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Quark-model based study of the triton binding energy
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The three-nucleon bound state problem is studied employing a nucleon-nucleon potential obtained from a
basic quark-quark interaction in a five-channel Faddeev calculation. The obtained triton binding energy is
comparable to those predicted by conventional models of theNN force.
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I. INTRODUCTION

During the last decade the development of quark-mo
based interactions for the hadronic force has led to nucle
nucleon (NN) potentials that provide a fairly reliable de
scription of the on-shell data. Several models includ
quark degrees of freedom have been used to study theNN
interaction@1# and also the baryon spectra@2#. Among them,
the chiral quark cluster model is the only one that pursue
simultaneous understanding of different low-energy pheno
ena based on a unique quark-quark interaction. This mod
able to provide a quantitative description of theNN scatter-
ing @3# and bound state problems@4#.

Nevertheless, quark-model basedNN interactions have
not been often used to study few-body systems. There m
be two different reasons for that. First of all, most of tho
interaction models for the two-nucleon system needed to
supplemented with meson-exchange potentials between
baryons to obtain a reasonable description of the experim
tal data@5,6#, losing in this way their quark based charact
Second, other quark-model based interactions were prima
designed to describe the baryon spectra@7#, but lead to un-
realistic results when they are applied to the two-nucle
system@8#.

In this work we want to perform a study of the trito
bound state making use of a nonlocalNN potential fully
derived from quark-quark interactions. The model has b
previously utilized for investigations of three-body syste
(NNN, NND, NDD, andDDD), putting more emphasis o
the mass ordering of possible bound states of these sys
than on the binding energy values@9#. In the present work
the full nonlocalNN potential will be employed as it follows
from the application of the resonating group method~RGM!
formalism. This method allows, once the Hilbert space
the six-body problem has been fixed, to treat the interclu
dynamics in an exact way. Thereby, nonlocalities are ge
ated, reflecting the internal structure of the nucleon, wh
translate into specific off-shell properties of the resultingNN
potential.

Indeed the relevance and/or necessity of considering
nonlocal parts ofNN potentials in realistic interactions i
still under debate. Over the past few years several stu
have appeared in the literature which stress the potential
portance of nonlocal effects for the quantitative understa
0556-2813/2002/65~3!/034001~5!/$20.00 65 0340
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ing of few-body observables and, specifically, for the trit
binding energy@10–15#. However, the majority of these in
vestigations@11–15# explore only nonlocalities arising from
the meson-exchange picture of theNN interaction.

The nonlocalities generated in a quark-model derivat
of baryonic potentials may play a relevant role for the case
the three-nucleon bound state. It has been argued tha
assumptions associated with meson-exchange mo
sharply limit the nature of the off-shell properties of tho
potentials, once the on-shell matrix elements are constra
to fit the NN data @16#. Therefore, it is very interesting to
investigate the off-shell features of potentials derived from
quark model. Some preliminary studies in this direction ha
been done in Ref.@10#. However, there only the short-rang
part of the interaction is obtained by means of quark-mo
techniques. The intermediate- and long-range parts are
scribed by ‘‘standard’’ meson exchange between baryo
Accordingly, that work allows only very limited conclusion
with regard to effects of the quark substructure.

The triton binding energy is obtained from a Faddeev c
culation. We restrict ourselves to the standard five-chan
case; i.e., we consider only the1S0 and 3S1-3D1 NN partial
waves, those which provide the bulk contribution to t
three-nucleon binding energy. The three-body Faddeev e
tions will be solved in momentum space, making use
separable finite-rank expansions of the two-body inter
tions.

The paper is organized as follows. In Sec. II we introdu
the basic quark-quark Hamiltonian and we describe
method to obtain the RGMNN interaction. In Sec. III we
provide details about the finite-rank expansions of the qua
model based potentials which enter in the Faddeev calc
tions of the triton binding energy and we present results
the three-body system. Finally, some concluding remarks
provided in Sec. IV.

II. QUARK-MODEL BASED NN POTENTIAL

In recent years a chiral quark cluster model for theNN
interaction has been developed. This model has been wi
described in the literature@3,4,17,18#; therefore, we will only
briefly summarize here its most relevant aspects. It conta
as a consequence of chiral symmetry breaking, a pseu
©2002 The American Physical Society01-1
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scalar and a scalar exchange between constituent qu
coming from the Lagrangian

Lch5gchF~q2!C̄~s1 ig5tW•pW !C, ~1!

whereF(q2) is a monopole form factor:

F~q2!5F Lx
2

Lx
21q2G 1/2

. ~2!

