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We study the possible existence of nhonstrange dibaryons and tribaryons by solving the bound-state problem
of the two- and three-body systems composed of nucleons and deltas. The two-body systéhsNue and
AA, while the three-body systems a¥NN, NNA, NAA, andAAA. We use as input the nonlodadN, NA,
andAA potentials derived from the chiral quark cluster model by means of the resonating group method. We
compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
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[. INTRODUCTION the remaining configuration@4-channel calculationleads
to a triton binding energy of 7.35 MeM]. This means that
Systems without strangeness are those which involve onlthe Swave truncatedT-matrix approximation leads to a
nucleons and nonstrange mesons like the pion or the eta. Inkinding energy which differs from the exact value by less
series of recent papers the suggestion has been made thathian 1 MeV. Therefore by means of our approach we will not
may be possible to observe unstable nonstrange two- argiudy exact binding energies but which are the best candi-
three-baryon states corresponding to the bound-state soldates for bound states and the ordering of the diffeledi,
tions of the various systems composed of nucleons and delt?&NA, NAA, andAAA states.
[1-4]. These are the systenisN, NA, AA, NNN, NNA, NN, NA, andAA interactions have been derived in the
NAA, andAAA. The bound states involving one or more past in the framework of meson-exchange models or phe-
unstable particles will show up in nature as dibaryon or trib-nomenological potential§8,9]. These models have been
aryon resonances. In the case of two-body syst@limry-  used over the years to fit tiéN data very accurately. How-
ons they will decay mainly into two nucleons and either oneever, in theNA and AA sectors experimental data are so
or two pions, while for the three-body caéebaryons they  scarce that it is not possible to obtain reliable values of the
will decay mainly into three nucleons and either one, two, orparameters involved in the interaction. The situation is dif-
three pions. ferent in the case of quark cluster modgl®—-12. In these
In the previous calculations of our gro{ip—4], the Born- models the basic interaction is at the level of quarks involv-
Oppenheimer approximation was used in order to obtain &g only a quark-quark-fieldpion or gluon vertex. There-
local potential for the baryon-baryon interactions fore its parametergécoupling constants, cutoff masses, etc.
(NN,NA,AA). In this work, we will overcome the Born- are independent of the baryon to which the quarks are
Oppenheimer approximation by working directly with a non- coupled, the difference among them being generated by
local potential derived within the resonating group methodSU(2) scaling, as explained in Ref13]. Moreover, quark
(RGM) formalism. This method allows us, once the Hilbert models provide a definite framework to treat the short-range
space for the six-body problem has been fixed, to treat thpart of the interaction. The Pauli principle between quarks
intercluster dynamics in an exact way. determines the short-range behavior of the different channels
In order to perform theNNN, NNA, NAA, and AAA without additional phenomenological assumptions. In this
calculations we will take advantage of the experience gaineway, even in the absence of experimental data, one has a
in the three-nucleon bound-state problE®]. In that case complete scheme which starting from tNéN sector allows
one knows that the dominant configuration of the system isis to make predictions in thdA andAA sectors. This fact
that in which all particles are i&-wave states. However, in is even more important if one takes into account that the
order to get reasonable results for the binding energy, thehort-range dynamics of theA and AA systems is to a
Swave two-body amplitudes used as input in the Faddeelarge extent driven by quark Pauli blocking effects, that do
equations must already contain the effect of the tensor forcanot appear in th& N sector. Pauli blocking acts in a selective
Thus, for example, in the case of the Reid soft-core potentialvay in those channels where the spin-isospin-color degrees
if one considers only th&wave configurations but neglects of freedom are not enough to accommodate all the quarks of
the tensor force in the two-body subsystems the triton ighe systen{14,15. Therefore meson-exchange models can-
unbound. However, if one includes the effect of the tensomnot fully include the effect of quark Pauli blocking through
force in the nucleon-nucleofS;-°D; channel, but uses only its purely phenomenological — short-range  channel-
the 'S, and ®S; components of the two-body amplitudes in independent part.
the three-body equationitvo-channel calculation one gets The lifetime of the bound states involving one or more
a triton binding energy of 6.58 MeV. Notice that including deltas should be similar to that of thein the case of very

0556-2813/2002/63)/0340069)/$20.00 65 034006-1 ©2002 The American Physical Society



MOTA, VALCARCE, FERNANDEZ, ENTEM, AND GARCILAZO PHYSICAL REVIEW C65 034006

weakly bound systems and larger if the system is verywhere
strongly bound. Therefore these dibaryon and tribaryon reso-
nances will have widths similar or smaller than the width of

the A so that, in principle, they are experimentally observ-

able. Also, we want to emphasize that the possible detectioAlthough taken to be linear for consistency with the baryon
of dibaryon and tribaryon resonances does not constitute aand meson spectra, the detailed radial structure and strength
exotic subject since, in principle, any nucleus with at leasiof the confining potential is meaningless for the two-baryon

three nucleons can serve as test system that may be excitpfleraction[17]. a. is the confinement strength, thés are

—X

Y(X)

’

H(x)= Y(X). (6)

3 3
1+—+=
X X

by forming a tribaryor{16].

