to the integrated cro
section of any resonance is its EWSRS1. If the resonance
states are generated by Hermitian operatorÔ in a system
described by a HamiltonianH with a two-body interactionV,
©2002 The American Physical Society25-1
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the EWSR is defined by the indentity@12,13#

S1[(
n

~En2E0!u^nuÔu0&u25
1

2
^0u@Ô,@H,Ô##u0&, ~1!

where $un&% is the complete set of exact eigenstates w
energiesEn of H. In the case of the GDR,Ô is the dipole
operatorÔ5D̂, so if the potentialV in the Hamiltonian com-
muted withD̂, the right-hand side~RHS! of Eq. ~1! would be
equal to NZ/(2MA) independently of models and of th
structure of the ground stateu0& @14#. One then obtains from
Eq. ~1! the well-known Thomas-Reich-Kuhn~TRK! sum rule
for the GDR,S1

(1)5NZ/(2MA). Proceeding in the same wa

for DGDR by puttingÔ5D̂2, and evaluating the RHS of Eq
~1!, it is easy to show@15# that

S1
(2)54

NZ

2MA
^0uD̂2u0&[4S1

(1)S0
(1) , ~2!

provided the following condition holds:

D5†D̂,@V,D̂#‡50. ~3!

Since the EWSRS1
(1) and non-EWSRS0

(1) of the GDR are
known, the unknown EWSRS1

(2) of the DGDR on the LHS
of Eq. ~2! cannot exceed the value in its RHS. Hence, ther
no way to get any enhancement of the DGDR strength c
pared to the results of the IPP obtained by folding t
GDRs, as the latter satisfies the RHS of Eq.~2! @15#. How-
ever, in reality, as has been pointed out by us previou
@8,16#, the condition ~3! does not hold within a genera
many-body Hamiltonian. Therefore, instead of Eq.~2!, the
EWSRS1

(2) for the double-phonon state is calculated as

S̃1
(2)5S1

(2)1DS1
(2) , ~4!

where the ‘‘enhancement’’DS1
(2) @compared with the cas

when Eq.~3! holds# is

DS1
(2)5 1

2 ~^0uD̂2Du0&12^0uD̂DD̂u0&1^0uDD̂2u0&!,
~5!

which is obtained as a result of the exact calculation of
RHS of Eq.~1! whenD[†D̂,@V,D̂#‡Þ0. It is important to
point out that, because of the complete set of the interm
ate single-phonon states, the ‘‘enhancement’’~5! does not
depend on the reaction mechanism, which forms the dou
phonon excitation. Hereafter, we will call the EWSRS1

(2) ~2!

the harmonic limit ofS̃1
(2) ~4! because the EWSR of two

phonon excitation within the IPP obtained by folding tw
GDRs satisfies this sum rule valueS1

(2) . A good quantity
showing the deviation of the EWSR from the harmonic lim
is the ratio

R5
S̃1

(2)

S1
(2)

[11
DS1

(2)

S1
(2)

, ~6!
03432
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which reaches the value 1 in the harmonic limit, at whi
DS1

(2) vanishes.
The Hamiltonian of the LMG model@10# is

H5T1V, T5eK0 , V52 1
2 V~K1

2 1K2
2 !, ~7!

where the operators

K05
1

2 (
m51

N

~a1m
† a1m2a2m

† a2m!,

K15 (
m51

N

a1m
† a2m , K25~K1!† ~8!

are the usual SU~2! generators, satisfying the commutatio
relations@17#

@K1 ,K2#52K0 , @K0 ,K6#56K6 . ~9!

The exact energy eigenvaluesEi and eigenvectors of the
Hamiltonian ~7! are found by diagonalizing the tridiagona
matrix, whose nonvanishing elements in the space of st
uJ,M & with 2J<M<J (J5N/2) are

^J,M uHuJ,M &5eM ,

^J,M62uHuJ,M &

52 1
2 VA~J7M !@J22~M61!2#~J6M12!. ~10!

