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Nucleon-nucleon interaction and largeNc QCD
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The nature of the nonrelativistic nucleon-nucleon potential in the large-Nc limit is discussed. In particular,
we address the consistency of the meson-exchange picture of nucleon interactions. It is shown that the non-
relativistic nucleon-nucleon potential extracted from the Feynmann graphs up to and including two-meson-
exchange diagrams satisfies the spin-flavor counting rules of Kaplan and Savage and of Kaplan and Manohar,
provided the nucleon momenta is of orderNc

0 . The key to this is a cancellation of the retardation effect of the
box graphs against the contributions of the crossed-box diagram. The consistency requires includingD as an
intermediate state.
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I. INTRODUCTION

One of the most fundamental problems in nuclear phys
is to understand how low-energy nucleon-nucleon inter
tions arise from the underlying quark-gluon interactions. U
fortunately, for some time to come QCD is likely to rema
computationally intractable in this regime in the sense t
one will not be able to directly predict the values of low
energy nuclear physics observables by calculations ba
solely on the QCD Lagrangian. Nevertheless one might h
to be able to deduce some qualitative~or perhaps semiquan
titative! features of nucleon-nucleon interactions from o
knowledge of QCD. The known simplifications of certa
aspects of QCD in the large-Nc limit could provide such a
tool @1–5#. Indeed, several years ago it was proposed that
spin-flavor structure of the dominant terms in the nucle
nucleon potential can be understood in terms of largeNc

QCD @6,7#. As we shall argue here large-Nc QCD can pro-
vide additional insights into the nature of the nucleo
nucleon force. In particular, largeNc-QCD helps us to un-
derstand both the nature of the meson-exchange pictur
nucleon-nucleon interactions and the limitations of suc
picture. The large-Nc perspective also sheds light on the ro
of the D resonance in nucleon-nucleon interactions. A
practical level, knowledge of the special role played byD in
cancelling certain large contributions may prove to be use
in constructing nucleon-nucleon interactions.

The first treatment of nucleon-nucleon interactions
large-Nc QCD was done by Witten in his seminal paper
baryons in the large-Nc limit @2#. He argued that the domi
nant interaction between two baryons is generically of or
Nc . His argument was based on consideration of diagra
such as the one in Fig. 1. It is clear that such a diagram i
orderNc—a factor ofNc

3 from combinatorics and a factor o
Nc

22 from the coupling constants. It is straightforward to s
that all quark-line-connected graphs beginning and end
with two flavor singlet combinations ofNc quarks will be
O(Nc) or less. However, this interaction strength of orderNc
cannot represent the strength of the nucleon-nucleon sca
ing amplitude. In the first place, unitarity implies that th
scattering amplitude does not grow without a bound asNc
goes to infinity. Second, one can consider graphs like Fig
0556-2813/2002/65~3!/034011~15!/$20.00 65 0340
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which although disconnected at the quark level, contribute
the nucleon-nucleon level to the full interaction. It
straightforward to see that the graph in Fig. 2 is of orderNc

2

so that the interaction cannot simply go asNc . One natural
way to interpret the physics contained in the diagrams ty
fied by Figs. 1 and 2 is to argue that they get translated at
hadronic level to contributions from nucleon-meson d
grams as in Figs. 3 and 4. In such a hadron-based picture
O(Nc

2) contribution then appears as the iteration of an und
lying O(Nc) interaction. One key issue addressed in this
per concerns the nature of the translation from the qua

FIG. 1. A typical diagram of orderNc contributing to the
nucleon-nucleon scattering in the large-Nc limit.
©2002 The American Physical Society11-1
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gluon based diagrams of Figs. 1 and 2 to the hadronic ba
ones of Figs. 3 and 4.

Witten @2# noted an additional difficulty of having
nucleon-nucleon interaction scaling asNc , there is no de-
scription of the scattering process, which possesses a sm
large-Nc limit if the momenta are of order unity. The bas
difficulty in this case is that the kinetic energy of the nuc
ons is generically much smaller than the potential energy
the interplay of kinetic and potential energy, which is at t
crux of scattering, cannot be independent ofNc . Witten
noted that if one works in a kinematic regime with momen
of orderNc ~i.e., an approach to the large-Nc limit with the
nucleon velocities rather than momenta fixed!, then the ki-
netic and potential terms are of the same order so th
smooth limit is possible. For this kinematic regime Witte
suggested that the scattering process can be described
the time-dependent Hartree~TDH! approximation. It is
straightforward to see that the TDH equations with fixed i
tial velocity have solutions that are independent ofNc . In
practice, such TDH calculations have not been done in Q
and would be very difficult for systems with light quarks.

Here we wish to focus on a different limit than Witten’
i.e., on low momentum nuclear reactions. Accordingly we
not wish to let the nucleon momenta scale withNc ; rather
we will restrict our attention to the kinematic regime
nucleon momenta of orderNc

0 . As noted by Witten, in such a
regime there is no smooth expression for the scattering
plitude. However, as argued by Kaplan and co-workers@6,7#

FIG. 2. A typical diagram of orderNc
2 .
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~KSM!, in this regime one may identify the nucleon-nucle
interaction from the quark-line-connected pieces as a non
ativistic potential that has a dominant contribution of ord
Nc . Such a description can be interpreted on the hadro
level as a meson exchange. The one-meson-exchange p
tial ~Fig. 3! can be as large asO(Nc) since a generic baryon
meson coupling is of orderANc @2# and hence the large-Nc
scaling at the hadronic level is consistent with the qua
gluon level. The key insight of Refs.@3–5# is that large-Nc
QCD implies an approximate contracted SU~4! spin-isospin
symmetry on the baryons and that this symmetry impo
constraints on the dominant parts of the potential. Thus,
dominant part of the nucleon-nucleon interaction is co
strained to be contracted SU~4! symmetric, and terms tha
break this symmetry are suppressed by two powers ofNc .
For example, the dominantO(Nc) contribution to the tensor
force is proportional totW1•tW2, while the isospin independen
part only contributes at orderNc

21 .
This paper will address a number of issues connected w

the nucleon-nucleon interaction in large-Nc QCD. One cen-
tral issue is the identification of the connected diagram
such as Fig. 3, as a nonrelativistic potential~of orderNc), as
was done in Refs.@6,7#. The argument for doing this is
clearly heuristic and is based on the notion that large in
actions must be iterated to all orders. Of course, a poten
used in a Schro¨dinger equation is iterated to all orders. Th
interpretation seems to resolve in a simple manner the o
Nc

2 contributions of Fig. 4; it is just one iteration of th
potential~among an infinite number of possible iterations!.

Unfortunately, this heuristic argument is not unique:
alternative argument would be to identify such an interact
with a kernel of a Bethe-Salpeter equation~with a strength of
orderNc), which again is to be iterated to all orders. Mor

FIG. 3. A one-meson-exchange diagram contributing to
nucleon-nucleon potential; initial and final nucleons are on-sh

p5(upW u2/2mN ,2pW ), p85(upW u2/2mN ,pW ), andq5(q0,qW ) are energy-
momentum four-vectors flowing through the various lines.
1-2
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NUCLEON-NUCLEON INTERACTION AND LARGENc QCD PHYSICAL REVIEW C 65 034011
over, it is by no means clear that these are equivalent
Bethe-Salpeter kernel of orderNc does not necessarily impl
that the potential in a nonrelativistic reduction of the Beth
Salpeter equation is of orderNc . Thus, at the fundamenta
level it has to be established whether large-Nc QCD is con-
sistent with a nonrelativistic nucleon-nucleon potential of
der Nc or with a Bethe-Salpeter kernel of orderNc .

A second fundamental issue in this paper is the exten
which large-Nc QCD justifies a meson-exchange picture
nucleon-nucleon interactions. A meson exchange is a na
way to understand nucleon-nucleon interactions as ari
from QCD: QCD leads to the existence of colorless hadro
states—baryons and mesons—and the interactions betw
baryons arise from the exchange of virtual mesons. Inde
some phenomenologically successful nucleon-nucleon
tentials are based directly on a meson-exchange picture@8#.
On the other hand, the argument for meson exchange d
nating the nucleon-nucleon interaction is not compelling a
many equally successful nucleon-nucleon potentials incl
only one-pion exchange treating all shorter distance effe
purely phenomenologically@9#. At first sight it might seem
that large-Nc arguments do not support the meson-excha
picture of nucleon-nucleon interactions. In the first place,
noted by Witten@2#, baryons in the large-Nc limit behave as
solitons, and when two solitons are brought close enoug
interact each one distorts in the presence of the other, yi
ing effects that cannot be easily described in terms of me
exchange. Indeed Witten’s prescription for scattering for m
menta of orderNc , TDH, necessarily builds in these non
meson-exchange-type effects; the clusters ofNc quarks that
interact in TDH arenot simply the Hartree wave function
for two nucleons.

