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The structure of nucleon self-energy in nuclear matter is evaluated for various realistic models of the
nucleon-nucleonNN) interaction. Starting from the Brueckner-Hartree-Fock approximation without the usual
angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the
framework of the Green function approach are investigated. Special attention is paid to the predictions for the
spectral function originating from various models of thi#l interaction, which all yield an accurate fit for the
NN phase shifts.
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[. INTRODUCTION to a gap at the Fermi surface: the propagator for single-
particle states with momenta below the Fermi momenkgm
One of the central issues of quantum many-body theorys described in terms of a bound single-particle energy while
and theoretical nuclear physics is the attempt to derive théhe corresponding spectrum for the particle states starts at the
bulk properties of nuclear systems from realistic models okinetic energy for the momentui .
the nucleon-nucleonNN) interaction. Various approxima- Mahaux and collaboratorfs] argued that it would be
tion schemes have been developed to describe the correlaore natural to choose the propagator according to the Green
tions that are induced into the many-nucleon wave functiorfunction method, i.e., define the single-particle propagator
by the strong short-range and tensor components of a suchvith a single-particle energy which includes the real part of
realisticN N force. For a recent review on such methods seethe self-energy as a single-particle potential for particle and
e.g., Refs.[1,2]. One of the most popular approximation hole states. This leads to a spectrum that is continuous at the
schemes, which is frequently used in nuclear physics, is thEermi momentum, which provided the name “continuous
hole-line expansion, in particular the approximation of low-choice” for this approach. This continuous choice leads to an
est order, the Brueckner-Hartree-Fd&F) approximation.  enhancement of correlation effects in the medium and tends
In this approach th&lN correlation are taken into account to predict larger binding energies for nuclear matter than the
in solving the Bethe-Goldstone equation, which leads to theonventional choice.
so-calledG matrix. TheG matrix accounts for multiple scat- The optimal choice for the single-particle spectrum seems
tering processes and therefore corresponds to\tNescat-  to be in between the conventional and the continuous choice
tering matrix T. In contrast to the Lippmann-Schwinger spectrum. This has been demonstrated by the recent investi-
equation leading tol, the Bethe-Goldstone equation ac- gations of the Catania grouyp]. They calculated the effects
counts for effects of the nuclear medium: The propagator foof contributions in the hole-line expansion originating from
the intermediate two-particle states is restricted to particlehree hole-line termf7] using both the conventional and the
states, i.e., to single-particle states with energies above theontinuous choice spectrum. The inclusion of the three hole-
Fermi energyer, and is defined in terms of the single- line terms leads to a calculated binding energy of nuclear
particle energies for the nucleons in the medium. This choicenatter that is between the results of BHF calculation with the
of the single-particle energies in the propagator of the Betheconventional and the continuous choice and rather insensi-
Goldstone equation is motivated by the Bethe-Brandowtive to the choice made. The attractive contribution obtained
Petschek theoreif8]. from the three hole-line terms using the conventional choice
Strictly speaking, however, the Bethe-Brandow-Petschels larger than the repulsive contribution evaluated with the
theorem only defines the energy variable to be used in theontinuous choice. This demonstrates that the continuous
calculation of self-energy or single-particle potential for thechoice yields a slightly better convergence than the conven-
hole states. The choice for the propagator of the particléional one. The results also indicate that the two-nucleon
states is not defined on this level of the hole-line expansiomorrelations tend to be underestimated with the conventional
and therefore has been discussed in a controversial way. Tleboice and slightly overestimated with the continuous choice
conventional choice has been to ignore self-energy contribufor the single-particle spectrum. It is one of the aims of this
tions for the particle states completely and approximate thenanuscript to explore the role of the single-particle propaga-
energies by the kinetic energy only. This conventional choiceor in the evaluation oNN correlation in more detail.
is supported by th&, approximation of the coupled cluster  In solving the Bethe-Goldstone equations and its exten-
or exponentialS method[4], which essentially leads to the sions to the three hole-line terms, it has been common prac-
same approach, This conventional choice for the singletice to use an approximation for the Pauli operator that is
particle spectrum, however, is not very appealing as it leadsdependent of the angle between the center of mass momen-
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tum of the interacting pair of nucleons and its relative mo-defined by the groups in Moscofidaho [19], Argonne[20],

mentum. Using the angle-average approximation and assumand Nijmeger{21]. All these interaction models yield a very

ing that the single-particle spectrum can be parametrized asaccurate fit to a selected data-baséNdf scattering data. For

function of the momentum in a quadratic form, one can solvdurther comparison we will also consider two older version

the Bethe-Goldstone equation easily using a partial wave exef the Bonn potential, defined in ReR2].

pansion. During the last few years methods have been devel- After this introduction we will discuss some features of

oped to solve the Bethe-Goldstone equation without thighe Self-consistent BHF approach for the self-energy in Sec.

angle-average approximatigB,d]. It turns out that the re- l- The ef_fect of the hole-hole terms in the s_elf—energy and a

sults are not very sensitive to the treatment of the Pauli opSelf-consistent treatment of the single-particle Green func-

erator but they change in a nonnegligible way if a single-tion will .be presente_d in Seq. Ill. The main conclusions are

particle spectrum is used, which differs from a simpleSummarized in the final section.

guadratic parametrization. This has recently been observed

by Baldo and FiasconarflO] using an angle-average ap- [l. SINGLE-PARTICLE SPECTRUM IN THE BHF

proach. We are going to explore this feature in more detail APPROXIMATION

without using the angle-average approximation. . . L
The continuous choice for the single-particle spectrum The self-energy or single-particle energy of_a particle in

has been motivated from the method of self-consistent Greetrli‘e Brueckner-Hartree-FockBHF) approximation _corre-

functions in the many-body theory. Within this scheme, how-Sponds to the_ Hartre_e-Fock_ expression usingGitmeatrix for

ever, the evaluation of the self-energy is done treating}he effective interaction. This means that thae self-energy of a

particle-particle and hole-hole ladders at the same level ofucleon in nuclear matter with momentuknis given by

the approximation scheme replacing the Bethe-Goldstongnote that spin and isospin quantum numbers are supppessed

equation by the corresponding Galitzkii-Feynman equation.

