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Nonlocal calculation for nonstrange dibaryons and tribaryons
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We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem
of the two- and three-body systems composed of nucleons and deltas. The two-body systems areNN, ND, and
DD, while the three-body systems areNNN, NND, NDD, andDDD. We use as input the nonlocalNN, ND,
andDD potentials derived from the chiral quark cluster model by means of the resonating group method. We
compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
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I. INTRODUCTION

Systems without strangeness are those which involve o
nucleons and nonstrange mesons like the pion or the eta.
series of recent papers the suggestion has been made t
may be possible to observe unstable nonstrange two-
three-baryon states corresponding to the bound-state s
tions of the various systems composed of nucleons and d
@1–4#. These are the systemsNN, ND, DD, NNN, NND,
NDD, and DDD. The bound states involving one or mo
unstable particles will show up in nature as dibaryon or tr
aryon resonances. In the case of two-body systems~dibary-
ons! they will decay mainly into two nucleons and either o
or two pions, while for the three-body case~tribaryons! they
will decay mainly into three nucleons and either one, two,
three pions.

In the previous calculations of our group@1–4#, the Born-
Oppenheimer approximation was used in order to obtai
local potential for the baryon-baryon interactio
(NN,ND,DD). In this work, we will overcome the Born
Oppenheimer approximation by working directly with a no
local potential derived within the resonating group meth
~RGM! formalism. This method allows us, once the Hilbe
space for the six-body problem has been fixed, to treat
intercluster dynamics in an exact way.

In order to perform theNNN, NND, NDD, and DDD
calculations we will take advantage of the experience gai
in the three-nucleon bound-state problem@5,6#. In that case
one knows that the dominant configuration of the system
that in which all particles are inS-wave states. However, in
order to get reasonable results for the binding energy,
S-wave two-body amplitudes used as input in the Fadd
equations must already contain the effect of the tensor fo
Thus, for example, in the case of the Reid soft-core poten
if one considers only theS-wave configurations but neglec
the tensor force in the two-body subsystems the triton
unbound. However, if one includes the effect of the ten
force in the nucleon-nucleon3S1-3D1 channel, but uses only
the 1S0 and 3S1 components of the two-body amplitudes
the three-body equations~two-channel calculation!, one gets
a triton binding energy of 6.58 MeV. Notice that includin
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the remaining configurations~34-channel calculation!, leads
to a triton binding energy of 7.35 MeV@7#. This means that
the S-wave truncatedT-matrix approximation leads to a
binding energy which differs from the exact value by le
than 1 MeV. Therefore by means of our approach we will n
study exact binding energies but which are the best ca
dates for bound states and the ordering of the differentNNN,
NND, NDD, andDDD states.

NN, ND, andDD interactions have been derived in th
past in the framework of meson-exchange models or p
nomenological potentials@8,9#. These models have bee
used over the years to fit theNN data very accurately. How
ever, in theND and DD sectors experimental data are
scarce that it is not possible to obtain reliable values of
parameters involved in the interaction. The situation is d
ferent in the case of quark cluster models@10–12#. In these
models the basic interaction is at the level of quarks invo
ing only a quark-quark-field~pion or gluon! vertex. There-
fore its parameters~coupling constants, cutoff masses, et!
are independent of the baryon to which the quarks
coupled, the difference among them being generated
SU~2! scaling, as explained in Ref.@13#. Moreover, quark
models provide a definite framework to treat the short-ran
part of the interaction. The Pauli principle between qua
determines the short-range behavior of the different chan
without additional phenomenological assumptions. In t
way, even in the absence of experimental data, one h
complete scheme which starting from theNN sector allows
us to make predictions in theND andDD sectors. This fact
is even more important if one takes into account that
short-range dynamics of theND and DD systems is to a
large extent driven by quark Pauli blocking effects, that
not appear in theNN sector. Pauli blocking acts in a selectiv
way in those channels where the spin-isospin-color deg
of freedom are not enough to accommodate all the quark
the system@14,15#. Therefore meson-exchange models ca
not fully include the effect of quark Pauli blocking throug
its purely phenomenological short-range chann
independent part.

The lifetime of the bound states involving one or mo
deltas should be similar to that of theD in the case of very
©2002 The American Physical Society06-1
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weakly bound systems and larger if the system is v
strongly bound. Therefore these dibaryon and tribaryon re
nances will have widths similar or smaller than the width
the D so that, in principle, they are experimentally obse
able. Also, we want to emphasize that the possible detec
of dibaryon and tribaryon resonances does not constitut
exotic subject since, in principle, any nucleus with at le
three nucleons can serve as test system that may be ex
by forming a tribaryon@16#.

The paper is organized as follows. In Sec. II we pres
the basic quark-quark interaction and we describe
method to obtain the resonating group method bary
baryon potentials. Section III is dedicated to discussing
formalism to solve the bound state problem for the case
systems of identical and nonidentical particles, respectiv
In Sec. IV we give our results, and we present the conc
sions in Sec. V.