There is a second reason why one might suspect
large-Nc QCD does not justify a meson-exchange point
view for nucleon-nucleon interactions. The meson-excha
picture does not imply only single meson exchanges but
or more meson exchanges as well. Consider, the largeNc
scaling of a generic two-meson-exchange process. S

FIG. 4. A box diagram; p5(upW u2/2mN ,2pW ), p8

5(upW u2/2mN ,pW ), k5(k0,kW ), andq5(q0,qW ) are energy-momentum
four-vectors.
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typical diagrams contributing to the potential are shown
Fig. 5, in which two exchange mesons are coupled to one
the nucleons at a single vertex. Such diagrams are gen
cally of orderNc since the coupling of the meson current
a nucleon is of orderNc

0 @2#; the additional power ofNc

comes from two nucleon-meson vertices~each of which con-
tributesNc

1/2). Thus, these diagrams are consistent with
previously deduced large-Nc scaling behavior of the poten
tial. However, if one considers a generic crossed-box d
gram as shown in Fig. 6, one encounters an inconsiste
Since, the nucleon-meson coupling is generically of or
ANc, the diagram in Fig. 6 is of orderNc

2 . This scaling,
however, violates the proposed large-Nc scaling of the
nucleon-nucleon potential~which is supposed to go asNc).
Clearly, three and more meson-exchange diagrams will y
ever-larger inconsistencies.

This paper will also address another central issue
nucleon-nucleon physics, namely, the role of theD reso-
nance in intermediate states. As is well known, theD reso-
nance has a low excitation energy for largeNc ~with mD

2mN;Nc
21) @4,10#. Moreover, the inclusion of virtualD ’s is

known to be essential to ensure the consistency of largeNc
predictions for hadronic processes and its inclusion is ne

FIG. 5. Triangle diagrams; p5(upW u2/2mN ,2pW ), p8

5(upW u2/2mN ,pW ), k5(k0,kW ), andq5(q0,qW ) are energy-momentum
four-vectors.

FIG. 6. A crossed-box diagram;p5(upW u2/2mN ,2pW ), p8

5(upW u2/2mN ,pW ), k5(k0,kW ), andq5(q0,qW ) are energy-momentum
four-vectors.
1-3
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TABLE I. Nonrelativistic scalar and pseudoscalar meson-baryon couplings. The ground state barB
belong to an irreducible representationI 5J.

Scalars Pseudoscalars
I 50 I 51 I 50 I 51

Meson f 0 a0 h p
Meson-baryon coupling B†Bf B†I aBfa B†JiB] if B†XiaB] ifa

Scaling of the coupling ANc (ANc)
21 (ANc)

21 ANc

Spin-flavor term V0
0 V0

1 VT
0 VT

1

KSM scaling Nc Nc
21 Nc

21 Nc
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are
sary for the contracted SU~4! spin-flavor structure of baryon
to be manifest. Thus, one might expect that virtualD ’s will
also play a key role in nucleon-nucleon reactions in
large-Nc limit.

In this paper we will show that the following picture
consistent with large-Nc QCD:

~i! The nucleon-nucleon interaction can be described b
potential of orderNc but not by a Bethe-Salpeter kernel o
orderNc .

~ii ! The meson-exchange picture can be used consiste
to describe nucleon-nucleon interactions for momenta of
der Nc

0 .
~iii ! The meson-exchange picture of the nucleon-nucl

potential ~of order Nc) breaks down for momenta of orde
Nc .

~iv! The leading order nucleon-nucleon potential is sy
metric under contracted SU~4! with corrections down by two
powers inNc yielding the spin-flavor structure of Refs.@6,7#.

~v! The contracted SU~4! structure implies a central rol
for intermediate states containingD ’s.

The basic strategy of this paper is to assume that the
ture outlined above is correct and then to show that it d
not lead to any inconsistencies up to and including tw
meson-exchange potentials. The key difficulty that must
addressed is the problem of the crossed-box graphs m
tioned above: If point~ii ! is correct then they must be in
cluded; however, they generically contribute to the poten
at orderNc

2 , which exceeds the potential’s supposed orderNc
scale from point~i!. More generally they lead to contribu
tions that are inconsistent with the spin-flavor structure
Refs.@6,7#. However, as we will show, all contributions from
the crossed-box graphs that are inconsistent with the s
flavor structure of Refs.@6,7# are canceled by contribution
coming from the retardation effects in the box graphs. Wh
it has long been known that such a cancellation occurs
scalar isoscalar mesons between retardation effects in
box graph and the crossed-box graph@11#, it has not been
previously shown that such cancellations are far more g
eral and protect the large-Nc structure of the nucleon-nucleo
potential including the hierarchy of large and small contrib
tions in terms of spin and isospin. It will also be shown th
such a cancellation does not occur ifD intermediate states
are excluded or if the momenta of the nucleons is of or
Nc .

II. REVIEW OF THE SU „4… CONTRACTED SYMMETRY

The baryon sector of large-Nc QCD exhibits an approxi-
mate SU~4! contracted light quark spin-flavor symmet
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@3–5#. The contracted SU~4! algebra is

@Ji ,Jj #5 i e i jkJk, @ I a,I b#5 i eabcI
c, @Ji ,I a#50,

@Ji ,X0
jb#5 i e i jkX0

kb, @ I a,X0
jb#5 i eabcX0

jc , @X0
ia ,X0

jb#50,
~1!

wherei ,a51,2,3 are spin and isospin indices.
In large-Nc two-flavor QCD, baryons belong to th

infinite-dimensional irreducible representation of the co
tracted SU~4! algebra withI 5J51/2,3/2,5/2, . . . @3–5#. For
Nc53 theI 5J51/2 andI 5J53/2 states are identified with
the nucleon andD. Other states are presumably a large-Nc
artifact. The meson-baryon couplings connecting the sta
with different spin and isospin are given in terms of t
matrix elements ofXia, which is defined by its matrix ele
ments between baryon states@e.g., Eq.~4!#. This operator is
equal to X0

ia at leading order in the 1/Nc expansion. As
shown in Ref.@4#, the next-to-leading order term is propo
tional to X0

ia

Xia5S 11
a

Nc
DX0

ia1O~1/Nc
2!, ~2!

wherea is a constant independent of the spin and isos
indices. As a result, the spin-flavor operatorsXia commute
up to O(Nc

22) corrections

@Xia,Xjb#5OS 1

Nc
2D . ~3!

Meson-baryon couplings satisfying the contracted sp
flavor symmetry are listed in the third row of Tables I and
These couplings are obtained from the nonrelativistic red
tion of the corresponding covariant Yukawa couplings w
corrections suppressed by 1/Nc . The matrix elements of the
X0

ia generators between the baryon states are given in te
of the Clebsch-Gordan coefficients by@4#

^I 8I 38 ,J8J38uX0
iauII 3 ,JJ3&5A ~2J11!

~2J811!
^J8,J38uJJ3 ;1i &

3^I 8,I 38uII 3 ;1a&, ~4!

where only spin and isospin labels of the baryon states
shown explicitly.
1-4
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TABLE II. Nonrelativistic vectors and pseudovector meson-baryon couplings. The ground state barB
belong to an irreducible representationI 5J.

Vectors Pseudovectors
I 50 I 51 I 50 I 51

Meson v t
vW r t

rW fW1 aW 1

Meson-baryon coupling B†BVt B†e i jkJkB] iVj B†I aBVta B†e i jkXkaB] iVja B†JiBAi B†XiaBAia

Scaling ANc (ANc)
21 (ANc)

21 ANc (ANc)
21 ANc

Spin-flavor term V0
0 VT

0 V0
1 VT

1 Vs
0 Vs

1

KSM scaling Nc Nc
21 Nc

21 Nc Nc
21 Nc
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We will need to know the matrix elements of the antico
mutators between the nucleon states. When restricting a
tion to nucleon initial and final states one can easily ded
that

$Ji ,Xja%N8N5
1

2
d i j I a1OS 1

Nc
2D ,

$I a,Xib%N8N5
1

2
dabJi1OS 1

Nc
2D , ~5!

where we have used the fact thatJi andI a only take nucleons
into nucleons. TheO(1/Nc) corrections in Eq.~5! vanish due
to the fact that the constanta in Eq. ~2! is independent of the
spin and isospin.