Lx determines the scale of chiral symmetry breaking, be
bound between 1 GeV and 600 MeV@19#. The chiral cou-
pling constantgch is chosen to reproduce the experimen
pNN coupling constant.

From the above Lagrangian a pseudoscalar (PS) and a
scalar~S! potential between quarks can be easily derived
the nonrelativistic approximation:

Vi j
PS~qW !52

gch
2

4mq
2

Lx
2

Lx
21q2

~sW i•qW !~sW j•qW !

mPS
2 1q2

~tW i•tW j !, ~3!

Vi j
S~qW !52gch

2
Lx

2

Lx
21q2

1

mS
21q2

. ~4!

Using the range of values forLx given above yields a
N2D mass difference due to the pseudoscalar interac

TABLE I. Quark-model parameters. The values in brackets
used for a correct description of the deuteron.

mq ~MeV! 313
ba ~fm! 0.518
as 0.4977
gch

2 6.60 ~6.86!
mS (fm21) 3.400
mPS (fm21) 0.70
Lx (fm21) 4.47

ab is the parameter of the harmonic oscillator wave function u

for each quarkh(x)5(1/pb2)(3/4)e2(x2/2b2).
03400
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n

between 150 and 200 MeV. The rest of the mass differen
up to the experimental value, must have its origin in pert
bative processes. In the present model, this is taken into
count through the one-gluon-exchange potential@20#

Vi j
OGE~qW !5as~lW i•lW j !H p

q2 2
p

4mq
2 F11

2

3
~sW i•sW j !G

1
p

4mq
2

@qW ^ qW # (2)
•@sW i ^ sW j #

(2)

q2 J , ~5!

where thel ’s are the color Gell-Mann matrices andas is the
strong coupling constant.

For the present study we make use of the nonlocalNN
potential derived through a Lippmann-Schwinger formu
tion of the RGM equations in momentum space@18#. The
formulation of the RGM for a system of two baryonsB1 and
B2 needs the wave function of the two-baryon system c
structed from the one-baryon wave functions. The tw
baryon wave function can be written as

CB1B2
5A@x~PW !CB1B2

ST #

5A@x~PW !fB1
~pW jB1

!fB2
~pW jB2

!xB1B2

ST jc@23##, ~6!

where A is the antisymmetrizer of the six-quark system
x(PW ) is the relative wave function of the two cluster
fBi

(pW jBi
) is the internal spatial wave function of the baryo

Bi , andjBi
are the internal coordinates of the three quarks

baryonBi . xBiB2

ST denotes spin-isospin wave function of th

two-baryon system coupled to spin~S! and isospin (T), and,
finally, jc@23# is the product of two color singlets.

The dynamics of the system is governed by the Sch¨-
dinger equation

~H2ET!uC&50⇒^dCu~H2ET!uC&50, ~7!

where

e

d

TABLE II. NN properties.

Quark model Nijm II@22# Bonn B @21# Expt.
Low-energy scattering parameters

1S0 as ~fm! 223.759 223.739 223.750 223.7460.02
r s ~fm! 2.68 2.67 2.71 2.7760.05

3S1 at ~fm! 5.461 5.418 5.424 5.41960.007
r t ~fm! 1.820 1.753 1.761 1.75360.008

Deuteron properties

ed ~MeV! 22.2242 22.2246 22.2246 22.224575
PD ~%! 4.85 5.64 4.99 2

Qd (fm2) 0.276 0.271 0.278 0.285960.0003
AS (fm21/2) 0.891 0.8845 0.8860 0.884660.0009
AD /AS 0.0257 0.0252 0.0264 0.025660.0004
1-2
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H5(
i 51

N pW i
2

2mq
1(

i , j
Vi j 2Tc.m., ~8!

with Tc.m. being the center-of-mass kinetic energy,Vi j the
quark-quark interaction described above, andmq the con-
stituent quark mass.

Assuming the functional form

fB~pW !5S b2

p D 3/4

e2b2p2/2, ~9!

whereb is related to the size of the nucleon quark core, E
~7! can be written in the following way, after the integratio
of the internal cluster degrees of freedom:

S PW 2

2m
2ED x~PW !1E @VD~PW ,PW i !1WL~PW ,PW i !#x~PW !dPW i50.

~10!