II. TWO-BODY INTERACTIONS

The basic two-body interactions,VAB→AB , between bary-
ons A and B that are going to be used in this work are t
nucleon-nucleon interactionVNN→NN , the nucleon-delta in-
teractionVND→ND , and the delta-delta interactionVDD→DD .
These baryon-baryon interactions were obtained from
chiral quark cluster model developed elsewhere@11#. In this
model baryons are described as clusters of three interac
massive ~constituent! quarks, the mass coming from th
breaking of chiral symmetry. The ingredients of the qua
quark interaction are confinement, one-gluon~OGE!, one-
pion ~OPE!, and one-sigma~OSE! exchange terms, an
whose parameters are fixed from theNN data. Explicitly, the
quark-quark (qq) interaction is

Vqq~rW i j !5Vcon~rW i j !1VOGE~rW i j !1VOPE~rW i j !1VOSE~rW i j !,
~1!

whererW i j is the i j interquark distance and

Vcon~rW i j !52aclW i•lW j r i j , ~2!

VOGE~rW i j !5
1

4
aslW i•lW j H 1

r i j
2

p

mq
2 F11

2

3
sW i•sW j Gd~rW i j !

2
3

4mq
2r i j

3 Si j J , ~3!

VOPE~rW i j !5
1

3
ach

L2

L22mp
2

3mpH FY~mpr i j !2
L3

mp
3

Y~Lr i j !GsW i•sW j

1FH~mpr i j !2
L3

mp
3 H~Lr i j !GSi j J tW i•tW j , ~4!

VOSE~rW i j !52ach

4mq
2

mp
2

L2

L22ms
2

3msFY~msr i j !2
L

ms
Y~Lr i j !G , ~5!
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where

Y~x!5
e2x

x
; H~x!5S 11

3

x
1

3

x2DY~x!. ~6!

Although taken to be linear for consistency with the bary
and meson spectra, the detailed radial structure and stre
of the confining potential is meaningless for the two-bary
interaction@17#. ac is the confinement strength, thelW ’s are
the SU~3! color matrices, thesW ’s (tW ’s! are the spin~isospin!
Pauli matrices,Si j is the usual tensor operator,mq (mp ,ms)
is the quark~pion, sigma! mass,as is theqq-gluon coupling
constant,ach is theqq-meson coupling constant, andL is a
cutoff parameter.

For the present study we make use of the nonlocal po
tials derived through a Lippmann-Schwinger formulation
the RGM equations in momentum space@12#. The formula-
tion of the RGM for a system of two baryons,B1 and B2,
needs the wave function of the two-baryon system c
structed from the one-baryon wave functions. The tw
baryon wave function can be written as

CB1B2
5A@x~PW !CB1B2

ST #

5A$x~PW !fB1
~pW jB1

!fB2
~pW jB2

!xB1B2

ST jc@23#%, ~7!

where A is the antisymmetrizer of the six-quark system
x(PW ) is the relative wave function of the two cluster
fB1

(pW jB1
) is the internal spatial wave function of the baryo

B1 , jB1
are the internal coordinates of the three quarks

baryonB1 . xB1B2

ST denotes the spin-isospin wave function

the two-baryon system coupled to total spin~S! and isospin
(T), and finally,jc@23# is the product of two color singlets

The dynamics of the system is governed by the Sch¨-
dinger equation

~H2ET!uC&50⇒^dCu~H2ET!uC&50, ~8!

where

H5(
i 51

N pW i
2

2mq
1(

i , j
Vi j 2Tc.m., ~9!

Tc.m. being the center of mass kinetic energy,Vi j the quark-
quark interaction described above, andmq the constituent
quark mass.

Assuming the functional form

fB~pW !5S b2

p D 3/4

e2b2p2/2, ~10!

whereb is related to the size of the nucleon quark core, E
~8! can be written in the following way:

S PW 82

2m
2ED x~PW 8!1E K~PW 8,PW i !x~PW i !dPW i50, ~11!

where

K~PW 8,PW i !5 RGMVD~PW 8,PW i !1 RGMVEX~PW 8,PW i ! ~12!
6-2
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NONLOCAL CALCULATION FOR NONSTRANGE . . . PHYSICAL REVIEW C 65 034006
contains the direct and exchange RGM potentials, the l
one coming from quark antisymmetry.K(PW 8,PW i) is the non-
local potential. From Eq.~11! a set of coupled Lippmann
Schwinger equations can be obtained and solved using s
dard techniques. The parameters of the model
summarized in Table I. They have been fixed in order
obtain the best fit of the two-nucleon sector~deuteron bind-
ing energy andS-wave NN scattering phase shifts! and the
D2N mass difference. In particular, the mass of the qu
(mq) is taken to be 1/3 of the nucleon mass. The pion m
(mp) is its experimental value. The chiral coupling consta
(ach) has been determined to reproduce the long-range O

interaction and is given byach5( 3
5 )2(gpNN

2 /4p)(mp
2 /4mN

2 ),
where thepNN coupling constant is taken to begpNN

2 /4p
513.87. The sigma mass is fixed by the chiral symme
relation ms

2'mp
2 1(2mq)2. The parameterb, which deter-

mines the size of the nucleon quark content, was determ
by comparing the adiabaticNN potential calculated from the
wave function solution of the bound state problem for t
potential given by Eq.~1! to theNN potential calculated with
a single Gaussian of parameterb. L, which controls the
pion-gluon proportion in the model and, as a conseque
the strength of the tensor force, has been taken to repro
the deuteron binding energy in the presence ofDD channels.
As the OPE provides part of theD2N mass difference, the
value of the strong coupling constant (as) is determined to
obtain the remainingD2N mass difference. Finally, the
value of ac , quoted for completeness because its contri
tion to the baryon-baryon potential is negligible@17#, is ob-
tained from the stability condition for the nucleo
]MN(b)/]b50 @11#.