The paper is organized as follows. In Sec. Il we presen
the basic quark-quark interaction and we describe th
method to obtain the resonating group method baryon
baryon potentials. Section Il is dedicated to discussing th
formalism to solve the bound state problem for the cases

In Sec. IV we give our results, and we present the conclu
sions in Sec. V.

Il. TWO-BODY INTERACTIONS

The basic two-body interaction¥,g_. a5, between bary-
ons A and B that are going to be used in this work are the
nucleon-nucleon interactiovy_.nn, the nucleon-delta in-
teractionVy,_.na,» @nd the delta-delta interactidfy,_, x4 -

These baryon-baryon interactions were obtained from the

chiral quark cluster model developed elsewhdrd. In this
model baryons are described as clusters of three interacti
massive (constituent quarks, the mass coming from the
breaking of chiral symmetry. The ingredients of the quark
quark interaction are confinement, one-glu@GE), one-
pion (OPB), and one-sigmaOSE) exchange terms, and
whose parameters are fixed from &l data. Explicitly, the
quark-quark ¢q) interaction is

qu(Fij):Vcon(Fij)+VOGE(Fij)+VOPF_(Fij)+VOSE(Fij)v(l)

wherefij is theij interquark distance and

Vcon(Fij):_ac):i'xjrij’ 2
1 . (1 = 2. . -
VOGE(r”) Zas)\i')\J r__ﬁ l+§0'|0'] 6(r|1)
ij q
: Si] 3
2.3 ij [
Amgri;
- A?
Vopdrij) 3%ch 27
A3 IR
xXm, Y(mwrij)_EY(Arij) T 0]

3

}aj}%-a, (4)

A
+ H(mﬂ.rij)_ﬁH(Arij)
VoudF) 4mi A2
r.. = — —_—
osel ij ®ch m AZ—m2

w (o8

xm,

A
Y(mafij)—m—Y(Afij)}. )

o

03400

the SU?3) color matrices, ther's (7's) are the spir(isospin
bauli matricess;; is the usual tensor operatong (m,,m,)

§s the guark(pion, sigma mass,«, is theqqg-gluon coupling

constanta.y, is thegg-meson coupling constant, aidis a

utoff parameter.
Cutoff p

systems of identical and nonidentical particles, respectively,fi al

For the present study we make use of the nonlocal poten-
s derived through a Lippmann-Schwinger formulation of
the RGM equations in momentum spgde]. The formula-
tion of the RGM for a system of two baryonB; andB,,
needs the wave function of the two-baryon system con-
structed from the one-baryon wave functions. The two-
baryon wave function can be written as

Vg p,= AlX(P)¥ETg,

= A{X(P) ¢s,(Pe, ) de,(Pe, ) Xa s, 2°1}, (7)

where A is the antisymmetrizer of the six-quark system,

n,\g(ls) is the relative wave function of the two clusters,

¢Bl(5§8) is the internal spatial wave function of the baryon
1

B1, &g, are the internal coordinates of the three quarks of
baryonB; . XngBz denotes the spin-isospin wave function of
the two-baryon system coupled to total sg8) and isospin
(T), and finally,&[2°%] is the product of two color singlets.

The dynamics of the system is governed by the Schro
dinger equation

(H=Eq)|¥)=0=(8¥[(H—Ey)|V)=0, (8)
where
N 52
H=2 5=+ Vij=Tem, ©)
i=1 <]

T..m. being the center of mass kinetic enerlyy, the quark-
quark interaction described above, amg the constituent
quark mass.

Assuming the functional form

2\ 3/4
(b) e—b2p2/2

a
whereb is related to the size of the nucleon quark core, Eq.
(8) can be written in the following way:

ba(p)= (10)

3512

° E
2

x(ﬁ'>+fK(ﬁ',ﬁi)x@i)dﬁi:o, (1)
where
K(P’,P;)=RCMvL(P',P))+ REMy (P ,P)) (12
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TABLE |. Quark model parameters. TABLE lll. Coupled channelsl(s) that contribute to a given
NA state with total angular momentuprand isospin.
mq(MeV) 313
b(fm) 0.518 i i (1,8)

as 0.498 1 1 (0,1),(2,1),(2,2)
a,(MeVfm™1) 67.0 1 2 (0,1),(2,1),(2,2)
Qch 0.027 2 1 (0,2),(2,1),(2,2)
m,(fm~1) 3.513 2 2 (0,2),(2,1),(2,2)
m,(fm~?) 0.70
A(fm™1) 4.3