VD(PW ,PW i) is the direct RGM kernel andWL(PW ,PW i) is the
exchange RGM kernel, composed of three different term

WL~PW ,PW i !5TL~PW ,PW i !1VL~PW ,PW i !1~E1Ein!KL~PW ,PW i !,
~11!

where Ein is the internal energy of the two-body system
TL(PW ,PW i) is the kinetic energy exchange kernel,VL(PW ,PW i) is
the potential energy exchange kernel, andKL(PW ,PW i) is the
exchange norm kernel. Note that if we do not mind ho

FIG. 1. 1S0 NN phase shift. The solid line is the result for th
nonlocal quark-model potential. The dotted line shows the resu
the separable representation of the nonlocal quark-model pote
The squares, diamonds, and triangles are the experimental
taken from Refs.@24#, @25#, and@26#, respectively.
03400
.

,

VD(PW ,PW i) andWL(PW ,PW i) were derived microscopically, Eq
~10! can be regarded as a general single-channel equatio
motion with including energy-dependent nonlocal potent
VD(PW ,PW i), which contains the direct RGM potential, an
WL(PW 8,PW i), which contains the exchange RGM potent
coming from quark antisymmetry, constitute our energ
dependent nonlocal potential. In our caseEin52mN what
makes our potential almost energy independent, because
center-of-mass energy of the two-body system,E, is much
smaller than the internal energyEin .

The potential yields a fairly good reproduction of the e
perimental data up to laboratory energies of 250 MeV. Fo
correct description of the1S0 phase shift it is necessary t
take into account the coupling to the5D0 ND channel@17#,
which provides an isospin-dependent mechanism genera
the additional attraction in this channel. This is implemen
in our calculation generalizing Eq.~10! to a coupled channe
scheme. It implies a modification of Eq.~11! with an addi-
tional term which contains theNN→ND coupling. The pa-
rameters used are summarized in Table I. In Table II
present the results for the low-energy scattering data and
deuteron properties of the present model together with va
of some standardNN potentials@21,22# and experimental
data. It is known that a charge symmetry breaking te
should be included in the interaction if one wants to rep
duce those quantities simultaneously@23#. This is taken into
account by a slight modification of the chiral coupling co
stant to reproduce the deuteron and the low-energy scatte
parameters~see Table I!. We also show, in Figs. 1, 2, and 3
the 1S0 and 3S1-3D1 phase shifts and the mixing paramet
«1 in comparison to results from phase-shift analyses@24–
26#.

f
ial.
ata

FIG. 2. Phase shifts for the3S1 and 3D1 partial waves. Same
description as in Fig. 1 except for the dotted line which is n
shown.
del
lar
TABLE III. Expansion~lab! energiesEm ~in MeV! used in the EST representations of the quark-mo
potential. ed refers to the deuteron binding energy.l m is the boundary condition chosen for the angu
momentuml m of the initial state@30,31#.

Partial wave (Em ,l m)

1S0(NN)25D0(ND) ~0,0! ~50,0! ~300,0! ~220,0! ~220,2! ~250,0!
3S1-3D1 ed ~100,0! ~175,2! ~300,2! ~250,0! ~250,2!
1-3
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JULIÁ-DÍAZ, HAIDENBAUER, VALCARCE, AND FERNÁNDEZ PHYSICAL REVIEW C65 034001
III. TRITON BINDING ENERGY

The triton binding energy is obtained by means of a F
deev calculation using theNN interaction described above
We perform a so-called five-channel calculation; i.e., we
only the 1S0 and 3S1-3D1 NN partial waves as input. Note
that since in our model there is a coupling to theND system,
as explained above, a fully consistent calculation would
quire the inclusion of two more three-body channels. Ho
ever, their contribution to the 3N binding energy is known to
be rather small@27# and therefore we neglect them for sim
plicity reasons.

To solve the three-body Faddeev equations in momen
space we first perform a separable finite-rank expansio
the NN(2ND) sector utilizing the Ernst-Shakin-Thale
~EST! method@28#. Such a technique has been extensiv
studied by one of the authors~J.H.! for various realisticNN
potentials@29# and specifically for a model that also includ
a coupling to theND system@30#. In those works it was
shown that, with a separable expansion of sufficiently h
rank, reliable and accurate results on the three-body level
be achieved. In the present case it turned out that sepa
representations of rank 6 — for1S0-(5D0) and for
3S1-3D1 — are sufficient to get converged results. The se
energies used for the EST separable representations is
in Table III. We refer the reader to Refs.@29–31# for techni-
cal details on the expansion method. The quality of the se
rable expansion on theNN sector can be seen in Fig. 1
where we show phase shifts for the original nonlocal pot
tial and for the corresponding separable expansion. E
dently, the phases are almost indistinguishable.

