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Finite well solution for the E(5) Hamiltonian
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The recently proposed infinite square wellSE description of nuclei at the critical point of the phase
transition from vibrator toy-soft rotor is extended to include the effects of finite well depth. The evolution of
nuclear observables as a function of well depth is studied, and observables sensitive to finite well depth are
identified.
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An analytic description of nuclei at the critical point of choice of parameter§4] in the interacting boson model
the second order phase transition from harmonic oscillatofiBM) [12]. The introduction of finite depth in the (B
structure to rigidly3-deformedy-soft structure has recently model is closely related to the introduction of a finite boson
been proposed by lachel[d]. This description, denoted as number along the (%)-SQ(6) transition of the IBM[13].

E(5) in Ref. [1], arises in the geometrical picture of the  The HS5) description is obtained by considering the Bohr
nucleus and occurs for a nuclear potential which is an infinitd1amiltonian[14]

square well in quadrupole deformation space. Tt® Eolu-

tion was the first example to be identified of a new class of H I 2 0 N 1 J 3 d

critical point solutions applicable to both nuclear and mo- 2B| g* B 9B pisinay gy Y 5y,

lecular physics[2,3], for which several experimental ex-

amples have already been propo$éd7].

The E5) description is of considerable interest for several 1 Q2

reasons. -y = | +V(B,y) (1)
(1) The H5) solution provides a description of nuclear 4p% “x sinz( y— Em{)

behavior at the second order critical point of a shape transi- 3

tion. This is a very special point in nuclear parameter space

from a theoretical perspective. for the special case of g-independent infinite square well
(2) The H5) solution is analytic. Numerical solutions for potential, V(8)=0 for g<p,, and infinite elsewhere. A

a wide variety of geometrical potentialspecifically, those separation of variables can be carried out in the standard way

which are Taylor expandablehave long been available [15]for a y-independent potential. The eigenfunctions are of

through the geometric collective modg8], and, in fact, the form f(B8)®(y,6;). The solutions for the “angular”

these can closely reproduce the results B)E9]. What is (v, 6;) wave functiong16] are common to ally-soft prob-

important is the tremendous contribution to the understandems, while the dependence upon the potentigs) is iso-

ing of a phenomenon provided by an analytic solution. lated in the “radial” (8) wave function. In terms of the
(3) The model allows for an extraordinarily simpland  reduced eigenvalue:=(2B/#2)E and reduced potential

successfylphenomenological description of a class of nucleiv(8)=(2B/%2)V(), the equation foff (B3) is

which have historically been the hardest to understand,

namely, those at the midpoint of a shape transition. 19 ,d 7(7+3)

Experiment indicates that the(8 description is appli- - 7@[3 %Jr >— | Tu(B) [f(B)=ef(B),
cable to real nuclei. Work by Casten and Zanj# and B B @)
Arias [5] presents'®Ba as a strong candidate for being an

10 10
E(5)an_JcIe_us, a?d fturthéarlexamplée.g., Pd and*Ru) where the separation constamt assumes the values
areOnzmc?f 'trrl]veesmg:t T)E:Leésiﬁé open guestions in the study =0,1,2 . ... Theeigenfunctions of this equation are given
E(5) and related critical point descriptions has been whethe 1}in terms of spherical Bessel functions
or not their features remain valid at finite well depth. The use ~1; 12 -
of an infinite well potential is a convenient calculational ap- fe(B)= [ AeB lrealegzB), B<Bu 3)
proximation. However, actual potentials describing nuclei ’ 0, B> Bw

are expected to be finite, not infinite, in depth, and so it is _ o .
crucial to assess how sensitive thésEresults are to well whereA; _ is a normalization constant. The eigenvalues are
depth, as suggested in REL. It is therefore the purpose of

this paper to extend the(®) solution to include the case of a €6,= Bu Xoiams (4)
square well of finite depth.
The investigation of finite well depth effects fof® is of  £=1,2, ... ,wherex, ; is theith zero of the ordinary Bessel

special interest in another context as well. Key features ofunction J,(x). Each solution of the8 equation results in a
the E5) solutions can be reproduced for an appropriatemultiplet of solutions to the full problem, degenerate with
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respect to angular momentum according to the usuall- A B 1l (e —v0)?Bl, B=<PBuw
tiplet structure[15,17. The notation); , is used to designate feAB)= (6)

these states. Be.B Kol ()8, B>Bu.

