PHYSICAL REVIEW C, VOLUME 65, 025502

Extended superscaling of electron scattering from nuclei
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An extended study of scaling of the first and second kinds for inclusive electron scattering from nuclei is
presented. Emphasis is placed on the transverse response in the kinematic region lying above the quasielastic
peak. In particular, for the region in which electroproduction of resonances is expected to be important,
approximate scaling of the second kind is observed and the modest breaking of it is shown probably to be due
to the role played by an inelastic version of the usual scaling variable.
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[. INTRODUCTION gion. The recent analyses showed that so also is scaling of
the second kind broken in th&>0 region, but much less so.

In recent studie$l,2] the concepts of scaling of the first Finally, in [2] an initial attempt was made to use the limited
and second kinds and superscaling have been explored, fnformation on the separate longitudinal and transverse re-
cusing on the region of energy loss at or below the quasielasponses and, hence, on the scaling behavior of the respective
tic peak in inclusive electron scattering from nuclei. Scalingreduced responses. The former appears to superscale,
of the first kind corresponds to the following behavior: if the Whereas the dominant scale-breaking effects appear to reside
inclusive cross section is divided by the relevant single-more in the latter. _ _
nucleon electromagnetic cross sectiae., weighted by the In the present work we pick up these ideas and extend

proton and neutron numbeFsandN, respectively, and with  them- We begin by updating our analysis of the relevant in-
appropriate relativistic effects included — sg# for de- clusive electron scattering scaling behavior in fhe€0 re-

tailed discussions then at sufficiently high values of the gion, thereby obtaining refined values for the typical nuclear

momentum transfeq the result so obtained becomes a funC_momentgm scaléhencefort.h,. as in our previous work which
. . . . . was motivated by the relativistic Fermi gd®FG), called the
tion of a single scaling variable and not independentlyy of

: L . Fermi momenturmkg] and for a small energy shifEg, ;s
anq the energy transfar_. Various definitions for the sca]mg included to have the quasielastic peak occur at the place
variable exist(see, for instancef2]); however, whenq is

hiah h th I | oy f ionall where the scaling variable is zero. Moreover, we assess the
igh enough they are almost always simply functionally re'sensitivity of the results to variations in bdth andEgy;s; to

!ated in ways that yield scaling behavior in all cases. Sgich provide some idea of how much change in one or both can
independence of the reduced resporfsgq,w) —F(¥), e tolerated when studying the region where 0.
wherey= i(q,w) is the scaling variable, is called scaling of = \ye \yish to focus on the scale-breaking effects, especially
the first kind. Moreover, motlv_ated by earlier wdrk], it has_ in the >0 region, and accordingly we have isolated the
been found that when the typical momentum scale of a givelj 5 nsyerse response using our previous approach. Within un-
nucleusk is appropriately incorporated in the definition of certainties that are unfortunately not as small as is desirable
the scaling variable and the reduced response is also apprand only for a limited range of kinematics, it appears that the
priately scaledF(q,w)—f(q,0)=kXF(q,w), then a sec- longitudinal reduced respon$g in fact superscales and rea-
ond type of scaling behavior is seen — the result becomesonably satisfies the Coulomb sum rule. We shall assume that
independent of nuclear species. This is called scaling of théhis is a universal behaviaifor all kinematics and for all
second kind. When scaling of both the first and second kindsuclei — that is, the impact of having superscalirand we
occurs, one calls the phenomenon superscaling. shall then remove the longitudinal contributions and thereby
The studies undertaken recenfly,2] demonstrated the obtain the transverse reduced respoffige Naturally the un-
quality of the scaling behavior, finding that scaling of the certainties in knowledge df, propagate into corresponding
first kind is reasonably good fa#<0 (below the quasielastic uncertainites irf+, and given betteL/T separations the pro-
peak and that scaling of the second kind is excellent in thiscedure could be refined. However, it is important to the best
region, but that both are violated fgr>0 (above the quasi- of our current ability to isolate the transverse part of the
elastic peak Indeed, scaling of the first kind has been inclusive response as it is the one expected to contain the
known for some time to be badly violated in this latter re-leading scale-breaking effedt2].
Oncefr has been isolated we focus on the region above
the quasielastic peak, exploring the scaling behavidrais
*Present address: Fachbereich Physik, UniversRastock, a function ofq and kg, namely, for first- and second-kind
D-18051 Rostock, Germany. scaling. We further divide our discussions into two regimes:
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(1) a study of the resonance region whevis andN*'s are  relativistic Fermi gas model the characteristic momentum is

expected to play an important role along with nonresonanthe Fermi momentunk: and the dimensionless scale is

meson production an@®?) a study of the very limited data given by ¢, where

available in the deep inelastic scatterifS) region. Upon

seeing that the second-kind scaling behavior is only moder- _ k_F<1 (4)

ately violated in these regimes and motivated by the type of = my

analysis performed in studying the European Muon Collabo-

ration (EMC) effect, we also define an appropriate ratio in- Where typically the Fermi momenta range from as small as

volving the f’s for a pair of nuclei. This provides a conve- 55 MeV/c for deuterium, 200 MeW for “He, to as large

nient measure of the extent to which scaling of the secon@s about 250 Me\ for very heavy nuclei, and as a conse-

kind is or is not respected. Indeed, as we shall see, the rati@uence the strong inequality above holds. A corresponding

is very close to unity from the most negative values of thedimensionless energy scale is also useful,

scaling variable(i.e., far below the quasielastic pgalp

through thg resonance region. Only in the DIS region does ep=11+ ,]'2::1+ ln§+ - (5)

the ratio differ from unity by as much as 25%; for most of 2

the region the results lie typically within about 10% of unity.
The paper is organized as follows. In the next section wi

briefly summarize the basic scaling formalism, drawing on 1

our previous worK1,2] where more detailed discussions can Er=ep—1= > net (6)

be found. In Sec. Ill the updated determinationskpfand

Eshift are discussed, in Sec. ,IV the transverse_scgling fl,mCNaturaIIy the RFG is only a first approximation to the
tions f are presented, and in Sec. V the ratios involvingp, ,cjear"dynamics involved in the quasielastic region and
pairs of nuclei are introduced. For the last, the discussiong, s the Fermi momenta actually employed — and these are
are focused on two kinemati(_: regimes, the resonance regiofhsined by fitting data as discussed below anfili2] —
in Sec. VA and the DIS region in Sec. V B. In the former gy 4 really be regarded as effective parameters in the prob-
additional modeling is presented to help in understandingey, clearly across the periodic table the densities of nuclei
why the ra}t|os d',ﬁer from unity even by the small amoiunt change and this is reflected in the fact that the characteristic
they do. Fmally, in Sec. VI we summarize our observatlonsmomemum scaléherekg) should also vary, roughly such
and conclusions. that the density is proportional I@ As a consequence the
width of the quasielastic response goekgas
Il. BASIC SCALING FORMALISM In past studies of the region at and below the quasielastic

We beain b . f th il peak it has proved to be very useful to introduce scaling
e begin by summarizing some of the essential expres\'/ariables(see, for example[3]). In the most familiar ap-

sions “S.ed in _previc_)us st_udies qf scaling and superscaling i[5‘roach they-scaling variable is employed and one finds that
the quasielastic region. First, using the nucleon magasa 5 high momentum transfers the experimental inclusive cross

scale, it proves useful to introduce dimensionless variables Qections divided by an appropriate single-nucleon cross sec-
replace the three-momentum transéeand energy transfer yion scale, iie., become functions onlyyfnd not indepen-

