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Nuclear self-energy and realistic interactions
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The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the
nucleon-nucleon (NN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual
angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the
framework of the Green function approach are investigated. Special attention is paid to the predictions for the
spectral function originating from various models of theNN interaction, which all yield an accurate fit for the
NN phase shifts.
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I. INTRODUCTION

One of the central issues of quantum many-body the
and theoretical nuclear physics is the attempt to derive
bulk properties of nuclear systems from realistic models
the nucleon-nucleon (NN) interaction. Various approxima
tion schemes have been developed to describe the cor
tions that are induced into the many-nucleon wave funct
by the strong short-range and tensor components of a su
realisticNN force. For a recent review on such methods s
e.g., Refs.@1,2#. One of the most popular approximatio
schemes, which is frequently used in nuclear physics, is
hole-line expansion, in particular the approximation of lo
est order, the Brueckner-Hartree-Fock~BHF! approximation.

In this approach theNN correlation are taken into accoun
in solving the Bethe-Goldstone equation, which leads to
so-calledG matrix. TheG matrix accounts for multiple scat
tering processes and therefore corresponds to theNN scat-
tering matrix T. In contrast to the Lippmann-Schwinge
equation leading toT, the Bethe-Goldstone equation a
counts for effects of the nuclear medium: The propagator
the intermediate two-particle states is restricted to part
states, i.e., to single-particle states with energies above
Fermi energy«F , and is defined in terms of the single
particle energies for the nucleons in the medium. This cho
of the single-particle energies in the propagator of the Be
Goldstone equation is motivated by the Bethe-Brando
Petschek theorem@3#.

Strictly speaking, however, the Bethe-Brandow-Petsc
theorem only defines the energy variable to be used in
calculation of self-energy or single-particle potential for t
hole states. The choice for the propagator of the part
states is not defined on this level of the hole-line expans
and therefore has been discussed in a controversial way.
conventional choice has been to ignore self-energy contr
tions for the particle states completely and approximate
energies by the kinetic energy only. This conventional cho
is supported by theS2 approximation of the coupled cluste
or exponentialS method@4#, which essentially leads to th
same approach, This conventional choice for the sing
particle spectrum, however, is not very appealing as it le
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to a gap at the Fermi surface: the propagator for sing
particle states with momenta below the Fermi momentumkF

is described in terms of a bound single-particle energy wh
the corresponding spectrum for the particle states starts a
kinetic energy for the momentumkF .

Mahaux and collaborators@5# argued that it would be
more natural to choose the propagator according to the G
function method, i.e., define the single-particle propaga
with a single-particle energy which includes the real part
the self-energy as a single-particle potential for particle a
hole states. This leads to a spectrum that is continuous a
Fermi momentum, which provided the name ‘‘continuo
choice’’ for this approach. This continuous choice leads to
enhancement of correlation effects in the medium and te
to predict larger binding energies for nuclear matter than
conventional choice.

The optimal choice for the single-particle spectrum see
to be in between the conventional and the continuous ch
spectrum. This has been demonstrated by the recent inv
gations of the Catania group@6#. They calculated the effect
of contributions in the hole-line expansion originating fro
three hole-line terms@7# using both the conventional and th
continuous choice spectrum. The inclusion of the three ho
line terms leads to a calculated binding energy of nucl
matter that is between the results of BHF calculation with
conventional and the continuous choice and rather inse
tive to the choice made. The attractive contribution obtain
from the three hole-line terms using the conventional cho
is larger than the repulsive contribution evaluated with
continuous choice. This demonstrates that the continu
choice yields a slightly better convergence than the conv
tional one. The results also indicate that the two-nucle
correlations tend to be underestimated with the conventio
choice and slightly overestimated with the continuous cho
for the single-particle spectrum. It is one of the aims of th
manuscript to explore the role of the single-particle propa
tor in the evaluation ofNN correlation in more detail.

In solving the Bethe-Goldstone equations and its ext
sions to the three hole-line terms, it has been common p
tice to use an approximation for the Pauli operator tha
independent of the angle between the center of mass mom
©2002 The American Physical Society21-1
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tum of the interacting pair of nucleons and its relative m
mentum. Using the angle-average approximation and ass
ing that the single-particle spectrum can be parametrized
function of the momentum in a quadratic form, one can so
the Bethe-Goldstone equation easily using a partial wave
pansion. During the last few years methods have been de
oped to solve the Bethe-Goldstone equation without
angle-average approximation@8,9#. It turns out that the re-
sults are not very sensitive to the treatment of the Pauli
erator but they change in a nonnegligible way if a sing
particle spectrum is used, which differs from a simp
quadratic parametrization. This has recently been obse
by Baldo and Fiasconaro@10# using an angle-average ap
proach. We are going to explore this feature in more de
without using the angle-average approximation.

The continuous choice for the single-particle spectr
has been motivated from the method of self-consistent Gr
functions in the many-body theory. Within this scheme, ho
ever, the evaluation of the self-energy is done treat
particle-particle and hole-hole ladders at the same leve
the approximation scheme replacing the Bethe-Goldst
equation by the corresponding Galitzkii-Feynman equati
If one tries to perform such calculations for realisticNN
forces, one encounters the problem of the so-called pai
instabilities@11–13#. These pairing effects can be taken in
account by means of the BCS approach@14–16#. At the em-
pirical saturation density of symmetric nuclear matter
solution of the gap equation in the3S1-3D1 partial wave
leads to an energy gap of around 10 MeV. Another appro
is to consider an evaluation of the generalized ladder
grams with ‘‘dressed’’ single-particle propagators. Th
means that the single-particle Green functions are not
proximated by a mean-field approach but consider sin
particle strength distributed over all energies. Various
tempts have been made in this direction, considering
parametrization of the single-particle Green function in ter
of various poles@17#, employing simplified~separable! inter-
action models@13# or considering the case of finite temper
ture.

The same instabilities also occur in studies of finite nuc
@18#, leading to divergent contributions to the binding ener
from the generalized ring diagrams. These contributions
main finite if the single-particle propagators are dressed
self-consistent way.