Let us now consider the square well potential of finite

depth, The eigenvalues for the finite well are determined by the
requirement thatf(8) be continuous and smooth at the
Vo, B=<PBuw matching point3=g,,. The eigenvalue condition far can
V(B)= 0, B>Bu, (5 be obtained in a manner analogous to that for the three-

dimensional square wele.g., Ref[18]). We define a dimen-
whereV,<0. The corresponding reduced potential has deptlsionless energy variable
vo=(2B/%?)V,. Bound state solutions can only occur with
eigenvalues in the rangg,<e<0. The finite well potential
is piecewise constant as a function®find so can, as in the n(e)=
infinite well case, be solved in terms of spherical Bessel
functions. In the interior of the well<pg,,), the solution
again involvesj ., 1(8). In the classically forbidden region and a “well size” parameter
exterior to the well > g,,), however, the solution set is
constructed from spherical Bessel functions of imaginary ar- - 12
gument. The linear combination with the correct asymptotic Xo=(=v0)"Bu- (8)
behavior (convergence ai3—x) involves the modified
spherical Bessel functiok,, 1(8). The wave function in3  The matching condition, expressed in terms of these quanti-

€ 1/2
1- U—J (7)

is ties, is the transcendental equation
T+2
ijE:O [Cirt 1)i€(r+1)(+1)~ Clrr )i+ 1)+ 1) %0 7 [(1— 7?27
T rF2 :tar(xo 7])! (9)

'Eo [S(r+1)i€(r+ 1)+ 1)~ S(r+ 1)+ )8+ 1) X0 7 '[(1— 5?7

I,]=

which must be solved numerically for the eigenvalueg of ence” choice of the well width and depte.g.,8,=1), and
The constantg,;, Sy, ande,; are the coefficients in the the solution for any other well of the samg can be deduced
spherical Bessel function expansions analytically. To state the analytical relations explicitly, con-
sider a reference calculation performed@f=1 (and thus

_ nti y nt e vo=—x2), and suppose this calculation produces an eigen-
Jn()= .21 CniX | COSX+ izl SpiX | SINX, valuee and normalized wave functioi{8). Then for a well
of the samex, but a different widthg;, (and thusv|=
n+1 —x3/B.,?), the corresponding eigenvaleé and normalized
kn(X):( 2 emx“>e‘x, (100  wave functionf’(8) are given by the simple rescalings
=1
, o o g =Py %, (11)
andc;;, s,i, ande/; are defined similarly for the derivative
functionsj,(x) andk/(x). Once an eigenvalue; . is found, / ’ - /
In(x) andkn(x) g 6 ()= Bi S (BIB,). (12

the coefficientsA, ; andB; ; follow from the matching con-
dition at B=p,, and the normalization condition
I[5B8%dBlT(B)2=1.
The eigenvalue spectrum of the solution depends upon the w
parameters3,, andv, exclusively in the combinatior,, as IEJ Bt (B) B (B), (13
can be seen from the eigenvalue conditi®n That is, if two 0
wells (B ,vo) and (8,,,v4) have the same value fap, they o ) )
will have identical energy spectra, to within an overall nor-2are of special interest, since they are encountered in the cal-

Matrix elements of the operatg™,

malization factor. Two wells with differenk, values will ~ culation of electromagnetic transition strengths. These re-
have different energy spectra. scale as

Therefore, for a given value ofy, the numerical solution -
procedure need only be carried out once, at some “refer- I"=p,". (14
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A FIG. 2. Evolution of level excitation energies as a function of
a /L well parametek, for selected low-lying levels.a) Absolute eigen-
~ =2 05 10 value relative to floor of wel[e—v(0)]. (b) Excitation energy
A B/B, normalized to the first excited state. The upper dashed line indicates
-1 the energy at which the system becomes unbdtoy of well).
/\ is indicated by the shaded areas of Figh)1
=0 (3) The eigenvalues are lowered relative to those for the
/\ infinite E(5) well of the same3,, [Fig. 2(@)]. This is a natural
05 10 consequence of the finite well depth: The wave functions are
B/B given the freedom to spread into the regjgr B,,, and this

is analogous in effect to a widening of the well, causing the
FIG. 1. Bound states of the,=10 well: (a) excitation energies €nergies to “settle” lower.