The large-Nc scaling of the baryon matrix elements ha
been analyzed in Refs.@4,5#. Since a general one-quark op
erator~e.g., axial vector current! can couple to any of theNc
quarks in a baryon, its matrix elements between ground s
baryons are of orderNc ~providing the cancellation betwee
different quark-line insertions does not occur!. The operators
with spin-flavor structure given by1 andXia behave in this
leading fashion@4#. On the other hand, currents containin
only Ji and I a are of orderNc

0 . Heuristically, the reason is
that for baryons withJ5I 51/2,3/2, . . . only one out ofNc
quarks carry the spin and isospin quantum numbers of
state. The large-Nc scaling of a meson-baryon coupling
obtained by dividing the corresponding current matrix e
ment by the meson decay constant, which is of orderNc

21/2.
Hence, the meson-baryon couplings containing spin-fla
operators1 or Xia are of orderNc

1/2. Examples of such lead
ing couplings are the couplings off 0 andp mesons to bary-
ons. In addition, the time component ofv (v t) and spatial
components ofr (rW ) anda1 (aW 1) couple to the baryons with
a strength proportional toNc

1/2. Couplings containingJi and
I a are of orderNc

21/2. The examples include the couplings

a0 andh, spatial components ofv and f 1 (vW and fW1), and
the time component ofr (r t). These counting rules are liste
in the fourth row of Tables I and II.

Similarly, the spin-flavor structure of the nonrelativist
nucleon-nucleon potential can be analyzed in the largeNc
QCD. The general form of this potential is
03401
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r

VNN5V0
01Vs

0sW (1)•sW (2)1VT
0S121VLS

0 LW •SW 1VQ
0 Q121~V0

1

1Vs
1sW (1)•sW (2)1VT

1S121VLS
1 LW •SW 1VQ

1 Q12!tW (1)•tW (2) ,

~6!

where

S1253sW (1)• r̂sW (2)• r̂ 2sW (1)•sW (2) ,

Q125
1

2
$sW (1)•LW ,sW (2)•LW %, ~7!

whereLW andSW are the total orbital and spin angular momen
of the system of two nucleons. The operators in Eq.~6! mul-
tiplying the position and velocity dependent functio
Vn

1,2 (n50,s,T,LS,Q) are referred to as the central, spi
spin, tensor, spin-orbit, and quadratic spin-orbit compone
of the nucleon-nucleon potential in the isosinglet and isotr
let channels.

In Refs.@6,7#, the large-Nc scaling of functionsVn
1,2 was

analyzed using the spin-flavor counting rules of the gene
tors of the contracted SU~4!. The analysis is based on tw
assumptions. One is that the nucleon-nucleon interaction
be described by a Hartree Hamiltonian, which can be writ
as a sum of operators with a particular spin-flavor struct
satisfying the large-Nc scaling rules of the contracted SU~4!
symmetry. In addition, the authors implicitly assumed th
the Hartree picture leads to a potential of orderNc for mo-
menta of order one. At the hadronic level, the latter assum
tion is essentially equivalent to a one-meson-exchange
ture of the potential. Based on the above assumptions,
following counting rules were obtained in Refs.@6,7#:

V0
0;Vs

1;VT
1;Nc , V0

1;Vs
0;VT

0;
1

Nc
. ~8!

In addition, the spin-orbit and quadratic spin-orbit comp
nents suppressed by 1/mB;1/Nc (mB is a baryon mass! are
of order 1/Nc

2 . The scaling rules in Eq.~8! will be referred to
as KSM counting rules.

It is easy to see how the counting rules in Eq.~8! arise
from the large-Nc scaling of the meson-baryon couplings
the one-meson-exchange level. At this level, a given term
the potential,~6! scales as the square of the correspond
coupling constant. Since, for example, the isoscalar cen
1-5
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potential at leading order gets contributions fromf 0 ex-
change, it is of order (ANc)

25Nc . Similarly, the one-pion
exchange contributes to the leading part of the isovector
sor term, which, therefore, scales as (ANc)

25Nc . On the
other hand, the isoscalar tensor potentialVT

0 is of orderNc
21

since its leading contribution is from one-h exchange. The
leading contributions at the one-meson-exchange level
shown in the fifth row of Tables I and II; theNc scaling of
these contributions are shown in the last row of Tables I
II. We will show that the nucleon-nucleon potential is co
sistent with KSM counting rules, Eq.~8!, up to and including
two-meson-exchange contributions.

III. TWO-MESON-EXCHANGE CONTRIBUTIONS

The Feynmann diagrams contributing at the two-mes
exchange level are shown in Figs. 4, 6, and 5—the box,
crossed-box, and the triangle graphs. In these diagrams
initial and final nucleons are on-mass-shell. This condition
necessary if the diagrams are used to derive the nucl
nucleon potential. The baryon energy-momentum relatio
treated nonrelativistically with the baryon propagators h
ing the following form:

i

k02ukW u2/2mB1 i e
F11OS 1

Nc
D G , ~9!

where k0 and kW are the energy and the momentum of
intermediate baryon with massmB . In practice,mB5mN
03401
n-

re
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e
he
s
n-
is
-

1O(1/Nc) (mN is the nucleon mass! for the ground state
baryons withI 5J51/2,3/2,5/2, . . . . Relativistic effects are
suppressed by 1/mB;Nc

21 . The mesons are treated in a ful
relativistic form. The meson-baryon vertices are, in gene
momentum and energy dependent. Note, the time and sp
components ofv and r have different couplings at leadin
nonrelativistic order~Tables I and II!. In addition, the spin-
flavor structure ofv t coupling is identical to that off 0 ~or
s). Similarly, r t anda0 couplings have identical spin-flavo
structure.

A two-meson-exchange diagram may contain a piece
is equal to one iteration of the potential. These contributio
will be included when solving the Schro¨dinger equation and
must be excluded from the nucleon-nucleon potential
avoid double counting. This can be illustrated using the tw
scalar-exchange diagrams.

The contribution to the nucleon-nucleon potential from
one-scalar exchange, Fig. 3, with point couplings is given

Vf 0
~qW !5

gf 0

2

~q0!22uqW u22mf 0

2
5

2gf 0

2

uqW u21mf 0

2 @11O~1/Nc
2!#,

~10!

where mf 0
@O(Nc

0)# is the mass of thef 0 meson and the

coupling constantgf 0
is of orderANc ~Table I!. Note that

(q0)2 can be neglected sinceq0 is of orderNc
21 .

Similarly, the contribution of the two-scalar-exchange b
diagram, Fig. 4, to the scattering amplitudeM is
n
agator is
in the
iMh5E d3k

~2p!3E dk0

2p

gf 0

4

@~k0!22ukW u22mf 0

2 #@~k01q0!22ukW1qW u22mf 0

2 #

3
1

~k01upW u2/2mB2upW 2kW u2/2mB!~2k01upW u2/2mB2upW 2kW u2/2mB

. ~11!

It is convenient to first perform thek0 integral. There are two classes of poles in the complexk0 plane, namely, from the
baryon and meson propagators. It is easy to see that the baryon poles in Eq.~11! are on the opposite side of the realk0 axis.
By closing the integration contour in the upper or lower complex plane only one of these baryon poles will contribute toMh .
Closing the contour in the upper plane we get for the baryon pole contribution,

iM h
B 5E d3k

~2p!3

ig f 0

4

~ ukW u21mf 0

2 !~ ukW1qW u21mf 0

2 !~ upW u2/mB2upW 2kW u2/mB!
F11OS 1

Nc
D G , ~12!

where, in addition toq0;Nc
21 , the position of the baryon pole,kB

05(upW u22upW 2kW u2)/2mB , is neglected when the meso
propagators are evaluated. However, the position of the baryon pole is of leading order when the other baryon prop
evaluated. As will become clear, this value of a baryon propagator is identical to the nonrelativistic Green function
Lippman-Schwinger equation for the scattering amplitude.

The baryon pole contributionM h
B should be compared with one iterate of the Lippman-Schwinger equation~in the

center-of-mass frame!,

T~pW ,pW 1qW !52V~qW !1E d3k

~2p!3V~2kW !G0~kW !T~pW 2kW ,pW 1qW !, ~13!

where the nonrelativistic baryon Green function is given by
1-6
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G0~kW ![
1

~ upW 2kW u22upW u2!/mB1 i e
. ~14!