é/vhere, then,

, namely, dently of the energy or momentum transfer. Such behavior is
calledscaling of the first kindAlternatively, again using the
A= @ 1) RFG for guidance, a dimensionless scaling variakje
2my’ emerges naturallj4,5]:

9 ) l/IEi i .
2my \/f_F\/(l+)\)T+K\/T(T+1)

The (unpolarized inclusive electron scattering cross sectionAt the naive quzasielastic peak wheke= (which corre-
then depends only or=|«|, A and the electron scattering SPonds tow=|Q*|/2my) one hasy=0 and finds that the
angle 6,. The dimensionless four-momentum transferRFG response region is mapped onto the randes y<

()

]
Il

squared is given by +1. While appearing at first sight to be quite different, in
fact the variabley and ¢ are closely related. One can write
7=|Q?|/4m2 = k)2, 3 M@
, _ y(Es=0) o
and Q%= w?—q?<0 in the conventions used here. = k—F[1+ O(neh,yIMp_1) ], 8

In past work it became apparent that a convenient dimen-

sionless scale in quasielastic electron scattering from nuclgihereE; is the separation energy, the difference between the
is provided by the ratio of a characteristic nuclear momensum of the nucleon plus ground-state daughter masses and
tum k= \/(k?) to the nucleon mass)y. For example, in the the target ground-state mass. Up to the choice made in mak-
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ing the scaling variable dimensionless by dividingkay(see  for the total cross section or, when individualand T con-
below), whenE; is set to zero the two variables differ only at tributions are being considerd@s they are in part of the
order - and ordefM3_,]7?, and accordingly when scal- present work using

ing of the first kind occurs in one it is bound to occur in the

other, as long as corrections to the leading order expressions F = R (14)
are small. In effect, what the conventionascaling variable LTGL(kN)’
does thaty does not is to take into account tfemal) shift
in energy embodied ik. The simple relationship begins to Ry
fail when large excursions are made away from the quasi- FT:GT(K,)\)' (15)
elastic(QE) condition =0 — in the present work the full
expressions are always used. Here the function&,  are given by
From such considerations one sees that an improved phe-
nomenological dimensionless scaling variable can be em- (kK2 T)[GE+W,AT
ployed in treatments of superscalifg], namely, one with an GL(k,\)= 200 (16)
empirical shiftEgpis;. This was done in previous analyses 2r[1+&p(1+ 9912
[1,2] introducing a dimensionless scaling variable as above, - -
Gl 271G +W,A a7
’ ’ K,\N)= )
ye NoT © ! 2k 1+ ér(1+y2)/2]
Vér \/(1+)\’)7"+ kN7 (7' +1) which involve the functiom:
Whe,rze Nsnite=Eshitd2My, N =X—Ngpigr, and 7'=«? o Vr(l+7) 1 o T
“A o ) , A=E&(1-¢9) —+§§F(l_¢)_2
After this brief summary of the conventional choices of K K
scaling variables, let us next turn to the scaling functions. We 1
begin with the inclusive electron scattering cross section it- = Z(1- ) 2+ O[ 3] (18)
self, which may be written in various forni{see also later 2 F F
d?0/dQdo=3 +31 As usual one has
:UM[ULRL(K,)\)+UTRT(K,)\)] GEEZGEp+NGén|
= o[ W, + 2W,tarf 6,/2)], (10 -, , ,
- . . . . GMEZGMp+NGMn1
where the familiar electron kinematical factors in this Rosen-
bluth form are given by W, = Téfﬂ
T 2
| ~ 1 . ~
o H | W= o[BG+ 753, (19

T involving the proton and neutron Sachs form fact@is;
szﬁthar?ee/Z, (1D and Gy, weighted by the proton and neutron numbars
andN, respectively.

In the region of the QE peak whef¢| is small it is a
good approximation to seX to zero and to expand the func-
tions G| 1 in powers ofnﬁ, retaining only the lowest-order
Rr=2W;, terms, namely, to use

and the longitudinalL) and transversé€T) response func-
tions are related toV, , via

K2 2 K2

K ~
RU=|—| W —W,. (12) Gu(k,\) = 5-GE+ Ol 7], (20

-
The strategy in discussing scaling in the quasielastic re-
gion is, to the extent that it is possible, to divide out the

single-nucleoneN elastic cross leaving only nuclear func-
tions. As discussed if2,4,5, this can be accomplished using While such leading-order expansions i are very good

Grlx\) = -Gy + Ol 72]. (21)

the reduced response when 7¢ X | ¢| is small, they become less so when very large
) excursions away from the QE peak are made and accordingly
F(, )= d“o/dQcdw (13) in the present work we have always used the full expressions

O'M[ULGL(K,)\)+UTGT(K,)\)] in EqS(lG) and(17)
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As discussed i4,5] the RFG model then yields scaling TABLE I. Adjusted parameters.
of the first kind, namely, th&’'s become functions only aof
(independent ofk, that is, ofq); indeed, as discussed in Nucleus ke (MeVic) Eshite (MeV)
[1,2], so do the data whept<<0. Moreover, as also discussed Lithium 165 15
in [1,2,4], the RFG model and the data both display scalingCarloon 208 20

of the second kindn that theF’s can be made independent .
. S Magnesium 230 25
of the momentum scale in the problem — that is, indepen- .
. . Lo Aluminum 236 18
dent ofkg to the order considered in the expansion in the
Calcium 241 28

small dimensionless parametgg . This is accomplished by

defining Irgn 241 23
Nickel 245 30

f=keXF, (22) Tin 245 28

Gold 245 25

fLr=kexXF_1, (23 Lead 248 31

namely, by making them dimensionless through multiplica-

tion by the factokg . Comparing Eq(8) with the above, we ably it incorporates the separation eneEyy the mean bind-
see that the mapping of ttes versusy to thef’s versusyy  ing energy of nucleons in the nucleus and some global as-
(or ¢") is area conserving: the dimensionless scaling varipects of final-state interactiojéor instance, random phase
ables contain a factokg 1 while the scaling functions a approximation(RPA) correlations which are known to shift
factork/*. In the RFG model thé’s display scaling of both  the response slightlyWhile attempts are being made to ac-

the first and second kinds, namely, the dispgaperscaling  count for the values found here, it is not a simple problem to
address for the relatively high-energy conditions of most of

