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Nucleon-nucleon interaction and largeN. QCD
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The nature of the nonrelativistic nucleon-nucleon potential in the IBgkmit is discussed. In particular,
we address the consistency of the meson-exchange picture of nucleon interactions. It is shown that the non-
relativistic nucleon-nucleon potential extracted from the Feynmann graphs up to and including two-meson-
exchange diagrams satisfies the spin-flavor counting rules of Kaplan and Savage and of Kaplan and Manohar,
provided the nucleon momenta is of ordét. The key to this is a cancellation of the retardation effect of the
box graphs against the contributions of the crossed-box diagram. The consistency requires irclaging
intermediate state.
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I. INTRODUCTION which although disconnected at the quark level, contribute at
the nucleon-nucleon level to the full interaction. It is

One of the most fundamental problems in nuclear physicstraightforward to see that the graph in Fig. 2 is of orNér
is to understand how low-energy nucleon-nucleon interacso that the interaction cannot simply gofds. One natural
tions arise from the underlying quark-gluon interactions. Un-way to interpret the physics contained in the diagrams typi-
fortunately, for some time to come QCD is likely to remain fied by Figs. 1 and 2 is to argue that they get translated at the
computationally intractable in this regime in the sense thabadronic level to contributions from nucleon-meson dia-
one will not be able to directly predict the values of low- grams as in Figs. 3 and 4. In such a hadron-based picture the
energy nuclear physics observables by calculations baséd(NZ) contribution then appears as the iteration of an under-
solely on the QCD Lagrangian. Nevertheless one might hop#ing O(N,) interaction. One key issue addressed in this pa-
to be able to deduce some qualitative perhaps semiquan- Per concerns the nature of the translation from the quark-
titative) features of nucleon-nucleon interactions from our
knowledge of QCD. The known simplifications of certain
aspects of QCD in the largd; limit could provide such a
tool [1-5]. Indeed, several years ago it was proposed that the
spin-flavor structure of the dominant terms in the nucleon-
nucleon potential can be understood in terms of lavge-
QCD [6,7]. As we shall argue here lardés: QCD can pro- ,-6‘)
vide additional insights into the nature of the nucleon- s
nucleon force. In particular, largd.-QCD helps us to un-
derstand both the nature of the meson-exchange picture of
nucleon-nucleon interactions and the limitations of such a
picture. The largeN. perspective also sheds light on the role
of the A resonance in nucleon-nucleon interactions. At a
practical level, knowledge of the special role playeddin
cancelling certain large contributions may prove to be useful co e
in constructing nucleon-nucleon interactions.

The first treatment of nucleon-nucleon interactions in
largeN. QCD was done by Witten in his seminal paper on
baryons in the larg®\, limit [2]. He argued that the domi-
nant interaction between two baryons is generically of order
N.. His argument was based on consideration of diagrams
such as the one in Fig. 1. It is clear that such a diagram is of
orderN.—a factor ofN? from combinatorics and a factor of
Ngz from the coupling constants. It is straightforward to see
that all quark-line-connected graphs beginning and ending
with two flavor singlet combinations dfl; quarks will be
O(N,) or less. However, this interaction strength of orbler
cannot represent the strength of the nucleon-nucleon scatter-
ing amplitude. In the first place, unitarity implies that the
scattering amplitude does not grow without a bound\as FIG. 1. A typical diagram of ordeN, contributing to the
goes to infinity. Second, one can consider graphs like Fig. Zyucleon-nucleon scattering in the laryg-limit.
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FIG. 3. A one-meson-exchange diagram contributing to the
nucleon-nucleon potential; initial and final nucleons are on-shell;

p=(|p|*/2my,—p), p'=(|p|*/2my ,p), andg=(q°,q) are energy-
momentum four-vectors flowing through the various lines.

(KSM), in this regime one may identify the nucleon-nucleon
interaction from the quark-line-connected pieces as a nonrel-
ativistic potential that has a dominant contribution of order
FIG. 2. A typical diagram of ordeN?. N.. Such a description can be interpreted on the hadronic
level as a meson exchange. The one-meson-exchange poten-
gluon based diagrams of Figs. 1 and 2 to the hadronic basdi! (Fig- 3 can be as large &(N,) since a generic baryon-
ones of Figs. 3 and 4. meson coupling is of Qrdeq]’N_c _[2] and_hence t_he largi:.
Witten [2] noted an additional difficulty of having scaling at the hadromc .Ievel is conS|ste_nt with the quark-
nucleon-nucleon interaction scaling b, there is no de- gluon level. The key insight of Ref§3—5] is that largeN,
scription of the scattering process, which possesses a smod®@f-D implies an approximate contracted @spin-isospin
largeN, limit if the momenta are of order unity. The basic SYmmetry on the baryons and that this symmetry imposes
difficulty in this case is that the kinetic energy of the nucle-Cconstraints on the dominant parts of the potential. Thus, the
ons is generically much smaller than the potential energy anlominant part of the nucleon-nucleon interaction is con-
the interplay of kinetic and potential energy, which is at theStrained to be contracted $4) symmetric, and terms that
crux of scattering, cannot be independent Myf. Witten ~ Preak this symmetry are suppressed by two powerslaf
noted that if one works in a kinematic regime with momentaFor example, the domina@(N_) contribution to the tensor
of orderN, (i.e., an approach to the lardés limit with the  force is proportional tar; - 75, while the isospin independent
nucleon velocities rather than momenta fixetthen the ki-  part only contributes at ordeMgl.
netic and potential terms are of the same order so that a This paper will address a number of issues connected with
smooth limit is possible. For this kinematic regime Witten the nucleon-nucleon interaction in largk-QCD. One cen-
suggested that the scattering process can be described usingl issue is the identification of the connected diagrams,
the time-dependent Hartre€TDH) approximation. It is such as Fig. 3, as a nonrelativistic potentiafl orderN,.), as
straightforward to see that the TDH equations with fixed ini-was done in Refs[6,7]. The argument for doing this is
tial velocity have solutions that are independentNpf. In  clearly heuristic and is based on the notion that large inter-
practice, such TDH calculations have not been done in QCRctions must be iterated to all orders. Of course, a potential
and would be very difficult for systems with light quarks. used in a Schdinger equation is iterated to all orders. This
Here we wish to focus on a different limit than Witten's, interpretation seems to resolve in a simple manner the order
i.e., on low momentum nuclear reactions. Accordingly we doN? contributions of Fig. 4; it is just one iteration of the
not wish to let the nucleon momenta scale wWh; rather  potential(among an infinite number of possible iteratipns
we will restrict our attention to the kinematic regime of  Unfortunately, this heuristic argument is not unique: an
nucleon momenta of ordetg . As noted by Witten, in such a alternative argument would be to identify such an interaction
regime there is no smooth expression for the scattering anwith a kernel of a Bethe-Salpeter equatiavith a strength of
plitude. However, as argued by Kaplan and co-workérg]  orderN.), which again is to be iterated to all orders. More-
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four-vectors.

typical diagrams contributing to the potential are shown in
FIG. 4. A box dagram; p=(|p|#2my,—p), p’  Fig. 5, in which two exchange mesons are coupled to one of
=(|p|%2my.p), k=(K°K), andq=(q°,q) are energy-momentum the nucleons at a single vertex. Such diagrams are generi-
four-vectors. cally of orderN, since the coupling of the meson current to
a nucleon is of ordeN? [2]; the additional power ofN,
over, it is by no means clear that these are equivalent—aomes from two nucleon-meson vertidesich of which con-
Bethe-Salpeter kernel of ordbl; does not necessarily imply tributesNY?). Thus, these diagrams are consistent with the
that the potential in a nonrelativistic reduction of the Bethe-previously deduced largs; scaling behavior of the poten-
Salpeter equation is of ordé¥.. Thus, at the fundamental tial. However, if one considers a generic crossed-box dia-
level it has to be established whether lalggQCD is con-  gram as shown in Fig. 6, one encounters an inconsistency.
sistent with a nonrelativistic nucleon-nucleon potential of or-Since, the nucleon-meson coupling is generically of order
der N, or with a Bethe-Salpeter kernel of ords . JN., the diagram in Fig. 6 is of ordeN?. This scaling,
A second fundamental issue in this paper is the extent tBowever, violates the proposed lalye- scaling of the
which largeN. QCD justifies a meson-exchange picture of nycleon-nucleon potentigivhich is supposed to go ds).