The first term in Eq.~13! corresponds to a potential at the one-meson exchange level. For the one-scalar excha
potential is given in Eq.~10!. Iterations of the Lippman-Schwinger equation lead to

T~pW ,pW 1qW !52V~qW !1E d3k

~2p!3V~2kW !G0~kW !V~kW1qW !2E d3k

~2p!3E d3k8

~2p!3V~2kW !,G0~kW !V~kW1kW8!G0~kW8!V~qW 2kW8!1•••,

~15!

where the ellipsis indicates higher-order iterations. For the two-scalar exchange, the first iteration of the pote
Eq. ~10! is

E d3k

~2p!3 Vf 0
~2kW !G0~kW !Vf 0

~kW1qW !5E d3k

~2p!3

gf 0

4

~ ukW u21mf 0

2 !~ ukW1qW u21mf 0

2 !~ upW 2kW u2/mB2upW u2/mB!
, ~16!
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which is exactly equal to the baryon pole contributionM h
B

@Eq. ~12!# evaluated with the nonrelativistic baryon propag
tor, Eq. ~9!. Thus, the baryon pole contribution of the tw
scalar box diagram should not be included in the nucle
nucleon potential. Note, that the equality holds only if t
nonrelativistic baryon propagator is used to evaluateM h

B .
The remaining contribution toMh is from the meson

poles. This contribution is often referred to as the retarda
effect since it is absent when using a static potential. T
retardation effect for two-scalar exchange is of orderNc

2 ~see
Table I!, i.e., it is larger than allowed by KSM countin
rules, Eq.~8!. Hence, for the two-scalar-exchange diagra
to be consistent with the counting rules, the retardation ef
has to be canceled by the crossed-box diagram. The
issue is whether this cancellation indeed happens.

The baryon pole contribution in the box diagram has be
discussed for the two-scalar exchange with point couplin
In fact, it can easily be generalized for any two-meson
change with general vertex functions. Indeed, the ab
proof that the baryon pole contribution to the box diagram
one iterate of the potential rests only on the nonrelativis
form of the two-baryon propagators and the direction of
loop momenta and energy flow through the baryon lin
Neither the spin-flavor structure nor the vertex functions c
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change the position of the baryon poles. Thus, the bar
poles from any two-meson box diagrams do not contribute
the nucleon-nucleon potential.

We have shown so far that the baryon pole contributio
from the two-meson box diagrams should not be included
the nucleon-nucleon potential. However, the retardation
fect and the crossed-box contribution can each be larger
allowed by the KSM counting rules. For example, the ret
dation effect and crossed-box diagrams corresponding to
two-pion exchange are each of orderNc

2 . Moreover, the two-
meson-exchange diagrams, in general, can contribute to
ferent spin-flavor structures in the nucleon-nucleon poten
Eq. ~6!. As a result, these contributions considered separa
may violate the KSM counting rules of the subleadi
O(Nc

21) terms in the potential. For example, two-pio
exchange box and crossed-box diagrams~each of orderNc

2)
contribute not only toVT

1 but among others to the isosingle
tensor forceVT

0 as well. The latter, however, should be
order Nc

21 according to Eq.~8!. Fortunately, as will be
shown below, the retardation effects cancel against
crossed-box diagram contributions in all such cases.

A cancellation between the retardation effect and
crossed box is well known for the two-scalar-exchange d
grams@11#. The meson pole contribution toMh , Eq.~11!, is
M h
ret5E d3k

~2p!3E dk0

2p
2 ImF gf 0

4

@~k0!22ukW u22mf 0

2 #@~k01q0!22ukW1qW u22mf 0

2 #
G

3PF 1

~k01upW u2/2mB2upW 2kW u2/2mB!~2k01upW u2/2mB2upW 2kW u2/2mB!
G

5E d3k

~2p!3

gf 0

4

ukW1qW u22ukW u2 S 1

2~ ukW u21mf 0

2 !3/2
2

1

2~ ukW1qW u21mf 0

2 !3/2D F11OS 1

Nc
D G , ~17!

where in the second step we have again neglected terms in the denominators suppressed by 1/mB;1/Nc including the energy
q0; the symbol P indicates principle value.

The contribution to the scattering amplitude from the two-meson crossed-box diagram, Fig. 6, is
1-7
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iMX5E d3k

~2p!3E dk0

2p

gf 0

4

@~k0!22ukW u22mf 0

2 #@~k01q0!22ukW1qW u22mf 0

2 #

3
1

~k01q01upW u2/2mB2upW 1kW1qW u2/2mB!~k01upW u2/2mB2upW 2kW u2/2mB!
. ~18!

Note, the baryon poles are now on the same side of the real axis in thek0 complex plane. Hence, they do not contribute
MX . The only nonvanishing contribution is from the meson poles,

MX5E d3k

~2p!3E dk0

2p
2ImF gf 0

4

@~k0!22ukW u22mf 0

2 #@~k01q0!22ukW1qW u22mf 0

2 #
G

3PF 1

~k01q01upW u2/2mB2upW 1kW1qW u2/2mB!~k01upW u2/2mB2upW 2kW u2/2mB!
G

52E d3k

~2p!3

gf 0

4

ukW1qW u22ukW u2 S 1

2~ ukW u21mf 0

2 !3/2
2

1

2~ ukW1qW u21mf 0

2 !3/2D F11OS 1

Nc
D G , ~19!
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where the same approximations as in Eq.~17! were made. As
evident from Eqs.~17! and ~19!, the retardation effect and
crossed-box diagram contribution for the two-scalar
change cancel out up to corrections of orderNc

21 ,

M h
ret1MX5OS 1

Nc
D . ~20!

It is important to stress, however, that the above can
lation does not occur when the nucleon momenta are of o
Nc since for the momenta of orderNc the baryon propagator
evaluated at the meson poles are different@as can be seen
from Eqs.~17! and ~19!#. Consequently, for the momenta o
order Nc , the nucleon-nucleon interaction cannot be int
preted as a simple meson-exchange picture consistent
the KSM counting rules, Eq.~8!. As will be shown below,
the cancellation in Eq.~20! is far more general. In fact, i
occurs for all two-meson-exchange graphs provided
nucleon momenta are of orderNc

0 and the meson-baryo
couplings are contracted SU~4! symmetric. Let us consider
general box and crossed-box diagram containing any pa
intermediate mesons.

We will use Greek symbols to indicate an exchang
meson, e.g.,a5 f 0 ,r,p, . . . . A given graph contains
four vertex functions, one for each meson-baryon co
ling. The product of these four functions will be denot
by Ṽab(k0,kW ,q0,qW ). The functionṼab(k0,kW ,q0,qW ) does not
contain spin-flavor matrices of the corresponding mes
baryon couplings, which will be written explicitly. It is
clear that Ṽab5Ṽba . To simplify the formulas we com-
bine the product ofṼab(k0,kW ,q0,qW ) and two-meson propa
gators into a single energy-momentum dependent func
Vab(k0,kW ,q0,qW ) defined by
03401
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Vab~k0,kW ,q0,qW !

[
Ṽab~k0,kW ,q0,qW !

@~k0!22ukW u22ma
2 #@~k01q0!22ukW1qW u22mb

2 #
, ~21!

wherema and mb are the masses of thea and b mesons.
The above-defined function is symmetric under the int
change of the exchanged mesons,Vab5Vba . The analytic
structure ofVab(k0,kW ,q0,qW ) as a function of a complex vari
ablek0 determines the retardation effects of the box grap
and the contribution of the crossed-box diagrams.

The spin-flavor structure of the meson-baryon vertic
will be denoted byGa(n)

A (kW ), where a superscriptA specifies
the spin-flavor indices and subscriptn51,2 indicates
to which of the two baryon lines a meson couples. T
momentum dependence arises in the case of derivati
coupled mesons such as pions. The product of the
Ga(n)

A (kW ) structures at two ends of the same meson propa
tor are constrained by the spin and isospin of the exchan
meson. To enforce these constraints in the prod
Ga(1)

A (kW ),Ga(2)
B (2kW ), we introduce a symbolCAB

a . For ex-
ample, in the case when the exchanged meson is a pion
above product takes the form

CAB
p Gp(1)

A ~kW !Gp(2)
B ~2kW !52d i j dmndabkjknX(1)

ia X(2)
mb

52kikmX(1)
ia X(2)

ma , ~22!

where the contracted SU~4! pion-baryon coupling is used.
Using the above notation a contribution from a gene

box graph, Fig. 4, has the following form:
1-8



sed box,

winger
ange, the
tion
tion
equals

h

NUCLEON-NUCLEON INTERACTION AND LARGENc QCD PHYSICAL REVIEW C 65 034011
iMh5ga
2gb

2E d3k

~2p!3E dk0

2p

Vab~k0,kW ,q0,qW !CAB
a CCD

b Ga(1)
A ~kW !Gb(1)

C ~2@kW1qW # !Ga(2)
B ~2kW !Gb(2)

D ~kW1qW !

