
RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 65, 031304~R!
Finite well solution for the E„5… Hamiltonian
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The recently proposed infinite square well E~5! description of nuclei at the critical point of the phase
transition from vibrator tog-soft rotor is extended to include the effects of finite well depth. The evolution of
nuclear observables as a function of well depth is studied, and observables sensitive to finite well depth are
identified.
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An analytic description of nuclei at the critical point o
the second order phase transition from harmonic oscilla
structure to rigidlyb-deformedg-soft structure has recentl
been proposed by Iachello@1#. This description, denoted a
E~5! in Ref. @1#, arises in the geometrical picture of th
nucleus and occurs for a nuclear potential which is an infin
square well in quadrupole deformation space. The E~5! solu-
tion was the first example to be identified of a new class
critical point solutions applicable to both nuclear and m
lecular physics@2,3#, for which several experimental ex
amples have already been proposed@4–7#.

The E~5! description is of considerable interest for seve
reasons.

~1! The E~5! solution provides a description of nucle
behavior at the second order critical point of a shape tra
tion. This is a very special point in nuclear parameter sp
from a theoretical perspective.

~2! The E~5! solution is analytic. Numerical solutions fo
a wide variety of geometrical potentials~specifically, those
which are Taylor expandable! have long been availabl
through the geometric collective model@8#, and, in fact,
these can closely reproduce the results of E~5! @9#. What is
important is the tremendous contribution to the understa
ing of a phenomenon provided by an analytic solution.

~3! The model allows for an extraordinarily simple~and
successful! phenomenological description of a class of nuc
which have historically been the hardest to understa
namely, those at the midpoint of a shape transition.

Experiment indicates that the E~5! description is appli-
cable to real nuclei. Work by Casten and Zamfir@4# and
Arias @5# presents134Ba as a strong candidate for being
E~5! nucleus, and further examples~e.g., 102Pd and 104Ru)
are being investigated@10,11#.

One of the most pressing open questions in the stud
E~5! and related critical point descriptions has been whet
or not their features remain valid at finite well depth. The u
of an infinite well potential is a convenient calculational a
proximation. However, actual potentials describing nuc
are expected to be finite, not infinite, in depth, and so i
crucial to assess how sensitive the E~5! results are to well
depth, as suggested in Ref.@1#. It is therefore the purpose o
this paper to extend the E~5! solution to include the case of
square well of finite depth.

The investigation of finite well depth effects for E~5! is of
special interest in another context as well. Key features
the E~5! solutions can be reproduced for an appropri
0556-2813/2002/65~3!/031304~4!/$20.00 65 0313
r

e

f
-

l

i-
e

d-

i
d,

of
r

e
-
i
s

f
e

choice of parameters@4# in the interacting boson mode
~IBM ! @12#. The introduction of finite depth in the E~5!
model is closely related to the introduction of a finite bos
number along the U~5!-SO~6! transition of the IBM@13#.

The E~5! description is obtained by considering the Bo
Hamiltonian@14#
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for the special case of ag-independent infinite square we
potential, V(b)50 for b,bw and infinite elsewhere. A
separation of variables can be carried out in the standard
@15# for a g-independent potential. The eigenfunctions are
the form f (b)F(g,u i). The solutions for the ‘‘angular’’
(g,u i) wave functions@16# are common to allg-soft prob-
lems, while the dependence upon the potentialV(b) is iso-
lated in the ‘‘radial’’ (b) wave function. In terms of the
reduced eigenvalue«[(2B/\2)E and reduced potentia
v(b)[(2B/\2)V(b), the equation forf (b) is

F S 2
1

b4

]

]b
b4

]

]b
1

t~t13!

b2 D 1v~b!G f ~b!5« f ~b!,

~2!

where the separation constantt assumes the valuest
50,1,2, . . . . Theeigenfunctions of this equation are give
@1# in terms of spherical Bessel functions

f j,t~b!5H Aj,tb
21 j t11~«j,t

1/2b!, b<bw

0, b.bw ,
~3!

whereAj,t is a normalization constant. The eigenvalues a

«j,t5bw
22xt13/2,j

2 , ~4!

j51,2, . . . ,wherexn,i is the i th zero of the ordinary Besse
function Jn(x). Each solution of theb equation results in a
multiplet of solutions to the full problem, degenerate wi
©2002 The American Physical Society04-1
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respect to angular momentum according to the usualt mul-
tiplet structure@15,17#. The notationJj,t

1 is used to designate
these states.