If one tries to perform such calculations for realishid\ B EBHF(kyw):f d3q(ka|G(Q)|ka)ne(q), (1)

forces, one encounters the problem of the so-called pairing

instabilities[11-13. These pairing effects can be taken into . ) . . .

account by means of the BCS approgtd—16. At the em- with t_he occupation probability of a free Fermi gas with a

pirical saturation density of symmetric nuclear matter theF€rmi momentunkg

solution of the gap equation in th&S;-D, partial wave .

leads to an energy gap of around 10 MeV. Another approach - 1 for |g|<Kke,

is to consider an evaluation of the generalized ladder dia- No(a)= 0 for |ﬁ|>k

grams with “dressed” single-particle propagators. This P

means that the single-particle Green functions are not aprhe matrix elements in Eq1) denote antisymmetrized ma-
proximated by a mean-field approach but consider singlegix elements of the Brueckne® matrix that are determined

particle strength distributed over all energies. Various atpy solving the Bethe-Goldstone equation for a given realistic
tempts have been made in this direction, considering &cleon nucleonIN) interactionV

parametrization of the single-particle Green function in terms

of various pole$17], employing simplified separablginter- s s I 3 3. e =
action modelg13] or considering the case of finite tempera- (kQ|G(Q)|kQ>:<kQ|V|kQ>+f d°p1d°pa(kq|V|p1p2)
ture.

(2

The same instabilities also occur in studies of finite nuclei Q(p1p,) L .
[18], leading to divergent contributions to the binding energy X ~—= —(p1P2| G(Q)[ka).
from the generalized ring diagrams. These contributions re- Q=(eprtep)+in
main finite if the single-particle propagators are dressed in a (3)

self-consistent way.
Here we want to explore some features of the singlein this representation of the Bethe-Goldstone equatin

particle self-energy and the corresponding Green function fostands for the Pauli operator and is defined by

infinite symmetric nuclear matter at temperatiire 0. As a

starting point we consider the BHF approximation employ- Q(p1P2)=[1—ng(p1)][1—No(P2)], (4)

ing a self-consistent continuous choice spectrum without

angle averaging. The contribution of hole-hole ladder termgvhich means that the integral over intermediate two-particle

are then added in a perturbative approach. We then analysates in Eq(3) is restricted to states with momenta larger

the energy distribution of the spectral single-particle strengtthan the Fermi momentum. According to the theorem of Be-

and define appropriate mean values. These mean values dh&, Brandow, and PetschéBBP theorem [3] one defines

used to calculate the self-energy in a self-consistent way. the single-particle energy for hole states, i.e., states with mo-
These studies are performed for varidusl interactions ~Mentak<<kg, using the on-energy shell value for the self-

and we will pay special attention to the differences in the€nergy, which is given as

properties of the nucleon self-energy that can be related to

the interaction model. In particular, we will consider local

and nonlocal models of thegN interaction, which have been

k2

Sk:ﬁ-i'zBHF(lzaw:Sk)i (5

034321-2



NUCLEAR SELF-ENERGY AND REALISTIC INTERACTIONS PHYSICAL REVIEW ®5 034321

with a value for the starting energy parameferin the
Bethe-Goldstone equatidi) of RN 8

- _conv. m’ spectr. .
Q=w+eq=gxteq. (6) N

s
Since this BBP theorem does not apply for the definition of & -10 |-
the single-particle energies for states with momenta aboves
the Fermi momentum, the optimal choice for this particle-

state spectrum has been a subject of controversial discussior

leo
T

T nuc
T

for many yeargsee Sec.)l Note that the binding energy per E - ]
nucleon is evaluated as = L i
=
1 = os | 1
E f d3kno(k)§(k2/2m+ €)
= , (7) self-consist.

A

f d3k ng(k)

r s

L i _ Fermi tum [fm™']
which implies that the definition of the particle-state spec- e momentum

trum affects the calculated binding energy only via the en- FIG. 1. Binding energy of nuclear matter as a function of the

ergy parametezpl andgp2 in the Bethe-Goldstone equation Fe_rmi momentum. Resglts are g_iven_for the BH_F approximgtion
(3). Two choices have been discussed: the so-called conve#sing the Bonn C potential as defined in Rek]. Various approxi-

tional choice, in which the energies for the particle statednation schemes have been used for the two-particle propagator in
have been replaced by the kinetic energy the Bethe-Goldstone equation, as discussed in the text.

~  p? in terms of the center of masB, ,, and relative momentum

pTom’ (8 p, of the interacting pair of nucleons

and the “continuous” choice, for which the on-shell defini- p2 p?
tion of the hole-state energi€5) has been extended to the gprtep=—"T+ —*+ZC,
particle states. Note that the BHF self-energy for the continu- 4m m
ous choice develops an imaginary part for energiese R R
with e denoting the Fermi energy, the single-particle energywhich does not depend on the angle betwpgp andp, . If,
for k=kg. The “continuous” choice, however, employs the furthermore, one approximates the Pauli operator of (Ep.
real part of this self-energy, only. by taking an appropriate average over this angle, the Bethe-
The on-shell definition of the BHF self-energy in E¢S)  Goldstone equation can be rewritten into a one-dimensional
and (6) implies a self-consistent solution of the Bethe- integral equation using the partial wave representation of the
Goldstone equation3) and the evaluation of the single- two-body state$23].
particle energies. In order to obtain such a self-consistent This approximation scheme has been common practise
solution one often assumes a quadratic dependence of tlead only recently attempts have been made to avoid the
single-particle energy on the momentum of the nucleon irangle-average approximation for the Pauli operd®®].
the form These investigations show that the use of the angle-average
approximation in the Pauli operator leads to an underestima-
tion of the calculated energies of around 0.5 MeV per
nucleon if one uses an effective mass parametrization for the
single-particle energies in the Bethe-Goldstone equation.
Starting with an appropriate choice for the parameters for the However, the determination of this parametrization is not
effective massm* and the constan€, one can solve the very well defined. Rather different values fo* andC may
Bethe-Goldstone equation and evaluate the single-particlee obtained if different momenta are chosen to define these
energy, using Eq.5), for two representative momenitaand  values. This is demonstrated in Fig. 1, which displays the
k,. The parameters’* andC are readjusted in such a way energy of symmetric nuclear matter at various densities, rep-
that the parametrization E¢Q), reproduces these two ener- resented by the corresponding Fermi momentum. All calcu-
gies. This procedure is iterated until a self-consistent solutiotations have been performed within the framework of the
is obtained. BHF approach but using various approximation schemes for
The parametrization of Eq9), however, is useful not the propagator in the Bethe-Goldstone equation. Calculations
only to simplify the self-consistent solution of the BHF equa- using the conventional choice for the particle-state spectrum
tions, it also leads to a simplification of the numerical solu-(8) and the angle-average Pauli operator yield results that are
tion of the Bethe-Goldstone equation. Assuming such an efrot very sensitive to the details of the effective mass param-
fective mass spectrum, one can easily rewrite the energiestrization for the hole state energies. All resulting binding
occurring in the denominator of the two-particle propagatorenergies, which were obtained by adjusting the parameters