nucleon-nucleon interactions. A meson exchange is a naturg@jearly, three and more meson-exchange diagrams will yield
way to understand nucleon-nucleon interactions as arisingyer-larger inconsistencies.

from QCD: QCD leads to the existence of colorless hadronic This paper will also address another central issue in
states—baryons and mesons—and the interactions betwe@fcleon-nucleon physics, namely, the role of thereso-
baryons arise from the exchange of virtual mesons. Indeegyance in intermediate states. As is well known, theeso-
some phenomenologically successful nucleon-nucleon pgyance has a low excitation energy for lartye (with m,
tentials are based directly on a meson-exchange pi¢8jre —my~N; 1) [4,10). Moreover, the inclusion of virtual's is

On_the other hand, the argument fqr meson exchange doMiown to be essential to ensure the consistency of Ibiige-
nating the nucleon-nucleon interaction is not compelhng aNGyredictions for hadronic processes and its inclusion is neces-
many equally successful nucleon-nucleon potentials includ

only one-pion exchange treating all shorter distance effects

purely phenomenologicall{9]. At first sight it might seem

that largeN, arguments do not support the meson-exchange ;

picture of nucleon-nucleon interactions. In the first place, as P+q Pq

noted by Witten 2], baryons in the larg&. limit behave as

solitons, and when two solitons are brought close enough to

interact each one distorts in the presence of the other, yield- N /

ing effects that cannot be easily described in terms of meson p'+k+q >< p+k
exchange. Indeed Witten’s prescription for scattering for mo-

menta of ordeM., TDH, necessarily builds in these non- / ?
meson-exchange-type effects; the clusterdgfquarks that k+q

interact in TDH arenot simply the Hartree wave functions
for two nucleons. p' p
There is a second reason why one might suspect that
largeN. QCD does not justify a meson-exchange point of
view for nucleon-nucleon interactions. The meson-exchange
picture does not imply only single meson exchanges but two FIG. 6. A crossed-box diagramp=(|p|?/2my,—p), p’
or more meson exchanges as well. Consider, the Ibige- =(|p|%/2my.p), k=(k°Kk), andg=(q°,q) are energy-momentum
scaling of a generic two-meson-exchange process. Sonfeur-vectors.
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TABLE I. Nonrelativistic scalar and pseudoscalar meson-baryon couplings. The ground state tBaryons
belong to an irreducible representatiba J.

Scalars Pseudoscalars
I=0 I=1 =0 =1
Meson fo ag 7 T
Meson-baryon coupling B'B¢ B'12B¢? B'JBd ¢ B'X'2Bg' p?
Scaling of the coupling N (VNo~* (VNo)~* N
Spin-flavor term A Vi = Vi
KSM scaling N [\ [\ N

sary for the contracted S4) spin-flavor structure of baryons [3-5]. The contracted S4) algebra is
to be manifest. Thus, one might expect that virttxéd will o .
also play a key role in nucleon-nucleon reactions in the [J',JJ]=ieiijk, [1231P]=ieupd® [J,13]=0,
largeN, limit.
In this paper we will show that the following picture is [J',Xg)b]:ifijkxgb’ [Ia,Xbb]=ieabCX{)°, [X'oa,XJOb]=0,
consistent with largéN. QCD: (1)
(i) The nucleon-nucleon interaction can be described by a
potential of ordem. but not by a Bethe-Salpeter kernel of wherei,a=1,2,3 are spin and isospin indices.

orderNc. ) . In largeN. two-flavor QCD, baryons belong to the
(i) The meson-exchange picture can be used consistent|)finite-dimensional irreducible representation of the con-
to describe nucleon-nucleon interactions for momenta of o acteq S4) algebra withl =J=1/2,3/2,5/2. . . [3-5]. For

0
der_NC : ) N.=3 thel =J=1/2 andl = J=3/2 states are identified with
(|||)_The meson-exchange picture of the nucleon-nucleoR,o nucleon and\. Other states are presumably a lahge-
&Otem'al (of orderN) breaks down for momenta of order uitact. The meson-baryon couplings connecting the states
‘with different spin and isospin are given in terms of the
matrix elements oX'?, which is defined by its matrix ele-

powers inN. yielding the spin-flavor structure of Ref&,7]. ments between baryon stafesg., Eq.(4)]. This operator is

(v) The contracted SW) structure implies a central role €dua! to Xg at leading order in the Nc expansion. As
for intermediate states containirgs. shown in Ref[4], the next-to-leading order term is propor-
The basic strategy of this paper is to assume that the pidional to Xg'
ture outlined above is correct and then to show that it does
not lead to any inconsistencies up to and including two-
meson-exchange potentials. The key difficulty that must be
addressed is the problem of the crossed-box graphs men-

tioned above: If point(ii) is correct then they must be in- where « is a constant independent of the spin and isospin
cluded; hgwevgr, they generically contribute to the potentialngices. As a result, the spin-flavor operatofé commute
at orderNg , which exceeds the potential’s supposed oider up to O(N. 2) corrections

Cc

scale from point(i). More generally they lead to contribu-
tions that are inconsistent with the spin-flavor structure of 1

Refs.[6,7]. However, as we will show, all contributions from [Xia,ij]zo<_) _ 3)

the crossed-box graphs that are inconsistent with the spin- §

flavor structure of Refd.6,7] are canceled by contributions

coming from the retardation effects in the box graphs. While  Meson-baryon couplings satisfying the contracted spin-
it has long been known that such a cancellation occurs foflayor symmetry are listed in the third row of Tables | and I.

scalar isoscalar mesons between retardation effects in thghese couplings are obtained from the nonrelativistic reduc-
box graph and the crossed-box grafi], it has not been  (ion of the corresponding covariant Yukawa couplings with

previously shown that such cancellations are far more gensqg rections suppressed byN}/. The matrix elements of the

eral and protect the largi structure of the nucleon-nucleon yia gonerators between the baryon states are given in terms
potential including the hierarchy of large and small contrlbu—of the Clebsch-Gordan coefficients b4

tions in terms of spin and isospin. It will also be shown that
such a cancellation does not occurAifintermediate states

c-
(iv) The leading order nucleon-nucleon potential is sym
metric under contracted §4) with corrections down by two

Xia:

(04 .
1+ X@+O0(1N?), )
Cc

are excluded or if the momenta of the nucleons is of order { ’|é,J’Jé|Xioa|||3,JJ3>: %(J’,Jéu‘]g;li)
Ng.
x(1",15]11 3;1a), (4)

Il. REVIEW OF THE SU (4) CONTRACTED SYMMETRY

The baryon sector of largd. QCD exhibits an approxi- where only spin and isospin labels of the baryon states are
mate SW4) contracted light quark spin-flavor symmetry shown explicitly.
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TABLE Il. Nonrelativistic vectors and pseudovector meson-baryon couplings. The ground state t&ryons
belong to an irreducible representatiba J.