the current study where relativistic effects are known to be
very important, and thus here we limit ourselves to the
In [1,2] the approach summarized in the previous sectiorpresent phenomenological discussion.
was applied to an analysis of the usable data involving in- The values ofkg found vary monotonically once “typi-
clusive electron scattering in the region of the quasielastical” nuclei — say, beyond carbon — are reached. It should
peak. While medium-energy results were included, the maitbe understood that the values given here are relative and not
emphasis in that study was placed on the high-energy resultbsolute: if all values are scaled by a common factor, then
from SLAC and from TINAF7-23. And being the first equally good scaling of the second kind is obtained. The
attempt to explore scaling of the second kind and superscalralue of 228 MeV¢ for carbon is typical of other studies
ing, we chose not to perform an extensive search to find theand so we have used this to normalize the rest. The present
“best” choices of the two parameters involved in the fit, fits are done emphasizing the large negatiweegion where
namely,kr and Eg,if¢, but instead selected values that were“contamination” from pion production, two-particle—two-
“reasonable.” Now, given the success of that previous studyhole (2p-2h) meson-exchange curreEC) effects, reso-
and the fact that scaling of the second kind appears to beances and DIS are thought to be small and where the basic
quite well obeyed in the scaling regios(<0), we have underlying nuclear spectral function is presumably revealed
stronger motivation to produce even better fits and to assessost clearly, in contrast to some previous attempts to deter-
the uncertainties in the fit parameters. mine kg using the entire response region. Interestingly the
In the next section we shall place our focus on the transvalues found here for heavy nuclei are somewhat smaller
verse scaling functio; and it would be desirable to adjust than those generally chosen — lead, for example, is some-
ke andEgpt; for each nuclear species for this quantity. Un- times assumed to hake=265 MeV/c. We believe that the
fortunately, in the regime wherg’ <0, it has not been pos- present values are more reliable determinations of the effec-
sible to separate the longitudinal and transverse inclusivéve kg's. Note also the curious value for lithium, curious
responses and thus we are forced to make our fits to the tothkecause theéke used for “He is 200 MeVE (see[1,2)).
f’s. Our hope is that the parameters obtained from fits to thélowever, this is easily explained if one assumes fhatis
total are also appropriate for the individual . essentially a deuterofwith k=55 MeV/c) plus an alpha
The total f’s are very sensitive functions dé- in the  particle. Taking the weighted mearj{4x (200y+ 2
region wheray’ <0 and yet it is possible to find valueskf X (55)?}/6]*2 gives 166 MeVe, which is very close to the
for which the data line up extremely wedkee, for instance, fit value of 165 MeVE.
the highg/small+4’ data shown beloy The Egi;; depen- To get some feeling for the sensitivity of the fits in Fig. 1
dence is less critical than is that dg; nevertheless, by we show the ratid 5, /fc for data from SLAC taken ab,
examining the behavior near the quasielastic peak it is clear 16° and incident electron ener@s=3.6 GeV—for more
that some shift is needed to move the response from thdiscussion of the existing data usgt-23], see[1,2]. The
naive peak value ob=|Q?/2my (A= 7) to where the data top panel in the figure shows that in the regigh<O the
require it to be. In Table | we list the parameters obtaineddata themselves scatter at roughly the 10% level; i.e., scaling
from global fits to the datf7—23. of the second kind for these kinematics is satisfied to roughly
Clearly the energy shift does not vary too much. Presumthe 10% level, which is clearly better than scaling of the first

Ill. DETERMINATION OF ke AND E g

025502-4



EXTENDED SUPERSCALING OF ELECTRON.. ..

ratio

ratio

ratio

1.75
1.50
1.25
1.00
0.75

1.75
1.50
1.25
1.00
0.75

1.76
1.50
1.25
1.00

o
wog e S W gy

6ky=10MeV/c  _|

8 S g e
| | | —

OB gy =10MeV

PHYSICAL REVIEW 65 025502

0.6

0.4

fL.(¥)

0.2

0.0+
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zation of the results.
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| | sary to make an assumption and we do so now: we assume
-1 0 ,wv 1 2 3 4

that the so-determined longitudinal scaling function shown in
Fig. 2 is universali.e., superscaling worksGiven this uni-
versal f, we can immediately reconstruct the longitudinal
cross section for any kinematical condition using the expres-
sions given in Sec. I,

-2

FIG. 1. The ratio off 5, over f. for energy 3.6 GeV and scat-
tering angle 16°. The top panel shows the ratio usikg]a,
=245 MeVlc, [Eghitdau=25 MeV and [ke]c=228 MeVrc,
[Eshittlc=20 MeV, the “best-fit” values. In the middle panel
[ke]au has been increased by 10 MeVivhile in the bottom panel

[ Eshiftlay has been increased by 10 MeV. (24)

E|_:k_f|_0'rv|v|_G|_:
F

kind (see[1,2] and figures given belowAt positive ¢’ the  from this isolate the transverse part of the cross section,
ratio moves above unity and constitutes the focus of the dis-

cussions later in the present work. In the middle panekthe _ d’o

of gold has been increased by 10 MeVtlearly the fit is 2T_dQedw —X0 (29)

very poor in the negativegy’ region, indicating that the val-

ues of kg given in Table | are rather finely determined, and so obtain the transverse scaling function

namely, to only a few Me\W. In the bottom panel in the

figure, the energy shift used for gold is increased by 10 MeV f() = pR 26)
T =

and again the fit is much worse than the “best-fit” value. So
the values ofEg,f; given in the table are good to perhaps a
few MeV. Finally, note that, in the large positivg- region  Using this procedure we arrive at the transverse scaling func-
which will be discussed in depth below, the sensitivity totion f1. In Fig. 3 we show the results obtained for all kine-
variations in either parameter is much weaker. This stemsatics from medium-energy measurements at 500 MeV and
from the rapid falloff of the responses belgW =0, in con-  60° (q=0.4 GeVk) to results from both SLAC and
trast to the relatively flat response wheh>0. TJINAF ranging up t@j=4 GeV/c. For¢'<—0.3 we see a
reasonable convergence of the results to a band, although the
width of the band is not negligible, reflectirigt least break-
ing of scaling of the first kind. Since the span of momentum

From our previous analysi®] we have seen indications transfers is so large in the results shown in the figure, we are
that the longitudinal scaling functiofy exhibits superscal- emphasizing the lack of first-kind scaling, and focusing on a
ing behavior; that is, it not only displays scaling behavior of smaller range ofj produces less spread, as discussed below.
the second kindas does the totdl discussed aboyebut it  Note also that the region abowg =—0.3 contains a very
has scaling behavior of the first kind. Of course, the regimdarge spread, that is, a very large degree of scale breaking. A
in which this superscaling has been verified is relatively lim-motivation of the present work is to begin to get some insight
ited, given the difficulty of separating the longitudinal and into the nature of this behavior.
transverse response functions. In practice, using the analysis In Fig. 4 we show only the medium-energy results fer
in [24] we have made a fit to the combined setfpfvalues Here, at energy 500 MeV and scattering angle 60°, the mo-
for the higher momentum transfers where scaling of the firstnentum transfer varies from about 490 MeVdt ¢'=—1
kind is seen to occur. The results are shown in Fig. 2. down to about 430 Me\ at the largest values af’. We

To make any further progress on the problem, it is necessee, on the one hand, that now the band in the negdtive-

(TMUTGT.

IV. TRANSVERSE SCALING FUNCTIONS
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" . T T . T tum transfer is roughly 990 Me\¢/while at ¢4'=4 it has
et risen to about 1.7 Ge\¢/ As the inset on a semilogarithmic
scale clearly shows, the quality of second-kind scaling be-
havior at highem values is excellent in the negativg- re-
gion. At positive ¢4’ second-kind scaling is not perfect, al-
though it is only modestly broken. The lower the valuekpf
the smaller isf;, indicating again that the scale-breaking
mechanisms go as some positive powekpf as expected.
Finally, in Fig. 6 we show several sets of data taken at 4
GeV energy and various scattering angles. In this single fig-
ure one is able to assess scale breaking of both kinds. Each
. fairly tightly grouped set of data displays the extent of
10* | i E second-kind scale breaking and clearly the results are very
similar to those already seen in the previous figure. On the
: ; _ , other hand, the various scattering angles yield correspond-
3 25 2 45 -1 05 0 05 1 ingly different values for the momentum transfer, ranging,
W for instance, at)'=+1, from about 1.2 GeW at 15° to
3.9 GeVck at 74°. For each different choice of kinematics a
5.0 : different grouped set of results is obtained, indicating again
_ ; i the extent to which scaling of the first kind is broken.
C In summary, we deduce from these results fiprthat in
4.0 - . the region below)’ =0 scaling of the second kind is excel-
" lent, while scaling of the first is violated, although not too
___g badly. In contrast, fors’ >0 scaling of the second kind is
3.0 | L4 3 ] also broken to some extent, whereas scaling of the first kind
= Fe is very badly broken. Accordingly, let us next turn to a closer
M ' g examination of the region above the quasielastic peak to see
2.0 | : e 1 if further insight can be obtained on how the moderate scale
' breaking of the second kind arises.