Results for the triton are summarized in Table IV. It
reassuring to see that the predicted triton binding energ
comparable to those obtained from conventionalNN poten-
tials, such as the Bonn or Nijmegen models. Thus, our
culations show that quark-model basedNN interactions are
definitely able to provide a realistic description of the trito
The results also give support to the use of such an interac
model for further few-body calculations. One should not f
get at this point that the number of free parameters is gre

FIG. 3. Mixing parameter«1. Same description as in Fig. 2.
03400
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reduced in quark-model basedNN interactions like the
present one. In addition, the parameters are strongly co
lated by the requirement to obtain a reasonable descriptio
the baryon spectrum.

IV. CONCLUSIONS

We have calculated the three-nucleon bound state prob
utilizing a nonlocalNN potential derived from a basic quark
quark interaction. This potential was generated by mean
the resonating group method so that nonlocalities resul
from the internal structure of the nucleon were preserv
The resulting triton binding energy is comparable to tho
obtained from conventionalNN potentials.

In the calculation of the three-nucleon binding energy
have followed the traditional approach: namely, solving t
Faddeev equations with nucleon degrees of freedom. Le
remark, however, that in a more fundamental approach
would impose consistency between the treatment of two-
three-nucleon systems in terms of quark degrees of freed
That, of course, would require a derivation and solution
the corresponding three-nucleon RGM equations. In suc
framework the quark structure of nucleons generates~besides
the consecutive two-nucleon interactions that are summe
by the Faddeev equations! also genuine three-body force
These forces are of short-ranged nature and they could
significant for short-distance phenomena like the hig
momentum-transfer part of the charge form factor of3He.
Indeed, there have been attempts to explore the effect
such three-body forces on the triton binding energy. In
simple model based on a single one-gluon exchange@32# the
three-body exchange kernels have been evaluated. An
mation provided in this reference suggests that those th
nucleon forces could yield additional binding in the order
0.2 MeV. If this is the case, then those effects would be s
small enough to guarantee that the approach we followe
our study is sufficiently accurate for an exploratory calcu
tion. However, one has to keep in mind that the estimation
Ref. @32# was done only in perturbation theory and by mea
of a zeroth-order three-nucleon wave function with a ser
of fitted parameters. Thus, for the future, a more refined
consistent treatment of the three-nucleon problem within
quark picture is certainly desirable in order to allow for r
liable conclusions on this issue.
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@20# A. de Rújula, H. Georgi, and S. L. Glashow, Phys. Rev. D12,

147 ~1975!.
@21# R. Machleidt, Adv. Nucl. Phys.19, 189 ~1989!.
@22# V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J.

Swart, Phys. Rev. C49, 2950 ~1994!; J. J. de Swart, C. P. F
Terheggen, and V. G. J. Stoks, nucl-th/9509032.

@23# D. R. Entem, F. Ferna´ndez, and A. Valcarce, Phys. Lett. B463,
153 ~1999!.

@24# V. G. J. Stokset al., Phys. Rev. C48, 792 ~1993!.
@25# D. V. Bugg and R. A. Bryan, Nucl. Phys.A540, 449 ~1992!.
@26# R. A. Arndt, J. S. Hyslop, and L. D. Roper, Phys. Rev. D35,

128 ~1987!.
@27# Ch. Hajduk and P. U. Sauer, Nucl. Phys.A322, 329 ~1979!.
@28# D. J. Ernst, C. M. Shakin, and R. M. Thaler, Phys. Rev. C8,

507 ~1973!.
@29# W. Schadow, W. Sandhas, J. Haidenbauer, and A. Nogga, F

Body Syst.28, 241 ~2000!.
@30# S. Nemoto, K. Chmielewski, N. W. Schellingerhout, J. Hai

enbauer, S. Oryu, and P. U. Sauer, Few-Body Syst.24, 213
~1998!.

@31# J. Haidenbauer and W. Plessas, Phys. Rev. C30, 1822~1984!.
@32# Y. Suzuki and K. T. Hecht, Phys. Rev. C29, 1586~1984!.
1-5