Vectors Pseudovectors
=0 =1 =0 =1
Meson o' P Pt p f. a,
Meson-baryon coupling B'BV'  B'e; J*BJ'VI  B'I?BV® B¢ X*Bd'VI2 B'J'BA" B'X"BA?
Scaling VNg (WNo) (WNo)~? VN, (WNo)~* VN,
Spin-flavor term 5 \ V3 Vi Vo v
KSM scaling N P Nt N, I\ N,

We will need to know the matrix elements of the anticom-y, _\/0,\0; 0 0 > &,\/0 1
= gy o+ VS + Vel - S+V +(V,
mutators between the nucleon states. When restricting atten-"" ~° o (0" 727 T2 ELS Rzt (Vo

:ir?ant to nucleon initial and final states one can easily deduce +V2i00) 02+ VISt Vil - S+ V5Q1o) 1) 7(2)»
(6)
o 1 . 1 where
1 a — a
{J ,XJ }N'N_zéljl +O m ) R N N N N
¢ 812:30'(1)'r0'(2)'r_O'(l)'O'(Z),
1 r . . .
{12,X0} g =5 673+ 0| = ) lezz{‘f(l)'l—,tf(z)'l—}, (7)
) 2 N ’
C

whereL andS are the total orbital and spin angular momenta

where we have used the fact t#aand| ? only take nucleons ©f the system of two nucleons. The operators in @y mul-
into nucleons. ThR@(1/N,) corrections in Eq(5) vanish due  UPlying the position and velocity dependent functions
to the fact that the constantin Eq. (2) is independent of the Vn~ (n=0,0,T,LS,Q) are referred to as the central, spin-
spin and isospin. spin, tensor, spin-orbit, and quadratic spin-orbit components

The largeN, scaling of the baryon matrix elements have of the nucleon-nucleon potential in the isosinglet and isotrip-
been analyzed in Ref§4,5]. Since a general one-quark op- '€t channels. _ _ L
erator(e.g., axial vector curreptan couple to any of thd, In Refs.[6,7], the largeN, scaling of functionsv;“ was
quarks in a baryon, its matrix elements between ground sta@nalyzed using the spin-flavor counting rules of the genera-
baryons are of ordeN, (providing the cancellation between tors of the contracted S4). The analysis is based on two
different quark-line insertions does not occufhe operators ~@ssumptions. One is that the nucleon-nucleon interaction can
with spin-flavor structure given by and X'@ behave in this D€ described by a Hartree Hamiltonian, which can be written
leading fashior{4]. On the other hand, currents containing @ @ sum of operators with a particular spin-flavor structure
only J' and 12 are of orderN?. Heuristically, the reason is Sa&lisfying the largeN. scaling rules of the contracted 84)
that for baryons withl=1=1/2,3/2 only one out ofN symmetry. In addition, the authors implicitly assumed that

y R C . .

quarks carry the spin and isospin quantum numbers of thE'€ Hartree picture leads to a potential of ordigrfor mo-
state. The largé¥, scaling of a meson-baryon coupling is r_nen;a of orde_r one. At_ the hadronic level, the latter assump-
obtained by dividing the corresponding current matrix ele-lion i essentially equivalent to a one-meson-exchange pic-
ment by the meson decay constant, which is of omifei”z ture of the potential. Based on the above assumptions, the
Hence, the meson-baryon couplings containing spin-flavorOIIOWIng counting rules were obtained in Ref8, 7]
operatorsl or X' are of orden\lg’z. Examples of such lead- 1
ing couplings are the couplings 6§ and = mesons to bary- VI~VE~Vi~N;, Vi~Vo~Vi~ T (8
ons. In addition, the time component of (') and spatial ¢

components op (p) anda, (a,) couple to the baryons with |, aqgition, the spin-orbit and quadratic spin-orbit compo-

a strength proportional tblg . Couplings containing' and  pents suppressed byng~1/N. (mg is a baryon magsare

12 are of ordeiN; 2. The examples include the couplings of of order 1N2. The scaling rules in Eq8) will be referred to

ay and », spatial components ab and f; (J) and f]), and as KSM counting rules.

the time component gf (p'). These counting rules are listed It is easy to see how the counting rules in E8). arise

in the fourth row of Tables | and II. from the largeN. scaling of the meson-baryon couplings at
Similarly, the spin-flavor structure of the nonrelativistic the one-meson-exchange level. At this level, a given term in

nucleon-nucleon potential can be analyzed in the I&ige- the potential,(6) scales as the square of the corresponding

QCD. The general form of this potential is coupling constant. Since, for example, the isoscalar central
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potential at leading order gets contributions frdm ex-  +O(1/N;) (my is the nucleon magsfor the ground state
change, it is of order (N.)2=N.. Similarly, the one-pion baryons withl =J=1/2,3/2,5/2. . . . Relativistic effects are
exchange contributes to the leading part of the isovector tersuppressed by iz~ N 1 The mesons are treated in a fully
sor term, which, therefore, scales agN.)?=N.. On the relativistic form. The meson-baryon vertices are, in general,
other hand, the isoscalar tensor potermglis of orderNc‘l momentum and energy dependent. Note, the time and spatial
since its leading contribution is from ong-exchange. The components of» andp have different couplings at leading
leading contributions at the one-meson-exchange level argonrelativistic ordeTables | and Il. In addition, the spin-
shown in the fifth row of Tables | and II; thid, scaling of  flavor structure ofw' coupling is identical to that of, (or
these contributions are shown in the last row of Tables | andr). Similarly, p' anda, couplings have identical spin-flavor

Il. We will show that the nucleon-nucleon potential is con- structure.

sistent with KSM counting rules, E@8), up to and including A two-meson-exchange diagram may contain a piece that

two-meson-exchange contributions. is equal to one iteration of the potential. These contributions
will be included when solving the Schiimger equation and

1. TWO-MESON-EXCHANGE CONTRIBUTIONS must be excluded from the nucleon-nucleon potential to

avoid double counting. This can be illustrated using the two-
The Feynmann diagrams contributing at the two-mesonscalar-exchange diagrams.

exchange level are shown in Figs. 4, 6, and 5—the box, the The contribution to the nucleon-nucleon potential from a
crossed-box, and the triangle graphs. In these diagrams thge-scalar exchange, Fig. 3, with point couplings is given by
initial and final nucleons are on-mass-shell. This condition is
necessary if the diagrams are used to derive the nucleon- o7 -5,
nucleon potential. The baryon energy-momentum relation is V; (q) 0 °2 3 o
treated nonrelativistically with the baryon propagators hav- a’) |Q| my, |Q|
ing the following form: (10

2

- [1+O(1/N ),

i
KO— |Kk|?/2mg+i e

1 where me[O(Ng)] is the mass of thd, meson and the
O<|\|_C } ©) coupling constanty is of order N, (Table I). Note that
(%2 can be neglected sinag is of orderN_*.
where k® and k are the energy and the momentum of an  Similarly, the contribution of the two-scalar-exchange box
intermediate baryon with mas®g. In practice,mg=m,  diagram, Fig. 4, to the scattering amplitudé is

|
d*k [ dik° 9,
3| o > S >
(2m)*) 2 [(k)?~ K[>~ mE JL(K*+ %)~ K-+ q|*—m] ]

iMD:

1

X - — = — . 11
(Kt |P212me | — KT/ 2me)(— KO+ |pl2/2ma [P —RIZ/2ms (0

It is convenient to first perform thk® integral. There are two classes of poles in the compféplane, namely, from the
baryon and meson propagators. It is easy to see that the baryon poles(if)Eare on the opposite side of the rédlaxis.
By closing the integration contour in the upper or lower complex plane only one of these baryon poles will contribite to
Closing the contour in the upper plane we get for the baryon pole contribution,

iMB dk 2 [1+o( 1” (12)
| = y = > S > = N 1]
7 ) @) (K24 m? )([K+q|2+m2 ) (|| mg—|p—K|2/mg) Ne

where, in addition tag®~N_*, the position of the baryon pol&3=(|p|>—|p—k|?)/2mg, is neglected when the meson
propagators are evaluated. However, the position of the baryon pole is of leading order when the other baryon propagator is
evaluated. As will become clear, this value of a baryon propagator is identical to the nonrelativistic Green function in the
Lippman-Schwinger equation for the scattering amplitude.