10°

. _-‘-_’. Wt o =% V. RATIOS OF TRANSVERSE SCALING FUNCTIONS

The results given in the previous section clearly show that
several different regions are involved when studying the
first- and second-kind scaling behaviorsfef. In the region

"I"! below the quasielastic pealg(<0) at highq the first-kind
scaling is reasonably good — this is what is usually called

FIG. 3. (Colon Transverse scaling functioiy for a wide range  simply y scaling — and the second-kind scaling is excellent.
of nuclei and for kl_nematlcs ranging from medium enerdig80  Another example is shown in Fig. 7 containing TINAF data
MeV and 60°) to high energie&Ip to 4.045 GeV and 74°). The 41 4 GeV and 55° ¢=3.4-3.5 GeVé). Clearly one could
Iongltudlpal response has been removgd using the supe.rscallrﬁesent the results as etio, that is, as[fr(¢')],/
_Ia_zzlljgptlon discussed in the text. The fit parameters are listed ()11, where 1 and 2 denote two different nuclei. For

' ' <0 one would obtain unity with very small uncertainties
region is fairly tight, an indication that the breaking seen inat all but the lowest values of the scaling variable, while for
Fig. 3 is indeed mainly due to first-kind scale breaking andy’ >0 the ratios deviate from unity. In particular, if &
not to second-kind breaking. On the other hand, the behavidight nucleus and 2— heavy nucleus, then the ratio rises
at positive ¢4’ shows that there one also has breaking ofabove unity in the region above the quasielastic peak. For
second-kind scaling behavior. Clearly as one proceeds frormstance, in Fig. 7 ay’=+1 the Au/C ratio is about 1.2.
light nuclei with low ke to heavy nuclei with largée the  Thus, even at such high values of the momentum transfer the
trend is to increasingly large values faf in this region. This  ratio in the entire region from very large negatiyé to very
indicates that the mechanisms that produce the scale brealarge positiveys’ falls within roughly 20% of unity.
ing must go as some positive powerlgf. Indeed, in recent Let us now focus on the region above the quasielastic
work [25—-27] such breaking of both first and second kindspeak and see if more light can be shed on the remaining
due to MEC and correlation effects in the-1h sector has (modest, i.e.~20%) second-kind scale breaking. To begin
been investigated in detail and work is in progress to arrivawith, note that the scaling functiorisf_, andf; have been
at a relativistic extension of older wofR8] in which scale constructed with the quasielastic responses in mind: the de-
breaking in the B-2h sector was also identified. nominator in Eq.(13) contains the elastieN form factors

Next, in Fig. 5 we showi for SLAC data at 3.6 GeV and weighted byZ and N, the proton and neutron numbers, re-
16° scattering angle. At the lowest valuesydfthe momen-  spectively. In the region below the quasielastic peak we ex-
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1.8 T T T T
16 o ~- 1
Mg E.=500 MeV ‘
t4 ] Ga & 8, = 60° -
21 pp ;i1
1.0 + i -
oy i FIG. 4. (Colo As in Fig. 3,
0.8 | T 7a%e : | but only for medium-energy data
TR LT g 4 (500 MeV and 60°).
06 + ot .. i &
0.4 ".k " g & g T
0.2 - e .
0.0 — : : :
-2 -1 0 1 2 3
pect the dominant contributions to the response functions to o ke3
arise from the tails of the QE response and accordingly re- fi= , (27)
moving such a weighted elastieN cross section makes Aoyvt Z)GZD
sense. However, in the region above the quasielastic peak we K

do not expect things to be so simple. Certainly resonance

excitation and pion production play an important role and, atvhereGp, is the dipole form factofa compromise between
asymptotically high values of momentum transfer, one exthe Q? dependences 0By, and Gy, — its form is not
pects DIS to take over. Because of this, one expects the lofnportant here as it will cancel in constructing the ratio de-

gitudinal and transverse responses to have quite differefi?®d below. This provides an alternative foity defined

characters — for instance, the first important new contribu-""b(::)’;a in Eqs(15) and (23). The two differ roughly by a

tion beyond QE scattering in entering tif¢ >0 region is
expected to come froml— A excitations on nucleons mov- 5 5
ing in the nucleus, and this id) essentially transverse and —, LGyt NGy,

(2) isovector. For this reason we have extracted the trans- - AGZD

verse response using the superscaling assumption for the lon-

gitudinal contributions. Then, focusing on the transverse re- zZ , N ,

sults, we can attempt variations on the theme that motivated =AM Ak

y scaling in the first place. Specifically, instead of weighting

protons and neutrons witl},, and G, respectively, we =5.73[1-0.36N—-2)/A], (28)

can make a scaling function that varies only with total mass

numberA=Z+N and notZ and N individually — this is  which is a relatively slowly varying function of4,N). Such
more in the spirit of what is done for the ratio consideredan approximation will allow us to interconnect the quasielas-
when studying the EMC effect. For instance, if an isovectortic and DIS analyses in an approximate wage below.
excitation such alN—A dominates in the response, then  With these definitions, let us next consider two different
equal weighting of protons and neutrons should be better thatuclei have charge and neutron numbets, ;) with i=1,

the weighting provided using the elastic magnetic form fac-2. Labeling as above with nuclear species numbers 1 and 2,
tors of the nucleons. Accordingly let us consider we consider the ratio

025502-7



C. MAIERON, T. W. DONNELLY, AND INGO SICK

PHYSICAL REVIEW C65 025502

8 T '
10"k i e
7L |
! -
6 L -
-
51 10 1
-4 i L L L
= 10
(A 4 2 <15 -1 05 0 05 | 1 FIG. 5. (Colon As in Fig. 3,
but only for data at 3.6 GeV and
16°.
3t E.=3.6 GeV
0. =16°
2 L -
= {
ut -— Fe i
0 s reSer) L i s I i i o | )
-2 -1 0 I 2 3 4 5
[f_T(l//')]z sumption to remove the longitudinal coEtributions, as dis-
Plef——,- (29) cussed in the previous section, calculatiingy') for each
[fr(¥)] nucleus using Eq(27), fitting the results and finally using
e W Yo Eq. (29) for specific pairs of nuclei. The upper panel in the
With u3,= i/ u3 we then have that figure corresponds to momentum transfers of about 1.2
[f+(4)], GeVlc (neary’=1) to 1.7 GeV¢ (nearyy’ =4), whereas the
—,z;fzx P1= P12, (30) lower panel ranges from about 2.1 Ge\theary'=1) to
[fr(¢")]1 2.4 GeVE (neary’ =2.5). Thus, as the momentum transfer

where the last approximation holds to the degree that

—, _1-036N;~Zy)/A,
M12= 770 36 N,— Z,) /A,

(31)

is nearly unity across the periodic table. For instance, in go
ing from a nucleus such as carboN,=Z,) to gold (N,
=118, Z,=79) one hag2,=1.08. Thus the ratio of th&'s
will be about 8% larger than the quantijy, for gold/carbon
and even closer to unity for ratios involving nuclei closer
together in the periodic table.