Here we want to explore some features of the sing
particle self-energy and the corresponding Green function
infinite symmetric nuclear matter at temperatureT50. As a
starting point we consider the BHF approximation emplo
ing a self-consistent continuous choice spectrum with
angle averaging. The contribution of hole-hole ladder ter
are then added in a perturbative approach. We then ana
the energy distribution of the spectral single-particle stren
and define appropriate mean values. These mean value
used to calculate the self-energy in a self-consistent way

These studies are performed for variousNN interactions
and we will pay special attention to the differences in t
properties of the nucleon self-energy that can be relate
the interaction model. In particular, we will consider loc
and nonlocal models of theNN interaction, which have bee
03432
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defined by the groups in Moscow~Idaho! @19#, Argonne@20#,
and Nijmegen@21#. All these interaction models yield a ver
accurate fit to a selected data-base ofNN scattering data. For
further comparison we will also consider two older versi
of the Bonn potential, defined in Ref.@22#.

After this introduction we will discuss some features
the self-consistent BHF approach for the self-energy in S
II. The effect of the hole-hole terms in the self-energy an
self-consistent treatment of the single-particle Green fu
tion will be presented in Sec. III. The main conclusions a
summarized in the final section.

II. SINGLE-PARTICLE SPECTRUM IN THE BHF
APPROXIMATION

The self-energy or single-particle energy of a particle
the Brueckner-Hartree-Fock~BHF! approximation corre-
sponds to the Hartree-Fock expression using theG matrix for
the effective interaction. This means that the self-energy o
nucleon in nuclear matter with momentumkW is given by
~note that spin and isospin quantum numbers are suppres!

SBHF~kW ,v!5E d3q^kWqW uG~V!ukWqW &n0~qW !, ~1!

with the occupation probability of a free Fermi gas with
Fermi momentumkF

n0~qW !5H 1 for uqW u<kF ,

0 for uqW u.kF .
~2!

The matrix elements in Eq.~1! denote antisymmetrized ma
trix elements of the BruecknerG matrix that are determined
by solving the Bethe-Goldstone equation for a given realis
nucleon nucleon (NN) interactionV

^kWqW uG~V!ukWqW &5^kWqW uVukWqW &1E d3p1d3p2^kWqW uVupW 1pW 2&

3
Q~p1p2!

V2~ «̃p11 «̃p2!1 ih
^pW 1pW 2uG~V!ukWqW &.

~3!

In this representation of the Bethe-Goldstone equationQ
stands for the Pauli operator and is defined by

Q~p1p2!5@12n0~p1!#@12n0~p2!#, ~4!

which means that the integral over intermediate two-part
states in Eq.~3! is restricted to states with momenta larg
than the Fermi momentum. According to the theorem of B
the, Brandow, and Petschek~BBP theorem! @3# one defines
the single-particle energy for hole states, i.e., states with
mentak,kF , using the on-energy shell value for the se
energy, which is given as

«k5
k2

2m
1SBHF~kW ,v5«k!, ~5!
1-2
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NUCLEAR SELF-ENERGY AND REALISTIC INTERACTIONS PHYSICAL REVIEW C65 034321
with a value for the starting energy parameterV in the
Bethe-Goldstone equation~3! of

V5v1«q5«k1«q . ~6!

Since this BBP theorem does not apply for the definition
the single-particle energies for states with momenta ab
the Fermi momentum, the optimal choice for this partic
state spectrum has been a subject of controversial discus
for many years~see Sec. I!. Note that the binding energy pe
nucleon is evaluated as

E

A
5

E d3kn0~k!
1

2
~k2/2m1«k!

E d3k n0~k!

, ~7!

which implies that the definition of the particle-state spe
trum affects the calculated binding energy only via the
ergy parameter«̃p1 and«̃p2 in the Bethe-Goldstone equatio
~3!. Two choices have been discussed: the so-called con
tional choice, in which the energies for the particle sta
have been replaced by the kinetic energy

«̃p5
p2

2m
, ~8!

and the ‘‘continuous’’ choice, for which the on-shell defin
tion of the hole-state energies~5! has been extended to th
particle states. Note that the BHF self-energy for the conti
ous choice develops an imaginary part for energiesv.«F
with «F denoting the Fermi energy, the single-particle ene
for k5kF . The ‘‘continuous’’ choice, however, employs th
real part of this self-energy, only.

The on-shell definition of the BHF self-energy in Eqs.~5!
and ~6! implies a self-consistent solution of the Beth
Goldstone equation~3! and the evaluation of the single
particle energies. In order to obtain such a self-consis
solution one often assumes a quadratic dependence o
single-particle energy on the momentum of the nucleon
the form

«k'
k2

2m*
1C. ~9!

Starting with an appropriate choice for the parameters for
effective massm* and the constantC, one can solve the
Bethe-Goldstone equation and evaluate the single-par
energy, using Eq.~5!, for two representative momentak1 and
k2. The parametersm* andC are readjusted in such a wa
that the parametrization Eq.~9!, reproduces these two ene
gies. This procedure is iterated until a self-consistent solu
is obtained.

The parametrization of Eq.~9!, however, is useful no
only to simplify the self-consistent solution of the BHF equ
tions, it also leads to a simplification of the numerical so
tion of the Bethe-Goldstone equation. Assuming such an
fective mass spectrum, one can easily rewrite the ener
occurring in the denominator of the two-particle propaga
03432
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in terms of the center of mass,Pc.m. and relative momentum
pr of the interacting pair of nucleons

«p11«p25
Pc.m.

2

4m*
1

pr
2

m*
12C,

which does not depend on the angle betweenpW c.m. andpW r . If,
furthermore, one approximates the Pauli operator of Eq.~4!
by taking an appropriate average over this angle, the Be
Goldstone equation can be rewritten into a one-dimensio
integral equation using the partial wave representation of
two-body states@23#.