~k01upW u2/2mB2upW 2kW u2/2mB!~2k01upW u2/2mB2upW 2kW u2/2mB!
, ~23!

wherega andgb are the corresponding coupling constants, and the momenta directions are shown in Fig. 4. The cros
Fig. 6, has a similar expression with the last twoG ’s interchanged,

iMX5ga
2gb

2E d3k

~2p!3E dk0

2p

Vab~k0,kW ,q0,qW !CAB
a CCD

b Ga(1)
A ~kW !Gb(1)

C ~2@kW1qW # !Gb(2)
D ~kW1qW !Ga(2)

B ~2kW !

~k01q01upW u2/2mB2upW 1kW1qW u2/2mB!~k01upW u2/2mB2upW 2kW u2/2mB!
. ~24!

Note the difference in the baryon propagators relative to Eq.~23! due to the difference in the momentum flow.
As was previously shown, the baryon pole contribution to the box graph is the first iterate of the Lippman-Sch

equation while these poles do not contribute to the crossed-box graph at this order. As in the case of the scalar exch
k0 integration in Eqs.~23! and ~24! can be performed via contour integration. Whatever the explicit form of the func
Vab(k0,kW ,q0,qW ) its contribution to thek0 integral is given by its imaginary part. The important point is that the same func
appears inMh andMX . Since the intermediate baryons cannot go on-shell at the meson singularities their contribution
the principal values of their propagators.

The retardation effect of the box diagram is

M h
ret5ga

2gb
2E d3k

~2p!3E dk0

2p
2 Im@Vab~k0,kW ,q0,qW !#CAB

a CCD
b Ga(1)

A ~kW !Gb(1)
C ~2kW2qW !Ga(2)

B ~2kW !Gb(2)
D ~kW1qW !

3PF 1

~k01upW u2/2mB2upW 2kW u2/2mB!

1

~2k01upW u2/2mB2upW 2kW u2/2mB!
G

5ga
2gb

2E d3k

~2p!3E dk0

2p
2Im@Vab~k0,kW ,q0,qW !#PF2

1

~k0!2G
3CAB

a CCD
b Ga(1)

A ~kW !Gb(1)
C ~2@kW1qW # !Ga(2)

B ~2kW !Gb(2)
D ~kW1qW !F11OS 1

Nc
D G . ~25!

Similarly, the crossed-box contribution coming entirely from the meson singularities is

MX5ga
2gb

2E d3k

~2p!3E dk0

2p
2 Im@Vab~k0,kW ,q0,qW !#CAB

a CCD
b Ga(1)

A ~kW !Gb(1)
C ~2@kW1qW # !Gb(2)

D ~kW1qW !Ga(2)
B ~2kW !

3PF 1

~k01q01upW u2/2mB2upW 1kW1qW u2/2mB!~k01upW u2/2mB2upW 2kW u2/2mB!
G

5ga
2gb

2E d3k

~2p!3E dk0

2p
2Im@Vab~k0,kW ,q0,qW !#PF 1

~k0!2G
3CAB

a CCD
b Ga(1)

A ~kW !Gb(1)
C ~2@kW1qW # !Gb(2)

D ~kW1qW !Ga(2)
B ~2kW !F11OS 1

Nc
D G . ~26!

Note that only in the nonrelativistic limit the principal values of the baryon propagators are equal and opposite for botM h
ret

andMX . As a result, the sum of these two contributions is proportional to a spin-flavor commutator,

M h
ret1MX5ga

2gb
2E d3k

~2p!3E dk0

2p
2Im@Vab~k0,kW ,q0,qW !#PF2

1

~k0!2GCAB
a CCD

b Ga(1)
A ~kW !Gb(1)

C ~2kW2qW !

3@Ga(2)
B ~2kW !,Gb(2)

D ~kW1qW !#F11OS 1

Nc
D G . ~27!

In general, we have to include both orderings of the exchanged mesons. In Eq.~27! the first meson isa. Changing the meson
sequence and keeping the loop momenta flow unchanged we get
034011-9
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M h
ret1MX5ga

2gb
2E d3k

~2p!3E dk0

2p
2Im@Vab~k0,kW ,q0,qW !#

3PF2
1

~k0!2GCAB
a CCD

b

3@Gb(1)
C ~kW !,Ga(1)

A ~2kW2qW !#

3Gb(2)
D ~2kW !Ga(2)

B ~kW1qW !F11OS 1

Nc
D G , ~28!

where we usedVba5Vab . Now, the commutator involves
the meson couplings along a different baryon line.

The large-Nc scaling of the retardation effect and th
crossed-box diagram taken separately is given by the pro
of the coupling constantsga

2gb
2 . However, as seen from Eqs

~27! and ~28!, their total contribution is proportional to th
commutators of the spin-flavor operators evaluated betw
the ground state baryons. The cancellation between the r
dation effect and the crossed-box contribution up to high
order corrections happens due to the presence of the com
tator.

A number of mesons shown in Tables I and II make ide
tical contributions to the spin-flavor structure of the nucleo
nucleon potential, Eq.~6!. For example,f 0 and the time com-
ponent of thev contribute to the isoscalar central potent
V0

0; the p and spatial components ofr contribute to the
isovector tensor force. Other such pairs area0 andr t, h and
vW , p and rW . Thus, out of ten couplings in Tables I and
there are only six independent structures. They give 36
ferent combinations for two-meson exchange graphs co
ing combinations differing in the meson sequence. Out
this the number of distinct meson pairs is 21.

The commutators in Eqs.~27! and~28! vanish identically
for those graphs in which at least one of the mesons isf 0 ~or
v t). The reason is that the spin-flavor structure off 0 (v t) is
given by the unity operator, which commutes with any oth
operator. This insures the largeNc consistency of the two-
meson box and crossed-box diagrams containing the foll
ing six ~independent! pairs of mesons:

~ f 0f 0!, ~ f 0fW1!, ~ f 0h!, ~ f 0a0!, ~ f 0aW 1!, ~ f 0p!.
~29!

Note, as discussed above, the same cancellation occurs
v t is exchanged instead off 0.

Similar cancellations occur for contributions of the b
and crossed-box diagrams containing the following pairs
mesons:

~a0h!, ~a0fW1!, ~30!

since the spin-flavor structure ofa0 couplings contains only
I a generators while the couplings offW1 andh contain onlyJi

generators, which commute withI a, Eq. ~1!.
A number of the meson-baryon couplings in Tables I a

II are of orderNc
21/2. Hence, the exchange of any pair

such mesons is suppressed by at leastNc
22 and, therefore,
03401
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cannot violate the KSM counting rules. These are the
changes of the following meson pairs:

~a0a0!, ~hh!, ~ fW1fW1!, ~h fW1!, @~a0h!, ~a0fW1!#,
~31!

where the meson pairs in the square brackets have been
viously considered, Eq.~30!.

This leaves us with nine nontrivial meson pair exchang
whose contributions via the box and crossed-box diagra
can potentially spoil the KSM counting rules. Out of thes
three pairs couple to baryons only via nonderivative co
plings,

~a0aW 1!, ~ fW1aW 1!,→O~Nc
0!,

~aW 1aW 1!,→O~Nc
2!, ~32!

and the remaining six pairs require one or two derivat
couplings,

~a0p!, ~hp!, ~haW 1!, ~p fW1!,→O~Nc
0!,

~pp!, ~paW 1!,→O~Nc
2!. ~33!

In Eqs.~32! and ~33! the large-Nc scaling of the product of
corresponding coupling constantsga

2gb
2 in the box and the

crossed-box diagrams has also been indicated.
The considerations of the meson pairs in Eq.~32! are

simpler than those with derivatively coupled mesons, E
~33!, and will be considered first. The analysis of the e
changes with derivative couplings requires performing an
lar integration and is done in the Appendix.