A. Two-body systems

If we consider two baryond andB in a relativeS-state
Interacting through a potential that contains a tensor force,
then there is a coupling to th&B D-wave so that the
Lippmann-Schwinger equation of the system is of the form

contains the direct and exchange RGM potentlals the later

one coming from quark antlsymmetny.(P ,Pi) is the non-
local potential. From Eq(11) a set of coupled Lippmann-
Schwinger equations can be obtained and solved using stan
dard techniques. The parameters of the model are s

summarized in Table I. They have been fixed in order to IJII I(p' PiE)

obtain the best fit of the two-nucleon sectdeuteron bind-

ing energy andS-wave NN scattering phase shijtand the _ l.S.'.S."(p FREDS p'zdp Visitis (pi P}
A—N mass difference. In particular, the mass of the quark i iy Jo ot T '

(mg) is taken to be 1/3 of the nucleon mass. The pion mass
(m,) is its experimental value. The chiral coupling constant 1 R

(acn) has been determined to reproduce the long-range OPE mt'll.ll.l "(pi ,piE), (13
interaction and is given by.,=(2)2(g2yn/47) (M2/4m3), e

where thewNN coupling constant is taken to tug /47

=13.87. The sigma mass is fixed by the chiral symmetrywherej; andi; are the angular momentum and isospin of the
relation miwmi+(2mq)2. The parameteb, which deter- system, whilel;s;, |{s/, andl{'s{ are the initial, intermedi-
mines the size of the nucleon quark content, was determineate, and final orbital angular momentum and spin of the sys-
by comparing the adiabatldN potential calculated from the tem, respectivelyp; and 7; are, respectively, the relative
wave function solution of the bound state problem for themomentum and reduced mass of the two-body system. We
potential given by Eq(l) to theNN potential calculated with give in Tables II-IV the correspondinN, NA, and AA

a single Gaussian of parametbr A, which controls the two-body channels in a relativ@ wave that are coupled to-
pion-gluon proportion in the model and, as a consequenceyether for the two possible values pandi (since theNN

the strength of the tensor force, has been taken to reprodustate is the one with the lowest mass, in the case of this
the deuteron binding energy in the presenc& afchannels. system we have considered also the possibility of transitions
As the OPE provides part of the—N mass difference, the to higher mass states liIKdA andAA). In the cases of the
value of the strong coupling constantd) is determined to NN and AA systems the Pauli principle requires that
obtain the remainingA —N mass difference. Finally, the (—)'i*Sitli=—1,

value ofa., quoted for completeness because its contribu- As mentioned before, for the solution of the three-body
tion to the baryon-baryon potential is negligiBlE7], is ob-  system we will use only the component of thematrix ob-

tained from the stability condition for the nucleon tained from the solution of Eq13) with I;=1{=0, so that
M y(b)/ob=0 [11]. for that purpose we define tifgwave truncated amplitude
ll. INTEGRAL EQUATIONS TABLE V. Coupled channelsl(s) that contribute to a given

We will describe in this section the formalism required in AA state with total angular momentupand isospini.

the cases of the two-body systeisl, NA, andAA and the
three-body systemINN, NNA, NAA, andAAA.

(Is)

—

0 1 (0,0),(2,2)

TABLE II. NN channels Iy ,Syn), NA channels Ky ,Sna). 0 3 (0,0),(2,2)
and AA channels 4, ,S54) that are coupled together in the 1 0 (0,1),(2,1),(2,3)
35,-°D, and ’S, NN states. 1 5 (0.1).(2,1).(2.3)
NNstate § 0 (o) (hasw)  (Tasoss) 2 : 07 o0 (o2
55-°D; 1 0 (0,1),(2,1) (0,%(2,1),(2,3) 3 0 (0,3),(2,1),(2,3)
s, 0 1 (0,0) (2,2) 3 2 (0,3),(2,1),(2,3)
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0s;0s;
i;si;

tisi. (Pi, P E)=t. 2 (pi P E). (14)
B. Three-body systems

If we restrict ourselves to the configurations where all
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f q’dg;

1
xf dcosét;.q; (Xi, X E—q?/2v))
-1 it

SIII
|SI

S|I|SJ i

IJSI 2

> > h

J#Isji;

(qul

three particles are iiswave states, the Faddeev equations

for the bound-state problem in the case of three particles with

total spinS and total isospir are
(pici) = EEh fqqu,

'j
1 ’ 2
% [ deostt.g (b bl -2

SII
|SI

IJJ
IJS|2

), (19

" E—pi2y, -2y, Td(piay

wherep; andq; are the usual Jacobi coordinates apdand
v; the corresponding reduced masses

ﬂ_:m (16)
Yomi+tm’
_mi(mj+mk)

T mem+my (A7)

with ijk an even permutation of 123. The momeptaand
p; in Eq. (15) are given by

2

pi’zij2 qI +2 q g;jcosé, (18
.-
pr=al+ H'iquJr ZﬁLqiqjcose. (19
hs‘]"'SJ I are the spin-isospin coefficients,
heSHi= (=) S\(25+1)(25+ DW( 00, S 3518

X(—)ij+71_l\/mW(Tkal Ti ’IlIJ)'

(20

whereW is the Racah coefficient ang, , s;, andS (7, i;,
andl) are the spin(isospin of particlei, of the pairjk, and
of the three-body system, respectively.