From this simple analysis we can see that some of the ris
discussed above for the rat[d+(¢")],/[f+(#')]1 in the
region ' >0 occurs because of the different weighting of

grows the ratio seems to stabilize at roughly 5%—10% above
unity (no error bands are shown in the figure, but typically
the uncertainties are-2%). Theanalysis in terms opq,
accounts for some of the second-kind scale breaking in the
region above the quasielastic peak; however, it still does not
explain the full effect, but only perhaps half of the 20%
discussed above. To get more insight we need to invoke a
model of the transverse response in the regidop-0. We
proceed in the following two subsections by examining the
resonance region and DIS separately.

e A. Resonance region

Let us begin by focusing on the region in which we ex-
pect the excitation of resonances and meson production to

protons and neutrons in regions dominated by processdsecome relevant, in addition to the tail of the quasielastic

other than quasielastic scattering. Two examples of the rati

cesponse. In Fig. 8 this corresponds #d~1-2 (upper

p1» are shown in Fig. 8. These have been obtained by expane) and somewhat small¢lower panel; see below where
tracting the transverse contributions from the experimentathe scaling variabley, is introduced for a more quantitative
cross sections for each nucleus using the superscaling asteasure of where a given baryon resonance has its peak. In

025502-8



EXTENDED SUPERSCALING OF ELECTRON .. ..

PHYSICAL REVIEW 65 025502

10 T T T :
C
C Fe §
8r Au 8.=15
30
6 i -
_ 74°
tamy FIG. 6. (Color) As in Fig. 3,
{ but for data at 4.045 GeV and
ik HR Y ; angles ranging from 15° to 74°.
-'{1
Y :
28 AEe -
LB T
Preor
0 1 1 i 1 1
-0.5 0 0.5 1 1.5 2 2.5 3

v

[29] an extension of the RFG model was discussed. Insteadtherew, , are the analogs oV, , for elastic scattering —
of building the model from elastic scatterings of electronsthe w’'s for the N— A case are discussed j@9]; however,

from nucleons in this work the inelastit— A transition was

for the present purposes it is sufficient simply to know that

considered and again a relativistic Fermi gas model conthey are functions only of the four-momentum transfer
structed. Of course the ideas can be extended even further to For the strict REFG model one assumes that an on-shell
inelastic excitation of any baryon resonance, that is, with any,ycleon moving in the initial-state momentum distribution is
massm, . Following [29] the RFG hadronic tensor for the giryck by the virtual photon and an on-shell baryon reso-
production of a stable resonance of this mass is given by ance of massn. is produced. Of course this is a very

N .

37N mﬁ,

dp

W= K3 JE(p)E*(p+q)

6(ke—p)

Xt PP+ ) E,(p+q) —E(p)—w],

where A/ is the number of protons or neutroiithe total
nuclear response should Betimes the result for target pro-
tons plusN times the result for target neutron#\s usual

(32

E(p)=/p?+m?Z and now alscE, (p+q)=/(p+0)Z+m2.

Heref ,, is the single-nucleomelastichadronic tensor:

f L (P.p+a)=—wy(7)

+W2(T)_2
my

g,uv_

P_

Q.Q,

o

Q2

P-Q

G

14

P-Q
@

Q,

(33

oversimplified modelthe struck nucleons are not on shell,
the single-nucleon process is not all, the final state is not a
stable baryon but a decaying resonant or nonresonant state,
etc), although it does provide some insight into a possible
scaling violation mechanism. In particular it can shed some
light on when such scale breakings do or do not appear to be
very large; that is, it helps to define characteristic kinematic
conditions where the QE-type scaling could be expected to
evolve into another type of scaling behavior.

Specifically, using theN—A RFG model of[29] and
forming the ratiop, defined above one typically obtains
results above unity in theé’ region lying between the quasi-
elastic and ‘A” peaks. This is to be compared with the ex-
perimental ratio, shown in Fig. 8. For the upper panel in the
figure theN— A RFG peak occurs at’' =1.3 for carborn(1.2
for gold), while for the lower panel the peak occurs it
=0.72 for carbor(0.67 for gold. The model yields a typical
ratio pauc in the region between the QE ahtdl—A peaks of
approximately 1.08. For the conditions of the lower panel the
model yields a ratio that is closer to unity, approximately

025502-9



C. MAIERON, T. W. DONNELLY, AND INGO SICK PHYSICAL REVIEW C65 025502

1.20
10' ; ; : ;
G 1.15 e .
Fe : T
1["':] L - . - R R
- 110 |~ 1
. ""’-—«.,;_;;_; B
O- /”_’,—
: ; 1.05 | - 1
£ 107} L ] 05
1.00 | AIC —— E.=3.6GeV, 6, = 16° 1
Fe/C -—
1072 AU/C e
T = 0.95 .
e 1 156 2 25 3 35 4 45
e \l],
10% ; ' : ' 1.20 ; . .
-2 -1.5 -1 -0.5 0 0.5 1
‘i"j 1156 R
16.0 T T r T . -
14.0 + C . « o I 1
Fe Q-—-< /,--»"'" ------- o T )
120 ¢ 1 1.05 m 1
10.0 -
1.00
E.=3.6 GeV, 6, = 30°
£ 80 O
- e : 0.95 - L L
6.0 E,=4.045 GeV T 05 1 15 2 25
8, =557 v
4.0 r : 1
50 L ) FIG. 8. The ratiop,, defined in the text for two kinematic con-
' ditions, 3.6 GeV with 16° and 30°.
2 <15 1 05 0 05 1 15 2 1 A—7p,

(35

'q}r Y=——= .
\/f_F \/(1+)\p*)7+ K\/T(Tpi +1)
FIG. 7. (Color As in Fig. 6, but only for data at 4.045 GeV and

55°. Futhermore, following the discussions in Sec. Il, one may

shift the energy to obtain the analog of E),
within 4%—-5% of unity in the region between the QE and

N—A peaks. Thus we see, even with this oversimplified

model, that the remaining few percent deviation from unity " i N7 (36)
of the ratiop,, is reasonably compatible with resonance pro- * \/g_ VA N ’
o . . o F v
duction in they' >0 region corresponding to excitation of \/(1“\ pi)T KN (7p " L)
the A.

Some further insight can be gained about why the ratigvherep, =1+ 8, /7". If m, =my, thenB, =0, which im-
behaves as it does by examining some of the specifics of tHalies thatp, =1 and the above generalized scaling variable
modeling. In fact, in[29] a scaling variable emerged natu- Yields the standard results in Eq§) and (9). The RFG
rally from consideration of the RFG model for the\" re- ~ model for inelastic excitation of a stable resonance of mass
gion. Here we generalize this to the scaling variable thafMx has scaling behavior of both the first and second kinds in
occurs in this model for inelastic single-nucleon transitionsthe variablei, . In particular, if auniversaltransverse scal-

(my—m, ). With ing functionf+ underlies both quasielastic scattering and the
excitation of some given resonance from nucleons in the
B nucleus, then we expect the former to occur in the total trans-

px=1+ 0 (34 verse cross section ds (') weighted with the usuaéN

elastic cross section and the latterfaéy, ) weighted by the
where 8, =(m2 —m?)/4mi=0, we have the analog of Eq. N—N* inelastic cross section. Thus we expéatleast that
(7): the scaling behavior involves the wéy(y') varies withy'
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— it scales — versus the wafx (i, ) varies withy’ —  peal o, is some negative number. For a smigllthe offset

note: not how it varies withy,, in which it scales. is large, whereas for a larde: it is small. That is, forkg
Relationships can be established betwggnand s (or ~ small ¢, is further away from zero than whég is large.