This approximation scheme has been common prac
and only recently attempts have been made to avoid
angle-average approximation for the Pauli operator@8,9#.
These investigations show that the use of the angle-ave
approximation in the Pauli operator leads to an underesti
tion of the calculated energies of around 0.5 MeV p
nucleon if one uses an effective mass parametrization for
single-particle energies in the Bethe-Goldstone equation

However, the determination of this parametrization is n
very well defined. Rather different values form* andC may
be obtained if different momenta are chosen to define th
values. This is demonstrated in Fig. 1, which displays
energy of symmetric nuclear matter at various densities, r
resented by the corresponding Fermi momentum. All cal
lations have been performed within the framework of t
BHF approach but using various approximation schemes
the propagator in the Bethe-Goldstone equation. Calculat
using the conventional choice for the particle-state spect
~8! and the angle-average Pauli operator yield results that
not very sensitive to the details of the effective mass para
etrization for the hole state energies. All resulting bindi
energies, which were obtained by adjusting the parame

FIG. 1. Binding energy of nuclear matter as a function of t
Fermi momentum. Results are given for the BHF approximat
using the Bonn C potential as defined in Ref.@22#. Various approxi-
mation schemes have been used for the two-particle propagat
the Bethe-Goldstone equation, as discussed in the text.
1-3
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m* andC at different momenta, are very similar forming th
thin gray area, which is labeled ‘‘conv.m* spectr.’’ in Fig. 1.

The calculated binding energies are larger, if the conti
ous choice is employed, and the results are more sensitiv
the details of the procedure to determine the parametersm*
and C. This is visualized by the gray area, labeled ‘‘con
m* ’’ in Fig. 1. Both of these features can be related to t
fact that the continuous choice spectrum tends to lead
energy denominators in the Bethe-Goldstone equation~3!
with smaller absolute values than the conventional cho
which exhibits a gap in the single-particle spectrum ak
5kF .

The calculated binding energies are even larger, if
exact Pauli operator is employed and the parametrizatio
the single-particle spectrum is avoided~solid line in Fig. 1!.
The results displayed in Fig. 1 have been obtained emp
ing a specific version of the Bonn potential~Bonn C as de-
fined in Ref.@22#!. Very similar results have also been o
tained using other realistic models for theNN interaction. A
part of this additional binding energy can be related to
use of the exact Pauli operator~see Ref.@8# and discussion
above!. Another part, however, must be related to the f
that the calculated single-particle spectrum deviates in a
nificant way from the parametrization of Eq.~9!. Such a gain
of binding energy has also recently been observed by Ba
and Fiasconaro@10# using an angle-average approach.

This deviation of the self-consistent single-particle pote
tial

UBHF~k!5Re@SBHF~kW ,v5«k!# ~10!

from its quadratic parametrization, which is implied by E
~9!, is explicitly displayed in Fig. 2, where results are giv
at two different densities using various models for theNN
interaction. These models include the Bonn A and Bonn
versions of the traditional one-boson-exchange model
fined in Ref.@22#, the interaction models with high accurac

FIG. 2. The single-particle potentialUBHF @see Eq.~10!# as a
function of the momentum. Results are displayed at two differ
densities using various models for theNN interaction.
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fits to theNN data CD Bonn@19# and Argonne V18@20#, but
also the recentNN Idaho A potential@24#, which is based on
chiral perturbation theory.

All these single-particle potentials show a significant d
viation from a parabolic shape in particular at momen
slightly above the Fermi momentum. It is obvious that suc
deviation tends to provide more attractive matrix elements
G in evaluating the self-energy for hole states according
Eq. ~1!, which leads to more binding energy.

In the following we want to explore the sources of th
momentum dependence ofUBHF more in detail. For that pur-
pose we have disentangled the dependence of the real pa
the self-energySBHF(kW ,v) on energy and momentum. Fo
lowing the nomenclature of Mahaux and Sartor@25# we char-
acterize the dependence on the momentumk by an effective
‘‘ k mass’’mk , which is defined by

mk~k!

m
5F11

m

k

]SBHF~k,v!

]k G21

, ~11!

with the self-energySBHF calculated atv5ek . Any devia-
tion of mk from the bare massm indicates a momentum
dependence of the self-energy, which means a nonlocalit
coordinate space. Results for the BHF self-energy calcula
for the Argonne V18 calculated in nuclear matter at a Fe
momentumkF51.36 fm21 are displayed in Fig. 3. For com
parison we also include in this figure the effectivek mass
evaluated in the Hartree-Fock approximation, i.e., replac
the matrix elements ofG in Eq. ~1! by the corresponding
ones of the bare interactionV. One can see that thek mass
evaluated in the BHF approximation is very close to the o
determined from the Hartree-Fock potential. This means
the nonlocality of the single-particle potential originates e
sentially from the Hartree-Fock contribution.

The same is true for other interactions considered in
investigation. Therefore using otherNN potentials we only

t

FIG. 3. The effectivek mass@see Eq.~11!# evaluated for the
BHF and Hartree-Fock~HF! self-energy for various interactions
Symmetric nuclear matter at the empirical saturation densitykF

51.36 fm21) has been considered.
1-4
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display the effectivek mass derived from the Hartree-Foc
approach in Fig. 3. It is remarkable that the effectivek mass
derived for the traditional Bonn interaction as well as for t
CD Bonn potential shows results very close to the ones
rived from the V18 interaction model. This is true althou
the absolute values for the Hartree-Fock single-particle
tentials depend quite strongly on theNN interaction, as one
can see from the single-particle energies listed in the
column of Table I. This means that different interaction mo
els, which all fit NN scattering data, yield quite differen
values for the Hartree-Fock single-particle potential
nuclear matter. The momentum dependence of these sin
particle potentials, which represents the nonlocality, is v
similar.

In Fig. 3 it is only the Idaho A interaction model@24#, as
well as the version B of this model which is not contained
this figure, which shows significant deviations in particular
high momenta. These differences are due to the strong cu
which are employed in these interaction models. These
offs, which are necessary to control the chiral expansion
high momenta, are responsible for the fact that the Hart
Fock potential is essentially identical to zero for mome
larger than 5 fm21.