Let us now consider the square well potential of fin
depth,

V~b!5H V0, b<bw

0, b.bw ,
~5!

whereV0,0. The corresponding reduced potential has de
v0[(2B/\2)V0. Bound state solutions can only occur wi
eigenvalues in the rangev0,«,0. The finite well potential
is piecewise constant as a function ofb and so can, as in the
infinite well case, be solved in terms of spherical Bes
functions. In the interior of the well (b,bw), the solution
again involvesj t11(b). In the classically forbidden region
exterior to the well (b.bw), however, the solution set i
constructed from spherical Bessel functions of imaginary
gument. The linear combination with the correct asympto
behavior ~convergence atb→`) involves the modified
spherical Bessel functionkt11(b). The wave function inb
is
e

t
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fe
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f j,t~b!5H Aj,tb
21 j t11@~«j,t2v0!1/2b#, b<bw

Bj,tb
21kt11@~2«j,t!

1/2b#, b.bw .
~6!

The eigenvalues for the finite well are determined by
requirement thatf (b) be continuous and smooth at th
matching pointb5bw . The eigenvalue condition for« can
be obtained in a manner analogous to that for the thr
dimensional square well~e.g., Ref.@18#!. We define a dimen-
sionless energy variable

h~«![F12
«

v0
G1/2

~7!

and a ‘‘well size’’ parameter

x0[~2v0!1/2bw . ~8!

The matching condition, expressed in terms of these qua
ties, is the transcendental equation
2

(
i , j 50

t12

@c(t11)ie(t11)( j 11)8 2c(t11)(i 11)8 e(t11) j #x0
2 i 2 jh2 i@~12h2!1/2#2 j

(
i , j 50

t12

@s(t11)ie(t11)( j 11)8 2s(t11)(i 11)8 e(t11) j #x0
2 i 2 jh2 i@~12h2!1/2#2 j

5tan~x0h!, ~9!
n-

en-
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re-
which must be solved numerically for the eigenvalues of«.
The constantscni , sni , and eni are the coefficients in the
spherical Bessel function expansions

j n~x!5S (
i 51

n11

cnix
2 i D cosx1S (

i 51

n11

snix
2 i D sinx,

kn~x!5S (
i 51

n11

enix
2 i D e2x, ~10!

andcni8 , sni8 , andeni8 are defined similarly for the derivativ
functionsj n8(x) andkn8(x). Once an eigenvalue«j,t is found,
the coefficientsAj,t andBj,t follow from the matching con-
dition at b5bw and the normalization condition
*0

`b4dbu f (b)u251.
The eigenvalue spectrum of the solution depends upon

parametersbw andv0 exclusively in the combinationx0, as
can be seen from the eigenvalue condition~9!. That is, if two
wells (bw ,v0) and (bw8 ,v08) have the same value forx0, they
will have identical energy spectra, to within an overall no
malization factor. Two wells with differentx0 values will
have different energy spectra.

Therefore, for a given value ofx0, the numerical solution
procedure need only be carried out once, at some ‘‘re
he

-

r-

ence’’ choice of the well width and depth~e.g.,bw51), and
the solution for any other well of the samex0 can be deduced
analytically. To state the analytical relations explicitly, co
sider a reference calculation performed atbw51 ~and thus
v052x0

2), and suppose this calculation produces an eig
value« and normalized wave functionf (b). Then for a well
of the samex0 but a different widthbw8 ~and thusv085

2x0
2/bw8

2), the corresponding eigenvalue«8 and normalized
wave functionf 8(b) are given by the simple rescalings

«85bw8
22«, ~11!

f 8~b!5bw8
25/2f ~b/bw8 !. ~12!

Matrix elements of the operatorbm,

I[E
0

`

b4db f I~b!bmf II ~b!, ~13!

are of special interest, since they are encountered in the
culation of electromagnetic transition strengths. These
scale as

I 85bw8
mI . ~14!
4-2
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The solution forx0510 is illustrative of the main effects
of finite well depth. The level energies and wave functio
for this solution are shown in Fig. 1. The main consequen
of the finite well depth are not unexpected.

~1! There are only a finite number of bound states. In t
case, only members of the lowest fewj families are bound
@Fig. 1~a!#. A summary of the number of bound states f
other well sizes is given in Table I.

~2! The wave functions penetrate the classically forbidd
regionb.bw . For the highest-lying states, a substantial p
tion of the probability distribution inb lies outsidebw . This

FIG. 1. Bound states of thex0510 well: ~a! excitation energies
and~b! probability density functionsP(b)[b4u f (b)u2. The shaded
areas under the probability density functions indicate penetra
into classically forbiddenb values (b.bw).