k2

€k
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FIG. 2. The single-particle potenti&lgye [See Eq.(10)] as a 0 1 2 3 " 4 5 6
function of the momentum. Results are displayed at two different Momentum k [fm ]

densities using various models for tNeN interaction. FIG. 3. The effectivek mass[see Eq.(11)] evaluated for the

BHF and Hartree-FockHF) self-energy for various interactions.
m* andC at different momenta, are very similar forming the Symmetric nuclear matter at the empirical saturation densify (

— —1 H
thin gray area, which is labeled “conm* spectr.”in Fig. 1.~ 1-36 fm7) has been considered.
The calculated binding energies are larger, if the continu-,
ous choice is employed, and the results are more sensitive H%S tor':heNN gzﬁlgDhB(X'dlg] and;zlrgonr?eh\/_meO], zm
the details of the procedure to determine the parametérs also the rece aho A potentia[ 24], which is based on

and C. This is visualized by the gray area, labeled “cont. chiral perturbgtion theo_ry. . .
m*” in Fig. 1. Both of these features can be related to the All these single-particle potentials show a significant de-

fact that the continuous choice spectrum tends to lead tglgtlon from a parabol_lc shape in pa}rtlculgr at momenta
energy denominators in the Bethe-Goldstone equat®n slightly above the Fermi momentum. It is obvious that such a
with smaller absolute values than the conventional choicedeViation tends to provide more attractive matrix elements of

. - . . - G in evaluating the self-energy for hole states according to
vi/r;!ch exhibits a gap in the single-particle spectrumkat Eq. (1), which leads to more binding energy.
=Kg.

The calculated binding energies are even larger, if the In the following we want to explore the sources of the

exact Pauli operator is employed and the parametrization omentum depgndence O more in detail. For that pur-
the single-particle spectrum is avoidéblid line in Fig. 1. pose we have d|sent§ngled the dependence of the real part of
The results displayed in Fig. 1 have been obtained employthe self-energytg.=(k,w) on energy and momentum. Fol-
ing a specific version of the Bonn potenti@onn C as de- lowing the nomenclature of Mahaux and Saf2| we char-
fined in Ref.[22]). Very similar results have also been ob- acterize the dependence on the momenkuoy an effective
tained using other realistic models for tNe\ interaction. Ak mass”my, which is defined by
part of this additional binding energy can be related to the K s K 1
use of the exact Pauli operat@ee Ref[8] and discussion mi(k) - 1+T M
above. Another part, however, must be related to the fact m k ak ’
that the calculated single-particle spectrum deviates in a si
nificant way from the parametrization of E@®). Such a gain
of binding energy has also recently been observed by Bald
and Fiasconarfl0] using an angle-average approach.

This deviation of the self-consistent single-particle poten
tial

11

Yith the self-energy® g calculated aiw= €. Any devia-
jon of m from the bare massn indicates a momentum
ependence of the self-energy, which means a nonlocality in
coordinate space. Results for the BHF self-energy calculated
for the Argonne V18 calculated in nuclear matter at a Fermi
momentunke=1.36 fm ! are displayed in Fig. 3. For com-
parison we also include in this figure the effectikanass
Ugne(K) = RE S gre(K, 0 =£) ] (100  evaluated in the Hartree-Fock approximation, i.e., replacing
the matrix elements o6 in Eq. (1) by the corresponding
ones of the bare interactioi One can see that tHemass
from its quadratic parametrization, which is implied by Eg. evaluated in the BHF approximation is very close to the one
(9), is explicitly displayed in Fig. 2, where results are given determined from the Hartree-Fock potential. This means that
at two different densities using various models for tiil  the nonlocality of the single-particle potential originates es-
interaction. These models include the Bonn A and Bonn Gsentially from the Hartree-Fock contribution.
versions of the traditional one-boson-exchange model de- The same is true for other interactions considered in this
fined in Ref.[22], the interaction models with high accuracy investigation. Therefore using othBIN potentials we only
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TABLE 1. Fermi energy of nuclear matter withkg 1.6 . : .
=1.36 fm ! calculated in the Hartree-Fock approximatitHiF),
the Brueckner-Hartree-Fock approximatiHF), and with inclu- ~— Bonn A
sion of two hole—one particle contributions-@h1p) using differ- ——= BonnC .
ent interaction models. All entries are given in MeV. — CD Bonn
—-— ArgVig8

HF BHF +2h1p
Bonn A 15.66 —37.24 —32.48 Eﬁ
Bonn C 60.48 —33.53 —29.76 &
CD Bonn 11.44 —40.32 —35.93
Arg. V18 62.36 —34.62 —31.74
Idaho A —7.66 —42.54 —38.54
Idaho B —2.97 —41.16 —37.45
display the effectivek mass derived from the Hartree-Fock %6 . 0 500 1000
approach in Fig. 3. It is remarkable that the effectivmass Energy [MeV]

derived for the traditional Bonn interaction as well as for the
CD Bonn potential shows results very close to the ones de- FIG. 4. The effectiveE mass[see Eq.(12)] evaluated for the
rived from the V18 interaction model. This is true although BHF self-eru_ergy for var_ious inte_ractions. Symmetric nuclear matter
the absolute values for the Hartree-Fock single-particle podt the empirical saturation densitit(=1.36 fm *) has been con-
tentials depend quite strongly on theN interaction, as one S'dered, using as a typical example a momenturk-60.8 k.
can see from the single-particle energies listed in the first
column of Table I. This means that different interaction mod-behavior that is very similar for all interactions considered.
els, which all fit NN scattering data, yield quite different The effectiveE mass reaches values up to 1.4 tinmesat
values for the Hartree-Fock single-particle potential in€nergiesw slightly above the Fermi energy, which implies
nuclear matter. The momentum dependence of these singléhat the total effective mass* approaches the valua for
particle potentials, which represents the nonlocality, is verynomenta around the Fermi momentum, indicating that the
similar. BHF self-energy increases only weakly wikh just the be-