III. INTEGRAL EQUATIONS

We will describe in this section the formalism required
the cases of the two-body systemsNN, ND, andDD and the
three-body systemsNNN, NND, NDD, andDDD.

TABLE II. NN channels (l NN ,sNN), ND channels (l ND ,sND),
and DD channels (l DD ,sDD) that are coupled together in th
3S1-3D1 and 1S0 NN states.

NN state j i ( l NN ,sNN) ( l ND ,sND) ( l DD ,sDD)

3S1-3D1 1 0 (0,1),(2,1) (0,1),(2,1),(2,3)
1S0 0 1 (0,0) (2,2)

TABLE I. Quark model parameters.

mq(MeV) 313
b(fm) 0.518

as 0.498
ac(MeV fm21) 67.0
ach 0.027
ms(fm21) 3.513
mp(fm21) 0.70
L(fm21) 4.3
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A. Two-body systems

If we consider two baryonsA andB in a relativeS-state
interacting through a potential that contains a tensor for
then there is a coupling to theAB D-wave so that the
Lippmann-Schwinger equation of the system is of the for

t
i ; j i i i

l i si l i9si9~pi ,pi9 ;E!

5V
i ; j i i i

l i si l i9si9~pi ,pi9!1(
l i8si8

E
0

`

pi8
2dpi8Vi ; j i i i

l i si l i8si8~pi ,pi8!

3
1

E2pi8
2/2h i1 i e

t
i ; j i i i

l i8si8 l i9si9~pi8 ,pi9 ;E!, ~13!

wherej i andi i are the angular momentum and isospin of t
system, whilel isi , l i8si8 , and l i9si9 are the initial, intermedi-
ate, and final orbital angular momentum and spin of the s
tem, respectively.pi and h i are, respectively, the relativ
momentum and reduced mass of the two-body system.
give in Tables II–IV the correspondingNN, ND, and DD
two-body channels in a relativeS wave that are coupled to
gether for the two possible values ofj and i ~since theNN
state is the one with the lowest mass, in the case of
system we have considered also the possibility of transiti
to higher mass states likeND andDD). In the cases of the
NN and DD systems the Pauli principle requires tha
(2) l i1si1 i i521.

As mentioned before, for the solution of the three-bo
system we will use only the component of theT matrix ob-
tained from the solution of Eq.~13! with l i5 l i950, so that
for that purpose we define theS-wave truncated amplitude

TABLE III. Coupled channels (l ,s) that contribute to a given
ND state with total angular momentumj and isospini.

j i ( l ,s)

1 1 (0,1),(2,1),(2,2)
1 2 (0,1),(2,1),(2,2)
2 1 (0,2),(2,1),(2,2)
2 2 (0,2),(2,1),(2,2)

TABLE IV. Coupled channels (l ,s) that contribute to a given
DD state with total angular momentumj and isospini.

j i ( l ,s)

0 1 (0,0),(2,2)
0 3 (0,0),(2,2)
1 0 (0,1),(2,1),(2,3)
1 2 (0,1),(2,1),(2,3)
2 1 (0,2),(2,0),(2,2)
2 3 (0,2),(2,0),(2,2)
3 0 (0,3),(2,1),(2,3)
3 2 (0,3),(2,1),(2,3)
6-3
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t i ;si i i
~pi ,pi9 ;E![t i ;si i i

0si0si~pi ,pi9 ;E!. ~14!

B. Three-body systems

If we restrict ourselves to the configurations where
three particles are inS-wave states, the Faddeev equatio
for the bound-state problem in the case of three particles w
total spinS and total isospinI are

Ti ;SI
si i i ~piqi !5(

j Þ i
(
sj i j

hi j ;SI
si i i sj i j

1

2E0

`

qj
2dqj

3E
21

1

d cosut i ;si i i
~pi ,pi8 ;E2qi

2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j
Tj ;SI

sj i j ~pjqj !, ~15!

wherepi andqi are the usual Jacobi coordinates andh i and
n i the corresponding reduced masses

h i5
mjmk

mj1mk
, ~16!

n i5
mi~mj1mk!

mi1mj1mk
, ~17!

with i jk an even permutation of 123. The momentapi8 and
pj in Eq. ~15! are given by

pi8
25qj

21
h i

2

mk
2 qi

212
h i

mk
qiqjcosu, ~18!

pj
25qi

21
h j

2

mk
2 qj

212
h j

mk
qiqjcosu. ~19!

hi j ;SI
si i i sj i j are the spin-isospin coefficients,

hi j ;SI
si i i sj i j5~2 !sj 1s j 2SA~2si11!~2sj11!W~s jskSs i ;sisj !

3~2 ! i j 1t j 2IA~2i i11!~2i j11!W~t jtkI t i ; i i i j !,

~20!

whereW is the Racah coefficient ands i , si , andS (t i , i i ,
and I ! are the spin~isospin! of particle i, of the pair jk, and
of the three-body system, respectively.