All k masses exhibit a rather smooth dependence on
momentum. Therefore the momentum dependence of
self-energy is not responsible for the special behavior of
BHF self-energies at thek5kF displayed in Fig. 2. The en
ergy dependence of the self-energy, that is, the nonlocalit
time, is characterized by the so-calledE mass, which is de-
fined as@25#

mE~v!

m
5F12

]SBHF~k,v!

]v G , ~12!

so that the total effective mass is given by

m* ~k!

m
5

mk~k!

m

mE~v5«k!

m
.

In the Hartree-Fock approximation theE mass is identical to
m for all NN interaction models considered in this investig
tion. Therefore the deviations ofmE from m, which are dis-
played in Fig. 4 for variousNN interactions originate from
the ladder contributions to theG matrix. Again we find a

TABLE I. Fermi energy of nuclear matter withkF

51.36 fm21 calculated in the Hartree-Fock approximation~HF!,
the Brueckner-Hartree-Fock approximation~BHF!, and with inclu-
sion of two hole–one particle contributions (12h1p) using differ-
ent interaction models. All entries are given in MeV.

HF BHF 12h1p

Bonn A 15.66 237.24 232.48
Bonn C 60.48 233.53 229.76
CD Bonn 11.44 240.32 235.93
Arg. V18 62.36 234.62 231.74
Idaho A 27.66 242.54 238.54
Idaho B 22.97 241.16 237.45
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behavior that is very similar for all interactions considere
The effectiveE mass reaches values up to 1.4 timesm at
energiesv slightly above the Fermi energy, which implie
that the total effective massm* approaches the valuem for
momenta around the Fermi momentum, indicating that
BHF self-energy increases only weakly withk, just the be-
havior we already observed in Fig. 2.

This energy dependence of the real part of the self-ene
is also visualized in the left part of Fig. 5 displaying a pr
nounced minimum at energies around the Fermi energy.
right-hand part of this figure shows the corresponding ima
nary parts of the BHF self-energy. These imaginary parts

FIG. 4. The effectiveE mass@see Eq.~12!# evaluated for the
BHF self-energy for various interactions. Symmetric nuclear ma
at the empirical saturation density (kF51.36 fm21) has been con-
sidered, using as a typical example a momentum ofk50.8 kF .

FIG. 5. The BHF self-energy@see Eq.~1!# for symmetric nuclear
matter with Fermi momentumkF51.36 fm21 calculated for nucle-
ons with momentumk50.95 kF as a function of the energyv. The
real and imaginary parts of the self-energy are displayed in r
and left parts of the figure, respectively. Various realisticNN inter-
actions have been considered, which can be distinguished by
line types as listed in the figure.
1-5
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identical zero for energiesv less than«k2«F , as can be
seen from Eqs.~5! and ~6!, and yield non-negligible value
up to very high energies.

Real and imaginary part of the self-energy are related
each other by a dispersion relation of the form@25,26#

ReSBHF~k,v!5UHF~k!1
1

pE2`

` Im SBHF~k,v8!

v82v
dv8.

~13!

Considering the results for the imaginary part of the se
energy, which are displayed in the right part of Fig. 5, it
clear from this dispersion relation that the real part of
self-energy is identical to the corresponding HF sing
particle potentialUHF(k) in the limit v→2`. This real part
gets more attractive with increasingv until one reaches val
ues ofv at which the imaginary part is different from zer
The self-energy turns less attractive at higher energies, w
leads to a pronounced minimum at energiesv slightly above
the Fermi energy. This energy dependence is, of course,
reflected in the effectiveE mass discussed above.

The results obtained for the recent Idaho interactionA
andB are quite different, as can be seen from Fig. 6, wh
displays corresponding results for the BHF self-energy us
Idaho A interaction. These differences can be traced to
strong cutoff of these Idaho interactions which have be
mentioned already above. Due to these form factors the
trix elementŝ kWqW uVupW 1pW 2& in the Bethe-Goldstone equatio
~3! vanish for two-body statesupW 1pW 2& with high momentapW i .
Therefore the imaginary part of the self-energy tends to z
for energiesv larger than 500 MeV, as shown in the left pa
of Fig. 6. The dispersion relation of Eq.~13! relates this
shape of the imaginary part to the energy dependence o
real part of SBHF leading even to positive values forv
'400 MeV. It is worth noting that the large absolute val
of the imaginary part ofSBHF obtained for the Idaho inter
action at energies below 250 MeV yields a real part of
self-energy that is similar to the results obtained for ot
interactions in the energy interval forv of @2100 MeV,0#,

FIG. 6. The BHF self-energy@see Eq.~1!# evaluated for the
Idaho A interaction model. Further details as in Fig. 5.
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which is relevant for the BHF single-particle energies. The
fore one can expect that these Idaho interactions lead to
sonable predictions for nuclear structure at low energies
momenta. The results for processes involving nucleons w
high momenta or energies will be dominated by the stro
cutoff, which is required in these models to control the e
pansion of the chiral perturbation theory.

The differentNN interactions yield quite different result
for the HF single-particle potential but very similar ones f
the BHF self-energy at energiesv that are close to the Ferm
energy~see Fig. 5 and Table I!. We can distinguish ‘‘stiff’’
potentials like the Argonne potential V18 or the Bonn
potential and ‘‘softer’’ ones like Bonn A and CD Bonn or th
even softer Idaho A and B ones. The stiff potentials yie
rather repulsive results for the mean field of the Hartree-F
approximation~see first column of Table I!. This repulsion
originating from the bareNN interactionV is compensated
by the attractive particle-particle ladder contributions to t
G matrix. The value of this attractive contribution depen
on the interaction used. It is smaller for softer potentials
the two-particle propagator in the Bethe-Goldstone equa
~3! was replaced by the free one, i.e., no Pauli operatorQ and
the energies in the denominator replaced by the kinetic e
gies, theG would become identical to theT matrix of free
NN scattering. Since all potentials fit the sameNN phase
shifts a replacement ofG in the BHF equations byT should
yield identical results. Pauli operator and the single-parti
energies in the medium lead to less attractive matrix e
ments ofG as compared toT, which is often called Pauli-
and dispersion quenching, respectively. This quench
mechanism is more efficient for the stiff potentials, since
attractive ladder contributions, which are quenched,
larger. Therefore stiff potentials lead to smaller binding e
ergies in BHF calculations of nuclear matter as softer on