In Fig. 3 it is only the Idaho A interaction modg2?4], as  havior we already observed in Fig. 2.
well as the version B of this model which is not contained in ~ This energy dependence of the real part of the self-energy
this figure, which shows significant deviations in particular atiS also visualized in the left part of Fig. 5 displaying a pro-
high momenta. These differences are due to the strong cutofiounced minimum at energies around the Fermi energy. The
which are employed in these interaction models. These cufight-hand part of this figure shows the corresponding imagi-
offs, which are necessary to control the chiral expansion afiary parts of the BHF self-energy. These imaginary parts are
high momenta, are responsible for the fact that the Hartree-

Fock potential is essentially identical to zero for momenta  -20 . . ;
larger than 5 fm?. 0
All k masses exhibit a rather smooth dependence on thi )
momentum. Therefore the momentum dependence of the
self-energy is not responsible for the special behavior of the S
BHF self-energies at the=k displayed in Fig. 2. The en- ¢ =
ergy dependence of the self-energy, that is, the nonlocality irg \\‘\__‘ 1-40 2
time, is characterized by the so-callBdmass, which is de- = \ - "
i g \ 4 &
fined as[25] & \ | e =
"\ -
Me(w) 1o I gpr(K, ) 12 0 M — — Bonna
m Jdw ! ( ) ——- BonnC < 1 -80
—— CD Bonn N,
. L —-— ArvI8 N
so that the total effective mass is given by 100 , , , ‘ ‘ 100
500 0 500 0 500 1000
m* (k) mk( k) mE(w: ek) Energy [MeV] Energy [MeV]
m om m ' FIG. 5. The BHF self-energisee Eq(1)] for symmetric nuclear

) ) o ) matter with Fermi momenturk==1.36 frm ! calculated for nucle-
In the Hartree-Fock approximation tlemass is identical to  gns with momentunk= 0.95 ke as a function of the energy. The

m for all NN interaction models considered in this investiga— real and imaginary parts of the self-energy are displayed in right
tion. Therefore the deviations ofiz from m, which are dis-  and left parts of the figure, respectively. Various realistid inter-
played in Fig. 4 for various\N interactions originate from actions have been considered, which can be distinguished by the
the ladder contributions to th& matrix. Again we find a line types as listed in the figure.
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20 ' ' ' ' which is relevant for the BHF single-particle energies. There-

/\ 0 fore one can expect that these Idaho interactions lead to rea-
sonable predictions for nuclear structure at low energies and
momenta. The results for processes involving nucleons with
i high momenta or energies will be dominated by the strong
cutoff, which is required in these models to control the ex-
pansion of the chiral perturbation theory.

The differentNN interactions yield quite different results
for the HF single-particle potential but very similar ones for
the BHF self-energy at energiesthat are close to the Fermi
energy(see Fig. 5 and Table.IWe can distinguish “stiff”

T 1-80 potentials like the Argonne potential V18 or the Bonn C

— ldahoA potential and “softer” ones like Bonn A and CD Bonn or the

. . . s ‘ ~100 even softer Idaho A and B ones. The stiff potentials yield

-0 0 500 0 500 1000 rather repulsive results for the mean field of the Hartree-Fock
Energy [MeV] Energy [MeV] approximation(see first column of Table)l This repulsion

FIG. 6. The BHF self-energysee Eq.(1)] evaluated for the originating from the barédN interactionV is compensated

Idaho A interaction model. Further details as in Fig. 5. by the attractive particle-particle ladder contributions to the
G matrix. The value of this attractive contribution depends
identical zero for energies less thang,—eg, as can be 0N the interaction used. It is smaller for softer potentials. If
seen from Eqs(5) and (6), and yield non-negligible values the two-particle propagator in the Bethe-Goldstone equation

*

=20

Real Z [MeV]
Imag X [MeV]

-60

-80

up to very high energies. (3) was replaced by the free one, i.e., no Pauli oper@tand
Real and imaginary part of the self-energy are related téhe energies in the denominator replaced by the kinetic ener-
each other by a dispersion relation of the fdr@%,26] gies, theG would become identical to th& matrix of free
NN scattering. Since all potentials fit the samNé& phase
1= ImSaue(k o) shifts a replacement @& in the BHF equations by should
Re3ghe(k,w) =Upe(k) + —f —do’. yield identical results. Pauli operator and the single-particle
TS o' - energies in the medium lead to less attractive matrix ele-