The baryon pole contributiorJM% should be compared with one iterate of the Lippman-Schwinger equétiothe
center-of-mass frame

I - d3k . e ..o
T(D.D+Q)=—V(Q)+f(ZT)sV(—k)Go(k)T(p—k-p+Q), (13

where the nonrelativistic baryon Green function is given by
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1

Go(K)= ———=—= —.
(Ip—k|>=|p|*)/mg+ie

(14

The first term in Eq.(13) corresponds to a potential at the one-meson exchange level. For the one-scalar exchange this
potential is given in Eq(10). Iterations of the Lippman-Schwinger equation lead to
0,p+q)=—V(q fdgkv K)Go(K)V(k+q fdgk 3k’v K),Go(K)\V(k+K")Go(K)V(g—K')+
T(p,p+a)=—-V(q)+ 2m)? (=K)Go(k)V(k+q)— 2n7 W( ),Go(K)V( )Go(K)V(q—K")+ -+,
(15
where the ellipsis indicates higher-order iterations. For the two-scalar exchange, the first iteration of the potential in
Eq. (10) is

4
91,

(IK[>+m? ) (|k-+a[*+m? )(|p—KI*/mg—[p|*/mg)

d3k R . Lo d3k

which is exactly equal to the baryon pole contributitim?, change the position of the baryon poles. Thus, the baryon
[Eq. (12)] evaluated with the nonrelativistic baryon propaga-poles from any two-meson box diagrams do not contribute to
tor, Eq.(9). Thus, the baryon pole contribution of the two- the nucleon-nucleon potential. o

scalar box diagram should not be included in the nucleon- We have shown so far that the baryon pole contributions
nucleon potential. Note, that the equality holds only if thefrom the two-meson box diagrams should not be included in

nonrelativistic baryon propagator is used to evaluM%. the nucleon-nucleon potential. However, the retardation ef-
The remaining contribution to\., is from the meson fect and the crossed-box contribution can each be larger than

poles. This contribution is often referred to as the retardatior‘?‘”o_WeOI by the KSM counting mles' For example, the retar-
effect since it is absent when using a static potential. Th&ation effect and crossed-box diagrams corresponding to the

retardation effect for two-scalar exchange is of omd@r(see two-pion exr::hangec:j_are each _Of ordéF. II\/Ioreover, thbe two- g
Table ), i.e., it is larger than allowed by KSM counting meson-exchange diagrams, in general, can contribute to dif-

_ . ; erent spin-flavor structures in the nucleon-nucleon potential,
rules, Eq.(8). Hence, for the two-scalar-exchange dlagram(S:ll:_q. (6). As a result, these contributions considered separately
has to be canceled by the crossed-box diagram. The kdy@y Violate the KSM counting rules of the subleading
issue is whether this cancellation indeed happens. (Nc7) terms in the potential. For example, two-pion-

The baryon pole contribution in the box diagram has beergXchange box and crossed-box diagraeech of ordeiN¢)
discussed for the two-scalar exchange with point couplingscontribute not only td/ but among others to the isosinglet
In fact, it can easily be generalized for any two-meson extensor fOI’CEV$ as well. The latter, however, should be of
change with general vertex functions. Indeed, the aboverder Nc’l according to Eq.(8). Fortunately, as will be
proof that the baryon pole contribution to the box diagram isshown below, the retardation effects cancel against the
one iterate of the potential rests only on the nonrelativisticcrossed-box diagram contributions in all such cases.
form of the two-baryon propagators and the direction of the A cancellation between the retardation effect and the
loop momenta and energy flow through the baryon linescrossed box is well known for the two-scalar-exchange dia-
Neither the spin-flavor structure nor the vertex functions cargrams{11]. The meson pole contribution o1, Eq.(11), is

et d3k dk°2 | o7,
= m —> - -
U @) e L) R m? I+ a2 [k gl ]

1
X = = = =
P[(k°+|p|2/2ms—||o—k|2/2ms)(—k°+||0|2/2ma—||o—k|2/2ma)
a3k o, 1 1 [1+o( 1 H .
- 5= _ _ S — — 11
(2m)7 [k+al* = |k|*| 2/KI>+m?)¥2 - 2(|k+g[?+mF )% Ne
where in the second step we have again neglected terms in the denominators suppressge-tyNL/including the energy
q°; the symbol P indicates principle value.
The contribution to the scattering amplitude from the two-meson crossed-box diagram, Fig. 6, is
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d3k f dKk° o7,

i Mx= 5= < =—
L @m 2 (k07 K- mi (K4 607 K+ gl m? ]

1
X = == = ——= .
(K°+q°%+|p|?/2mg— | p+k+q|%/2mg) (K°+ | p|?/2mg — |p—k|?/2mg)

(18)

Note, the baryon poles are now on the same side of the real axis kf themplex plane. Hence, they do not contribute to
My . The only nonvanishing contribution is from the meson poles,

v d J‘dkozl 9r,
[ S i .
)@ 2w (k02 K2 mE I+ g0~ K+ gl m? ]

1
P = — == = =
(k°+q°+|p|2/2mB—|p+k+q|2/2mB)(k°+|p|2/2mB—|p—k|2/2mB)

4
d3k 9, 1 1 {1+o< 1 ” 19
(2m)7 [k~ [K|2| 2(KI2+m?)*2  2([K+ql+m} )2 Ne/ |’
|

where the same approximations as in Bq) were made. As  , (K°,K,q°,q)
evident from Eqs(17) and (19), the retardation effect and “ ’
crossed-box diagram contribution for the two-scalar ex- (kO k,q%q)
change cancel out up to corrections of orutg‘rl, (21)

NG K>~ m][(k°+q0)2 |k+ql?—mg]’

1
t —
M3 +MX_O(N_C)' (20 wherem, andmy are the masses of the and 3 mesons.
The above-defined function is symmetric under the inter-
change of the exchanged mesoWNss= Vg, . The analytic
| It |sd|mportant to strﬁss uowev?r that the above C?”Cglstructure of\/aﬁ(k ,k,q ,q) as a function of a complex vari-
ation does not occur when the nucleon momenta are of ordefy|a 110 determines the retardation effects of the box graphs
N, since for the momenta of ordd¥; the baryon propagators ;4 the contribution of the crossed-box diagrams.
evaluated at the meson poles are differgad can be seen  rho ghin flavor structure of the meson-baryon vertices
from Egs.(17) and(19)]. Consequently, for the momenta of will be denoted B2, (K). wh . i
order N, the nucleon-nucleon interaction cannot be inter- will be denoted bYl"y(r)(k), where a superscrifk specifies
ife spin-flavor indices and subscript=1,2 indicates

reted as a simple meson-exchange picture consistent wi
D b ge p to which of the two baryon lines a meson couples. The

the KSM counting rules, Eq8). As will be shown below,
momentum dependence arises in the case of derivatively

the cancellation in Eq(20) is far more general. In fact, it led h h p f th
occurs for all two-meson-exchange graphs provided thé:OUpe mesons such as pions. The product of the two

nucleon momenta are of ordé’ and the meson-baryon I (K) structures at two ends of the same meson propaga-
couplings are contracted $4) symmetric. Let us consider a tor are constrained by the spin and isospin of the exchanged
general box and crossed-box diagram containing any pair dpeson To enforce these constraints in the product

intermediate mesons. a(l)(k) Fa(z)( k), we introduce a symbaC4g. For ex-
We will use Greek symbols to indicate an exchangedample, in the case when the exchanged meson is a pion, the
meson, e.g.,a=fq,p,7, .... A given graph contains above product takes the form

four vertex functions, one for each meson-baryon coup-
ling. The product of these four functions will be denoted

by V,(k°k,q°0). The functionV,,(k°K,q°,q) does not Crel ) (KT 2 o) (—K) = — 81 6™ kIKMX(G) X3
contain spin—flavor ma}trices_ of the _correspon.di.ng meson- _ _pigmyia (22
baryon couplings, which will be written explicitly. It is X (2)’

clear thatV,,=Vg,. To simplify the formulas we com-
bine the product oV ,4(k%k,q°%q) and two-meson propa- where the contracted $4) pion-baryon coupling is used.