' and ¢’ using the primed kinematic variables as aboveOr, said a different way, the difference

— in the following for simplicity we consider only the un-

shifted variables B

Ke)— o (Keo) = —— X
2 \/272 Ui (Ke1) = ¢, (Ke2) R P
b =Lty b=y \ 7 T % (37
* &r

is positive if ke;>Kkg,, and soy, (kg,) is closer to zero in
where 2yi =[(1+ T)(1+Pi 7)]¥?—(1+ p, 7). Substituting  this case than ig, (kg,). Since the inelastic response peaks

(41)

for p, one can write when ¢, =0, this implies that in the region between the QE
and N—N* peaks the case with the largkg should be
By larger than for the lowelkg case. Indeed this is just what we
VT T observe from the data and, in fact, if the offset given above is
2r(1+7) computed for typical conditions, the degree to which scaling
By \2 1[ B, \? B, |12 of the second kind is broken is found to be quite compatible
X \/ 1+ 1++ A1+ T) +1+ 1+, with those results. These ideas have natural extensions to a

distribution of resonances between each of which the same
(38)  type of phenomenon will occur. The actual magnitude of the
effect of course depends on the cross section weighting of
B each contribution and thus the present arguments should only
- 2 \/m (39 be regarded as qualitative ane— a more quantitative ap-
proach is presently being pursued.
where the limiting behavior is for>1 for fixed 8, (i.e., In summary, in effect, the kinematic offset from the QE
fixed m,). Under these conditionsy, falls as [7(1  scaling variable which occurs in the scaling variable that
+ 7)1 Y2 Thus, if one keepsn, fixed, focusing on a par- enters naturally when considering baryon excitation from
ticular resonance, for instance, and examines the behavior oucleons in the nucleus alone appears to be capable of ex-
¢, as a function ofr and , it is clear that asr becomes plaining most of the breaking of second-kind scaling in the
very largey, —0 and thereforey, — ¢, so that there will be resonance region.
no distinction between the two scaling variables. Indeed, to
get an idea of how large must be for this to occur, suppose B. DIS region
that in addition one hasye /| <1, then a simple approxima-

tion for ¢, is the following: Turning now to the DIS region, let us recall the conven-

tional analysis ofx scaling(see, for exampl€,30]). Noting

By that the quantityy employed in DIS analyses is called in
V=t —F——. (40)  our work, as is usual, and employing the above dimension-
7eNT(1+7) less kinematic variables we can write
So the value ofr that characterizes the coalescence/Qf
and ¢ is To={[1+ (2B, I 7¢)?1Y?>~1}/2. For instance, if N (42)
m, =m, andkg=230 MeV/c, then one has,=0.4, corre- A

sponding t0|Q3|=1.4 (GeVk)2. As the mass of the reso- _
nance grows then so does the characterigfj@nd the coa- and see that whetr<<O we havex>1 and the reverse: when

lescence is postponed until larger valuesrof =0 we havex=1. _
Given these relationships between the various scaling USing the fact thak=r/\ one can construct expressions

variables, let us now return to the analysis of second-kindnat directly _relatex to_the S_Callng variabley and Fermi

scale breaking in the resonance region. As noted above wBomentum(via &g) — in particular one useful form is the

expect some linear combination &f(¢') and fr(¢,) with  following:

weightings according to the elastic and inelagtid cross

sections to be involved in the region between the quasielastic x=—| | g+ [2 R

peak @' =0) and the peak of the specific resonance of in- & &r

terest ¢/, =0). As a function ofy’ the quasielastic contri-

bution is assumed to exhibit second-kind scaling, whereas /1+ 3—1]211; EJ”/,z

theN— N* contribution does not, because of the dependence T &e

on kg in the expressions above. Consider for simplicity the

result in Eq.(40). With 7 fixed and considering a given value Or alternatively, if one wishes to work with the Nachtman

of m, and hence of3, we see that), is less thany by the  variableé (not to be confused witl§r used in this and other

offset B, /[ g7 (1 +7)], S0 ¢ is some positive number, RFG-motivated studig@sthen again various useful relation-

whereas(being between the QE peak and the resonancships exist. In particular,

2

-1
+

(43)
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Moreover, it is possible to incorporate the energy shiftis:

(44)

(49)
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excitation. Now we wish to explore the highlg®?|, smallx
region in which DIS is expected to be the dominant reaction
mechanism.

We begin by providing some “translations” between the
nomenclature and conventions employed for most studies
done within the context of nuclear physics and those done in
particle physics studies. Specifically, what are usually called
o and ot in the latter are given in terms of the responses
W, , and hence via Eq412) of R_ 1 by the following[here

as above by replacing all quantities on the right-hand sides qf is an arbitrary factor conventionally taken to ¢per some-
Eqgs.(43)—(45) by their primed counterparts to obtain shifted {jmes w— w($=0)]:

variablesx’ and¢’.

Let us examine the variable a little more closely. As
written in Eq.(43) it is a function of 7, & (and hencekg),
and . The last two enter only in the combination

= \JEl2= nel2, since
\/1+ %— 1} 2z\1+22. (46

Thus, asr—c one finds that

1
;:[\/1+zz+ 7%+

1 1
;—>—wz[\/1+zz+z]z. (47)
X

This behavior holds forr>7,;;, where, by comparing
with x* in the regime where,>0, one finds that

z\J1+ 72
Toig=————— <
et [V1+Z2+2)2

That is, for|Q?|>1 (GeVic)? one has thak is well ap-
proximated byx™. In this regimex becomes a function only
of z and thus DIS scaling i (i.e., independence af) and
first-kind scaling iny will occur together. Furthermore, the
above expression fot” yields

1/4. (49)

1
—=1+2z for y<\2/7¢ (49)
X

=472 for > \2/7¢. (50

The “asymptotic regime” then occurs when|Q?|
>1 (GeVic)? andx is small enough that>\/2/75¢ (typi-
cally =5-6), and under these conditions,

1

- (ne)?

X (52)

Thus in the asymptotic reginvex l/kﬁ.

47
or= K Wli (52)
4a| K2
o= K _WZ_W]_ . (53)
Their ratioR is then
Re Tt Vol N 1 54
- O'T _Wl T ! ( )
not to be confused with a different ratio
_R_« R 55
"Ry 27 (55

As in the previous discussions, we wish, to the degree that
we can, to isolate the transverse part of the inclusive cross
section. In the DIS regime we must depend on the limited
information available for the ratidR defined in Eq.(54)
[31,32. We then construct

o o
2= = Vi (56)
UL UV K
1+ —R 1+ ——R
UT vT 2T

and from this the transverse scaling functighand the ratio
P12, as above. In addition to the results shown in Fig. 8
which are not really in the DIS region, we show in Fig. 9
some of thelimited) information available at highdQ?|—
apparently no information on individualA cross sections is
available at very high momentum transfers and only the
usual EMC ratio at constanthas been measured.

Scaling in the DIS regime is usually discussed in terms of
the quantities-;=myW,; andF,=vW,. The so-called EMC
ratio is chosen to bgF,/A],/[F,/A];, where, as above, 1
and 2 label a given pair of nuclei. When this is plotted versus
x at very high|Q?| it is seen to be independent|@?| and to
exhibit the so-called EMC effect. Now our previous analyses
and the above discussions show that if one chooses for the
abscissa on a plot to use the scaling variaple scaled by

Reexpressing what we have seen in the analyses so fahe Fermi momentunthen one should also incorporate the

throughout the regiox>1, nearx=1 (essentially the QE
peak, and down to aboux=0.3-0.4(corresponding ta}’
=3-4 in Fig. § we find that the ratig,, is close to unity

charge of variables into the ordinate in the plot by multiply-
ing by kg . Explicitly this was the procedure used with
=y/ke [see Eqs(8) and (9)] and f=kgXF [see Eqs(22)

and that its deviation can be reasonably accounted for by thend (23)]. Since here we always display results as functions
modest second-kind scale breaking expected for resonanoé ', we are then motivated also to employ a modified
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1.08 . . : - must be remembered thafor species 1 is not the sameas
NS for species 2, but that the twovalues are slightly different.