Since the variablepi , in Eqs.~13! and ~15!, runs from 0
to `, it is convenient to make the transformation

xi5
pi2d

pi1d
, ~21!

where the new variablexi runs from 21 to 1, andd is a
scale parameter. With this transformation Eq.~15! takes the
form
03400
l
s
th

Ti ;SI
si i i ~xiqi !5(

j Þ i
(
sj i j

hi j ;SI
si i i sj i j

1

2E0

`

qj
2dqj

3E
21

1

d cosut i ;si i i
~xi ,xi8 ;E2qi

2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j
Tj ;SI

sj i j ~xjqj !. ~22!

Since in the amplitudet i ;si i i
(xi ,xi8 ;e) the variablesxi andxi8

run from21 to 1, one can expand this amplitude in terms
Legendre polynomials as

t i ;si i i
~xi ,xi8 ;e!5(

nm
Pn~xi !t i ;si i i

nm ~e!Pm~xi8!, ~23!

where the expansion coefficients are given by

t i ;si i i
nm ~e!5

2n11

2

2m11

2 E
21

1

dxi

3E
21

1

dxi8Pn~xi !t i ;si i i
~xi ,xi8 ;e!Pm~xi8!.

~24!

Applying expansion~23! in Eq. ~22! one gets

Ti ;SI
si i i ~xiqi !5(

n
Ti ;SI

nsi i i~qi !Pn~xi !, ~25!

whereTi ;SI
nsi i i(qi) satisfies the one-dimensional integral equ

tion

Ti ;SI
nsi i i~qi !5(

j Þ i
(

msj i j

E
0

`

dqjAi j ;SI
nsi i imsj i j~qi ,qj ;E!Tj ;SI

msj i j~qj !,

~26!

with

Ai j ;SI
nsi i imsj i j~qi ,qj ;E!5hi j ;SI

si i i sj i j(
l

t isi i i
nl ~E2qi

2/2n i !
qj

2

2

3E
21

1

d cosu
Pl~xi !Pm~xj !

E2pj
2/2h j2qj

2/2n j
.

~27!

The three amplitudes T1;SI
ls1i 1(q1), T2;SI

ms2i 2(q2), and

T3;SI
ns3i 3(q3) in Eq. ~26! are coupled together. The number

coupled equations can be reduced, however, since som
the particles are identical. In the case of three identical p
ticles (NNN andDDD systems! we have that all three am
plitudes are equal and therefore Eq.~26! becomes, in this
case,

TSI
nsi i i~qi !52 (

msj i j

E
0

`

dqjAi j ;SI
nsi i imsj i j~qi ,qj ;E!TSI

msj i j~qj !.

~28!
6-4



y
e
bl
nd

di

h

le
nt

gr

d
e
te.
y
e
te.

se

ra-

NONLOCAL CALCULATION FOR NONSTRANGE . . . PHYSICAL REVIEW C 65 034006
We give in Table V the threeNNN states characterized b
total spin and isospin (S,I ) that are possible as well as th
two-bodyNN channels that contribute to each state. In Ta
VI we give the 25DDD states characterized by total spin a
isospin (S,I ) that are possible as well as the two-bodyDD
channels that contribute to each state.

In the case where two particles are identical and one
ferent (NND andNDD systems! two of the amplitudes are
equal. The reduction procedure for the case where one
two identical fermions has been described before@18,19# and
will not be repeated here. With the assumption that partic
is the different one and particles 2 and 3 are the two ide
cal, only the amplitudesT1;SI

ns1i 1(q1) andT2;SI
ms2i 2(q2) are inde-

pendent from each other and they satisfy the coupled inte
equations

T1;SI
ls1i 1~q1!52 (

ns2i 2
E

0

`

dq3A13;SI
ls1i 1ns2i 2~q1 ,q3 ;E!T2;SI

ns2i 2~q3!,

~29!

TABLE V. Two-body NN channels (j ,i ) that contribute to a
given NNN state with total spinS and isospinI.

S I ( j ,i )

1/2 1/2 (1,0),(0,1)
1/2 3/2 (0,1)
3/2 1/2 (1,0)

TABLE VI. Two-body DD channels (j ,i ) that contribute to a
given DDD state with total spinS and isospinI.

S I ( j ,i )

1/2 1/2 (1,2),(2,1)
1/2 3/2 (1,0),(1,2),(2,1),(2,3)
1/2 5/2 (1,2),(2,1),(2,3)
1/2 7/2 (1,2),(2,3)
1/2 9/2 (2,3)
3/2 1/2 (0,1),(1,2),(2,1),(3,2)
3/2 3/2 (0,1),(0,3),(1,0),(1,2),(2,1),(2,3),(3,0),(3,2)
3/2 5/2 (0,1),(0,3),(1,2),(2,1),(2,3),(3,2)
3/2 7/2 (0,3),(1,2),(2,3),(3,2)
3/2 9/2 (0,3),(2,3)
5/2 1/2 (1,2),(2,1),(3,2)
5/2 3/2 (1,0),(1,2),(2,1),(2,3),(3,0),(3,2)
5/2 5/2 (1,2),(2,1),(2,3),(3,2)
5/2 7/2 (1,2),(2,3),(3,2)
5/2 9/2 (2,3)
7/2 1/2 (2,1),(3,2)
7/2 3/2 (2,1),(2,3),(3,0),(3,2)
7/2 5/2 (2,1),(2,3),(3,2)
7/2 7/2 (2,3),(3,2)
7/2 9/2 (2,3)
9/2 1/2 (3,2)
9/2 3/2 (3,0),(3,2)
9/2 5/2 (3,2)
9/2 7/2 (3,2)
9/2 9/2
03400
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T2;SI
ms2i 2~q2!5 (

ns3i 3
~2 ! IdenE

0

`

dq3

3A23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!T2;SI

ns3i 3~q3!