gators into a single energy-momentum dependent function Using the above notation a contribution from a general
V.5(k%k,q°,0) defined by box graph, Fig. 4, has the following form:
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d3k Jdko V,5(k% K, 0% a) CReCELT a1y (KT §ay(— [k+a DTS 5)(—K)T 5oy (K+0) 23

iM — —
0=9.95 (2m)* (K°+ |p|2/2mg — | p—K|%/2mg) (— K+ | p|%/2mg— | p— K| 2/2m)

whereg,, andg are the corresponding coupling constants, and the momenta directions are shown in Fig. 4. The crossed box,
Fig. 6, has a similar expression with the last tiis interchanged,

(24)

ez [ fd—ko Vag(K®,K,0%,0) CReCEoT aa) (KT o)~ [K+ADT oy (K+ Q)G (—K)
XCEER) (2m)P) 21 (K04 0+ | p|/2mg— |p+ K+ 02/ 2mg) (KO+ | p|2/ 2mg — | p— K| Z/2mg)

Note the difference in the baryon propagators relative to(E8). due to the difference in the momentum flow.

As was previously shown, the baryon pole contribution to the box graph is the first iterate of the Lippman-Schwinger
equation while these poles do not contribute to the crossed-box graph at this order. As in the case of the scalar exchange, the
k° integration in Egs(23) and (24) can be performed via contour integration. Whatever the explicit form of the function
Vaﬁ(ko,lz,qo,(i) its contribution to thek® integral is given by its imaginary part. The important point is that the same function
appears inM- and My . Since the intermediate baryons cannot go on-shell at the meson singularities their contribution equals
the principal values of their propagators.

The retardation effect of the box diagram is

d3k > s -
ME'=9.95 J 2|m[vaﬁ<k°kq D1CRCEOT Gy (KT iy — K= Do) KTz (k-+ )

1 1
X - —— = ——
PLk°+||0|2/2ma—||o—k|2/2mB) (—k°+|p|2/2ms—|p—k|2/2ms)

d3k 0
agﬁj 2|m[Va;;(k k.a%,q)]
w .- 1
X CasClo (1)(")F Gy (— [k+q]Is a2)(— k)T poyk+a)1+0 N | (25
Similarly, the crossed-box contribution coming entirely from the meson singularities is
My = gagﬂj (27 )sf 2|m[vaﬁ(ko K.q° .9)]CasCEp (1)(")F (= [k+a)T (2)(k+Q)Fa(2)( k)
v 1
<k°+q°+|5|2/2mB—|6+E+&|2/2m8)<k°+|5|2/2ms—||5—IZ|2/2mB>
—“f dgkfdkzl V5(kO,k
_gagﬁ (2 )3 m[ aﬁ( q QJ kO)
. 1
XCABCCDFa(l)(k)F (= [k+Q])F/3(2)(k+Q)Fa(2)( k)| 1+0 N | (26)

Note that only in the nonrelativistic limit the principal values of the baryon propagators are equal and opposite M@)’oth
and My . As a result, the sum of these two contributions is proportional to a spin-flavor commutator,

dk [ dKk°
MrEt"'Mx gagﬁ 2n )3f 2|m[VaB(k0kq Q)]P[ ko) CABCCDF (1)(k)F5(1)( k— Q)
B , [\1D (Cup i
X[T g2)(=K), I goy(k+a) ]| 1+ 0O N ) : 27
C

In general, we have to include both orderings of the exchanged mesons. (27Ethe first meson igx. Changing the meson
sequence and keeping the loop momenta flow unchanged we get
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. 5 d3k [ dkO 0F 0= cannot violate the KSM counting rules. These are the ex-
MS+MX:gagﬂf Wf 5-2IMVap(k7k,0%,0)] changes of the following meson pairs:

1
XP[ (k%?

- . - where the meson pairs in the square brackets have been pre-
><[Fg(l)(k)’F/u\z(l)(_ k=a)] viously considered, Eq30).

This leaves us with nine nontrivial meson pair exchanges
” (28) whose contributions via the box and crossed-box diagrams
can potentially spoil the KSM counting rules. Out of these,

three pairs couple to baryons only via nonderivative cou-
plings,

. s (a020), (7). (f1f1), (4f1), [(@om). (aofy)],
CaeCco (3D

XT 9oy (— KT8, (k+9)| 1+0

Ne

where we used/z,=V,g. Now, the commutator involves
the meson couplings along a different baryon line.

The largeN, scaling of the retardation effect and the
crossed-box diagram taken separately is given by the product
of the coupling constangigz. However, as seen from EqQs.
(27) and (28), their total contribution is proportional to the
commutators of the spin-flavor operators evaluated betweegnq the remaining six pairs require one or two derivative
the ground state baryons. The cancellation between the retagpplings,
dation effect and the crossed-box contribution up to higher-
order corrections happens due to the presence of the commu- (agm), (pm), (nay), (wfy),—O(NY),
tator.

A number of mesons shown in Tables | and Il make iden-
tical contributions to the spin-flavor structure of the nucleon-

nucleon potential, Ec{_ﬁ). For exam_plefo and the time com- |y Egs.(32) and (33 the largeN, scaling of the product of

ponent of thew contribute to the isoscalar central potential corresponding coupling constargﬁg%, in the box and the

V8; the = and spatial components gf contribute to the gssed-box diagrams has also been indicated.

isovector tensor force. Other such pairs ageandp', 7 and The considerations of the meson pairs in E82) are

w, m and p. Thus, out of ten couplings in Tables | and Il simpler than those with derivatively coupled mesons, Eq.

there are only six independent structures. They give 36 dif{33), and will be considered first. The analysis of the ex-

ferent combinations for two-meson exchange graphs counthanges with derivative couplings requires performing angu-

ing combinations differing in the meson sequence. Out ofar integration and is done in the Appendix.

this the number of distinct meson pairs is 21. The retardation effect, Eq25), and the crossed-box dia-
The commutators in Eq$27) and(28) vanish identically  gram, Eq.(26), involving exchanges dd, anda, contribute

for those graphs in which at least one of the mesorig ®r (g jsoscalar and isovector spin-spM2 and V1, terms; the
o). The reason is that the spin-flavor structuref { ") is (F,.3,) exchange contains'g! term in addition tov? . The
given by the unity operator, which commutes with any other 01’ 1 g _ ‘fo 0 Lo

operator. This insures the lardé. consistency of the two- Nc-order contributions toV, and V, from (ag,a;) and

meson box and crossed-box diagrams containing the foIIO\A&Fl,él) exchanges violate the KSM rules, E@). Fortu-

(apay), (fia1),—O(ND),

(a;a;),—O(N2?), (32)

(mm), (may),—O(N2). (33

ing six (independentpairs of mesons: nately, these contributions are canceled in the sum of the
retardation effect and crossed-box diagram, EG3) and
(fofo), (fofp), (fom), (foan), (foay), (fom). 9 (28),

f1 ~a; A - C I,
. _ cAchchFFl(l)(k)Fél(l)( —[k+q])
Note, as discussed above, the same cancellation occurs when

o' is exchanged instead 6. X[T2 (—K),T2 _ (k+q)]

Similar cancellations occur for contributions of the box f1(2) 24(2)
and crossed-box diagrams containing the following pairs of — 73 xiarj '
mesons: ? J 9P _‘]I(l)xj(?)[‘]l(2)*xj(g)]

1 . _ . _ .
— 1 ja I ja I ja
(agm), (aol?l), (30 - 2({J(1)'x(l)}+[‘3(1)ax(1)])[3(2),X(z)]

since the spin-flavor structure af, E:ouplings contains only _oxkayka | i (34)
|2 generators while the couplings df and % contain onlyJ' (17 Ng ’

generators, which commute withk, Eq. (1).