The one-body operatorD̂, which can generate the trans
tion between the particle~p! and hole ~h! levels in this
model, is

D̂5F~K11K2!, ~11!

whereF is the matrix element of the electromagnetic tran
tion, which corresponds toD̂. The general form ofF is F
5eeff

(L)r L@YLM(u,f)1(21)MYL2M#/(11dM0). In the case
of the dipole operator (L51), eeff

(1)5eN/A for protons, and
2eZ/A for neutrons. Using the commutators~9!, it is obvi-
ous thatD̂ does not commute with the two-body interactio
part V of the Hamiltonian~7!, because

@V,D̂#52FV~K0K11K1K02K0K22K2K0!, ~12!

which is never zero at a given nonzero interaction param
V. The double commutatorD ~3! is not zero either. Instead, i
is equal to

D[†D̂,@V,D̂#‡52F2V~K1
2 1K2

2 2K1K22K2K114K0
2!.

~13!

The nonzero value of the commutator~12! also leads to the
violation of the TRK sum rule. However, under a certa
approximation, the expectation value of this commutator
the ground state can be considered to be equal to zero,
serving the TRK sum rule, while it is not the case for t
double commutator~13! ~see Sec. 3 of@8#!.
5-2
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STRENGTH OF THE DOUBLE-PHONON STATE WITHIN . . . PHYSICAL REVIEW C65 034325
It is worth noticing that a nonlocal interaction is used
the LMG model. In realistic nuclei, it is well known that,
the GDR strength is integrated up to the meson threshold
;140 MeV, the EWSR exceeds the TRK sum rule by up
0.4–0.5 TRK sum rule units. This enhancement is usu
attributed to the contribution of the meson-exchange
velocity-dependent forces@12,14#. These forces also violat
condition ~3!. However, the photoabsorption cross sectio
of GDR are usually measured up to 30 MeV, where the T
sum rule is well exhausted for nuclei with mass numbersA
>100, while the electromagnetic cross sections for DG
have been obtained within the energy interval up to 40 M
In this region of excitation energy the contribution of th
exchange or velocity-dependent forces is expected to
small. On the other hand, the problem about the ratio
tween the nonlocal and explicit velocity-dependent eleme
in nucleonic potentials has been known for several deca
@18#. Recent calculations of the triton binding energy with
high-precision nonlocalNN potential, which is derived from
relativistic meson field theory, significantly reduces the d
crepancy between theory and experiment established f
local potential@19#. Other insights into the reaction mech
nisms underlying the nuclear forces also suggest a nonl
character rather than a local one@20#.

A. Exact EWSR

The harmonic limitS1
(2) and the ‘‘enhancement’’DS1

(2) at
the RHS of Eq.~4! are calculated exactly using the RHS
Eq. ~1!, and can be expressed in terms of the exact eigen
tors aM

(n) as

S1
(2)5

1

2
^0u†D̂2,@T,D̂2#‡u0&

5
1

2 (
MM8

aM
(0)aM8

(0)^J,M 8u†D̂2,@T,D̂2#‡uJ,M &, ~14!

and

DS1
(2)5

1

2 (
MM8

aM
(0)aM8

(0)
~^J,M 8uD̂2DuJ,M &

12^J,M 8uD̂DD̂uJ,M &1^J,M 8uDD̂2uJ,M &!.

~15!

The matrix elements at the RHS of Eqs.~14! and ~15! are
calculated exactly making use of the commutators~9!. The
coefficientsaM

(0) are the components of the exact eigenvec
of the ground state (n50), which is the state with the lowes
energyE0 from the set of the exact eigenstatesun& found by
diagonalizing the Hamiltonian~7!

un&5(
M

aM
(n)uJ,M &. ~16!

Varying the interaction parameterV ~or x5NV/e), one can
see the behavior of the ratioR from Eq. ~6! as a function
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of V(x). It is obvious that the harmonic limit is reached on
at zero interaction (V50), where DS1

(2) from Eq. ~15!
vanishes.

B. EWSR within the renormalized RPA

The foundation of most microscopic approaches
nuclear collective excitations is the RPA. The coherentph
configurations across the Fermi surface are treated within
RPA as a collective phonon excitation. The conventio
RPA equation is usually obtained within the quasiboson
proximation, which violates the Pauli principles between t
phonons, as the latter are considered as ideal bosons. In
way, only a part ofph correlations is included in the RPA
ground states. This leads to the collapse of the RPA a
critical point, where it yields an imaginary solution. Seve
approaches were developed taking into account the grou
state correlations beyond the RPA to correct for this inc
sistency @21–25#. One of them is the renormalized RP
~RRPA!, proposed in@21#, and improved recently in@25#,
within which a set of RPA-like equations is solved se
consistently with the equation for the single-particle occu
tion number.