(13)  ments of G as compared td@, which is often called Pauli-
o _ _ and dispersion quenching, respectively. This quenching
Considering the results for the imaginary part of the self-mechanism is more efficient for the stiff potentials, since the
energy, which are displayed in the right part of Fig. 5, it is attractive ladder contributions, which are quenched, are
clear from this dispersion relation that the real part of thejarger. Therefore stiff potentials lead to smaller binding en-
self-energy is identical to the corresponding HF single-grgies in BHF calculations of nuclear matter as softer ones.
particle potentiall ye(k) in the limit w— —oe. This real part This can be seen from columns 1 to 3 in Table II, which
gets more attractive with increasirguntil one reaches val- |ists results for the binding energy obtained in different BHF
ues ofw at which the imaginary part is different from zero. cajculations of nuclear matter at three different densities, em-
The self-energy turns less attractive at higher energies, whichjoying various realisticNN interactions. The dispersion
leads to a pronounced minimum at energieslightly above  quenching mechanism tends to be larger if one employs the
the Fermi energy. This energy dependence is, of course, alg@nventional choice, Eq8), with a gap in the single-particle
reflected in the effectivé& mass discussed above. spectrum for the Bethe-Goldstone equation as compared to
The results obtained for the recent Idaho interactiéns the continuous choice. Therefore one obtains larger binding
andB are quite different, as can be seen from Fig. 6, whichenergies using the continuous choice. This is can be seen in
displays corresponding results for the BHF self-energy usinghe comparison between columns 1 and 2 of Table II. In both
Idaho A interaction. These differences can be traced to thginds of calculations a parametrization of the single-particle
strong cutoff of these Idaho interactions which have beerpectrum according to Eq9) has been utilized. An even
mentioned already above. Due to these form factors the M3arger binding energy is obtained if the exact Pauli operator
trix elements(kq|V|p.p,) in the Bethe-Goldstone equation and the precise shape of the single-particle energies are em-
(3) vanish for two-body statd$51|52> with high momenta; . plpy_ed (see third column in Table Jl As discussed above_, _
Therefore the imaginary part of the self-energy tends to zer#his is partly due the use of the exact Pauli operator, but it is
for energiesw larger than 500 MeV, as shown in the left part also due to the shape of the single-particle energy=ake
of Fig. 6. The dispersion relation of Eq13) relates this (s€e Fig. 2 which is characterized by a large effectize
shape of the imaginary part to the energy dependence of tHgass at these momen(see Fig. 4
real part of 2y leading even to positive values fab
~400 MeV. It is worth noting that the large absolute value
of the imaginary part o g obtained for the Idaho inter-
action at energies below 250 MeV vyields a real part of the
self-energy that is similar to the results obtained for other One of the arguments in favor of the continuous choice to
interactions in the energy interval far of [ —100 MeV,q, be used in the single-particle spectrum of the Bethe-

III. TOWARDS A SELF-CONSISTENT SINGLE-PARTICLE
GREEN FUNCTION
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TABLE Il. Energy per nucleon for nuclear matter considering three different densities].20,1.36, and
1.60 fm . Results are displayed for BHF, assuming the conventional choice for the spectrum of particle
states, BHF with a continuous choice parametrized by an effective mass, BHF using the exact Pauli operator
single-particle spectrum, and for the extended BHF schemes EBHF1 as well as EBHF2 are listed for different

realistic NN interactions. All energies are given in M

eV per nucleon.

ke(fm™1) BHF, conv. BHF, cont. BHF, exact EBHF1 EBHF2
1.20 —10.65 —13.25 —14.55 —15.57 —14.91
Bonn A 1.36 —13.39 —15.99 —17.46 —18.99 —18.13
1.60 —16.45 —18.81 —20.23 —21.93 —21.53
1.20 —-9.37 —11.96 —13.40 —14.45 —13.53
Bonn C 1.36 —11.19 —13.82 —15.55 —17.03 —15.84
1.60 —12.11 —14.43 —16.40 —18.41 —16.69
1.20 —11.02 —13.79 —15.39 —16.19 —15.36
CD Bonn 1.36 —13.88 —16.74 —18.83 —20.10 —18.94
1.60 —17.00 -19.73 —22.86 -2471  —22.81
1.20 —9.66 —12.03 —13.84 —14.65 —13.27
Arg. V18 1.36 —11.32 —13.66 —16.13 —18.36 —16.62
1.60 —11.65 —14.12 —16.77 —19.46 —17.09
1.20 —11.91 —14.64 —16.14 —-17.21 —16.55
Idaho A 1.36 —15.08 —17.95 —20.21 —21.82 —20.83
1.60 —18.78 —21.88 —25.44 —27.62 —26.04
1.20 —-11.17 —14.10 —15.72 —16.75 —15.88
Idaho B 1.36 —13.87 —17.00 —19.46 —20.96 —19.71
1.60 —16.55 —19.97 —23.94 —25.81 —24.07
Goldstone equation has been that the corresponding deflmgn(p)(k )
tion of the single-particle self-energy would be in line with
the definition of the self-energy using the method of self- 1 Im 3 (k,w)

consistent Green function®,26]. Assuming that the self-
energy (k,w) for a nucleon with momenturk and energy

w in infinite nuclear matter is given, the Dyson equation
leads to a single-particle Green function of the form

1
w—K2m-3(k o)

g(k,w)= (14

If one compares this solution with the general Lehmann rep-

resentation

kw)—nmU do k@)
7—0 —w' =iy
f w’)
do'————|, (15)
F w— w’+|77

one can easily identify the spectral functio8gk,) and
Sy(k,w) for hole and particle strength, respectively, to be
given as

7T[w k2/2m—Re3 (K, )12+ [Im 3 (k,0)]%’

for (1)<8|: ((,()>8|:). (16)

The hole spectral function represents the probability that a
particle with momentunk and energyw can be removed
from the ground state of the system, leaving the residual
nucleons in an eigenstate of the Hamiltonian. The particle
spectral function system contains the corresponding prob-
ability for adding a particle. In the mean field or Hartree-
Fock approximation these spectral functions are reduced to
functions of the form

Sp(k,0) =0 (k—ke) (0 —8y),

Sh(k,0) =0 (ke —k)d(w—ey), 17

where the single-particle energy, contains the sum of ki-
netic energy plus the real part of the self-enejfk,w)
calculated on shellg=¢)).