This can be seen from columns 1 to 3 in Table II, whi
lists results for the binding energy obtained in different BH
calculations of nuclear matter at three different densities, e
ploying various realisticNN interactions. The dispersion
quenching mechanism tends to be larger if one employs
conventional choice, Eq.~8!, with a gap in the single-particle
spectrum for the Bethe-Goldstone equation as compare
the continuous choice. Therefore one obtains larger bind
energies using the continuous choice. This is can be see
the comparison between columns 1 and 2 of Table II. In b
kinds of calculations a parametrization of the single-parti
spectrum according to Eq.~9! has been utilized. An even
larger binding energy is obtained if the exact Pauli opera
and the precise shape of the single-particle energies are
ployed ~see third column in Table II!. As discussed above
this is partly due the use of the exact Pauli operator, but
also due to the shape of the single-particle energy atk5kF
~see Fig. 2!, which is characterized by a large effectiveE
mass at these momenta~see Fig. 4!.

III. TOWARDS A SELF-CONSISTENT SINGLE-PARTICLE
GREEN FUNCTION

One of the arguments in favor of the continuous choice
be used in the single-particle spectrum of the Bet
1-6
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TABLE II. Energy per nucleon for nuclear matter considering three different densities,kF51.20,1.36, and
1.60 fm21. Results are displayed for BHF, assuming the conventional choice for the spectrum of p
states, BHF with a continuous choice parametrized by an effective mass, BHF using the exact Pauli o
single-particle spectrum, and for the extended BHF schemes EBHF1 as well as EBHF2 are listed for d
realisticNN interactions. All energies are given in MeV per nucleon.

kF(fm21) BHF, conv. BHF, cont. BHF, exact EBHF1 EBHF2

1.20 210.65 213.25 214.55 215.57 214.91
Bonn A 1.36 213.39 215.99 217.46 218.99 218.13

1.60 216.45 218.81 220.23 221.93 221.53

1.20 29.37 211.96 213.40 214.45 213.53
Bonn C 1.36 211.19 213.82 215.55 217.03 215.84

1.60 212.11 214.43 216.40 218.41 216.69

1.20 211.02 213.79 215.39 216.19 215.36
CD Bonn 1.36 213.88 216.74 218.83 220.10 218.94

1.60 217.00 219.73 222.86 224.71 222.81

1.20 29.66 212.03 213.84 214.65 213.27
Arg. V18 1.36 211.32 213.66 216.13 218.36 216.62

1.60 211.65 214.12 216.77 219.46 217.09

1.20 211.91 214.64 216.14 217.21 216.55
Idaho A 1.36 215.08 217.95 220.21 221.82 220.83

1.60 218.78 221.88 225.44 227.62 226.04

1.20 211.17 214.10 215.72 216.75 215.88
Idaho B 1.36 213.87 217.00 219.46 220.96 219.71

1.60 216.55 219.97 223.94 225.81 224.07
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Goldstone equation has been that the corresponding de
tion of the single-particle self-energy would be in line wi
the definition of the self-energy using the method of se
consistent Green functions@2,26#. Assuming that the self-
energyS(k,v) for a nucleon with momentumk and energy
v in infinite nuclear matter is given, the Dyson equati
leads to a single-particle Green function of the form

g~k,v!5
1

v2k2/2m2S~k,v!
. ~14!

If one compares this solution with the general Lehmann r
resentation

g~k,v!5 lim
h→0

S E
2`

eF
dv8

Sh~k,v8!

v2v82 ih

1E
eF

`

dv8
Sp~k,v8!

v2v81 ih
D , ~15!

one can easily identify the spectral functionsSh(k,v) and
Sp(k,v) for hole and particle strength, respectively, to
given as
03432
ni-

-

-

Sh(p)~k,v!

56
1

p

Im S~k,v!

@v2k2/2m2ReS~k,v!#21@ Im S~k,v!#2
,

for v,«F ~v.«F!. ~16!

The hole spectral function represents the probability tha
particle with momentumk and energyv can be removed
from the ground state of the system, leaving the resid
nucleons in an eigenstate of the Hamiltonian. The part
spectral function system contains the corresponding pr
ability for adding a particle. In the mean field or Hartre
Fock approximation these spectral functions are reducedd
functions of the form

Sp~k,v!5Q~k2kF!d~v2«k!,

Sh~k,v!5Q~kF2k!d~v2«k!, ~17!

where the single-particle energy«k contains the sum of ki-
netic energy plus the real part of the self-energyS(k,v)
calculated on shell (v5«k).

The two-particle propagator can then be written in t
form
1-7
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gII~k1 ,k2 ;V!5E
«F

`

dv1E
«F

`

dv2

Sp~k1 ,v1!Sp~k2 ,v2!

V2v12v21 ih

2E
2`

«F
dv1E

2`

«F
dv2

Sh~k1 ,v1!Sh~k2 ,v2!

V2v12v22 ih
.

~18!

If one approximates the spectral functions by the mean fi
approximation one obtains the Galitskii-Feynman propa
tor, which includes particle-particle propagation as well
hole-hole propagation. If the hole-hole part of the propaga
is ignored one obtains an equation for the ladder diagra
for the reducible two-particle Green function that corr
sponds to the Bethe-Goldstone equation employing the c
tinuous choice. Using the complete Galitskii-Feynm
propagator for nuclear matter at temperatureT50 with a
realisticNN interaction leads to the so-called pairing or de
teron instability@11#.

As a side remark we would like to mention that this i
stability has also been observed in studying correlation e
gies in finite nuclei@27#. The attempt to solve the particle
particle hole-hole random phase approximation~RPA!
equations for finite nuclei in a large model space using re
istic interactions and BHF single-particle energies leads
complex eigenvalues of the RPA equation. This correspo
to the pairing instability in the Galitskii-Feynman equatio
for infinite matter mentioned above. In finite nuclei this i
stability could be removed by a self-consistent single-part
propagator, which goes beyond the BHF approximation
accounts for the distribution of single-particle strength@18#.