The retardation effect, Eq.~25!, and the crossed-box dia
gram, Eq.~26!, involving exchanges ofa0 andaW 1 contribute
to isoscalar and isovector spin-spin,Vs

0 and Vs
1 , terms; the

( fW1 ,aW 1) exchange contains aV0
1 term in addition toVs

1 . The

Nc
0-order contributions toVs

0 and V0
0 from (a0 ,aW 1) and

( fW1 ,aW 1) exchanges violate the KSM rules, Eq.~8!. Fortu-
nately, these contributions are canceled in the sum of
retardation effect and crossed-box diagram, Eqs.~27! and
~28!,

CAB
fW1 CCD

aW 1 G fW1(1)
A

~kW !GaW 1(1)
C

~2@kW1qW # !

3@G fW1(2)
B

~2kW !,GaW 1(2)
D

~kW1qW !#

5J(1)
i X(1)

ja @J(2)
i ,X(2)

ja #

5
1

2
~$J(1)

i ,X(1)
ja %1@J(1)

i ,X(1)
ja # !@J(2)

i ,X(2)
ja #

52X(1)
ka X(2)

ka 1OS 1

Nc
2D , ~34!

for ( fW1 ,aW 1) exchange and similarly for (a0 ,aW 1) exchange. In
the last step in Eq.~34! we used the commutation and an
commutation relations of the generators of the contrac
1-10
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SU~4! symmetry, Eqs.~1! and ~5!. Thus, these exchange
when both box and crossed-box diagrams are included,
tribute only to the isovector spin-spin term of the nucleo
nucleon potential up to corrections of orderNc

22 . This is an
allowable contribution by KSM counting rules.

The box and crossed-box diagrams corresponding
(aW 1 ,aW 1) exchange are of orderNc

2 . The corresponding retar
dation effect and crossed-box diagram separately contri
to V0

0, Vs
1 , andVs

0 . The first two terms are of orderNc and
the third term is of orderNc

21 , Eq.~8!. However, the produc
of the spin-flavor structures in Eqs.~27! and~28! is of order
Nc

24 ,

CAB
aW 1 CCD

aW 1 GaW 1(1)
A

~kW !GaW 1(1)
C

~2@kW1qW # !

3@GaW 1(2)
B

~2kW !,GaW 1(2)
D

~kW1qW !#

5X(1)
ia X(1)

jb @X(2)
ia ,X(2)

jb #

5
1

2
~$X(1)

ia ,X(1)
jb %1@X(1)

ia ,X(1)
jb # !@X(2)

ia ,X(2)
jb #

5
1

2
@X(1)

ia ,X(1)
jb #@X(2)

ia ,X(2)
jb #;OS 1

Nc
4D , ~35!

where in the third step we used the fact that the anticom
tator is symmetric and the commutator is antisymmetric
der the simultaneous exchange of the spin-flavor indi
( ia)→( jb); the largeNc of the baryon matrix elements o
@Xia,Xjb# is given in Eq.~2!. Combining theNc

4 suppression
in Eq. ~35! with theNc

2 scaling of the productgaW 1

4 we see that

the sum in Eq.~27! @and similarly in Eq.~28!# is of order
Nc

22, which is consistent with KSM counting rules. Note th
in this case full contracted SU~4! algebra has to be used t
ensure the cancellation. Thus, the cancellation of the reta
tion effect against the crossed-box diagram requires an in
sion of both nucleon andD intermediate states. If one re
stricts the intermediate states to nucleons only,
cancellation would not occur.

Thus far, we have shown that the retardation effect of
two-meson exchange diagrams without derivative couplin
Eq. ~32!, cancel against the corresponding crossed-
graphs. As is shown in the Appendix, similar cancellatio
occur for the remaining six meson pairs, Eq.~33!, which
involve one or two derivatively coupled mesons.

In addition to box and crossed-box diagrams, any pair
mesons can be exchanged via triangle~or ‘‘seagull’’! dia-
grams, Fig. 5, containing a four-point meson-baryon vert
The spin-flavor structure of this vertex is given by the pro
uct of two Ga(n)

A (kW ) operators. The four-point meson-baryo
coupling is of orderNc

0 for any meson pair@2#. Hence, the
largest scaling of a triangle diagram isNc , e.g., when two
pions or f 0 and v t are exchanged. Thus, the triangle gra
cannot violate the scaling of the leadingO(Nc) spin-flavor
terms, Eq. ~8!. However, the subleadingO(Nc

21) terms
might be sensitive to contributions from the triangle d
03401
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grams. Since these diagrams contain only one baryon pr
gator, its pole does not contribute to the potential~the con-
tour of the complexk0 integration can always be closed
such a way as to avoid the baryon pole!. As we will show
shortly, the contributions from the meson singularities in t
triangle graphs add up to cancel all terms that violate
KSM counting rules.

A given triangle graph can be associated with a cor
sponding box or crossed-box diagram by shrinking the
propriate baryon propagator to zero. It can then be sho
that the sum of the appropriate pair of the triangle grap
shown in Fig. 5, is similar to Eqs.~27! or ~28!. The essential
point in the above discussion was the presence of the c
mutator in Eqs.~27! and~28!. The same commutator appea
in the sum of the triangle graphs.

What are the pairs of the triangle graphs that corresp
to the box and crossed-box diagrams, which led to Eqs.~27!
and ~28!? These graphs contain the same meson pairs.
two corresponding graphs differ according to which bary
line the four-point meson-baryon vertex is attached to Fig
In addition, twoG structures at the four-point vertex of on
of the corresponding graphs are in opposite order relativ
the sequence of these structures in the other graph. This l
to the appearance of a commutator in the sum of the co
sponding triangle graphs.

In the case of the box and crossed-box diagrams the
rection of the energy flow assured that the retardation ef
and the crossed-box contribution are equal and opposite
to 1/Nc corrections. The sign difference was due to the pro
uct of the principle values of the baryon propagators~after
the nonrelativistic reduction!, Eqs.~25! and ~26!, which had
different signs for the box and crossed-box diagrams. D
spite the presence of only a single baryon propagator,
contributions from each of the corresponding triangle gra
come with opposite signs due to the different flow of t
energy and momenta, Fig. 5. The sum of these two graph

M11M25gagbgabE d3k

~2p!3E dk0

2p
2 Im@Vab~k0,kW ,q0,qW !#

3PF2
1

k0GCAB
a CCD

b Ga(1)
A ~kW !Gb(1)

C ~2kW2qW !

3@Ga(2)
B ~2kW !,Gb(2)

D ~kW1qW !#F11OS 1

Nc
D G , ~36!

wheregab ~order Nc
0 for all a and b) is the coupling con-

stant of the four-point vertex and the functionVab is given
by Eq. ~21! providedṼab contains the product of the thre
meson-baryon vertex functions~including one corresponding
to the four-point vertex!. A similar expression can be writte
for the sum of the two triangle graphs in which the seque
of the a andb mesons is changed as in Eq.~28!.

It is clear that the sum in Eq.~36! contributes to the same
spin-flavor terms as the sum in Eq.~27!: both expressions
contain identical spin-flavor structures. The differences in
integrands are irrelevant as far as the cancellations in E
1-11
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~27! and~28! are concerned. As a result, the large-Nc scaling
of the contribution in Eq.~36! is that of Eq.~27! times scal-
ing of (gagb)21.

Hence, when all the contributions of the triangle grap
are included, the resulting spin-flavor terms are consis
with the KSM counting rules, Eq.~8!.

IV. CONCLUSION

At a technical level we have shown by explicit calculati
that if meson-baryon couplings scale according to the s
dard large-Nc rules, then the two-meson-exchange contrib
tions to the nonrelativistic baryon-baryon potential are c
sistent with the large-Nc KSM scaling rules deduced in Refs
@6,7#. This is highly nontrivial since the derivation of thes
rules in Refs.@6,7# only included diagrams that correspond
one-meson exchange when translated to the hadronic le
This certainly adds confidence that Refs.@6,7# correctly de-
scribed theNc scaling behavior of the nucleon-nucleon p
tential in the large-Nc limit of QCD. The essential issue in
the calculations here was that the retardation contribution
the potential from the box graph cancel against the cros
box contributions for all spin-isospin structures in the pote
tial where the retardation contributions or the crossed-
contributions separately violate the counting rules.