Since the variabl@;, in Egs.(13) and(15), runs from 0
to =, it is convenient to make the transformation

pi—d

pi+d’

X; (21

where the new variablg; runs from—1 to 1, andd is a
scale parameter. With this transformation Etp) takes the
form

T (xiq). (22
E p] /277] q2/2 J;5|(qu]) ( )
Since in the amplitudg;s; (x; X/ ;€) the variables; andx;
run from—1 to 1, one can expand this amplitude in terms of
Legendre polynomials as

tii, (5 X ;€)= 2 Pa(x) 755 (OPm(X{), (23
where the expansion coefficients are given by
2n+12m+1 (1
Tﬂg:ii(e)= 5 5 f_ldxi
1
X J_ldx{Pn(xi)ti;Siii(xi X @) Pm(X().
(24)
Applying expansion(23) in Eqg. (22) one gets
Tha0a) =2 TI3/(0)Pa(x), (25)

whereTns | (qg;) satisfies the one-dimensional integral equa-

tion
o= = f dg,ATe ™ (ar.0 E)T]3(a)),
J#i msjij 0
(26)
with
2
A a0 E) = ol (B G120
j Py (X)) Pm(X;)
dcos
E pJ/217J qJ/2v]
(27)
The three amplitudesT'flSill(ql) ngz:z(qz) and
gsg'ﬁ(qa) in Eq. (26) are coupled together. The number of

coupled equations can be reduced, however, since some of
the particles are identical. In the case of three identical par-
ticles (NNN and AAA system$we have that all three am-
plitudes are equal and therefore EG6) becomes, in this
case,

ns1| msji;
ij;Sl

Toi(q) = 2%

i(q5,0;;E)TE(q)).
(28)

dq]
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TABLE V. Two-body NN channels f,i) that contribute to a TABLE VII. Two-body NA channels [y, ,ina) and two-body
given NNN state with total spir§ and isospin. NN channels [yn,iny) that contribute to a givehNNA state with
total spinS and isospin.

S [ (.10

1/2 12 (1,0),(0,1) S | (Jnasina) (Innsinn)

1/2 312 (0,1) 1/2 1/2 (1,1)

3/2 1/2 (1,0) 1/2 3/2 (1,1),(1,2) (1,0)

1/2 5/2 (1,2)

We give in Table V the thre&INN states characterized by 312 L2 (L.1).(2.1) (0.1)
total spin and isosping,1) that are possible as well as the 3/2 3/2 (1.1).(1.2),(2.1),(2.2) (DAo.1)
two-bodyNN channels that contribute to each state. In Table /2 5/2 (1,2),(2,2) (0,1)
VI we give the 25A AA states characterized by total spinand /2 1/2 (2,1)
isospin G,1) that are possible as well as the two-baiij 5/2 3/2 (2,1),(2,2) (1,0)
channels that contribute to each state. 5/2 5/2 (2,2)

In the case where two particles are identical and one dif
ferent NNA andNAA systemg two of the amplitudes are
equal. The reduction procedure for the case where one has;m i den [
two identical fermions has been described befd&19 and T5.81°(02)= 2 (—) fo das
will not be repeated here. With the assumption that particle 1 n%sts

is the different one and particles 2 and 3 are the two identi- ><Am52'2”%'3(q2,q3; )T 53'3(q3)

cal,ocl)nlyfthe amplri]tudr:aﬁ"fé'lléqﬁ) and.T%Ql';(qz) ar? icr;(;ie— | 233! 28!

pendent from each other and they satisfy the coupled integra myiplsyi oy lsa

equat|ons +|521|1 dq1A31 S|2 ' 1(Q2:Q1-E)T1;1sf((41),
Trika)=2 2, dqu'f;i;.”Szi%m,qa;E)ng‘.Z(qs>, (30

nspip (29) with the identical-particles phase

TABLE VI. Two-body AA channels |,i) that contribute to a

given AAA state with total spir§ and isospin.

Iden:1+0'l+0'3_32+T1+’T3_i2. (31)

Substitution of Eq(29) into Eq.(30) yields an equation with

only the amplituderT,

TG-S || ek T,
(32

where

Kosar > *(dz,03:E)

= (=) AR (0 i)+ 2 ) | day

Isgip JO

X A2y, 00 E) AR (ar,05:E). (33)
We give in Table VII the nineNNA states characterized
by total spin and isosping;l) that are possible as well as the
two-bodyNA andNN channels that contribute to each state.
In Table VIII we give the 16NAA states characterized by
total spin and isosping,|) that are possible as well as the
two-bodyNA andAA channels that contribute to each state.