1 (
ls1i 1

E
0

`

dq1A31;SI
ms2i 2ls1i 1~q2 ,q1 ;E!T1;SI

ls1i 1~q1!,

~30!

with the identical-particles phase

Iden511s11s32s21t11t32 i 2 . ~31!

Substitution of Eq.~29! into Eq.~30! yields an equation with
only the amplitudeT2

T2;SI
ms2i 2~q2!5 (

ns3i 3
E

0

`

dq3K23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!T2;SI

ns3i 3~q3!,

~32!

where

K23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!

5~2 ! IdenA23;SI
ms2i 2ns3i 3~q2 ,q3 ;E!12 (

ls1i 1
E

0

`

dq1

3A31;SI
ms2i 2ls1i 1~q2 ,q1 ;E!A13;SI

ls1i 1ns3i 3~q1 ,q3 ;E!. ~33!

We give in Table VII the nineNND states characterize
by total spin and isospin (S,I ) that are possible as well as th
two-bodyND andNN channels that contribute to each sta
In Table VIII we give the 16NDD states characterized b
total spin and isospin (S,I ) that are possible as well as th
two-bodyND andDD channels that contribute to each sta

C. Numerical solutions

In order to find the bound-state solutions of Eqs.~13!,
~28!, and~32! we drop the inhomogeneous term in Eq.~13!
@of course, in the solution of the three-body problem we u
as input the solutions of the inhomogeneous Eq.~13!# and
replace the integral by a sum applying a numerical integ
tion quadrature@20#. In this way, Eqs.~13!, ~28!, and ~32!

TABLE VII. Two-body ND channels (j ND ,i ND) and two-body
NN channels (j NN ,i NN) that contribute to a givenNND state with
total spinS and isospinI.

S I ( j ND ,i ND) ( j NN ,i NN)

1/2 1/2 (1,1)
1/2 3/2 (1,1),(1,2) (1,0)
1/2 5/2 (1,2)
3/2 1/2 (1,1),(2,1) (0,1)
3/2 3/2 (1,1),(1,2),(2,1),(2,2) (1,0),(0,1)
3/2 5/2 (1,2),(2,2) (0,1)
5/2 1/2 (2,1)
5/2 3/2 (2,1),(2,2) (1,0)
5/2 5/2 (2,2)
6-5
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become a set of homogeneous linear equations. This s
linear equations has solutions only if the determinant of
matrix of the coefficients~the Fredholm determinant! van-
ishes for certain energies. Thus the procedure to find
bound states of the system consists simply in searching
the zeroes of the Fredholm determinant as a function of
ergy. We checked our program by comparing with kno
results for the three-nucleon bound-state problem with
Reid soft-core potential@5#. We found very stable result
taking for the scale parameterd53 fm21, a number of Leg-
endre polynomialsL510, and a number of Gauss-Legend
pointsN512.

IV. RESULTS

We will now present the results of our nonlocal calcu
tions for the seven systems corresponding to the two-
three-body bound-state problem of nucleons and deltas,
compare them to previous calculations which have b
done by our group based on the local potentials obtai
from the Born-Oppenheimer approximation.

The two body interaction in theND states (j ,i )5(1,1)
and (2,2), and those of theDD states (j ,i )5(2,3) and (3,2)
present quark Pauli blocking. As a consequence, a str
repulsive core appears in the baryon-baryon potential.
reason for that is based on the fast decrease of the nor
the six-quark wave function whenR→0 @14#. A similar
analysis performed in terms of the SU~4! symmetry shows
the presence of a forbidden state. From the physical poin
view, it is connected with the lack of enough degrees
freedom to accommodate all the quarks. It is important
note that the origin of this repulsion is not the same as in
NN channels, because they do not show a forbidden state
a mixing of @6# with the @4,2# six-quark orbital symmetry.
Technically, the reason for such a strong repulsive core is
presence of nodes in the inner region of the relative w

TABLE VIII. Two-body ND channels (j ND ,i ND) and two-body
DD channels (j DD ,i DD) that contribute to a givenNDD state with
total spinS and isospinI.

S I ( j ND ,i ND) ( j DD ,i DD)

1/2 1/2 (1,1),(1,2),(2,1),(2,2) (1,0),(0,1)
1/2 3/2 (1,1),(1,2),(2,1),(2,2) (0,1),(1,2)
1/2 5/2 (1,1),(1,2),(2,1),(2,2) (0,3),(1,2)
1/2 7/2 (1,2),(2,2) (0,3)
3/2 1/2 (1,1),(1,2),(2,1),(2,2) (1,0),(2,1)
3/2 3/2 (1,1),(1,2),(2,1),(2,2) (1,2),(2,1)
3/2 5/2 (1,1),(1,2),(2,1),(2,2) (1,2),(2,3)
3/2 7/2 (1,2),(2,2) (2,3)
5/2 1/2 (1,1),(1,2),(2,1),(2,2) (2,1),(3,0)
5/2 3/2 (1,1),(1,2),(2,1),(2,2) (2,1),(3,2)
5/2 5/2 (1,1),(1,2),(2,1),(2,2) (2,3),(3,2)
5/2 7/2 (1,2),(2,2) (2,3)
7/2 1/2 (2,1),(2,2) (3,0)
7/2 3/2 (2,1),(2,2) (3,2)
7/2 5/2 (2,1),(2,2) (3,2)
7/2 7/2 (2,2)
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function of Eq.~7!. This behavior originates essentially from
the condition that the relative wave function should be
thogonal to the forbidden state due to the Pauli princi
@21#. The forbidden state should then be eliminated from
relative wave function for each partial wave. This procedu
is tedious both from the conceptual and numerical point
view @21,22#. It has been demonstrated@23# that for the Pauli
blocked channels the localND andDD potentials reproduce
the qualitative behavior of the RGM kernels after the su
traction of the forbidden states. This is why we used in o
calculations the local version of the quark Pauli block
channels mentioned above.