106 B l In fact, Ry, is quite close to unity for the range of kinematics
104 | e under study in this work. The second factor,
& e 2
o 102F ] [Gbl2
=100 e [Gbla
Dy ‘
N

098 | stems from the fact that the QE ratio is defined in E2)
via Eq. (27) to have the typical dipole form factor behavior
0.96 - expected for the transverse part of the elasficcross sec-

tion, whereas the DIS ratio is not — in the latter we expect

0-941 > 3 4 5 s e-quark scattering to begin to dominate. Again, the fact that
we display results versug’ for experiments where incident
v electron energye, and scattering anglé, are fixed means
1.30 ; - - - that for the two nuclear species the four-momentum transfers
AVC —— are slightly different. Indeeds, is typically quite close to
125 0 ce unity for the range of kinematics under study. Note that, if
AU/C oo P sufficient information were available to allow one to specify
120 ¢ 1 |Q?|, rather than have it vary as hefexcepting the case
« e - shown in Fig. 9, then this factor would be irrelevant.
g 1157 1 The important factor for our purposes is the third one,
IR 1 [N721&%],
' 12=m, (62)
1.05 | ] !
] which contains all of the kinematic behavior involved in re-
1.00 h > 3 . s s lating the two types of ratios. At the quasielastic peak this is

unity (for simplicity Egpis; IS neglected in these arguments
v whereas above the peak it in general differs from unity and
FIG. 9. The ratio py, defined in the text for|Q?| SO must typically be taken into account. To get some feeling
=5 (GeVic)? and the same ratio multiplied byx£)2/(x,)2 for ~ for how it enters in the extreme DIS regime whete « and

pairs of nuclei 1 and 2. Xx<1, note that there one has
- . : 2
“EMC-type” ratio involving the structure functions for the o :[X 12 63
two nuclear species 1 and 2, but now with factorkeffor X,
each:

Thus in extreme-DIS kinematics the ratio defined in the
present work in Eq(29) for use in QE scattering differs from
the conventional EMC-type ratio essentially by the factor
[x?],/[x?]; in Eq. (63). From Eq.(51) above we see that
Let us now provide the connections between the QE-typehis immediately implies that in the asymptotic regime,
ratio and the EMC-type ratio. These may be related via ,

. _[Kel

P2 =X12p12, (59 Kip=—7—. (64)
[KE]2

Returning to Fig. 9, we see from the lower panel that
scaling of the second kind in this kinematic region is not as
X10=R1,G 1K 5. (59 good as it was for the resonance region and below. Multiply-
ing p1» by the ratio of thex’s as in the upper panel in the
The first of these, figure yields results much closer to unity, as expected.
Namely, the upper panel corresponds to the EMC behavior
[1+R]; when results are displayed versys. Indeed, uncertainties
R122[1+ R],’ (60) are not shown in the figure as they are hard to quantify; what
is clear is that the results in the upper panel are essentially
arises simply because different parts of the total cross sectiogpnsistent with only small deviations from unity. Finally,
are conventionally chosen in forming the two ratios. Whennote that from the above arguments asymptotically we would
comparing two different nuclear species constantys’ it expect factors o[k‘é]l/[ké]z, which from Table | are 1.15,

D|S=[kFF2/A]2

P2 = F, AL, (57)

where the factoX,, in turn may be decomposed into three
factors,
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1.25, and 1.33 for Al/C, Fe/C, and Au/C, respectively. While We have selected two regimes for the present extended
not unreasonable in fact these are somewhat further fromstudy: (1) the resonance region above the quasielastic peak
unity than the actual ratios in the lower panel in the figurewhere we expedd— A andN— N* contributions to be im-
Indeed, while|Q?| is reasonably large hefer=1.42> 7 portant and2) still higher inelasticity where DIS takes over.

in Eq. (48)], x is not very small, ranging as it does from Unfortunately, there are very few cases for the latter in which
roughly 0.7 at the left-hand side of the figure down to ap-eA cross sections are available for a range of nuclei; most
proximately only 0.25 at the right-hand side. Or, in otherdata involve ratios involving a pair of nuclei farheld con-
words, the asymptotic regime whegé is sufficiently large  stant, not what we want, namely, the individual cross sec-
for Eq. (50) to be valid is only barely reached at the right- tions as functions ofQ?| and scaling variabley’.

hand side of Fig. 9 and the behavior seen here reflects the What we observe is that scaling of the first kind is clearly
fact that these data lie somewhere between the quasielastiivlated when one proceeds above the QE pe@ak=(0+ x

and asymptotic regimes. <1), whereas scaling of the second kind is better. Indeed,
for sufficiently high momentum transfers it is excellent for
VI. DISCUSSION AND CONCLUSIONS ' <0+x>1 and typically is broken only by 10%-15% up

. . . through the resonance region. Moreover, from simple mod-
In undertaking this study we have begun by refining OUleling and even from simple kinematic arguments involving
previous analysis of the kinematic region lying below they,q inioduction of the scaling variablg, that occurs natu-
quasielastic peak. We had seen in our past work that S‘Ca“nl%lly when discussing the electroexcitation of resonances,
of the second kind is excellent in this region and that value$,,is modest second-kind scale breaking is reasonably ac-

of ke andEspr; can be determined for each nuclear species,q e for, with very little further scaling violation left to
for which medium- to high-energy data exist. In the present, ,ain This does not leave very much room for the other

work we have taken. t.hese deterr_nlnatlon§ a step f“f”.‘ef afaction mechanisms that are known to violate scaling of the
evaluated how sensitive the scaling function is to variationg,.ond kind. For instance. we know that at least some of the
around the best-fit values & andEsp,, finding that the meson-exchange effects dependlgnvery differently than
former is very well determine¢relative to an overall multi- does the usual one-body QE contributigypically in a way
Fl'cactj'\{e factoy, yvhere?sd_the latter is less important, 8Sthat breaks scaling of the second kind by contributions pro-
ound n our previous studies. Iportional to kﬁ), and thus the absence of significant contri-

We haye then employed the _hypothe3|s O.f Io.ng'tUdmabutions with this behavior limits how much of a role they can
superscaling to extract the longitudinal contributions from lay. In only a very limited number of cases has it been

the total mcluswe_ response and so obtain the transverse r ossible to carry through modeling of MEC effects with the
sponse and scaling function. It should be stressed that t

kinematic regime in which the superscaling fof is tested %qwsne relativistic content and at present a concerted effort

. . C is being made to extend past nonrelativistic treatments of
experimentally is unfortunately rather limited and hence thq\/IEC and interaction effects to the kinematic regime of in-
extraction off; over a wide range of kinematics is contin- terest and thereby to test these ideas in more depth
gent on havingf, superscale. However, it is important to .