Guided by this experience in finite nuclei, one can exp
that the pairing instability could be removed if the sing
particle Green function is evaluated in a way which accou
for the spectral distributions in a self-consistent way. In fa
some attempts in this direction are under investigation
first results are rather promising@28,29#. In this investigation
we would like to follow a different route and calculate th
contribution of the hole-hole terms to the self-energy in
kind of perturbative way@30#:

DS2h1p~k,v!

5E
kF

`

d3pE
0

kF
d3h1 d3h2

^k,puGuh1 ,h2&
2

v1 «̃p2 «̃h1
2 «̃h2

2 ih
. ~19!

It is worth noting that emplyoing this extension of the se
energy we are not following the rules of the hole-line
Bethe-Brueckner-Goldstone expansion any longer. In f
the Bethe-Brandow-Petschek theorem@3# does not apply to
the self-energy of the hole states if this correction is add
This means that an evaluation of the total energy, which
based on this extended definition of the self-energy, wo
not necessarily be superior to the usual BHF approach if
would apply the calculational scheme of Brueckner theo
As we will discuss below, however, we will calculate th
total energy along the lines defined within the theory of
self-consistent Green function method.
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In a first approximation, which we will, despite the pr
ceeding remark, denote as extended Brueckner-Hart
Fock 1 ~EBHF1!, we assume a single-particle spectrum«̃k
which is identical to the self-consistent BHF spectrum, d
cussed above Eq.~5!, but shifted by a constantC1, which
ensures the self-consistency fork5kF

«̃kF
5«kF

BHF1C1

5
kF

2

2m
1SBHF~kF ,v5 «̃kF

!1DS2h1p~kF ,v5 «̃kF
!.

~20!

This shifted single-particle spectrum is also used in
Bethe-Goldstone equation.

Results for the two-hole one-particle contribution to t
self-energy,DS2h1p , are displayed in Fig. 7, considerin
various momentak. The imaginary part ofDS2h1p is differ-
ent from zero only for energiesv below the Fermi energy
The conservation of the total momentum in the two nucleo
of the G matrix in Eq.~19!, hW 11hW 25kW1pW , leads to a mini-
mal value ofv at which this imaginary part is different from
zero. Due to these limitations the imaginary part integra
over all energies is much smaller forDS2h1p than forSBHF ,
displayed in Fig. 5. The real part ofDS2h1p is related to the
imaginary part by a dispersion relation similar to the one
Eq. ~13!, connecting the imaginary part ofSBHF with the
particle-particle ladder contributions to the real part ofSBHF .
Since the imaginary part ofS2h1p is significantly smaller
than the one ofSBHF , the same is true also for the corre
sponding real part.

This is reflected in the single-particle energies listed
Table I. While the contribution of the particle-particle ladde
to the Fermi energy is as large as290 MeV for the Bonn C
or Argonne V18 interaction, the correction originating fro
the 2h1p term is only around 5 MeV. This is a justificatio
of the perturbative treatment of the hole-hole ladder con

FIG. 7. The 2h1p contribution to the self-energy@see Eq.~19!#
evaluated for the CD-Bonn interaction assumingkF51.36 fm21

calculated for various momentak. Real ~left part! and imaginary
part ~right part of the figure! are displayed as function ofv.
1-8



n
ne

f
ity

ol
a
n

ca

a

-
th
re
fo
he
th

th
o

8
en

ing
the
n-

pen-

also
tion

the
F1
d.

by
re-

us

nc-

nn
en-

rgy

ry

en
a
a

n

m
e

fte

th
o-
ermi

NUCLEAR SELF-ENERGY AND REALISTIC INTERACTIONS PHYSICAL REVIEW C65 034321
bution. The nonsymmetric treatment of particle-particle a
hole-hole excitations is the typical feature of the hole-li
expansion. The hole-line expansions seems to be justified
nuclear systems at densities around the saturation dens
one is using realisticNN interaction. The origin for this dif-
ference in the importance of particle-particle and hole-h
excitations can be read from a comparison of the imagin
parts of the self-energy contributions displayed in Figs. 5 a
7. The phase space of particle-particle excitations, which
be excited from the ground state by a realisticNN interac-
tion, which is represented by an imaginary part ofSBHF dif-
ferent from zero, covers a much larger energy interval th
the corresponding space of hole-hole excitations~see imagi-
nary part ofDS2h1p). The relative importance of the hole
hole contributions shall be larger at very high densities as
phase space of hole-hole configurations increases. The
tive importance of hole-hole contributions is also larger
interactions like the Idaho A and Idaho B model, for that t
particle-particle configurations which can be reached by
interaction are strongly limited by the form factors used~see
Fig. 6 and Table I!.

The corrections of the single-particle energies due to
DS2h1p term are larger for momenta below the Fermi m
mentum and tend to zero for momenta abovekF . This can be
seen already from Fig. 7 and is shown explicitly in Fig.
where the single-particle potential, i.e., the quasiparticle
ergy

FIG. 8. The single-particle potential, i.e., the single-particle
ergy minus the kinetic energy, as a function of the momentum
suming the BHF approximation, the quasiparticle energy origin
ing from the BHF1 2h1p ~EBHF1! approximation and the mea
value derived from the hole spectral function according to Eq.~22!.
The data have been obtained for nuclear matter with a Fermi
mentumkF51.36 fm21, assuming the CD Bonn potential and th
Argonne V18. The results for the V18 interaction have been shi
by a constant such that the BHF results fork5kF agree with those
derived from the CD Bonn potential.
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«qp~k!5
k2

2m
1SBHF„k,v5«qp~k!…1DS2h1p„k,v5«qp~k!…,

~21!

minus the kinetic energy is compared to the correspond
value obtained in the BHF approximation. One finds that
single-particle potential derived from the quasiparticle e
ergy tends to a constant for momenta belowkF . This means
that the effective mass that describes the momentum de
dence of the quasiparticle energy«qp is essentially equal to
the bare mass for all momenta belowkF . At first sight one
may be tempted to consider this quasiparticle spectrum
in the energy denominators of the Bethe-Goldstone equa
and the 2h1p correction term of Eq.~19!. We will see below,
however, that a different choice is more appropriate.