In the case of the three-body systems we calculated
binding-energy spectrum~that is, the energy of the state
measured with respect to the three-body threshold! as well as
the separation-energy spectrum~that is, the energy of the
states measured with respect to the threshold of one
particle and a bound state of the other two!. The deepest
bound three-body state is not the one with the largest bind
energy but the one with the largest separation energy, s
that state is the one that requires more energy in orde
become unbound~that is, to move it from the bound state t
the nearest threshold!.

A. NN system

We found that of the two states of Table II only the o
with ( j ,i )5(1,0), that is the deuteron, is bound. The non
cal model gives a deuteron binding energy of 2.14 Me
while the local version gave an energy of 3.13 MeV. The
results are shown in Table IX.

The exact chiral quark cluster modelNN potential @12#
gives a deuteron binding energy of 2.225 MeV. This va
was obtained by taking into account theDD partial wave
( l DD ,sDD)5(4,3) coupled together in addition to those give
in Table II. Since in our calculation we consider onlySandD
waves, we omit theDD ( l DD ,sDD)5(4,3) partial-wave con-
tribution, and we obtain instead a deuteron binding energ
2.14 MeV, which differs less than 0.1 MeV from the exa
calculation.

B. ND system

We give in Table X the results for the binding energies
the ND system. Out of the four possibleND states of Table
III only one, the (j ,i )5(2,1), has a bound state which lie
exactly at theND threshold for the local model. However,
we use the nonlocal model we find instead a bound stat
0.141 MeV. The states (j ,i )5(1,1) and (2,2) are unboun
because they present quark Pauli blocking@14# and therefore

TABLE IX. Binding energiesB2 of the NN states with total
angular momentumj and isospini. B2

L are the results of the loca
model andB2

NL are the results of the nonlocal model.

j i B2
L(MeV) B2

NL(MeV)

1 0 3.13 2.14
0 1 Unbound Unbound
6-6
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they have a strong repulsive barrier at short distances in
S-wave central interaction. These two states play an imp
tant role in the three-body spectrum. The state (j ,i )5(2,1)
can also exist in theNN system and there it corresponds
the 1D2 partial wave which has a resonance at an invari
mass of 2.17 GeV@24–26#. This means that theND bound
state may decay into two nucleons and appear in theNN
system as a resonance. TheND bound state has for bot
local and nonlocal models energies very close to theND
threshold, so that the invariant mass of the system is
very close to 2.17 GeV. Thus one or another of our mod
predict theNN 1D2 resonance as being aND bound state.

C. DD system

We give in Table XI our results for theDD system. Out of
the eight possibleDD states given in Table IV with nonloca
interactions five have a bound state, whereas the local in
actions bind six of them~in both local and nonlocal model
there are no excited states in any of the channels!. It is inter-
esting to note that the predicted bound states: (j ,i )5(1,0),
(0,1), (2,1), and (3,0), also appear in the case of theNN
system. In the nonlocal model, we find that the deep
bound state is (j ,i )5(1,0), the second (j ,i )5(0,1), the third
( j ,i )5(3,0) and the fourth (j ,i )5(2,1). This clearly shows
that there is a qualitative similarity between theDD andNN
systems~both are systems of identical particles!. Three of
these states appear also in the case of theNN system. The
( j ,i )5(1,0) state is of course the deuteron, the (j ,i )
5(0,1) is the 1S0 virtual state and the (j ,i )5(2,1) state is
the 1D2 resonance that lies at'2.17 GeV@24# ~note that
the 3F3 NN resonance has no counterpart in Table XI b

TABLE X. Binding energiesB2 of the ND states with total
angular momentumj and isospini. B2

L are the results of the loca
model andB2

NL are the results of the nonlocal model.

j i B2
L(MeV) B2

NL(MeV)

1 1 Unbound Unbound
1 2 Unbound Unbound
2 1 0.0 0.141
2 2 Unbound Unbound

TABLE XI. Binding energiesB2 of the DD states with total
angular momentumj and isospini. B2

L are the results of the loca
model andB2

NL are the results of the nonlocal model.

j i B2
L(MeV) B2

NL(MeV)

0 1 108.4 159.5
0 3 0.4 0.2
1 0 138.5 190.3
1 2 5.7 Unbound
2 1 30.5 7.4
2 3 Unbound Unbound
3 0 29.9 7.8
3 2 Unbound Unbound
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cause we calculated only even-parity states and3F3 has odd
parity!. Thus the (j ,i )5(3,0) state, which is also allowed i
the case of theNN system, would correspond to a ne
nucleon-nucleon resonance that is predicted by our mo
The (j ,i )5(3,0) channel corresponds in the case of theNN
system to the3D3 partial wave. Some indication of the (3,0
resonance can already be seen in the most recent analys
theNN data by Arndtet al. @26# and other theoretical calcu
lations @27#.