Applying the RRPA method of@25# to the LMG model,
we introduce the phonon operatorsQ† andQ as

Q†5XK12YK2 , Q5@Q†#†. ~17!

Using the exact commutators from Eq.~9!, we can evaluate
the average value of the commutator betweenQ and Q† in
the correlated ground stateu0̄& as

^0̄u@Q,Q†#u0̄&522~X22Y2!^0̄uK0u0̄&5DN~X22Y2!,
~18!

where the GSC factorD is defined as the difference betwee
occupation numbers for holes (n2Þ1) and particles (n1

Þ0) in the correlated ground state,

D5n22n1 , n65^0̄ua6
† a6u0̄&. ~19!

Therefore, if the phonon amplitudesX andY satisfy the usual
orthonormalization condition as that of the RPA, i.e.,

N~X22Y2!51, ~20!

the average value~18! of the commutator between phonon
in the correlated ground state becomes

^0̄u@Q,Q†#u0̄&5D. ~21!

This means that the renormalized phonon operatorsQ̄†

5Q†/AD and Q̄5Q/AD satisfy the same commutation re
lation as that of the QBA, namely,^0̄u@Q̄,Q̄†#u0̄&51. This is
the essence of the RRPA method. The RPA is recove
whenD51 ~i.e., n251 andn150).

The energy of the one-phonon state found as the solu
of the RRPA equation within the LMG model is given as@25#
5-3
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vRRPA56eA12D2x2, x5NV/e, D5
1

112Y2
.

~22!

The phononX andY amplitudes are

X5Ae1v

2Nv
, Y5Ae2v

2Nv
. ~23!

Expressing the operatorsD̂ ~11! andD ~13! in terms of pho-
non operators~17! using the inverse transformation

K15N~XQ†1YQ!, K25N~YQ†1XQ!, ~24!

we can calculate the EWSR for the two-phonon state,
cussed in the preceding section, within the RRPA by rep
ing the exact ground stateu0& with the RRPA one,u0̄&, for
which Qu0̄&50. After some algebra, we obtain for the ‘‘en
hancement’’DS1

(2) the following expression:

DS1
(2)54F4NDxeA11Dx

12DxH 11ND22DA12Dx

11Dx

1
2

N~12D2x2!
@~11Dx!22DxA12D2x2

3~11ND2!#J . ~25!

The EWSRS1
(1) and non-EWSRS0

(1) for the one-phonon

excitationu1&5Q†u0̄& within the RRPA are

S1
(1)5vu^0̄uQD̂u0̄&u25F2NeD2~11Dx!,

S0
(1)5u^0̄uQD̂u0̄&u25F2ND2A11Dx

12Dx
. ~26!

Using Eqs.~25! and~26!, we can easily calculate the ratio~6!
within the RRPA to be compared with the exact result of S
II A in the following section.

III. ANALYSIS OF NUMERICAL RESULTS

The exact excitation energiesE( i )[Ei2E0 for i 51 and 2
are plotted as a function ofx in Fig. 1 in comparison with
the one-phonon energiesv (1)5v and the double-phonon en
ergy in the harmonic limit,v (2)[2v, found within RPA
~dotted lines! and RRPA~dashed lines! at variousN. The
RPA breaks down atx51, while the RRPA has solution a
all x. However, being the renormalization of the harmon
RPA, the RRPA still cannot include all the anharmonicities
the exact eigenstates, which include excitations higher t
the first and the second ones as well as the mutual coup
between them. Therefore, the harmonic double-phonon
ergy,vRRPA

(2) 52vRRPA within RRPA, starts to deviate signifi
cantly fromE(2) at x.1, and especially atx>xcrit , where
xcrit denotes the point at whichE(2) starts to increase with
03432
s-
c-

.

f
n

ng
n-

increasing x. It is around 1.1 for N56, 1.5 for N
58 –24, 1.25 forN550, and 1.2 forN5100. Atx.xcrit the
value vRRPA

(2) , which becomes rather small and continues
decrease with increasingx, fails short to match the exac
eigenvalueE(2), which increases sharply. Defining the e
ergy shift between the exact solution and that of the R
~RRPA! asDE( i )5E( i )2v ( i ), we see that this shift is signifi
cantly reduced at largeN with DE(2).DE(1).