TABLE I. Number of boundb solutions, byt quantum number,
for selectedx0.

x0 t50 t51 t52 t53 •••

5 1 1
10 3 2 2 1 •••

20 6 5 5 4 •••

50 15 14 14 14 •••
03130
s
s

s

n
-

is indicated by the shaded areas of Fig. 1~b!.
~3! The eigenvalues are lowered relative to those for

infinite E~5! well of the samebw @Fig. 2~a!#. This is a natural
consequence of the finite well depth: The wave functions
given the freedom to spread into the regionb.bw , and this
is analogous in effect to a widening of the well, causing t
energies to ‘‘settle’’ lower.

Some interesting properties, however, are revealed by
examination of the systematic evolution of the solution w
changing well size. A series of calculations (x055,10,20)
spanning the physical range of interest in the study of nu
are presented alongside the E~5! solution in Fig. 2.@At a
fixed width,x0 is a measure of the depth of the well, and t
infinite E~5! well is obtained in the limitx0→`.# Although
the energy eigenvalues do experience a lowering as the
depth decreases@Fig. 2~a!#, it turns out that the level energie
are nearlyuniformly lowered by the samefactor for all levels
in the well, leaving energyratios virtually unchanged. A plot
of excitation energies normalized to the first excited st
@Fig. 2~b!# reveals these energies to be essentially insens
to the well depth. Some relevant energy ratios are sum
rized in Table II.

TABLE II. Excitation energy observables for selectedx0. Exci-
tation energies are normalized toEj51,t5151. The quantityR4/2 is
defined for eachj family as (Et522Et50)/(Et512Et50).

j51 j52 j53
x0 R4/2 Et50 Et51 R4/2 Et50 Et51 R4/2

10 2.19 2.99 4.69 2.09 7.14
20 2.20 3.02 4.79 2.12 7.55 10.05 2.08
E~5! 2.20 3.03 4.80 2.12 7.58 10.11 2.09

n

FIG. 2. Evolution of level excitation energies as a function
well parameterx0 for selected low-lying levels.~a! Absolute eigen-
value relative to floor of well@«2v(0)#. ~b! Excitation energy
normalized to the first excited state. The upper dashed line indic
the energy at which the system becomes unbound~top of well!.
4-3



te
ra

lu
th
,

t o
nt
n
th

ng

rgy

ge
a-
ent
ion
lly
con-
ive

ical

th
te
-

F.
the

ll ll

RAPID COMMUNICATIONS

M. A. CAPRIO PHYSICAL REVIEW C 65 031304~R!
Electromagnetic transition strengths can be calcula
from the matrix elements of the collective multipole ope
tors @8#. To leading order inb, the E2 and E0 transition
operators are

T~E2;m!}bFDm,0
(2)cosg1

1

A2
~Dm,2

(2)1Dm,22
(2) !singG ,

~15!

T~E0;0!}b2 ~16!

and the transition strengths areB(El;Ji→Jf)
5 z^Jf uTuJi& z2/(2Ji11). The evolution of keyE2 and E0
transition strengths is shown in Figs. 3 and 4. The abso
transition strengths are larger at finite well depth than for
infinite well ~at the same widthbw), but the increase is
again, largely a uniform overall increase, leavingB(E2) or
B(E0) ratios nearly unchanged from the E~5! limit.

The uniform reduction of all energies and enhancemen
all transition matrix elements do not serve as useful ide
fying features of finite well depth, since arbitrary energy a
transition strength normalizations can be obtained for
infinite E~5! well simply by varying the parametersbw and
B.

FIG. 3. Evolution of B(E2) strengths as a function of we
parameterx0. Values are normalized toB(E2;21,1

1 →01,0
1 )5100.
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Only the very highest energy levels, just short of bei
unbound, show appreciable deviations from the E~5! normal-
ized energies and transition strengths. The third 01 state at
x0510 demonstrates these effects nicely: lowered ene
~Fig. 2!, enhancedE2 transitions~Fig. 3!, and enhancedE0
transitions~Fig. 4!.

The results found for the finite well present a challen
from an experimental viewpoint. There are few clear sign
tures of finite well depth. Those signatures which are pres
consist of moderate modifications to energies or transit
strengths for high-lying levels, but such levels are typica
the least accessible experimentally and most subject to
tamination from degrees of freedom outside the collect
model framework.

The results are, however, reassuring from a theoret
perspective. They suggest that the E~5! description is ‘‘ro-
bust’’ in nature. Key features of the E~5! solutions remain
virtually unchanged under radical modification of the dep
of the potential, namely, alteration from the ideal infini
well to the realistic finite well likely to be applicable to ac
tual nuclei.

The author is grateful for valuable discussions with
Iachello and R. F. Casten. This work was supported by
U.S. DOE under Grant No. DE-FG02-91ER-40609.

FIG. 4. Evolution of B(E0) strengths as a function of we
parameterx0. Values are normalized toB(E0;02,0

1 →01,0
1 )5100.
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