A number of the meson-baryon couplings in Tables | andfor (f,,a;) exchange and similarly forag,a,) exchange. In
Il are of orderN; 2. Hence, the exchange of any pair of the last step in Eq34) we used the commutation and anti-
such mesons is suppressed by at Ie@f and, therefore, commutation relations of the generators of the contracted
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SU(4) symmetry, Eqs(1) and (5). Thus, these exchanges, grams. Since these diagrams contain only one baryon propa-
when both box and crossed-box diagrams are included, comator, its pole does not contribute to the potentibk con-
tribute only to the isovector spin-spin term of the nucleon-tour of the complex? integration can always be closed in
nucleon potential up to corrections of orddag‘z. Thisis an such a way as to avoid the baryon pol&s we will show
allowable contribution by KSM counting rules. shortly, the contributions from the meson singularities in the
The box and crossed-box diagrams corresponding ttriangle graphs add up to cancel all terms that violate the

(a;,a,) exchange are of ord®?. The corresponding retar- KSM counting rules. _ _

dation effect and crossed-box diagram separately contribute A 9iven triangle graph can be associated with a corre-
to V8, V(lr’ andvg. The first two terms are of orded, and spon(_jlng box or crossed-box diagram by shrinking the ap-
the third term is ofordeNgl, Eq. (8). However, the product propriate baryon propagator to zero. It can then be shown

g . , that the sum of the appropriate pair of the triangle graphs,
Klf,t?e spin-flavor structures in Eq&27) and(28) is of order shown in Fig. 5, is similar to Eq$27) or (28). The essential
(o] ’

point in the above discussion was the presence of the com-
mutator in Eqs(27) and(28). The same commutator appears
a;~a A \C LS in the sum of the triangle graphs.
CABCCDFal(l)(k)Fal(l)( [k+al) What are the pairs of the triangle graphs that correspond
to the box and crossed-box diagrams, which led to Ezjs.

B > D Y
X7 2~k IZ o)(k+a)] and (28)? These graphs contain the same meson pairs. The
i wib rvia i two corresponding graphs differ according to which baryon
=XpXwlX@2) X)) line the four-point meson-baryon vertex is attached to Fig. 5.
1 In addition, twol" structures at the four-point vertex of one
: b A " , b ; . . :
= 5({ ) XEHIXE) XD DIX (G X{3)] of the corresponding graphs are in opposite order relative to

the sequence of these structures in the other graph. This leads
to the appearance of a commutator in the sum of the corre-
) ’ (35) sponding triangle graphs.
In the case of the box and crossed-box diagrams the di-
rection of the energy flow assured that the retardation effect
where in the third step we used the fact that the anticommuand the crossed-box contribution are equal and opposite up
tator is symmetric and the commutator is antisymmetric unto 1N corrections. The sign difference was due to the prod-
der the simultaneous exchange of the spin-flavor indicesict of the principle values of the baryon propagatier
(ia)—(jb); the largeN, of the baryon matrix elements of the nonrelativistic reductionEgs.(25 and(26), which had
[X'8,XIP] is given in Eq.(2). Combining theN? suppression different signs for the box and crossed-box diagrams. De-
in Eqg. (35) with the Ng scaling of the producgl;g1 we see that splte_the_ presence of only a single barypn propagator, the
i o i 1 contributions from each of the corresponding triangle graphs
the sum in Eq(27) [and similarly in Eq.(28)] is of order  come with opposite signs due to the different flow of the

NC_Z, which is consistent with KSM Counting rules. Note that energy and momenta, F|g 5. The sum of these two graphs is
in this case full contracted SY) algebra has to be used to

ensure the cancellation. Thus, the cancellation of the retarda-
tion effect against the crossed-box diagram requires an inclu-

T 1
= SIX& XD '(3)’X'(g)]”o(ﬁ

c

3 0
sion of both nucleon and intermediate states. If one re- M1+M2=gagﬂgaﬁf % 2—k2 Im[VaB(kO,IZ,qO,d)]
stricts the intermediate states to nucleons only, the (2m) m
cancellation would not occur. 1 . o
Thus far, we have shown that the retardation effect of all X P[ -0 CasCeol a (KT Gy (—k—q)

two-meson exchange diagrams without derivative couplings,
Eqg. (32), cancel against the corresponding crossed-box . .
graphs. As is shown in the Appendix, similar cancellations X[T 52y (—K). T gy (k+a)]
occur for the remaining six meson pairs, E§3), which

involve one or two derivatively coupled mesons.

In addition to box and cross_;ed—pox diagrams, any .pair Of/vherega,; (orderNg for all « andB) is the coupling con-
mesons can be exchanged via triange “seagull’) dia-  stant of the four-point vertex and the functih is given
grams, Fig. 5, containing a fo_ur-pomt mes_on-baryon vertexby Eq. (22 providedvaﬁ contains the product of the three
The spm-flaxor s}ructure of this vertex is Q'Ve” by the prOd'meson-baryon vertex functiorigcluding one corresponding
uct of twoT", (k) operators. The four-point meson-baryon tg the four-point vertex A similar expression can be written
coupling is of ordemy for any meson paif2]. Hence, the  for the sum of the two triangle graphs in which the sequence
largest scaling of a triangle diagram g, e.g., when two  of the @ and 8 mesons is changed as in EGS).
pions orf, and »' are exchanged. Thus, the triangle graph It is clear that the sum in Eq36) contributes to the same
cannot violate the scaling of the leadi@(N;) spin-flavor  spin-flavor terms as the sum in E@®7): both expressions
terms, Eq.(8). However, the subleading)(Nc_l) terms  contain identical spin-flavor structures. The differences in the
might be sensitive to contributions from the triangle dia-integrands are irrelevant as far as the cancellations in Egs.