The two-particle propagator can then be written in the
form
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Sp(k1,w1)Sy(kz, w3)
Q—wi—wrtin

15

gn(kl,kz;Q):J dwlf dw,
eF &g

10

- JEFdwlfaFdwzsh(kl’wl)Sh(kZ’wZ) '

o Q-—w—wy—iy

5
(18)

-
15
Imag AY [MeV]

Z

)

4 o
If one approximates the spectral functions by the mean ﬁeldn:g
approximation one obtains the Galitskii-Feynman propaga- -5
tor, which includes particle-particle propagation as well as
hole-hole propagation. If the hole-hole part of the propagator -10
is ignored one obtains an equation for the ladder diagrams
for the reducible two-particle Green function that corre- a5 A 0 A
s_ponds to tht_a Bethe—'GoIdstone equation employ!ng the con Energy © [MeV] Energy & [MeV]
tinuous choice. Using the complete Galitskii-Feynman
propagator for nuclear matter at temperatiire0 with a FIG. 7. The 21p contribution to the self-enerdgee Eq(19)]
realisticNN interaction leads to the so-called pairing or deu-evaluated for the CD-Bonn interaction assumiyg=1.36 frm?
teron instability[ 11]. calculated for various momenta Real (left par) and imaginary

As a side remark we would like to mention that this in- part(right part of the figurgare displayed as function @s.
stability has also been observed in studying correlation ener-
gies in finite nuclei[27]. The attempt to solve the particle-  In a first approximation, which we will, despite the pre-
particle hole-hole random phase approximatigRPA)  ceeding remark, denote as extended Brueckner-Hartree-
equations for finite nuclei in a large model space using realFock 1 (EBHF1), we assume a single-particle spectrﬁm
istic interactions and BHF single-particle energies leads tavhich is identical to the self-consistent BHF spectrum, dis-
complex eigenvalues of the RPA equation. This correspondsussed above Ed5), but shifted by a constar@,, which
to the pairing instability in the Galitskii-Feynman equation ensures the self-consistency o« ke
for infinite matter mentioned above. In finite nuclei this in-
stability could be removed by a self-consistent single-particle 7z, ZSEHF+ C,
propagator, which goes beyond the BHF approximation and F F

accounts for the distribution of single-particle strengt8]. k,2: ~ ~
Guided by this experience in finite nuclei, one can expect = om T 2err(Ke 0 =8y )+ AZon1p(Ke , 0 =48)).

that the pairing instability could be removed if the single-

particle Green function is evaluated in a way which accounts (20)

for the spectral distributions in a self-consistent way. In fact, _ ) . . .
some attempts in this direction are under investigation and NiS shifted single-particle spectrum is also used in the
first results are rather promisifig8,29. In this investigation ~Bethe-Goldstone equation. . L

we would like to follow a different route and calculate the ~ Results for the two-hole one-particle contribution to the

contribution of the hole-hole terms to the self-energy in aSelf-energy,A%ny,, are displayed in Fig. 7, considering
kind of perturbative way30J; various moment&. The imaginary part oA, is differ-

ent from zero only for energies below the Fermi energy.
The conservation of the total momentum in the two nucleons

A3 on1p(K, S
2n1p(K, @) of the G matrix in Eq.(19), hy+h,=k+p, leads to a mini-

= (% e g (k,p|G|h1,h2>2 mal value ofw at which this imaginary part is different from
= fk d Pf d°h; d*h, PR (19 zero. Due to these limitations the imaginary part integrated
F 0 @TEp=&n ~En,~ 17 over all energies is much smaller fA®. 5,1, than forS g,

displayed in Fig. 5. The real part &f2 5, is related to the
It is worth noting that emplyoing this extension of the self- imaginary part by a dispersion relation similar to the one of
energy we are not following the rules of the hole-line orEq. (13), connecting the imaginary part &gye with the
Bethe-Brueckner-Goldstone expansion any longer. In factparticle-particle ladder contributions to the real parkefc.
the Bethe-Brandow-Petschek theorg8h does not apply to  Since the imaginary part oE,p,,, is significantly smaller
the self-energy of the hole states if this correction is addedthan the one of g, the same is true also for the corre-
This means that an evaluation of the total energy, which isponding real part.
based on this extended definition of the self-energy, would This is reflected in the single-particle energies listed in
not necessarily be superior to the usual BHF approach if on&able I. While the contribution of the particle-particle ladders
would apply the calculational scheme of Brueckner theoryto the Fermi energy is as large a90 MeV for the Bonn C
As we will discuss below, however, we will calculate the or Argonne V18 interaction, the correction originating from
total energy along the lines defined within the theory of thethe 2h1p term is only around 5 MeV. This is a justification
self-consistent Green function method. of the perturbative treatment of the hole-hole ladder contri-

034321-8



NUCLEAR SELF-ENERGY AND REALISTIC INTERACTIONS PHYSICAL REVIEW ®5 034321

— BHF, CDB

——- BHF + 2hlp, CDB
—60 from S,

e BHF, V18

% BHF + 2hlp, V18

> i
D
=
= 4 /\C k=17
k=1.5
L k=1.3
k=1.1
k=0.9
k=0.8
k=0.6
, , k=04
-100 -50 0 50 100 k=02
~100 ) o [MeV]
0 1
k/k, FIG. 9. The spectral function for particle and hole strength

Sh(k,w)+Sy(k,w) as a function of energy assuming various mo-

FIG. 8. The single-particle potential, i.e., the single-particle en-menta. The data have been obtained for nuclear matter with a Fermi
ergy minus the kinetic energy, as a function of the momentum asmomentumkg:=1.36 fm *, assuming the CD Bonn potential.
suming the BHF approximation, the quasiparticle energy originat-
ing from the BHF+ 2h1p (EBHF1) approximation and the mean K2
value derived from the hole spectral function according to(E8). eqpK) = >m + 2 gur(K, 0 =ggy(K)) + A op1 p(K, 0 =g44(K)),
The data have been obtained for nuclear matter with a Fermi mo- m
mentumkgs=1.36 fm %, assuming the CD Bonn potential and the (21
Argonne V18. The results for the V18 interaction have been shifted
by a constant such that the BHF results kerk: agree with those

derived from the CD Bonn potential, minus the kinetic energy is compared to the corresponding

value obtained in the BHF approximation. One finds that the
single-particle potential derived from the quasiparticle en-
bution. The nonsymmetric treatment of particle-particle andergy tends to a constant for momenta below This means
hole-hole excitations is the typical feature of the hole-linethat the effective mass that describes the momentum depen-
expansion. The hole-line expansions seems to be justified fatence of the quasiparticle energy, is essentially equal to
nuclear systems at densities around the saturation densitytiie bare mass for all momenta beldw. At first sight one

one is using realistitNN interaction. The origin for this dif- may be tempted to consider this quasiparticle spectrum also
ference in the importance of particle-particle and hole-holén the energy denominators of the Bethe-Goldstone equation
excitations can be read from a comparison of the imaginar@nd the h1p correction term of Eq(19). We will see below,
parts of the self-energy contributions displayed in Figs. 5 andiowever, that a different choice is more appropriate.