The energy shiftDE(2)5E(2)2v (2), which corresponds
to the two-phonon excitation, is plotted as a function ofx at
various values ofN in Fig. 2. The double-phonon energ
v (2)[2v is calculated within RPA~thin line! and RRPA

FIG. 1. EnergiesE( i )[Ei2E0 ~normalized toe) of the first (i
51) and second (i 52) excited states relative to the ground state
a function of the interactionx5NV/e at several values ofN. The
solid lines, which start from 1 and 2 atx50, denote the exac
energiesE(1)/e andE(2)/e, respectively. The dotted lines denote th
RPA one-phonon energyv and double-phonon energy,v (2)[2v.
The corresponding RRPA energies are shown by the dashed li

FIG. 2. Energy shiftDE(2)[E(2)22v ~normalized toe) as a
function of the interaction parameterx at various values ofN. A
thick line denotes the result obtained within RRPA, while the th
line adjacent to it stands for the corresponding result within RP
The number on each thick line indicates the value ofN at which the
RRPA and RPA results are obtained.
5-4
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STRENGTH OF THE DOUBLE-PHONON STATE WITHIN . . . PHYSICAL REVIEW C65 034325
~thick line!. It is seen in this figure thatDE(2) increases with
increasing the interactionx but decreases~at x,1.2! as the
particle numberN increases. From this figure it is also cle
that the shift of DGDR energy from the value given by t
harmonic limit for 208Pb should be smaller than for136Xe,
because208Pb has a larger mass number and weaker inte
tion given the smaller width for GDR~about 4 MeV! in this
nucleus. This feature has been experimentally confirmed@5#.
However, it should be noted that the shiftDE(2) is always
positive within the LMG model, while data from heavy-io
experiments show a negativeDE(2) for the DGDR peak in
136Xe, and nearly a zero shift for the DGDR energy in208Pb.
The two-phonon energy shiftDE(2) obtained in pion-
exchange reactions is mostly positive within the error ba

Already in Refs.@8,16# we have predicted that a sma
energy shiftDE(2) may correspond to a large deviation of th
EWSR of the DGDR from the value given by the harmon
picture. This deviation is represented by the ratioR from Eq.
~6! shown in Fig. 3 as a function ofx at variousN. The
harmonic limit corresponds to the valueR51, which can be
reached only atx50 as seen in the figure. At allxÞ0, this
ratio R is greater than 1, showing the ‘‘enhancement’’ of t
two-phonon strength relative to its value given by the IP
This ‘‘enhancement’’ increases with increasing the inter
tion parameterx. For light systems (N<8), the predictions
by both of the RPA and RRPA are very close to the ex
result in the region where the RPA is valid~i.e., atx,1). At
largerN the RPA and RRPA start to underestimate the ex
result, and the discrepancy increases with increasingN. At
N5100, e.g., the ‘‘enhancement’’ given by the exact resul
1.77 times atx'0.8, while the one obtained within the RPA
which nearly coincides with that of the RRPA, is only 1.4
times. Beyond the region of validity of RPA~at x.1) the
RRPA, which gives a sharp increase in the EWSR, fails
match the exact result.

FIG. 3. RatioR denoting the deviation of the EWSR for th
two-phonon excitation from its value in the harmonic limit (R
51) as a function ofx at various values ofN. The solid line is the
exact result, the dashed line shows the RRPA result, while the
ted line denotes the RPA result.
03432
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There has been a number of discussions in literature a
the dependence of the energy shiftDE(2) and the ‘‘enhance-
ment’’ of the cross section for DGDR as a function of th
mass numberA ~particle numberN in the present LMG
model!. For DE(2), this dependence has been assumed to
of the order ofDE(2);N2x. Several values forx, such as
x51, 4/3, or 5/3, have been proposed within different a
proaches, and the final answer has not yet been rea
@11,26#. To shed light on this issue we show in Fig. 4 th
energy shiftDE(2)5E(2)22vRPA plotted as a function ofN
as several values of the interaction parameterx,1. At a
given interactionx the decrease ofDE(2) with increasingN
is rather weak for heavy systems (N>80). We found that the
dependence ofDE(2) on N can be precisely fitted with a
polynomial curve using least square,y5b01b1N21/3