C. Numerical solutions

In order to find the bound-state solutions of E¢3),
(28), and(32) we drop the inhomogeneous term in E#3)
[of course, in the solution of the three-body problem we use
as input the solutions of the inhomogeneous B®)] and

S [ (i)
12 112 (1,2),(2,1)
12 312 (1,0),(1,2),(2,1),(2,3)
12 52 (1,2),(2,1),(2,3)
1/2 712 (1,2),(2,3)
1/2 9/2 (2,3)
32 12 (0,1),(1,2),(2,1),(3,2)
32 32  (01),(0,3),(1,0),(1,2),(2,1),(2,3),(3,0),(3,2)
32 52 (0,1),(0,3),(1,2),(2,1),(2,3),(3,2)
32 72 (0,3),(1,2),(2,3),(3,2)
32 92 (0,3),(2,3)
5/2 1/2 (1,2),(2,1),(3,2)
52 32 (1,0),(1,2),(2,1),(2,3),(3,0),(3,2)
52 5/2 (1,2),(2,1),(2,3),(3,2)
52 72 (1,2),(2,3),(3.2)
5/2 9/2 (2,3)
712 1/2 (2,1),(3,2)
72 32 (2,1),(2,3),(3,0),(3,2)
712 52 (2,1),(2,3),(3,2)
72 72 (2,3),(3,2)
712 92 (2,3)
9/2 1/2 (3.2)
92 32 (3,0),(3,2)
92 52 (3.2)
9/2 712 (3.2)
92 92

replace the integral by a sum applying a numerical integra-
tion quadraturg20]. In this way, Eqs(13), (28), and (32

034006-5
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TABLE VIII. Two-body NA channels fa ,ina) @nd two-body TABLE IX. Binding energiesB, of the NN states with total
AA channels A ,iaa) that contribute to a giveNAA state with  angular momentunj and isospini. Bg are the results of the local
total spinSand isospin. model anngL are the results of the nonlocal model.

S I (inasina) (Jaasiaa) ] [ B5(MeV) BY“(MeV)

1/2 1/2 (1,1),(1,2),(2,1),(2,2) (D.A0,1) 1 0 3.13 2.14

1/2 32 (1,1),(1,2),(2,1),(2,2) (0.41,2) 0 1 Unbound Unbound

1/2 5/2 (1,1),(1,2),(2,1),(2,2) (0,31,2)

1/2 712 (1,2),(2,2) (0,3)

3/2 1/2 (1,1),(1,2),(2,1),(2,2) (DA2,1) function of Eq.(7). This behavior originates essentially from

3/2 3/2 (1,1),(1,2),(2,1),(2,2) (D22,1) the condition that the relative wave function should be or-

312 5/2 (1,1),(1,2),(2,1),(2,2) (D,A2,3) thogonal to the forbidden state due to the Pauli principle

3/2 712 (1,2),(2,2) (2,3) [21]. The forbidden state should then be eliminated from the

5/2 1/2 (1,1),(1,2),(2,1),(2,2) (2,43,0) relative wave function for each partial wave. This procedure

5/2 3/2 (1,1),(1,2),(2,1),(2,2) (2.43,2) is tedious both from the conceptual and numerical point of

5/2 5/2 (1,1),(1,2),(2,1),(2,2) (233,2) view [21,22. It has been demonstratg2B3] that for the Pauli

5/2 7/2 (1,2),(2,2) (2,3) blocked channels the locAlA andAA potentials reproduce

712 1/2 (2,1),(2,2) (3,0 the qualitative behavior of the RGM kernels after the sub-

7/2 3/2 (2,1),(2,2) (3,2) tractlon_of the forbidden states. This is why we us_ed in our

7/2 5/2 (2,1),(2,2) (3.2) calculations the local version of the quark Pauli blocked

channels mentioned above.

In the case of the three-body systems we calculated the
binding-energy spectrunithat is, the energy of the states
become a set of homogeneous linear equations. This set afeasured with respect to the three-body threshaddvell as
linear equations has solutions only if the determinant of thehe separation-energy spectruihat is, the energy of the
matrix of the coefficientgthe Fredholm determinanvan-  states measured with respect to the threshold of one free
ishes for certain energies. Thus the procedure to find thparticle and a bound state of the other jw®he deepest
bound states of the system consists simply in searching fdsound three-body state is not the one with the largest binding
the zeroes of the Fredholm determinant as a function of erenergy but the one with the largest separation energy, since
ergy. We checked our program by comparing with knownthat state is the one that requires more energy in order to
results for the three-nucleon bound-state problem with théecome unbounéthat is, to move it from the bound state to
Reid soft-core potential5]. We found very stable results the nearest threshold
taking for the scale parametér=3 fm™ !, a number of Leg-
endre polynomiald =10, and a number of Gauss-Legendre