The derivation presented here was done in a ‘‘brute for
manner. Namely, we considered the various meson
changes one at a time, identified the contributions to
various spin-isospin structures that apparently violated
KSM large-Nc scalings, and showed that in all cases th
canceled. It would be very useful to find a more gene
method for demonstrating the cancellation. While the me
ods used here were adequate for the two-meson-exch
case, it would be extremely cumbersome to extend them
three-meson exchange or higher. Given the cancellations
all ‘‘dangerous’’ contributions at the two-meson-exchan
level it seems reasonable to expect that such cancella
will occur for any number of meson exchanges and that
full baryon-baryon potential will be consistent with the KS
scaling rules. However, a general proof of the cancellati
for all orders would be desirable.

In the Introduction it was argued that the large-Nc scaling
behavior of the baryon-baryon interactions gives some g
eral insights into the underlying physics arising from QC
In particular, it was argued that a consistent picture emer
and five aspects of this picture were enumerated. Let us
briefly discuss how the calculations discussed above sup
this picture.

The first point raised was that while a nonrelativistic p
tential used to describe the interaction has overall strengt
order Nc , the kernel of a Bethe-Salpeter equation does
have a simpleNc dependence. As noted many times, t
Nc

2-order contribution to the potential from the crossed-b
graph is canceled by the retardation effect from the b
graph. However, such a cancellation cannot happen in
context of the Bethe-Salpeter equation. The entire box gr
~including meson pole contributions! is an iterate of the
Bethe-Salpeter kernel and hence cannot be included as a
tribution to the kernel. Thus, in the Bethe-Salpeter cont
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there is no part of the box graph to cancel theNc
2-order

contribution from the crossed box. Therefore, unlike the p
tential, the Bethe-Salpeter kernel cannot be associated
an overall strength ofNc . Presumably, the Bethe-Salpet
kernel has contributions scaling asNc to all powers arising
from multiple meson exchanges.

The second point made was that the meson-exchange
ture of baryon-baryon interactions with the leading part
the potential scaling asNc is consistent with the meson
exchange picture of the potential provided the moment
exchanged is of orderNc

0 . It was shown explicitly using
nonrelativistic kinematics that at the level of two-meson e
change, all ‘‘dangerous’’ contributions to the potential ca
celed so that there is no inconsistency with a potential s
ing asNc . It is reasonable to expect the behavior to hold
any number of meson exchanges. If true, this strengthens
case for using meson-exchange models to describe nucl
nucleon interactions.

However, it was also argued that the idea of a poten
described by the meson-exchange picture is unsuitable
momenta of orderNc . At a technical level this is apparent i
Eqs.~17!, ~18!, ~24!, and~25! where the cancellations of th
box and crossed-box graphs depend explicitly on the non
ativistic form of the propagator. If momenta of orderNc were
used, the cancellations clearly fail to occur. Thus the use
ness of the meson-exchange picture is not evident for
menta of orderNc . In fact, it is quite satisfying that the
evidence of consistency breaks down in this regime fo
number of reasons. In the first place Witten’s TDH picture
baryon-baryon interactions is more appropriate forp;Nc .
This picture has no obvious meson-exchange interpretat
The internal structure of each baryon is distorted in the pr
ence of the other. Moreover, it is not surprising from a mo
traditional hadronic viewpoint that a meson-exchange pot
tial picture breaks down in this regime. Ifp;Nc and mN
;Nc then the kinetic energy of the baryons is also of ord
Nc . Since meson masses are of orderNc

0 , an increasing
number of mesons are produced. It is hardly surprising t
the potential picture breaks down in this situation.

A fourth point raised in the Introduction was that relativ
sizes of the various spin-isospin structures in the nucle
nucleon potential are consistent at the two-meson-excha
level with those deduced from the contracted SU~4! structure
of KSM. Moreover, if one looks carefully at all of the can
cellations, one finds that corrections to the leading beha
were all 1/Nc

2 suppressed. This is consistent with Refs.@6,7#
where it is found that subleading spin-isospin structures
down by factors 1/Nc

2 . Overall this strongly supports th
view that the expansion is in fact in 1/Nc

2 rather than in 1/Nc .
The final point stressed was that theD plays an essentia

role. As is evident from Eqs.~35! and the Appendix, the
cancellations between the box and crossed-box graphs do
occur if intermediate states are restricted entirely to nuc
ons;D resonances are required as intermediate states. M
generally one expects that as the contracted SU~4! structure
is used to obtain cancellations, the entireI 5J
51/2,3/2,5/2, . . . tower of baryon states can contribute. U
to two-meson exchange with nucleon as initial and fin
1-12
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states, however, only nucleons andD ’s can contribute.
The formal consistency of the large-Nc treatment and the

meson-exchange picture is quite satisfying. However, c
siderable caution should be exercised in trying to draw c
clusions about the real world ofNc53. We have used 1/Nc
as a counting parameter to distinguish large from small c
tributions. This is clearly legitimate if all the coefficien
multiplying these factors are natural, i.e., of order un
However, all coefficients are not natural. One key difficu
is that the meson-exchange picture is being used here to
nect hadronic phenomena with nuclear phenomena. H
ever, the scales in nuclear physics are generally m
smaller than those in hadronic physics@5#. It is not clear
directly from QCD why these nuclear scales are so small
it is generally thought to be ‘‘accidental.’’ The interplay b
tween small nuclear scales~that may be large in a 1/Nc
sense! with much larger hadronic scales~that may be small
formally in a 1/Nc sense! can potentially spoil the results o
a straightforward 1/Nc approach. To show how extreme th
problem may be we can consider the deuteron binding
ergy B ~which is formally of orderNc) and theD-nucleon
mass differencemD2mN ~which is order 1/Nc). If all coef-
ficients were natural, one would expectB to be an order of
magnitude larger thanmD2mN , whereas, in fact, it is two
orders of magnitude smaller. It would not be surprising t
difficulties might arise when calculatingB if one neglects
mD2mN as being ‘‘small.’’

The large-Nc structure of the nucleon-nucleon potent
has been so far used phenomenologically in two conte
The first is as an attempt to justify the observed approxim
Wigner SU~4! symmetry@12# in light nuclei as arising from
the underlying contracted SU~4! structure in the large-Nc po-
tential @6#. The second is an attempt to justify the qualitati
sizes of the spin-flavor structures in phenomenological
tentials as being explained by the contracted SU~4! structure
in the large-Nc potential@6,7#. It is not immediately obvious
that these two explanations are legitimate in light of qual
tively distinct nuclear scales that are not associated with
1/Nc expansion. Clearly, this issue needs further investi
tion. However, it is also not immediately clear how to fo
mulate a systematic expansion, which incorporates the 1Nc
scaling rules while allowing nuclear scales to be mu
smaller @13# than hadronic scales. The comparison of t
qualitative sizes of the spin-flavor structures in phenome
logical potentials with what is expected from largeNc raises
another issue. The potentials predicted in largeNc are not
nucleon-nucleon potentials; rather, they are coupled cha
potentials for the full tower ofI 5J baryon states including
an explicit D. The phenomenological potentials to whic
they are compared have the explicitD ’s integrated out. It is
by no means clear that the act of integrating outD ’s does not
alter the spin-flavor structure. Again, this requires furth
study.

Given these possible difficulties in drawing phenomen
logical conclusions from large-Nc potentials, one might ask
about the relevance for the real world of our demonstrat
that large-Nc counting rules are consistent with the meso
exchange picture of potentials at the two-meson-excha
level. Of course, it remains possible that after a careful st
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one may find that the particular phenomenological pred
tions to date—the Wigner SU~4! symmetry and the charac
teristic relative sizes of the various terms in phenomenolo
cal potentials—are robust and remain valid even after
smallness of the typical nuclear scales are included. Whe
or not this turns out to be the case, however, we may still
able to learn qualitatively interesting things. For examp
the cancellations seen in the two-pion-exchange graphs
quire thatD intermediate states be included. ForNc53, one
does not expect such cancellations to be perfect, but the
eral tendency to cancel should survive. This suggests thaD
box and crossed-box contributions should be comparabl
size to those with nucleon intermediate states. This issue
be relevant for potential models motivated by chiral symm
try where two-pion-exchange contributions with nuclear
termediate states are included at next-to-leading order
explicit D contributions are not included@13#. At a more
qualitative level, the fact that at largeNc a meson-exchange
motivated picture of the potential is consistent gives at le
some support for the view that more generally nucleo
nucleon interactions can be described in terms of meson
changes.
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APPENDIX

In this appendix we discuss the box and crossed-
graphs with one or two derivative couplings, Eq.~33!. As in
the case of the nonderivatively coupled mesons, Eq.~32!, the
sum of the retardation effect and the crossed-box diag
can be written as the sum of the products of anticommuta
and commutators of the spin-flavor generators. The cance
tion of the terms that violated spin-flavor counting rules e
sentially has occurred due the symmetry properties of th
products under the interchange of the spin-flavor symme
The remaining terms are either consistent with the coun
rules or suppressed by 1/Nc

2 as in Eq.~35!. However, when
derivatively coupled mesons are included, the symmetry
the products of commutators and anticommutators under
interchange of spin-flavor symmetry is broken due to
contraction of the spin-flavor generators with momentum
dices. In order to see the cancellation, the angular integra
in Eqs.~27! and~28! must be performed. In this appendix th
cancellation is shown for the two-pion-exchange diagram
The exchanges involving other pairs of mesons, Eq.~33!, are
essentially identical to this case.