1b2N22/31b3N211b4N24/31b5N25/3. The values of the
coefficientsb i vary with varyingx, e.g., atx50.8, we found
b051.8831022, b1520.43, b253.01, b359.57, b4
5225.53, andb5516.40. Neitherx51,24/3, nor 25/3
alone can fit the result at allN. This is shown in Fig. 4~b!
where the energy shiftDE(2) obtained atx50.8 is shown as
a thick solid line together with the dependence;N2x ob-
tained withx51 ~thin solid line!, 4/3 ~dashed line!, and 5/2
~dotted line!. The curves given by;N2x are fitted to the
value ofDE(2) at N5250. It is seen from Fig. 4~b! that the
dependenceN2x with x51, 4/3, and 5/3 becomes a goo
approximation only at largeN>180–200. This analysis
however, is made at a given interaction parameterx. As has
been mentioned previously, the interaction decreases tow
heavier systems. Therefore, it is expected that the dep
dence ofDE(2) on N will be steeper.

In order to obtain a calibration of the dependence
DE(2) on bothN andx, we study the exact result for the rati

t-

FIG. 4. Energy shiftE(2)[E(2)22vRPA ~normalized toe) as a
function of particle numberN at severalx,1 ~a!, and atx50.8 ~b!.
In ~a!, the~thick! solid, long dashed, short dashed, dotted, and da
dotted lines represent the results obtained atx50.8, 0.7, 0.55,
0.4, and 0.3, respectively. In~b!, the thick solid line is the same a
that of ~a! but plotted in the linear scale. The thin solid, dashed, a
dotted lines are obtained using the dependenceN2x with x
51, 4/3, and 5/3, respectively~see the text!.
5-5
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NGUYEN DINH DANG PHYSICAL REVIEW C 65 034325
R as a function ofN, which is plotted in Fig. 5 for severa
values ofx. This figure shows a rather weak dependence
the ‘‘enhancement’’R of the two-phonon EWSR on the pa
ticle numberN at each value of the interaction parameterx,
except for the region of light systems (N<20). Also shown
in this figure are the experimental values ofR obtained for
DGDR in 136Xe and 208Pb @1–3,5,26#. From here we con-
clude that the main reason for the large ‘‘enhancement’
the DGDR cross section for136Xe ~more than 1.7 times com
pared to the harmonic limit! is that the anharmonicities in
this nucleus must be large, which are caused, in part, b
large interactionx>0.8. For the DGDR in208Pb the anhar-
monicities are much weaker, which correspond tox
.0.3–0.4.

Going back to Fig. 4~a!, we now see that, with increasin
the particle number fromN;130 toN;200, the real depen
dence ofDE(2)/e should move from the top curve~solid!
downward to the bottom one~dash-dotted!. However, even
in this case, none of the values ofx51, 4/3, nor 5/3 can
reproduce this slope. For example, the depende
(DE(2)/e)fit562N24/3 (x54/3) can fit the value of;8.8
31022 at N5136 obtained atx50.8. However, it overesti-
mates the value ofDE(2)/e at N5200–210 obtained atx
50.3 by a factor of 14. With the dependence;N21 (x
51) only one of the curvesDE(2) obtained atx50.8 and
x50.3 can be roughly fitted using a coefficient of~12–13! or
(12–13)31021, respectively@see, e.g., the thin solid line
from Fig. 4~b!#.

This analysis suggests that the interaction partV of the
Hamiltonian, for which the condition~3! does not hold, is the
source of the large ‘‘enhancement’’ of the observed DGD
cross section for136Xe ~about 1.7–2.0 times compared to th
harmonic limit!, and 208Pb ~about 1.3 times!, as well as of
the energy shiftDE(2). Based on this we can understand w
some microscopic models underestimate the experime
DGDR cross sections. First of all, we have seen that, eve
the interaction partV were properly included, the use of th
RPA or RRPA phonon operators would still underestim
the DGDR strength in the region of validity of RPA (x
,1) ~see Fig. 5!. Therefore, it is necessary to go beyond t

FIG. 5. The exact result for the ratioR as a function ofN at x
50.8 ~solid line!, 0.7 ~long dashed line!, 0.55 ~short dashed line!,
0.4 ~dotted line!, and 0.3~dash-dotted line!. The full circle with
error bar atN5208 is the experimental value ofR obtained for
DGDR in 208Pb. The experimental value ofR for DGDR in 136Xe is
shown by the vertical line atN5136, whose center atR52.4 is
beyond the scale.
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RPA and RRPA, taking into account two-, three-, or mo
phonon configurations, in order to include anharmonicit
properly. However, if the approximation is such thatDS1