72 712 (2,2)

pointsN=12. A. NN system
We found that of the two states of Table Il only the one
IV. RESULTS with (j,i)=(1,0), that is the deuteron, is bound. The nonlo-

cal model gives a deuteron binding energy of 2.14 MeV,

- We will now present the results of our nonlocal calcula-y,pile the local version gave an energy of 3.13 MeV. These
tions for the seven systems corresponding to the two- anghgits are shown in Table IX.

three-body bound-state problem of nucleons and deltas, and 16 exact chiral quark cluster modiiIN potential[12]

compare them to previous calculations which have beepjes a deuteron binding energy of 2.225 MeV. This value
done by our group based on the local potentials obtaine

from the Born-Oppenheimer approximation as obtained by taking into account tlleA partial wave
) ’ Iaa,San) = (4,3) coupled together in addition to those given
The two body interaction in th&A states {,i)=(1,1) (I4,854) =(4.3) P g g

o in Table Il. Since in our calculation we consider ogndD
and (2,2), and those of theA states [,i)=(2,3) and (3,2) \yaves, we omit the\ A (I, ,S,,)=(4,3) partial-wave con-

present quark Pauli blocking. As a consequence, a Strongy, ion, and we obtain instead a deuteron binding energy of

repulsive core appears in the baryon-baryon potential. Thg 14 Mev. which differs less than 0.1 MeV from the exact
reason for that is based on the fast decrease of the norm eglculation.

the six-quark wave function wheR—0 [14]. A similar
analysis performed in terms of the 81) symmetry shows
the presence of a forbidden state. From the physical point of
view, it is connected with the lack of enough degrees of We give in Table X the results for the binding energies of
freedom to accommodate all the quarks. It is important tdhe NA system. Out of the four possiblA states of Table
note that the origin of this repulsion is not the same as in théll only one, the {,i)=(2,1), has a bound state which lies
NN channels, because they do not show a forbidden state bakactly at theNA threshold for the local model. However, if

a mixing of [6] with the[4,2] six-quark orbital symmetry. we use the nonlocal model we find instead a bound state of
Technically, the reason for such a strong repulsive core is th@.141 MeV. The statesj(i)=(1,1) and (2,2) are unbound
presence of nodes in the inner region of the relative wavdecause they present quark Pauli blocKih4g] and therefore

B. NA system
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TABLE X. Binding energiesB, of the NA states with total TABLE XII. Binding energiesB; and separation energid;
angular momentuny and isospini. BE are the results of the local —B, of the NNN states with total spis and isospin. Bé and Bg
model andB}" are the results of the nonlocal model. are the results of the local model whi'- andB}" are the results

of the nonlocal model.
J ! BE(MEV) BIZ\IL(MeV) L L_pL NL NL_ pNL
1 1 Unbound Onbound S | Bj(MeV) B5—Bj5(MeV) Bj-(MeV) Bi-—BY-(MeV)
1 2 Unbound Unbound 1/2 1/2 5.76 2.63 6.52 4.38
2 1 0.0 0.141 1/2 3/2 Unbound Unbound
2 2 Unbound Unbound 3/2 1/2 Unbound Unbound

_ ) ) ~cause we calculated only even-parity states 3fg has odd
they have a strong repulsive barrier at short distances in thgayity). Thus the {,i)=(3,0) state, which is also allowed in

Swave central interaction. These two states play an importhe case of theNN system, would correspond to a new
tant role in the three-body spectrum. The stgte)=(2,1)  nucleon-nucleon resonance that is predicted by our model.
can also exist in thé&N system and there it corresponds to The (j,i)=(3,0) channel corresponds in the case of k¢
the 'D, partial wave which has a resonance at an invariansystem to the’D; partial wave. Some indication of the (3,0)
mass of 2.17 Ge\Y24-26. This means that thBlA bound resonance can already be seen in the most recent analysis of
state may decay into two nucleons and appear inNfe  the NN data by Arndtet al.[26] and other theoretical calcu-
system as a resonance. TNA bound state has for both lations[27].
local and nonlocal models energies very close to le The channelsj(i)=(2,3) and (3,2) are unbound because
threshold, so that the invariant mass of the system is alsthey have a strong repulsive barrier at short distances in the
very close to 2.17 GeV. Thus one or another of our modelswave central interaction. This strong repulsion originates
predict theNN D, resonance as beingN bound state.  from the quark Pauli blocking produced by the saturation of
states that occurs when the total spin and isospin are near
C. AA system their maximum value$15]. As we will see later in the dis-
cussion of the\A A results, these repulsive cores in the (3,2)