Z| -

o]
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(27) and(28) are concerned. As a result, the lafggscaling  there is no part of the box graph to cancel lﬂdéorder

of the contribution in Eq(36) is that of Eq.(27) times scal-  contribution from the crossed box. Therefore, unlike the po-

ing of (g.95) " tential, the Bethe-Salpeter kernel cannot be associated with
Hence, when all the contributions of the triangle graphsan overall strength oN.. Presumably, the Bethe-Salpeter

are included, the resulting spin-flavor terms are consistenternel has contributions scaling &k to all powers arising

with the KSM counting rules, Eq8). from multiple meson exchanges.
The second point made was that the meson-exchange pic-
V. CONCLUSION ture of baryon-baryon interactions with the leading part of

the potential scaling adl; is consistent with the meson-

At a technical level we have shown by explicit calculation exchange picture of the potential provided the momentum

that if meson-baryon couplings scale according to the Stanéxchanged is of ordeNS. It was shown explicitly using

dard largeN. rules, then the two-meson-exchange contribu- lativistic ki tics that at the level of t
tions to the nonrelativistic baryon-baryon potential are conltonrelativistic kinematics that at the [evel of twe-meson ex-

sistent with the larg&, KSM scaling rules deduced in Refs. change, all “danger_ous” (_:ontrib_utions o _the potentie_ll can-
[6,7]. This is highly nontrivial since the derivation of these celed so that there is no inconsistency with a potential scal-

rules in Refs[6,7] only included diagrams that correspond to N9 asN.. It is reasonable to expect the beh.avior to hold for
one-meson exchange when translated to the hadronic levélny number of meson exchanges. If true, this strengthens the
This certainly adds confidence that Rei8,7] correctly de-  €as€ for using meson-exchange models to describe nucleon-

scribed theN,, scaling behavior of the nucleon-nucleon po- Nucleon interactions. , ,
tential in the largeN, limit of QCD. The essential issue in  However, it was also argued that the idea of a potential

the calculations here was that the retardation contributions t§€Scribed by the meson-exchange picture is unsuitable for

the potential from the box graph cancel against the crossedl0menta of ordeN, . At a technical level this is apparent in
box contributions for all spin-isospin structures in the poten-£9S-(17), (18), (24), and(25) where the cancellations of the

tial where the retardation contributions or the crossed-bo0X and crossed-box graphs depend explicitly on the nonrel-
contributions separately violate the counting rules. ativistic form of the propagator. If momenta of ordég were

The derivation presented here was done in a “brute force’used, the cancellations clearly fgul to oceur. Thu_s the useful-
manner. Namely, we considered the various meson ex2€ss of the meson-exchange picture is not evident for mo-
changes one at a time, identified the contributions to thénenta of orde.. In fact, it is quite satisfying that the
various spin-isospin structures that apparently violated th&vidence of consistency breaks down in this regime for a
KSM largeN, scalings, and showed that in all cases theynumber of reasons. In t'he flrlst place Wltten’s_TDH picture of
canceled. It would be very useful to find a more generafaryon-baryon interactions is more appropriate fofN;.
method for demonstrating the cancellation. While the methThis picture has no obvious meson-exchange interpretation.
ods used here were adequate for the two—meson—exchan&@e internal structure of each_ b_aryon is dls_,tqrted in the pres-
case, it would be extremely cumbersome to extend them t§NC€ Of the other. Moreover, it is not surprising from a more
three-meson exchange or higher. Given the cancellations féfaditional hadronic viewpoint that a meson-exchange poten-
all “dangerous” contributions at the two-meson-exchangeli@l picture breaks down in this regime. ff~N. and my
level it seems reasonable to expect that such cancellatiorisNc then the kinetic energy of the baryons is also of order
will occur for any number of meson exchanges and that thdlc- Since meson masses are of ordé}, an increasing
full baryon-baryon potential will be consistent with the KSM number of mesons are produced. It is hardly surprising that
scaling rules. However, a general proof of the cancellationghe potential picture breaks down in this situation.
for all orders would be desirable. A fourth point raised in the Introduction was that relative

In the Introduction it was argued that the lafyg-scaling sizes of the various spin-isospin structures in the nucleon-
behavior of the baryon-baryon interactions gives some gerucleon potential are consistent at the two-meson-exchange
eral insights into the under|ying physics arising from QCD_'GVG' with those deduced from the Contracted($L$tructure
In particular, it was argued that a consistent picture emergeif KSM. Moreover, if one looks carefully at all of the can-
and five aspects of this picture were enumerated. Let us no@ellations, one finds that corrections to the leading behavior
briefly discuss how the calculations discussed above suppovtere all INZ suppressed. This is consistent with R¢657]
this picture. where it is found that subleading spin-isospin structures are

The first point raised was that while a nonrelativistic po-down by factors Nﬁ. Overall this strongly supports the
tential used to describe the interaction has overall strength afiew that the expansion is in fact inl\]@ rather than in M, .
orderN., the kernel of a Bethe-Salpeter equation does not The final point stressed was that theplays an essential
have a simpleN, dependence. As noted many times, therole. As is evident from Egs(35) and the Appendix, the
Nﬁ—order contribution to the potential from the crossed-boxcancellations between the box and crossed-box graphs do not
graph is canceled by the retardation effect from the booccur if intermediate states are restricted entirely to nucle-
graph. However, such a cancellation cannot happen in thens; A resonances are required as intermediate states. More
context of the Bethe-Salpeter equation. The entire box grapbenerally one expects that as the contracted4gktructure
(including meson pole contributionss an iterate of the is used to obtain cancellations, the entire=J
Bethe-Salpeter kernel and hence cannot be included as a con-1/2,3/2,5/2. . . tower of baryon states can contribute. Up
tribution to the kernel. Thus, in the Bethe-Salpeter contexto two-meson exchange with nucleon as initial and final
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states, however, only nucleons afdts can contribute. one may find that the particular phenomenological predic-
The formal consistency of the lardé- treatment and the tions to date—the Wigner S¥) symmetry and the charac-

meson-exchange picture is quite satisfying. However, conteristic relative sizes of the various terms in phenomenologi-
siderable caution should be exercised in trying to draw coneal potentials—are robust and remain valid even after the
clusions about the real world ®.=3. We have used B,  smallness of the typical nuclear scales are included. Whether
as a counting parameter to distinguish large from small conor not this turns out to be the case, however, we may still be
tributions. This is Cleal‘ly |eg|t|mate if all the coefficients able to learn qua”tative'y interesting th|ngs For examp'e,
multiplying these factors are natural, i.e., of order unity.the cancellations seen in the two-pion-exchange graphs re-
However, all coefficients are not natural. One key difficultyquire thatA intermediate states be included. Féy=3, one

is that the meson-exchange picture is being used here o COfjgeg ot expect such cancellations to be perfect, but the gen-

nect hadronic phe_nomena with nu_clear phenomena. Hows o tendency to cancel should survive. This suggestsihat
ever, the scales in nuclear physics are generally mucﬁ

. . ) : ox and crossed-box contributions should be comparable in
smaller than those in hadronic physids)]. It is not clear P

. ize to those with nucleon intermediate states. This issue may
directly from QCD why these nuclear scales are so small an@e relevant for potential models motivated by chiral symme-
it is generally thought to be “accidental.” The interplay be- P y y

tween small nuclear scaldéhat may be large in a b try where two-pion-exchange contributions with nuclear in-

sensg with much larger hadronic scaléthat may be small termediate statgs gre included gt next-to-leading order but
formally in a LN, sensg can potentially spoil the results of €XPlicit A contributions are not includefl3]. At a more

a straightforward ™, approach. To show how extreme this qualitative level, the fact that at lardé; a meson-exchange
problem may be we can consider the deuteron binding ennotivated picture of the potential is consistent gives at least
ergy B (which is formally of orderN,) and theA-nucleon Some support for the view that more generally nucleon-
mass differencen, —my (which is order IN.). If all coef- ~ nucleon interactions can be described in terms of meson ex-
ficients were natural, one would expeé&to be an order of changes.