The channels (j ,i )5(2,3) and (3,2) are unbound becau
they have a strong repulsive barrier at short distances in
S-wave central interaction. This strong repulsion origina
from the quark Pauli blocking produced by the saturation
states that occurs when the total spin and isospin are
their maximum values@15#. As we will see later in the dis-
cussion of theDDD results, these repulsive cores in the (3,
and (2,3) channels largely determine the three-body sp
trum.

From Table XI we note that the two-bodyDD bound
states which have low quantum numbers are deeper for
nonlocal model than with the local one. This peculiar featu
results to be conversely for the case of high quantum nu
bers.

D. NNN system

As another test of the reliability of our model in the ca
of the three-baryon system we solved theNNN bound-state
problem. We found that of the states of Table V only the st

with (S,I )5( 1
2 , 1

2 ), that is the triton, has a bound state. B
using the local potentials we obtain a binding energy of 5
MeV for the triton. On other hand, if we use the nonloc
potentials as input we find a triton binding energy of 6.
MeV. For comparison, we notice that the triton binding e
ergy for the Reid-soft-core potential in the truncat
T-matrix approximation is 6.58 MeV. Since the experimen
value isBEXP58.49 MeV the difference with our theoreti
cal result, of about 3 MeV, is a measure of the uncertainty
our calculation in the case of the three-baryon system.
show in Table XII the results of our calculations for th
NNN system. There,B3 is the binding energy of the system
and B32B2 is the separation energy, beingB2 the binding
energy of the deepest bound two-body channel that con
utes to the three-body state~see Table IX!.

E. NND system

We show in Table XIII the results of our calculations fo
the NND system.

TABLE XII. Binding energiesB3 and separation energiesB3

2B2 of the NNN states with total spinS and isospinI. B2
L andB3

L

are the results of the local model whileB2
NL andB3

NL are the results
of the nonlocal model.

S I B3
L(MeV) B3

L2B2
L(MeV) B3

NL(MeV) B3
NL2B2

NL(MeV)

1/2 1/2 5.76 2.63 6.52 4.38
1/2 3/2 Unbound Unbound
3/2 1/2 Unbound Unbound
6-7
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One may have hoped to find several bound states in
system, due to the fact that theND two-body subsystem ha
a bound state in the channel (j ,i )5(2,1) and theNN two-
body subsystem has a bound state in the channel (j ,i )
5(1,0) and an almost-bound state in the channel (j ,i )
5(0,1). This is not the case, however, and as a matte
fact, with the nonlocal potentials as input only two of th
nine possible three-body states given in Table VII are bou
Because of the attractive contribution of theND ( j ,i )
5(2,1) bound state with the nonlocal model, the three-bo

state (32 , 1
2 ) results to be very weakly bound, at an energy

0.143 MeV, and a separation energy scarcely different fr

zero. That means that the (S,I )5( 3
2 , 1

2 ) state is very near the
NND threshold and therefore it represents the tribaryon re
nance with the lowest possible mass since it can decay
three nucleons and one pion. Also, for this case the th

body state (32 , 3
2 ) is bound. As it can be seen from Table VI

this state has the contribution of all the two-bodyND and
NN channels. In spite of the fact that theND two-body chan-
nels (j ,i )5(1,1) and (2,2) present Pauli blocking@14#, and
therefore they have a strong repulsive barrier at short
tances in theS-wave central interaction, the attractive cont
bution of theND ( j ,i )5(2,1) andNN ( j ,i )5(1,0) channels
results to be enough to weakly bound this state. We note

neither one of the three-body states (S,I )5( 3
2 , 1

2 ) and (3
2 , 3

2 )
is bound with local interactions.

F. NDD system

The results for theNDD system are shown in Table XIV
Similarly to the case just discussed, in our calculations w
nonlocal interactions we found that three of the 16 poss
NDD states given in Table VIII are bound. They are t

(S,I )5( 1
2 , 5

2 ), ( 5
2 , 1

2 ), and (52 , 5
2 ) states and their correspond

ing bound state energies are 0.630, 8.158, and 0.181 M

respectively. In the case of the states (S,I )5( 1
2 , 5

2 ) and

TABLE XIII. Binding energiesB3 and separation energiesB3

2B2 of the NND states with total spinS and isospinI. B2
L andB3

L

are the results of the local model whileB2
NL andB3

NL are the results
of the nonlocal model.

S I B3
L(MeV) B3

L2B2
L(MeV) B3

NL(MeV) B3
NL2B2

NL(MeV)

3/2 1/2 Unbound 0.143 0.002
3/2 3/2 Unbound 2.280 0.144

TABLE XIV. Binding energiesB3 and separation energiesB3

2B2 of the NDD states with total spinS and isospinI. B2
L andB3

L

are the results of the local model whileB2
NL andB3

NL are the results
of the nonlocal model.