We give in Table XI our results for th&A system. Out of .
the eight possiblé& A states given in Table IV with nonlocal 3:%(2’3) channels largely determine the three-body spec-

interactions five have a bound state, whereas the local inter- From Table XI we note that the two-bod¥A bound

actions bind six of thengin both local and nonlocal models states which have low quantum numbers are deeper for the

there are no excited states in any of the channitlss inter- nonlocal model than with the local one. This peculiar feature
esting to note that the predicted bound statgs) €(1,0), results to be conversely for the case 6f hi hp uantum num-
(0,1), (2,1), and (3,0), also appear in the case ofNie y gha

system. In the nonlocal model, we find that the deepes ers.

bound state isj(,i)=(1,0), the second;j(i)=(0,1), the third

(j,i)=(3,0) and the fourth(i)=(2,1). This clearly shows D.NNN system

that there is a qualitative similarity between tha andNN As another test of the reliability of our model in the case

systems(both are systems of identical particle3hree of  of the three-baryon system we solved th&IN bound-state
these states appear also in the case of\ihesystem. The problem. We found that of the states of Table V only the state

(1,1)=(10) state is of course the deuteron, thaiX with (S,1)=(3,3), that is the triton, has a bound state. By
=(Ol,1) is the S, virtual state and thej(i)=(2,1) state is  gjng the local potentials we obtain a binding energy of 5.76
the "D, resonance that lies at2.17 GeV[24] (note that eV for the triton. On other hand, if we use the nonlocal
the F5 NN resonance has no counterpart in Table XI be-potentials as input we find a triton binding energy of 6.52
MeV. For comparison, we notice that the triton binding en-

TABLE XI. Binding energiesB, of the AA states with total ergy for the Reid-soft-core potential in the truncated
angular momentunj and isospini. B are the results of the local T-matrix approximation is 6.58 MeV. Since the experimental

model andB’Z\IL are the results of the nonlocal model. value isBgyp=8.49 MeV the difference with our theoreti-

- i " cal result, of about 3 MeV, is a measure of the uncertainty of

j i Bz(MeV) B2 (MeV) our calculation in the case of the three-baryon system. We

0 1 108.4 159 5 show in Table XII the.results' of. our calculations for the
NNN system. ThereB; is the binding energy of the system

0 3 0.4 0.2 . . . Lo
and B;—B, is the separation energy, beily the binding

1 0 138.5 190.3 .
energy of the deepest bound two-body channel that contrib-

L 2 S Unbound utes to the three-body statsee Table IX.

2 1 30.5 7.4 y

2 3 Unbound Unbound

3 0 299 73 E. NNA system

3 2 Unbound Unbound We show in Table XIII the results of our calculations for

the NNA system.

034006-7



MOTA, VALCARCE, FERNANDEZ, ENTEM, AND GARCILAZO PHYSICAL REVIEW C65 034006

TABLE XIIl. Binding energiesB; and separation energi&s TABLE XV. Binding energiesB; and separation energid;
—B, of the NNA states with total spii§ and isospin. B5 andB; ~ —B, of the AAA states with total spirS and isospinl. B5 and B}
are the results of the local model wh'- andB}" are the results  are the results of the local model whi'- andBj" are the results
of the nonlocal model. of the nonlocal model.

S | Bj(MeV) B5—B5(MeV) BY-(Mev) BY-—BY-(MeV) S | Bj(MeV) B5-B5(MeV) BY-(Mev) BY-—BY-(MeV)
3/2 1/2 Unbound 0.143 0.002 1/2 1/2 84.0 53.5 16.6 9.2
3/2 3/2 Unbound 2.280 0.144 1/2 3/2 139.2 0.7 Unbound

1/2 712 6.3 0.6 Unbound

3/2 1/2  109.5 11 Unbound

One may have hoped to find several bound states in thisj2 1/2 39.1 8.6 9.3 1.9
system, due to the fact that theA two-body subsystem has 72 1/2 317 1.2 7.8 0.4
a bound state in the channgl,i) =(2,1) and theNN two-  7/2 32 351 4.6 9.8 20

body subsystem has a bound state in the chanpg) (
=(1,0) and an almost-bound state in the channgel)(

=(0,1). This is not the case, however, and as a matter ofs |)=(%,1) the repulsive barrier due the quark Pauli block-
fact, with the nonlocal potentials as input only two of the ing in theNA states [,i)=(1,1) and (2,2) is less strong than
nine possible three-body states given in Table VII are boundie attraction due to the statg i) = (2,1), so that they result
Because of the attractive contribution of theA (j,i) {9 pe bound states in the nonlocal model. The st&i¢)(
=(2,1) bound state with the nonlocal model, the three-body 5 5

X =(3,3) is the weakest bound state of this system, since in
state ,3) results to be very weakly bound, at an energy of 5 ition to the contribution of thalA quark Pauli blocking