(2)

vanishes, i.e., the condition~3! still holds, the inclusion of
more complex configurations can change only the spread
~the width! and may slightly shift the energy centroid of th
resonance distribution, but not the EWSR significantly b
cause of Eq.~2!. For instance, it is easy to see that the co
dition ~3! does not hold for the interaction partV in the
original Hamiltonian of the quasiparticle-phonon mod
~QPM! @27# because of the Fermion structure of the scatt
ing quasiparticle pairs@a j

†
^ a j 8#lm and the phonon opera

tors. However, in the calculations of the coupling to two- a
three-phonon configurations within the QPM, an approxim
tion has been made, which is equivalent to expressing
scattering quasiparticle pairs in terms of the sum of the pr
ucts of two phonon operators;Qlm i

† Qlm i . While this ap-
proximation is sufficient for studying the spreading of t
GDR preserving its EWSR, it makes the average of
double commutator at the LHS of Eq.~3! over the ground
state vanish, because the number of phonon operators in
average is always odd, just losing the strengthDS1

(2) of the
DGDR. Therefore, the calculations within the QPM failed
describe the experimental cross section of the DGDR des
the inclusion of a large basis with one-, two-, and even thr
phonon components in the wave function~see the review in
Sec. 2.3 of@5#!. At the same time, we can see why the PD
@6# can describe well the cross section of the DGDR for b
136Xe and 208Pb in good agreement with the experimen
data@9#. The PDM uses a phenomenological dipole phon
~not RPA phonon!, whose unperturbed energy and coupli
parameter toph configurations are adjusted to describe w
the GDR. In the process of calculating the DGDR using
same set of parameters for GDR within the PDM, the av
age value of the LHS of Eq.~3! remains finite@8#.

IV. CONCLUSIONS

This work studies the EWSR and energy of the tw
phonon excitation, including the DGDR as a special ca
within the LMG model as a function of the interaction
various particle numbers. The Hamiltonian of this exac
solvable model has such an interaction partV that neither

@V,D̂# nor †D̂,@V,D̂#‡ is zero for the operatorD̂, which gen-
erates the electromagnetic transition. The exact solutions
the first and second excited states above the ground s
obtained within the LGM model, are used to estimate
deviation of the two-phonon EWSR from the prediction
the IPP~the harmonic limit!, and to compare with the pre
dictions given within the RPA and RRPA.

The analysis of the results obtained allows us to draw
following conclusions.

~i! The source of the ‘‘enhancement’’DS1
(2) of the two-

phonon ESWR compared to the predictionS1
(2) given by the

harmonic limit is the violation of the condition~3!. At a
given particle numberN, this ‘‘enhancement’’ increases with
increasing the interaction parameterx. As a result the EWSR
S1

(2) for the two-phonon excitation may exceed its value
the harmonic limit by a factorR.1.8 at N.136 and
5-6
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x50.8 ~region of 136Xe), or R.1.3 atN.208 andx50.3
~region of 208Pb). Although these values agree with the e
perimental findings of the ‘‘enhancement’’ of the DGD
cross section compared to the values given within the h
monic limit for 136Xe and 208Pb, a rigorous comparison be
tween the results obtained within the LMG and the expe
mental data is not possible as a number of effects suc
angular momentum, isospin, and parity, etc., are left ou
such a simple model. On the other hand, it is clear that
model can be used as a testing ground to check various
oretical approaches to the DGDR.

~ii ! The energy shiftDE1
(2) of the two-phonon energy

compared to its value in the harmonic limit is always po
tive within the LMG model. It decreases with increasing t
particle numberN following a power law, which is more
complicated than the simple approximation;N2x with x
51, 4/3, or 5/3.

~iii ! The EWSR for the two-phonon state, which is co
cl.

ys

s
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structed of two RPA and RRPA one-phonon states within
LMG model underestimate the exact EWSR of the tw
phonon excitation by about 30% at a given interaction
rameterx within the region of validity of the RPA (x,1).

~iv! In order to describe correctly the cross section
two-phonon exctations within a microscopic model, the a
proximation should be made in such a way as to include
anharmonicities beyond the RPA preserving the nonz

value of the double commutator†D̂,@V,D̂#‡.
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