magnitude larger tham, —my, whereas, in fact, it is two

orders of magnitude smaller. It would not be surprising that

difficulties might arise when calculating if one neglects ACKNOWLEDGMENTS

m, —my as being “small.” ,

The largeN, structure of the nucleon-nucleon potential ~ 1Nis work was supported by the U.S. Department of En-
has been so far used phenomenologically in two context§rdy, Grant No. DE-FG02-93ER-40762. T.D.C. wishes to ac-
The first is as an attempt to justify the observed approximat&nowledge discussions with M. Luty, D. Phillips, J. Friar, F.
Wigner SU4) symmetry[12] in light nuclei as arising from Gross, and S. Wallace. He also acknowledges support at the
the underlying contracted $4) structure in the larg&¥, po-  INT where progress was made on this work.
tential[6]. The second is an attempt to justify the qualitative
sizes of the spin-flavor structures in phenomenological po-
tentials as being explained by the contracted48dtructure APPENDIX
in the largeN, potential[6,7]. It is not immediately obvious . ) )
that these two explanations are legitimate in light of qualita- N this appendix we discuss the box and crossed-box
tively distinct nuclear scales that are not associated with thgraphs with one or two derivative couplings, Eg83). As in
1/N, expansion. Clearly, this issue needs further investigathe case of the nonderivatively coupled mesons (&2), the
tion. However, it is also not immediately clear how to for- sum of the retardation effect and the crossed-box diagram
mulate a systematic expansion, which incorporates tNe 1/ can be written as the sum of the products of anticommutators
scaling rules while allowing nuclear scales to be muchand commutators of the spin-flavor generators. The cancella-
smaller[13] than hadronic scales. The comparison of thetion of the terms that violated spin-flavor counting rules es-
qualitative sizes of the spin-flavor structures in phenomenosentially has occurred due the symmetry properties of these
logical potentials with what is expected from laiye raises  products under the interchange of the spin-flavor symmetry.
another issue. The potentials predicted in laijeare not  The remaining terms are either consistent with the counting
nucleon-nucleon potentials; rather, they are coupled channeliles or suppressed byN? as in Eq.(35). However, when
potentials for the full tower of =J baryon states including derivatively coupled mesons are included, the symmetry of
an explicit A. The phenomenological potentials to which the products of commutators and anticommutators under the
they are compared have the explidits integrated out. It is interchange of spin-flavor symmetry is broken due to the
by no means clear that the act of integrating &gt does not  contraction of the spin-flavor generators with momentum in-
alter the spin-flavor structure. Again, this requires furtherdices. In order to see the cancellation, the angular integration
study. in Egs.(27) and(28) must be performed. In this appendix the

Given these possible difficulties in drawing phenomeno-cancellation is shown for the two-pion-exchange diagrams.
logical conclusions from largsk, potentials, one might ask The exchanges involving other pairs of mesons,(Bg), are
about the relevance for the real world of our demonstratioressentially identical to this case.
that largeN. counting rules are consistent with the meson-  The retardation effect and the crossed-box contribution is
exchange picture of potentials at the two-meson-exchanggiven in Eq.(27), which has the following form for the two-
level. Of course, it remains possible that after a careful studpion exchange:
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Mt f d3k dkop[ }
x=9r

X2 |m[vm,(k°,k,q°,q)]

(1) (1)[X(2), (2)]k'k(kj+q])(kr+(1)

1
N_C .

After k° integration Eq(A1) reduces to

x|1+0 (A1)

ME+ Mx=g", f(z fdﬂdel dl.k-g.a°)
X XXX Gy X5y IK K (K +a) (K" + ),
(A2)

where the explicit form of the functioR(|k|,|q|,k-q,q°) is
not required for the following discussion.
Let us consider the angular integration in E42),

Ing dQF (K], |dl.k-d,g)KK (K +d)) (K +3").
(A3)
The general form of this integral is
lo=(818"+5"8"+ 8" ") t1(|Kl.|al.a°)
+q'a’a'q"fo(|K],|al,q°)
f3([k[,|al,a%)
+(5ijq|ql’+ 5irqjq|+ 5j|qiqr

+8q'q)) f4(|K],|al,q%),

+(5ilqjqr+ 5jrqiql)

(A4)
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where the product of the commutator and the anticommuta-
tor vanishes because the commutator is antisymmetric under
the a—b exchange while the anticommutator is symmetric.
The remaining product of the two commutators is of order
Nc’4 from Eg. (3). Thus, an overall contribution of this term

is of order N_?, which is consistent with KSM counting
rules, Eq.(8). Note how the angular averaging of E#?3)
induced symmetry properties of the spin-flavor matrices in
Eq. (Al).

The second product ak’s in f; leads to an expression
identical to Eq(35); its contribution, therefore, is suppressed
by N_ * as well. The suppression of the last term multiplying
the f, is easily observed,

" I XGHXEIXE) X (2]

=XEHXDHIXE) X))

1
=5 {X(l), (1)}+[X(l), (1)])[)((2), (2)]

1

=0 —
NG

1 1
=51 Gy XIOHX{3) X1 +0| — N

c

(A6)

where in the last step we used antisymmetry under the simul-
taneous exchanges—b andi«j,

{XG) XEHIXE) X2)1= = {IXG) XHXE)  X(3))-

(A7)

Similarly, the product of the four components of the ex-

where functionsf,, f,, f5, andf, do not depend oik-q.
The form of thel, can be obtained from general arguments
based on the symmetry properties of E&3) under the vari-
ous exchanges of the momentum indices.

Each term in Eq(A4) when combined with spin-flavor
generators in EqAL) is suppressed ng"’. Let us see how
it comes about for each term separately.

The first product of Kronecker deltas in tlig term leads

ternal momenta multiplyingd, is of orderNC‘“,

g'qlq'q X(l) )[X(z), (2)]

1
2q q'q qr{x(l)v (1)}[X(2), (2)]+O N

c

1
=0| —
N

to

818X (1) XEXEy X(2)]

: (A8)

c

where the vanishing of the last product can be seen after the
substitutiona«<b, i< j, andl<r,

XAXDIXE) X))

({X(1), (1)}+[X(1)y (1)])[X(2), (2)]
g'a'd'q {X(l) -X(l)}[X(Z)r (2)]
{X(l)' (1)}[X(2), (2)]+ [X(l), (1)][X(2), (2)]

=—q'9'q'q"{X3) XEIIXE) Xyl (A9)
1
=0| — |, (AB) Similar arguments can be used to show the vanishiipg
N¢ to O(Nc_4)] of the term containing the functiofy:
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(8"'qlq"+ 5jrqiql)xi(1) (1)[X(2)1X(2)]
= XGXEIXE) X3+ A a XX XE) X(3)]
=d'q'XXDHIXE) X))+ a'aXEXAXE) X2

=qjq'X (1)[X(2), (2)]+q qX (1)[X(2), (2)]

(A10)

1
—QQ[X(l)’ (1)][X(2)- (2)] o) N

C

where in the second equality we changed the indiexo | in
the first term and exchanged- | in the second term; in the
next step we make tha—b exchange in the second term.

The first term multiplyingf , in Eq. (A4) is suppressed as

follows:
5ijq|qr (1)[X(2), (2)]
_qqx(l) (1)[X(2), (2)]

1 1
= §q q{XEG) X XG) X3+ 0 NG

Cc
_O( C)
N4

(A1)
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Lastly, the sum of the remaining two terms in E&4)
multiplying f, vanisheqgup to O(N_ *)] as follows:

(8"gig'+ &' q'q"H)XG 1) (1)[X(2), (2)]
=q’ qX(l) (1)[X(2),X(2)]+q q X (1)[X(2)1X(2)]
=q'g'X (1)X(1)[X(2), (2)]+qlqlx(1) (1)[X(2),X(2)]
:qiqlx(l) (1)[X(2)’ (2)]+Q'qlx(1)xj(?)[x(2)a (2)]

=5 qlql{x(l) , (1)}[)((2) ’X(z)] +5 qlql{x(l) aXJ&)}

1
N

X[ X5, X(8,]+0

(A12)

where in the second equality we changedji andr«I in
the first and second term respectively; in the next step the
change isa«<»b in the second term.

This completes the discussion of two-pion exchange box

where the vanishing of the last product can be seen via thand crossed-box d|agrams Their mutual contribution has an

substitutiona«< b followed by |« r. Similar arguments ap-

ply for the last term multiplyind ,.

overall scaling ofN. 2 and is, therefore, consistent with the
KSM counting rules, Eq(8).
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