0.143 MeV, and a separation energy scarcely different fro”&hannels, there exists that of the\ quark Pauli blocking
zero. That means that th&,()=(3,3) state is very near the channels{,i)=(2,3) and (3,2). This confirms what we have
NNA threshold and therefore it represents the tribaryon resomentioned before that it is the structure of the interaction of
nance with the lowest possible mass since it can decay intthe two-body system which largely determines the three-
three nucleons and one pion. Also, for this case the thredsody spectrum. Thus the nonlocal interactions predict the

body state §,3) is bound. As it can be seen from Table VII, bound states,1)=(3,2), (3,3), and ¢,2), which in prin-

this state has the contribution of all the two-bodA and  ciple may be observable as tribaryon resonances which decay
NN channels. In spite of the fact that tN&\ two-body chan- into three nucleons and two pions with masses close to the
nels (,i)=(1,1) and (2,2) present Pauli blockifigd], and  NAA threshold.

therefore they have a strong repulsive barrier at short dis-

tances in thé&swave central interaction, the attractive contri- G. AAA system

bution of theNA (j,i)=(2,1) andNN (j,i)=(1,0) channels

results to be enough to weakly bound this state. We note thallhWe show in Table XV the results for theAA system.

e system has four bound states while by using the local

neither one of the three-body statel) = (3.z) and .3 interactions the system had seven bound states. From Table
is bound with local interactions. XV we observe that the three states which are missing in the
nonlocal version are barely bound in the local version, i.e.,

F.NAA system they have very small separation energies. Since the nonlocal

The results for th&lAA system are shown in Table XIV. interaction tends to lower the attraction in all thd A chan-
Similarly to the case just discussed, in our calculations witt'lS it i not surprising that those which were barely bound
nonlocal interactions we found that three of the 16 possibld!@ve now disappeared. The more strongly bound three-body

NAA states given in Table VIII are bound. They are theState(that is, the one with the largest separation engigy
(S=(3,9), (2,1), and €,2) states and their correspond- the S1=(3,3) state vv_hich has prgcisgly .the quantum
ing bound state energies are 0.630, 8.158, and 0.181 Me@umbers of the triton. This shows again, like in thé and

respectively. In the case of the stateS,Ij=(%,2) and telr:lqsystems, the similarity between tAAA andNNN sys-
11

TABLE XIV. Binding energiesB; and separation energiés; The reason _Why thg&l)=(§,§) staf[e is the mo_re_
—B, of the NAA states with total spitS and isospin. B5 and B} strongly bound is very simple. As shown in Table VI, this is
are the results of the local model whi'- andB}" are the results ~ the only state where none of the two-body channels with a

of the nonlocal model. strong repulsive corej(i)=(2,3) or (3,2) contribute. In all
the other three-body states the strong repulsion of ihig (

S 1 Bi(Mev) BL-BL(Mev) BY:(Mev) BY--BY-(Mev) =(2,3) and (3,2) channels either completely destroys the
bound state or allows just a barely bound one. The state

1/2 5/2 Unbound 0.630 0.43 73 . .

5/2 1/2 Unbound 8158 0.358 (S,1)=(3,5) comes next with respect to separation energy.

5/2 5/2 Unbound 0.181 0.04 This state §,1)=(%,3) has a somewhat anomalous behavior
since it has a relatively large separation energy. This behav-

034006-8



NONLOCAL CALCULATION FOR NONSTRANGE . .. PHYSICAL REVIEW C 65 034006

ior is sort of accidental and it can be understood as followsthe lowest possible mass and the one which seems to be well
As seen in Table VI, there are four two-body channels cone€onfirmed by experiment. The fiveA bound states of the
tributing to the 6,1)=(%,2) state, the two attractive ones Nnonlocal potentials correspond to dibaryon resonances with
(j,i)=(2,1) and (3,0) and the two repulsive onefiY masses between 2.4 and 2.5 GeV. The)&(3,0) AA state
—(2,3) and (3,2). However, as one can see in Table XI thé(v_ould correspond to a new nucleon-nucleon resonance pre-

attractive channels (2,1) and (3,0) have bound statés at dicted _by our model. A p_ossible signal of this resonance ap-
——7.4 MeV andE=—7.8 MeV, respectively, for the non- P&ars in a recent analysis BN data up to 3 GeV by Arndt

local version. andE=—305 MeV andE=—29.9 MeV et al.[26]. With respect to the three-body systems we found
respectively, for the local version, so that the poles in thdhat theNNN has one bound state, theAA has four bound

scattering amplitudes of these two channels are very closgfates, theNNA has two bound states, and theAA has
together and therefore there is a reinforcement betweeffirée bound states. The predictetNA states with §,1)
them, which gives rise to the anomalously large separatiorr (3,5) and S,1)=(3,3) which correspond to M

energy in both versions. ~3.4 GeV are the tribaryon resonances with the lowest
mass and therefore the ones that would be more easy to
V. CONCLUSIONS detect experimentally.

By using both the local and nonlocal models we have
studied the bound-state solutions of the two- an_d three-body ACKNOWLEDGMENTS
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