S I B3
L(MeV) B3

L2B2
L(MeV) B3

NL(MeV) B3
NL2B2

NL(MeV)

1/2 5/2 Unbound 0.630 0.43
5/2 1/2 Unbound 8.158 0.358
5/2 5/2 Unbound 0.181 0.04
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(S,I )5( 5
2 , 1

2 ) the repulsive barrier due the quark Pauli bloc
ing in theND states (j ,i )5(1,1) and (2,2) is less strong tha
the attraction due to the state (j ,i )5(2,1), so that they resul
to be bound states in the nonlocal model. The state (S,I )

5( 5
2 , 5

2 ) is the weakest bound state of this system, since
addition to the contribution of theND quark Pauli blocking
channels, there exists that of theDD quark Pauli blocking
channels (j ,i )5(2,3) and (3,2). This confirms what we hav
mentioned before that it is the structure of the interaction
the two-body system which largely determines the thr
body spectrum. Thus the nonlocal interactions predict

bound states (S,I )5( 1
2 , 5

2 ), ( 5
2 , 1

2 ), and (52 , 5
2 ), which in prin-

ciple may be observable as tribaryon resonances which d
into three nucleons and two pions with masses close to
NDD threshold.

G. DDD system

We show in Table XV the results for theDDD system.
The system has four bound states while by using the lo
interactions the system had seven bound states. From T
XV we observe that the three states which are missing in
nonlocal version are barely bound in the local version, i
they have very small separation energies. Since the nonl
interaction tends to lower the attraction in all theDDD chan-
nels it is not surprising that those which were barely bou
have now disappeared. The more strongly bound three-b
state~that is, the one with the largest separation energy! is

the (S,I )5( 1
2 , 1

2 ) state which has precisely the quantu
numbers of the triton. This shows again, like in theDD and
NN systems, the similarity between theDDD andNNN sys-
tems.

The reason why the (S,I )5( 1
2 , 1

2 ) state is the more
strongly bound is very simple. As shown in Table VI, this
the only state where none of the two-body channels wit
strong repulsive core (j ,i )5(2,3) or (3,2) contribute. In all
the other three-body states the strong repulsion of the (j ,i )
5(2,3) and (3,2) channels either completely destroys
bound state or allows just a barely bound one. The s

(S,I )5( 7
2 , 3

2 ) comes next with respect to separation ener

This state (S,I )5( 7
2 , 3

2 ) has a somewhat anomalous behav
since it has a relatively large separation energy. This beh

TABLE XV. Binding energiesB3 and separation energiesB3

2B2 of the DDD states with total spinS and isospinI. B2
L andB3

L

are the results of the local model whileB2
NL andB3

NL are the results
of the nonlocal model.

S I B3
L(MeV) B3

L2B2
L(MeV) B3

NL(MeV) B3
NL2B2

NL(MeV)

1/2 1/2 84.0 53.5 16.6 9.2
1/2 3/2 139.2 0.7 Unbound
1/2 7/2 6.3 0.6 Unbound
3/2 1/2 109.5 1.1 Unbound
5/2 1/2 39.1 8.6 9.3 1.9
7/2 1/2 31.7 1.2 7.8 0.4
7/2 3/2 35.1 4.6 9.8 2.0
6-8
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ior is sort of accidental and it can be understood as follo
As seen in Table VI, there are four two-body channels c

tributing to the (S,I )5( 7
2 , 3

2 ) state, the two attractive one
( j ,i )5(2,1) and (3,0) and the two repulsive ones (j ,i )
5(2,3) and (3,2). However, as one can see in Table XI
attractive channels (2,1) and (3,0) have bound statesE
527.4 MeV andE527.8 MeV, respectively, for the non
local version, andE5230.5 MeV andE5229.9 MeV,
respectively, for the local version, so that the poles in
scattering amplitudes of these two channels are very c
together and therefore there is a reinforcement betw
them, which gives rise to the anomalously large separa
energy in both versions.

V. CONCLUSIONS

By using both the local and nonlocal models we ha
studied the bound-state solutions of the two- and three-b
systems composed of nucleons and deltas. First of all
would like to emphasize the goodness of the Bo
Oppenheimer approximation, producing results very sim
to the usually more involved RGM results. We conclude t
the more realistic nonlocal interactions produce in the tw
body systemsNN, ND, and DD one, one, and five boun
states, respectively. The bound states of the unstable sys
ND and DD correspond to dibaryon resonances that de
mainly into two nucleons and one pion and two nucleons
two pions, respectively. TheND bound state with (j ,i )
5(2,1) andM'2.17 GeV is the dibaryon resonance wi
s.

.

o,

e
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the lowest possible mass and the one which seems to be
confirmed by experiment. The fiveDD bound states of the
nonlocal potentials correspond to dibaryon resonances
masses between 2.4 and 2.5 GeV. The (j ,i )5(3,0) DD state
would correspond to a new nucleon-nucleon resonance
dicted by our model. A possible signal of this resonance
pears in a recent analysis ofNN data up to 3 GeV by Arndt
et al. @26#. With respect to the three-body systems we fou
that theNNN has one bound state, theDDD has four bound
states, theNND has two bound states, and theNDD has
three bound states. The predictedNND states with (S,I )

5( 3
2 , 1

2 ) and (S,I )5( 3
2 , 3

2 ) which correspond to M
'3.4 GeV are the tribaryon resonances with the low
mass and therefore the ones that would be more eas
detect experimentally.
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