It is worth noting that the momentum dependence of
single-particle spectra, in the BHF as well as in the EBH
approximation, is very similar for all interactions considere
This means that the values obtained fork smaller than the
Fermi momentum using the various interactions deviate
less than 1 MeV if they are normalized relative to the cor
sponding Fermi energy. Only theS2h1p correction term is
about 25% weaker for the Argonne V18 than for the vario
Bonn or Idaho interaction models~see also Fig. 8!.

From the complex self-energyS(k,v) in the EBHF1 ap-
proach, which is the sum of the BHF term and the 2h1p
correction, one can evaluate the single-particle Green fu
tion or directly the spectral functions according to Eq.~16!.
Results for the spectral function derived from the CD Bo
interaction for nuclear matter at the empirical saturation d
sity are displayed in Fig. 9. For each momentumk the spec-
tral functions exhibit a maximum at the quasiparticle ene
«qp(k). The width of this maximum is very small fork close
to the Fermi momentum and gets significantly larger for ve
small momenta and momenta considerably larger thankF .

-
s-
t-

o-

d

FIG. 9. The spectral function for particle and hole streng
Sh(k,v)1Sp(k,v) as a function of energy assuming various m
menta. The data have been obtained for nuclear matter with a F
momentumkF51.36 fm21, assuming the CD Bonn potential.
1-9
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More details can be seen in the logarithmic plots of
spectral function in Fig. 10. This representation also exhi
some characteristic differences depending on the interac
used. While the spectral functions derived from CD Bo
and Argonne V18 interaction exhibit a high-energy tail th
extends to excitation energiesv above 1 GeV, the spectra
function determined for the Idaho interaction drop ve
sharply at energies around 400 to 500 MeV. This is aga
consequence of the strong cutoffs that are used in thes
teractions to control the terms in the chiral perturbation
pansion.

From this figure one also observes of course that the s
tral distributions are not symmetric around the quasipart
pole. To demonstrate this on a quantitative level we cal
late, e.g., the mean value for the energy of the hole distr
tion function

« h̄~k!5

E
2`

«F
dv v Sh~k,v!

n~k!
, ~22!

wheren(k) denotes the occupation probability for the sta
with momentumk, which is calculated as

n~k!5E
2`

«F
dv Sh~k,v!. ~23!

These mean values are significantly below the quasipar
energies~see solid line in Fig. 8!. In fact, for all interactions
and densities under consideration it turned out that these
sults for« h̄(k) are close to the BHF single-particle energi
for momentak<kF .

FIG. 10. The spectral function for particle and hole stren
Sh(k,v)1Sp(k,v) as a function of energy assumingk50.4 kF

~upper part of the figure! andk51.5 kF ~lower half of the figure!.
The data have been obtained for nuclear matter with a Fermi
mentumkF51.36 fm21, assuming three differentNN interactions.
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However, the mean value« h̄(k) is defined also for mo-
menta larger thankF . For those momenta we do not get
dominant contribution from the quasiparticle pole, but det
mine an average over a broad distribution of 2h1p configu-
rations. Therefore the mean energies« h̄(k) are much more
attractive fork.kF than fork,kF , as shown in Fig. 11. As
a consequence the total energy per nucleon calculated a

E

A
5

E d3k E
2`

«F
dv Sh~k,v!

1

2
~k2/2m1v!

E d3k n~k!

~24!

is significantly more attractive than the corresponding B
result~see Table II, column denoted EBHF1 as compared
BHF!.

Figure 11 displays in its right part also the momentu
distributionn(k) derived from the CD Bonn interaction~the
momentum distribution for the other two Bonn potential a
very similar!, the Argonne V18 and the Idaho A interactio
At high momenta the result is larger for the Argonne V18
compared to the Bonn interaction model. The Idaho inter
tion predicts a momentum distribution that decreases v
rapidly at momenta larger than 2kF . This is again a conse
quence of the strong cutoff in this interaction and should
be considered as a realistic prediction.

The left part of Fig. 11 also shows results for the me
energy of the particle strength distribution

« p̄~k!5

E
«F

`

dv v Sp~k,v!

E
«F

`

dv Sp~k,v!

. ~25!

o-

FIG. 11. The left part of the figure exhibits the mean value
the single-particle energy weighted by the spectral function for p
ticle and hole strength, respectively, relative to the Fermi ene
Results are given for the example of the Bonn C potential. The
on the right-hand side shows the occupation probabilityn(k) for
various interaction. All results in this figure refer to nuclear mat
with a Fermi momentumkF51.36 fm21.
1-10
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NUCLEAR SELF-ENERGY AND REALISTIC INTERACTIONS PHYSICAL REVIEW C65 034321
In this integration one has to include strength up to energ
v above 1 GeV, to ensure that the sum rule

n~k!1E
«F

`

dv Sp~k,v!51

is fulfilled.
For k smaller than the Fermi momentum more than 80

of the single-particle strength is at energies below the Fe
energy. This means that the single-particle energy for th
momenta might be represented by« h̄(k). On the other hand
for k larger thankF , the dominant part of the single-partic
strength is represented by the mean energy« p̄(k). Therefore
one might use these energies for the single-particle spec
to be used in the propagator of the Bethe-Goldstone equa
and the energy denominator ofDS2h1p in Eq. ~19!. As one
can see from Fig. 11 this would lead to a gap in the sing
particle spectrum of 40 to 50 MeV at the Fermi momentu
which is more than one half of the gap in the conventio
choice for BHF.

Instead of this choice we suggest a slightly different o
Since we would like to use these mean energy values
define an approximation to the single-particle Green funct
~15! we define a mean valueêh(k) for hole states by the
equation

1

êh~k!2~«F1D/2!
5

1

n~k!
E

2`

«F
dv

Sh~k,v!

v2~«F1D/2!
~26!

and a corresponding one for the particle states. With
definition of a mean value one reduces in particular the c
tributions to the mean value for the particle states that or
nates from the spectral strengthSp(k,v) at very high ener-
giesv in an appropriate way.