The retardation effect and the crossed-box contribution
given in Eq.~27!, which has the following form for the two-
pion exchange:
1-13
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M h
ret1MX5gp

4 E d3k

~2p!3E dk0

2p
PF2

1

~k0!2G
32 Im@Vpp~k0,kW ,q0,qW !#

3X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #kW ikW l~kW j1qW j !~kW r1qW r !

3F11OS 1

Nc
D G . ~A1!

After k0 integration Eq.~A1! reduces to

M h
ret1MX5gp

4 E k2dk

~2p!3E dVF~ ukW u,uqW u,kW•qW ,q0!

3X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #kW ikW l~kW j1qW j !~kW r1qW r !,

~A2!

where the explicit form of the functionF(ukW u,uqW u,kW•qW ,q0) is
not required for the following discussion.

Let us consider the angular integration in Eq.~A2!,

I V[E dVF~ ukW u,uqW u,kW•qW ,q0!kW ikW l~kW j1qW j !~kW r1qW r !.

~A3!

The general form of this integral is

I V5~d i j d lr 1d i l d j r 1d ir d j l ! f 1~ ukW u,uqW u,q0!

1qiqjqlqr f 2~ ukW u,uqW u,q0!

1~d i l qjqr1d j r qiql ! f 3~ ukW u,uqW u,q0!

1~d i j qlqr1d ir qjql1d j l qiqr

1d lr qiqj ! f 4~ ukW u,uqW u,q0!, ~A4!

where functionsf 1 , f 2 , f 3, and f 4 do not depend onkW•qW .
The form of theI V can be obtained from general argumen
based on the symmetry properties of Eq.~A3! under the vari-
ous exchanges of the momentum indices.

Each term in Eq.~A4! when combined with spin-flavo
generators in Eq.~A1! is suppressed byNc

24 . Let us see how
it comes about for each term separately.

The first product of Kronecker deltas in thef 1 term leads
to

d i j d lr X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5X(1)
ia X(1)

ib @X(2)
la ,X(2)

lb #

5
1

2
~$X(1)

ia ,X(1)
ib %1@X(1)

ia ,X(1)
ib # !@X(2)

la ,X(2)
lb #

5
1

2
$X(1)

ia ,X(1)
ib %@X(2)

la ,X(2)
lb #1

1

2
@X(1)

ia ,X(1)
ib #@X(2)

la ,X(2)
lb #

5OS 1

Nc
4D , ~A5!
03401
where the product of the commutator and the anticommu
tor vanishes because the commutator is antisymmetric u
the a↔b exchange while the anticommutator is symmetr
The remaining product of the two commutators is of ord
Nc

24 from Eq. ~3!. Thus, an overall contribution of this term
is of order Nc

22 , which is consistent with KSM counting
rules, Eq.~8!. Note how the angular averaging of Eq.~A3!
induced symmetry properties of the spin-flavor matrices
Eq. ~A1!.

The second product ofD ’s in f 1 leads to an expressio
identical to Eq.~35!; its contribution, therefore, is suppresse
by Nc

24 as well. The suppression of the last term multiplyin
the f 1 is easily observed,

d ir d j l X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5X(1)
ia X(1)

ib @X(2)
ja ,X(2)

ib #

5
1

2
~$X(1)

ia ,X(1)
jb %1@X(1)

ia ,X(1)
jb # !@X(2)

ja ,X(2)
ib #

5
1

2
$X(1)

ia ,X(1)
jb %@X(2)

ja ,X(2)
ib #1OS 1

Nc
4D 5OS 1

Nc
4D ,

~A6!

where in the last step we used antisymmetry under the sim
taneous exchangesa↔b and i↔ j ,

$X(1)
ia ,X(1)

jb %@X(2)
ja ,X(2)

ib #52$X(1)
ia ,X(1)

jb %@X(2)
ja ,X(2)

ib #.
~A7!

Similarly, the product of the four components of the e
ternal momenta multiplyingf 2 is of orderNc

24 ,

qiqjqlqrX(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5
1

2
qiqjqlqr$X(1)

ia ,X(1)
jb %@X(2)

la ,X(2)
rb #1OS 1

Nc
4D

5OS 1

Nc
4D , ~A8!

where the vanishing of the last product can be seen after
substitutiona↔b, i↔ j , and l↔r ,

qiqjqlqr$X(1)
ia ,X(1)

jb %@X(2)
la ,X(2)

rb #

52qiqjqlqr$X(1)
ia ,X(1)

jb %@X(2)
la ,X(2)

rb #. ~A9!

Similar arguments can be used to show the vanishing@up
to O(Nc

24)] of the term containing the functionf 3:
1-14
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~d i l qjqr1d j r qiql !X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5qjqrX(1)
ia X(1)

jb @X(2)
ia ,X(2)

rb #1qiqlX(1)
ia X(1)

jb @X(2)
la ,X(2)

jb #

5qjqlX(1)
ia X(1)

jb @X(2)
ia ,X(2)

lb #1qjqlX(1)
ja X(1)

ib @X(2)
la ,X(2)

ib #

5qjqlX(1)
ia X(1)

jb @X(2)
ia ,X(2)

lb #1qjqlX(1)
jb X(1)

ia @X(2)
ia ,X(2)

lb #

5qjql@X(1)
ia ,X(1)

jb #@X(2)
ia ,X(2)

lb #5OS 1

Nc
4D , ~A10!

where in the second equality we changed the indexr into l in
the first term and exchangedi↔ j in the second term; in the
next step we make thea↔b exchange in the second term

The first term multiplyingf 4 in Eq. ~A4! is suppressed a
follows:

d i j qlqrX(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5qlqrX(1)
ia X(1)

ib @X(2)
la ,X(2)

rb #

5
1

2
qlqr$X(1)

ia ,X(1)
ib %@X(2)

la ,X(2)
rb #1OS 1

Nc
4D

5OS 1

Nc
4D ~A11!

where the vanishing of the last product can be seen via
substitutiona↔b followed by l↔r . Similar arguments ap
ply for the last term multiplyingf 4.
.

03401
e

Lastly, the sum of the remaining two terms in Eq.~A4!
multiplying f 4 vanishes@up to O(Nc

24)] as follows:

~d ir qjql1d j l qiqr !X(1)
ia X(1)

jb @X(2)
la ,X(2)

rb #

5qjqlX(1)
ia X(1)

jb @X(2)
la ,X(2)

ib #1qiqrX(1)
ia X(1)

jb @X(2)
ja ,X(2)

rb #

5qiqlX(1)
ja X(1)

ib @X(2)
la ,X(2)

jb #1qiqlX(1)
ia X(1)

jb @X(2)
ja ,X(2)

lb #

5qiqlX(1)
ja X(1)

ib @X(2)
la ,X(2)

jb #1qiqlX(1)
ib X(1)

ja @X(2)
jb ,X(2)

la #

5
1

2
qiql$X(1)

ja ,X(1)
ib %@X(2)

la ,X(2)
jb #1

1

2
qiql$X(1)

ib ,X(1)
ja %

3@X(2)
jb ,X(2)

la #1OS 1

Nc
4D

5OS 1

Nc
4D , ~A12!

where in the second equality we changedi↔ j i and r↔ l in
the first and second term respectively; in the next step
change isa↔b in the second term.

This completes the discussion of two-pion exchange b
and crossed-box diagrams. Their mutual contribution has
overall scaling ofNc

22 and is, therefore, consistent with th
KSM counting rules, Eq.~8!.
.
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