7. The phase space of particle-particle excitations, which can It is worth noting that the momentum dependence of the
be excited from the ground state by a reali$tibl interac- single-particle spectra, in the BHF as well as in the EBHF1

tion, which is represented by an imaginary parBef,- dif- approximation, is very similar for e_lll interactions considered.
ferent from zero, covers a much larger energy interval tha his means that the values obtained kosmaller than the

. i - . . ermi momentum using the various interactions deviate by
the corresponding space of ho_Ie hple excitaties imagi less than 1 MeV if they are normalized relative to the corre-
nary part ofAX,,,,). The relative importance of the hole-

I . " sponding Fermi energy. Only the correction term is
hole contributions shall be larger at very high densities as thgrt))out 259% weaker fo?)t/he Ar)gl;onnéh\l/plS than for the various
phase space of hole-hole configurations increases. The rel

L Lo ) Bonn or Idaho interaction mode(see also Fig. B
tive importance of hole-hole contributions is also larger for .0 oo complex self-energy(k, ) in the EBHF1 ap-

interactions like the Idaho A and Idaho B model, for that the roach, which is the sum of the BHF term and thelp

particle-particle configurations which can be reached by th‘Lc)orrection, one can evaluate the single-particle Green func-
interaction are strongly limited by the form factors usede o or directly the spectral functions according to Etg).
Fig. 6 and Table)l Results for the spectral function derived from the CD Bonn
The corrections of the single-particle energies due to thenteraction for nuclear matter at the empirical saturation den-
AZ 5n1p term are larger for momenta below the Fermi mo-sity are displayed in Fig. 9. For each momentiiime spec-
mentum and tend to zero for momenta abkye This can be  tral functions exhibit a maximum at the quasiparticle energy
seen already from Fig. 7 and is shown explicitly in Fig. 8, £4p(K). The width of this maximum is very small férclose
where the single-particle potential, i.e., the quasiparticle ento the Fermi momentum and gets significantly larger for very
ergy small momenta and momenta considerably larger t#an
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107 ¢ FIG. 11. The left part of the figure exhibits the mean value for
--------- the single-particle energy weighted by the spectral function for par-

ticle and hole strength, respectively, relative to the Fermi energy.
Results are given for the example of the Bonn C potential. The part
Energy o [MeV] on the right-hand side shows the occupation probability) for
various interaction. All results in this figure refer to nuclear matter
with a Fermi momentunk-=1.36 fm ..

-300

FIG. 10. The spectral function for particle and hole strength
Sn(k,w)+Sp(k,w) as a function of energy assumirig=0.4 ke
(upper part of the figupeandk=1.5 kg (lower half of the figurg - )
The data have been obtained for nuclear matter with a Fermi mo- However, the mean value,(k) is defined also for mo-
mentumke=1.36 fm 1, assuming three differeMNN interactions. ~menta larger thaikg. For those momenta we do not get a

dominant contribution from the quasiparticle pole, but deter-

More details can be seen in the logarithmic plots of themine an average over a broad distribution 6flp configu-
spectral function in Fig. 10. This representation also exhibitgations. Therefore the mean energ'ak) are much more
some characteristic differences depending on the interactiogttractive fork>kg than fork<kg, as shown in Fig. 11. As

used. While the spectral functions derived from CD Bonna consequence the total energy per nucleon calculated as
and Argonne V18 interaction exhibit a high-energy tail that

extends to excitation energies above 1 GeV, the spectral eF 1
function determined for the Idaho interaction drop very j dskf do Sh(k,w)z(k2/2m+ o)
sharply at energies around 400 to 500 MeV. This is again a E: -~

consequence of the strong cutoffs that are used in these in- A J' A% n(k)

teractions to control the terms in the chiral perturbation ex-

pansion.

From this figure one also observes of course that the spegs significantly more attractive than the corresponding BHF
tral distributions are not symmetric around the quasiparticleesult(see Table I, column denoted EBHF1 as compared to
pole. To demonstrate this on a quantitative level we calcuBHF).
late, e.g., the mean value for the energy of the hole distribu- Figure 11 displays in its right part also the momentum

(24)

tion function distributionn(k) derived from the CD Bonn interactidithe
momentum distribution for the other two Bonn potential are
SFdw © (ko) very similaj, the Argonne V18 and the Idaho A interaction.
- —w ’ At high momenta the result is larger for the Argonne V18 as
en(k)= (k) ; (22 compared to the Bonn interaction model. The Idaho interac-

tion predicts a momentum distribution that decreases very
wheren(k) denotes the occupation probability for the staterapidly at momenta larger tharkg. This is again a conse-

with momentumk, which is calculated as quence of the strong cutoff in this interaction and should not
be considered as a realistic prediction.
[ cF The left part of Fig. 11 also shows results for the mean
n(k)= f,mdw Sk, o). (23 energy of the particle strength distribution
These mean values are significantly below the quasiparticle %
energiegsee solid line in Fig. B In fact, for all interactions L dw o Sy(k, )
and densities under consideration it turned out that these re- ep(K)= F ) (25)
sults fore, (k) are close to the BHF single-particle energies f do Sy(k,w)
for momentak<k . eF
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In this integration one has to include strength up to energies '

o above 1 GeV, to ensure that the sum rule — - EBHF1

O ___ EBHF2

n(k)+ fwdw So(k,w)=1

is fulfilled.