Examples for these mean values are plotted in Fig.
With this definition of the single-particle spectrum one o
tains a gapD at the Fermi energy«F of about 10 MeV for
nuclear matter at saturation density. It is worth noting t
this gap is of similar size as the pairing gap derived fro
BCS calculations forT50 pairing in the 3S1-3D1 channel
@31#. This implies that using this single-particle spectrum in
Galitzkii-Feynman equation should avoid the occurrence
pairing instabilities. However, this gap in the single-partic
spectrum may not only be considered as a tool to avoid
pairing instability in the Galitzkii-Feynman equation. It is a
intriguing feature of this approximation for the use of t
complete spectral distribution in the single-particle Gre
function that it leads to a single-particle spectrum with a g
at the Fermi energy, which is similar to the gap in the qu
siparticle spectrum of the BCS approximation. Also one m
mention that such a gap is in between the behavior of
conventional and the continuous choice for the BHF sp
trum discussed above.

This single-particle spectrum has then been used in
Bethe-Goldstone equation and the evaluation of the cor
tion termDS2h1p of Eq. ~19!. We consider this choice to b
an optimized representation of the single-particle propag
in terms of one pole@at energy«̂(k)# for each momentumk.
03432
s

i
se

m
on

-
,
l

.
to
n

is
-

i-

2.
-

t

f

e

n
p
-
y
e
-

e
c-

or

Further improvements would require the representation
the single-particle Green function in terms of two or mo
poles@17,32# or use the complete spectral distribution.

The calculation using the«̂(k) choice is denoted by
EBHF2. The self-energies, spectral functions, and total
ergy are calculated in the same way as discussed abov
the approach EBHF1. Results for the energy per nucleon
listed in the last column of Table II. Comparing the EBHF
results with those obtained in the EBHF1 approximation o
finds that the gap in the single-particle spectrum yields
reduction of the calculated binding energy of about 1 to
MeV per nucleon for the densities and interactions cons
ered in this table. It turns out that the energies calculated
the EBHF2 approach are again close to those obtained in
BHF approximation using the exact propagator.

Our final EBHF2 results for the energy of nuclear mat
derived from the Argonne V18 interaction are similar to t
values determined by Akmal and Pandharipande in th
variational calculation@33# using the same interaction mode
The ‘‘softer’’ interactions like the Bonn A and the CD Bon
interaction yield larger values for the binding energy p
nucleon and larger saturation densities. Even more bind
energy is predicted from the recent Idaho interaction mod
As it has been discussed above, these Idaho models see
be useful for calculations in limited model spaces only. Ne
ertheless, in order to obtain a result for the saturation po
that is in agreement with the empirical data, some repuls
effects are needed, in particular at high densities. This re
sion can be introduced ad hoc in terms of a three-nucl
interaction. Such an effective three-nucleon interaction m
represent the effects of the relativistic decomposition of

FIG. 12. The mean valueêh(k) defined in Eq.~26! and the

correspondingêp(k) ~solid lines! are compared to the single
particle spectrum obtained within the BHF approximation~dashed
line!. Note that the kinetic energies have been subtracted and
curves have been shifted to obtain the value 0 fork5kF . The
results in this figure refer to nuclear matter with a Fermi moment
kF51.36 fm21 and have been derived from the CD Bonn intera
tion.
1-11
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T. FRICK, KH. GAD, H. MÜTHER AND P. CZERSKI PHYSICAL REVIEW C65 034321
self-energy@34# or the effects of subnucleonic degrees
freedom, like, e.g., the many-body effects arising fromD
excitations of the nucleons@35#.

IV. CONCLUSIONS

The sensitivity of the Brueckner-Hartree-Fock~BHF! ap-
proximation for the many-body system of symmetric nucle
matter with respect to an exact treatment of the propagato
the Bethe-Goldstone equation has been investigated.
finds that the precise treatment of the Pauli operator toge
with a single-particle spectrum based on the real part of
self-energy for hole states and particle states yields a re
for the binding energy per nucleon that is larger by a n
negligible amount as compared to results obtained in s
dard approximation schemes. The nonlocality and energy
pendence of the BHF self-energy is discussed in detail.

The BHF definition of the self-energy has been extend
to account for the effects of hole-hole ladders in a pertur
tive way. The corresponding results for the complex se
energy, the single-particle green function, and the spec
function are discussed in detail. This leads to a definition
a spectrum of single-particle energies, which character
the spectral distribution of the single-particle Green funct
in an average way. The resulting single-particle spectrum
hibits a gap at the Fermi momentum, which is of the order
the pairing gap derived from BCS calculations forT50 pair-
ing in the 3S1-3D1 channel. Therefore this approximatio
should avoid the so-called pairing instability which occurs
the Green function approach using the Galitzkii-Feynm
propagator.

The calculations have been performed employing vari
models for theNN interaction, which all fitNN scattering
data. It is observed that the strong form factors, which ha
te
,
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be introduced in the recent Idaho interaction models@24# to
control the expansion based on chiral perturbation the
lead to results for the nonlocality and spectral functio
which are quite different than those obtained for the ot
interactions. We conclude that these new Idaho interacti
should only be used for studies that are insensitive to co
ponents in the spectral distribution at higher energies or m
menta.

Significant differences are also observed in comparing
sults between stiffer interaction models, like the Argon
V18 and Bonn C potential, or softer ones like the CD Bo
and Bonn A interaction. These differences show up in
Hartree-Fock contribution to the binding energy, that
rather repulsive for the stiff interactions and less repuls
for the softer ones. These differences can also be observe
the imaginary part of the self-energy at large energies an
the tail of the momentum distribution at high momenta.

The EBHF2 approach introduced above should be con
ered as a good starting point for further improvements o
self-consistent definition of the single-particle Green fun
tion. Such improvements include the representation of
Green function in terms of various poles for each moment
or attempts to account for the complete spectral distributi
The present studies demonstrate that special attention sh
be paid to a proper treatment of the single-particle stren
around the Fermi energy.
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