and (b) probability density function®(8)= ()| The shaded Some interesting properties, however, are revealed by an
areas under the probability density functions indicate penetratio@Xxamination of the systematic evolution of the solution with
into classically forbidderg values (3> 3,,). changing well size. A series of calculationg, € 5,10,20)

spanning the physical range of interest in the study of nuclei
The solution forxy=10 is illustrative of the main effects are presented alongside th¢SEsolution in Fig. 2.[At a
of finite well depth. The level energies and wave functionsfixed width,x, is a measure of the depth of the well, and the
for this solution are shown in Fig. 1. The main consequenceifinite E(5) well is obtained in the limit,—.] Although
of the finite well depth are not unexpected. the energy eigenvalues do experience a lowering as the well
(1) There are only a finite number of bound states. In thisdepth decreas¢fig. 2a)], it turns out that the level energies
case, only members of the lowest feifamilies are bound ~aré nearlyuniformlylowered by the samfactor for all levels
[Fig. 1@]. A summary of the number of bound states for in the well, leaving energyatios virtually unchanged. A plot
other well sizes is given in Table I. of excitation energies normalized to the first excited state
(2) The wave functions penetrate the classically forbiddertFig. 2b)] reveals these energies to be essentially insensitive
regionB> ,,. For the highest-lying states, a substantial por-tF’ the_ well depth. Some relevant energy ratios are summa-
tion of the probability distribution i lies outsideg,,. This ~ "zed in Table II.

TABLE Il. Excitation energy observables for selected Exci-
TABLE I. Number of bounds solutions, byr quantum number, tation energies are normalizedE_, ,—;=1. The quantityRy, is

for selected. defined for eaclt family as E,-,—E,_o)/(E,-1—E,—p).

Xo =0 =1 T=2 =3 &=1 £=2 =3

5 1 1 Xo Raz  Erco Em1 Rap Emo Eior Rup

10 3 2 2 1 e 10 219 299 469 209 7.14

20 6 5 5 4 e 20 220 302 479 212 755 10.05 2.08
50 15 14 14 14 . E(5) 220 303 480 212 758 1011 2.09
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FIG. 3. Evolution ofB(E2) strengths as a function of well FIG. 4. Evolution of B(EO) strengths as a function of well

parametex,. Values are normalized B(E2;2; ;—0; o) = 100. parametei,. Values are normalized t8(EQ;0; — 0; o) = 100.

Electromagnetic transition strengths can be calculated bOnIthehvery highe_stb:angrgy |¢VE|Sf' just sh%rt of t:eing
from the matrix elements of the collective multipole opera-UnPound, show appreciable deviations from tli§)Bormal-

tors [8]. To leading order ing, the E2 andEQ transition ized energies and transition strengths. The thifdsBate at
operators are

Xo=10 demonstrates these effects nicely: lowered energy
(Fig. 2, enhancedE?2 transitions(Fig. 3), and enhance#&0
1 transitions(Fig. 4).
T(E2;u)x D%coswt _(Dﬁf)ﬁ' Df)—z)S"W ' The results found for the finite well present a challenge
’ 2 ’ ’ from an experimental viewpoint. There are few clear signa-
(15  tures of finite well depth. Those signatures which are present
) consist of moderate modifications to energies or transition
T(EO;0)><B (16) strengths for high-lying levels, but such levels are typically
the least accessible experimentally and most subject to con-

and the ~ transition strengths —areB(ENJi—Ji)  tamination from degrees of freedom outside the collective
=|(3¢| T|3;))[?/(23;+1). The evolution of keyE2 and EO model framework g

transition strengths is shown in Figs. 3 and 4. The absolute The results are, however, reassuring from a theoretical

transition strengths are larger at finite well depth than for th%erspective They suggest that thésEdescription is “ro-
|nf|n-|te well (at thg same W'dtmw)’ but the increase is, bust” in nature. Key features of the(® solutions remain
again, largely a uniform overall increase, leavlB(E2) or \jally unchanged under radical modification of the depth

B(EO) ratios nearly unchanged from the(8 limit. of the potential, namely, alteration from the ideal infinite
The uniform reduction of all energies and enhancement Ofyq| ¢ the realistic finite well likely to be applicable to ac-
all transition matrix elements do not serve as useful identiy 5| nuclei.

fying features of finite well depth, since arbitrary energy and
transition strength normalizations can be obtained for the The author is grateful for valuable discussions with F.
infinite E(5) well simply by varying the parametefs, and lachello and R. F. Casten. This work was supported by the

B. U.S. DOE under Grant No. DE-FG02-91ER-40609.
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