For k smaller than the Fermi momentum more than 80%
of the single-particle strength is at energies below the Fermi
energy. This means that the single-particle energy for these

momenta might be represented (k). On the other hand,
for k larger tharkg , the dominant part of the single-particle 0r

strength is represented by the mean energk). Therefore s

one might use these energies for the single-particle spectrum =z

to be used in the propagator of the Bethe-Goldstone equation —

and the energy denominator A%, in Eq. (19). As one

can see from Fig. 11 this would lead to a gap in the single- 0 1 2

particle spectrum of 40 to 50 MeV at the Fermi momentum, k/k,

which is more than one half of the gap in the conventional .

choice for BHF. FIG. 12. The mean valuey(k) defined in Eq.(26) and the
Instead of this choice we suggest a slightly different onecorrespondingép(k) (solid lines are compared to the single-

Since we would like to use these mean energy values tparticle spectrum obtained within the BHF approximatidashed

define an approximation to the single-particle Green functioriine). Note that the kinetic energies have been subtracted and the

(15) we define a mean vaIuAeh(k) for hole states by the curves have been shifted to obtain the value 0 Kerk:. The
results in this figure refer to nuclear matter with a Fermi momentum

20

- t, [MeV]

equation > . .
ke=1.36 fm ! and have been derived from the CD Bonn interac-
1 1 (e S (K ) tion.
= = J' dw (26) ) ) )
en(K)—(ep+A2) NKJ-o  o—(eg+Al2) Further improvements would require the representation of

the single-particle Green function in terms of two or more

and a corresponding one for the particle states. With thigpoles[17,32 or use the complete spectral distribution.
definition of a mean value one reduces in particular the con- The calculation using the:(k) choice is denoted by
tributions to the mean value for the particle states that origiEgHE2. The self-energies, spectral functions, and total en-
nates from the spectral strengB(k,») at very high ener-  orqy are calculated in the same way as discussed above for
giesw In an appropriate way. o the approach EBHF1. Results for the energy per nucleon are

‘Examples for these mean values are plotted in Fig. 12jsted in the last column of Table Il. Comparing the EBHF2
With this definition of the single-particle spectrum one ob-yagyits with those obtained in the EBHF1 approximation one
tains a gapA at the Fermi energy of about 10 MeV for  fings that the gap in the single-particle spectrum yields a
ngclear matter at saturation den5|ty._ Itis worth noting thatequction of the calculated binding energy of about 1 to 3
this gap is of similar size a.s.the_pa|r|ng gap derived frompjev per nucleon for the densities and interactions consid-
BCS calculations fofT=0 pairing in the*S;-°D; channel  greq in this table. It turns out that the energies calculated in
[31]. This implies that using this single-particle spectrum in aiyne EBHF2 approach are again close to those obtained in the
Galitzkii-Feynman equation should avoid the occurrence ogHE approximation using the exact propagator.
pairing instabilities. However, th_is gap in the single-par_ticle Our final EBHF2 results for the energy of nuclear matter
spectrum may not only be considered as a tool to avoid thgerived from the Argonne V18 interaction are similar to the
pairing instability in the Galitzkii-Feynman equation. Itis an yajyes determined by Akmal and Pandharipande in their
intriguing feature of this approximation for the use of thegriational calculatiofi33] using the same interaction model.
complete spectral distribution in the single-particle Greenthe “softer” interactions like the Bonn A and the CD Bonn
function that_ it leads to a_sin_gle-_pa}rticle spectrum with a gaQnteraction yield larger values for the binding energy per
at the Fermi energy, which is similar to the gap in the quanycleon and larger saturation densities. Even more binding
siparticle spectrum of the BCS approximation. Also one Mayenergy is predicted from the recent Idaho interaction models.
mention that such a gap is in between the behavior of the\s it has been discussed above, these Idaho models seem to
conventional and the continuous choice for the BHF specpe yseful for calculations in limited model spaces only. Nev-
trum discussed above. ertheless, in order to obtain a result for the saturation point

This single-particle spectrum has then been used in thgyat is in agreement with the empirical data, some repulsive
Bethe-Goldstone equation and the evaluation of the COrreGsffects are needed, in particular at high densities. This repul-
tion termAX o, of Eq. (19). We consider this choice to be sjon can be introduced ad hoc in terms of a three-nucleon
an optimized representation of the single-particle propagatghteraction. Such an effective three-nucleon interaction may
in terms of one pol¢at energys (k) ] for each momenturk. represent the effects of the relativistic decomposition of the
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self-energy[34] or the effects of subnucleonic degrees of be introduced in the recent Idaho interaction modi2lg to
freedom, like, e.g., the many-body effects arising fradm control the expansion based on chiral perturbation theory,

excitations of the nucleon$5]. lead to results for the nonlocality and spectral function,
which are quite different than those obtained for the other
IV. CONCLUSIONS interactions. We conclude that these new Idaho interactions

o should only be used for studies that are insensitive to com-

The sensitivity of the Brueckner-Hartree-FO@HF) ap-  ponents in the spectral distribution at higher energies or mo-
proximation for the many-body system of symmetric nuclearmenta.
matter with respect to an exact treatment of the propagator in - gjgnificant differences are also observed in comparing re-
the Bethe-Goldstone equation has been investigated. Ongits petween stiffer interaction models, like the Argonne
finds that the precise treatment of the Pauli operator togethey18 and Bonn C potential, or softer ones like the CD Bonn
with a single-particle spectrum based on the real part of thgng Bonn A interaction. These differences show up in the
self-energy for hole states and particle states yields a resWfartree-Fock contribution to the binding energy, that is
for the binding energy per nucleon that is larger by a nonyather repulsive for the stiff interactions and less repulsive
negligible amount as compared to results obtained in starfyr the softer ones. These differences can also be observed in
dard approximation schemes. The nonlocality and energy dene imaginary part of the self-energy at large energies and in
pendence of the BHF self-energy is discussed in detail. e tail of the momentum distribution at high momenta.

The BHF definition of the self-energy has been extended The EBHF2 approach introduced above should be consid-
to account for the effects qf hole-hole ladders in a perturbagred as a good starting point for further improvements on a
tive way. The corresponding results for the complex self-seif-consistent definition of the single-particle Green func-
energy, the single-particle green function, and the spectralon. Such improvements include the representation of the
function are discussed in detail. This leads to a definition ofgreen function in terms of various poles for each momentum
a spectrum of single-particle energies, which characterizegy attempts to account for the complete spectral distribution.
the spectral distribution of the single-particle Green functionThe present studies demonstrate that special attention should

in an average way. The resulting single-particle spectrum expe paid to a proper treatment of the single-particle strength
hibits a gap at the Fermi momentum, which is of the order ofyround the Fermi energy.

the pairing gap derived from BCS calculations 1o 0 pair-
ing in the 3S,-°D; channel. Therefore this approximation

should avoid the_so-called pairing_instability w_hich_ occurs in ACKNOWLEDGMENTS
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