. ; . Finally, in the DIS region we see that there is clearly more
note that especially at higl, where thel/T ratio becomes b ; ; - oo
S . reaking of scaling of the second kind, indicatifes ex-
small, the cross section is known to be dominated by th 9 g

ransverse response. Our focus in the present work is th ected that the reaction mechanism is becoming different,
. ‘ ) resumablye-quark physics rather thaeN physics. The
region and thus the extraction procedure should be reaso yeq Phy Phy

ol dh P di ith thi basi ” rossover from the resonance region, where second-kind
ably good here. Froceeding wi IS as a basic assumpliog, o breaking is reasonably small and can be explained us-
using thef, determined by whal L-separated data.can be ing simple arguments, to the DIS region, where such does
rehed upon, we deducky fqr an exten.ded range of kln.emat— ot appear to be the case, may in fact be a relatively clear
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production, N—A excitations, and two-body meson-
exchange current effects, all of which are expected to be
transverse dominated—and accordingly have placed our fo- This work was supported in part by funds provided by the
cus onfr. This is not to say that, cannot also have inter- U.S. Department of Energy under cooperative research
esting scaling-breaking behavior—for instance, final-state inagreement No. DE-FC02-94ER40818 and by the Swiss Na-
teraction effects such as those arising in the random-phasinal Science Foundation. Additionally, C.M. wishes to ex-
approximation can differ in longitudinal and transverse, isospress her thanks to the INFN-CTP Bruno Rossi program sup-
calar and isovector channels—however, isolatipgexcept porting her work while at MIT and T.W.D. and 1.S. wish to
as we do here via the universal superscaling approach halsank the Institute for Nuclear Theory at the University
proved to be very difficult and thus the focus bpis inevi-  of Washington for hospitality while some of this work was
table at present. being undertaken.

ACKNOWLEDGMENTS

025502-14



EXTENDED SUPERSCALING OF ELECTRON . .. PHYSICAL REVIEW 65 025502

[1] T.W. Donnelly and I. Sick, Phys. Rev. Le&2, 3212(1999. Morgenstern, D.H. Potterveld, R.E. Segel, P. Seidl, R.C.

[2] T.W. Donnelly and I. Sick, Phys. Rev. 60, 065502(1999. Walker, and B. Zeidman, Phys. Rev. Ledfl, 400 (1988.

[3] D.B. Day, J.S. McCarthy, T.W. Donnelly, and I. Sick, Annu. [16] J.S. O’Connell, W.R. Dodge, Jr. J.W. Lightbody, X.K.
Rev. Nucl. Part. Sci40, 357 (1990. Maruyama, J.O. Adler, K. Hansen, B. Schroeder, A.M. Bern-

[4] W.M. Alberico, A. Molinari, T.W. Donnelly, L. Kronenberg, stein, K.I. Blomqvist, B.H. Cottman, J.J. Comuzzi, R.A. Mis-

and J.W. Van Orden, Phys. Rev.38, 1801(1988. kimen, B.P. Quinn, J.H. Koch, and N. Ohtsuka, Phys. Rev. C
[5] M.B. Barbaro, R. Cenni, A. DePace, T.W. Donnelly, and A. 35, 1063(1987.

Molinari,.Nucl. Phys.A643, 137(1998: ) [17] M. Deady, C.F. Williamson, J. Wong, P.D. Zimmerman, C.
[6] R. Cenni, T.W. Donnelly, and A. Molinari, Phys. Rev. 5B, Blatchley, J.M. Finn, J. LeRose, P. Sioshans, R. Altemus, J.S.
276 (1997). _ _ McCarthy, and R.R. Whitney, Phys. Rev.33, 1897 (1986.
L7 R.R. Whitney, I. Sick, J.R. Ficenec, R.D. Kephart, and W'F)'[18] Z. Meziani, P. Barreau, M. Bernheim, J. Morgenstern, S.

8] IrOAVrVr?r:’ !;r;]ysc.: ge\;rr(:’stfcz)r?()(‘lrgz\?érett 0. Baker. L. deBever Turck-Chieze, R. Altemus, J. McCarthy, L.J. Orphanos, R.R.
§ gton, &->. g " . >y ' Whitney, G.P. Capitani, E. DeSanctis, S. Frullani, and F.

C. Bochna, W. Boeglin, B. Bray, R. Carlini, G. Collins, C. . .
Cothran, D. Crabb, D. Day, J. Dunne, D. Dutta, R. Ent, B. Garibaldi, Phys. Re_\lll'_ Letb4, 1233(1982' .
Fillipone, A. Honegger, E. Hughes, J. Jensen, J. Jourdan, (:[.19] T.C. Yates, C.F. Williamson, W.M. Schmitt, M. Osborn, M.

Keppel, D. Koltenuk, R. Lindgren, A. Lung, D. Mack, J. Mc- Deady, P. Zimmerman, C.C. Blatchley, K. Seth, M. Sarmiento,
Carthy, R. McKeown, D. Meekins, J. Mitchell, H. Mkrtchyan, B. Barker, Y. Jin, L.E. Wright, and D.S. Onley, Phys. Lett. B
G. Niculescu, T. Petitjean, O. Rondon, I. Sick, C. Smith, B. 312 382(1993.

mann, Phys. Rev. Let82, 2056(1999. Deady, P.D. Zimmerman, C.C. Blatchley, K.K. Seth, M.
[9] Z.-E. Meziani, J.P. Chen, D. Beck, G. Boyd, L.M. Chinitz, Sarmiento, B. Parker, Y. Jin, L.E. Wright, and D.S. Onley,

D.B. Day, L.C. Dennis, G.E. Dodge, B.W. Fillipone, K.L. Gio- Phys. Rev. (56, 3152(1997.

vanetti, J. Jourdan, K.W. Kemper, T. Koh, W. Lorenzon, J.S.[21] A. Hotta, P.J. Ryan, H. Ogino, B. Parker, G.A. Peterson, and

McCarthy, R.D. McKeown, R.G. Milner, R.C. Minehart, J. R.P. Singhal, Phys. Rev. 80, 87 (1984).

Morgenstern, J. Mougey, D.H. Potterveld, O.A. Rondon-[22] J.P. Chen, Z.-E. Meziani, G. Boyd, L.M. Chinitz, D.B. Day,
Aramayo, R.M. Sealock, I. Sick, L.C. Smith, S.T. Thornton, L.C. Dennis, G. Dodge, B.W. Filippone, K.L. Giovanetti, J.

R.C. Walker, and C. Woodward, Phys. Rev. Lef9, 41 Jourdan, K.W. Kemper, T. Koh, W. Lorenzon, J.S. McCarthy,
(1992. R.D. McKeown, R.G. Milner, R.C. Minehart, J. Morgenstern,
[10] R.M. Sealock, K.L. Giovanetti, S.T. Thornton, Z.-E. Meziani, J. Mougey, D.H. Potterveld, O.A. Rondon-Aramayo, R.M.

O.A. Rondon-Aramayo, S. Auffret, J.-P. Chen, D.G. Christian, Sealock, L.C. Smith, S.T. Thornton, R.C. Walker, and C.
D.B. Day, J.S. McCarthy, R.C. Minehard, L.C. Dennis, K.W. Woodward, Phys. Rev. Let66, 1283(1991.
Kemper, B.A. Mecking, and J. Morgenstern, Phys. Rev. Lett.[23] C.C. Blatchley, J.J. LeRose, O.E. Pruet, P.D. Zimmerman, C.F.
62, 1350(1989. Williamson, and M. Deady, Phys. Rev. &2, 1243(1986.
[11] D. Day, J.S. McCarthy, Z.-E. Meziani, R. Minehart, R. Seal- [24] J. Jourdan, Nucl. Phy£603, 117 (1996.
ock, S.T. Thornton, J. Jourdan, I. Sick, B.W. Filippone, R.D. [25] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, and
McKeown, R.G. Milner, D.H. Potterveld, and Z. Szalata, Phys. A. Molinari, Nucl. Phys.A697, 388(2002.
Rev. C48, 1849(1993. [26] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, and
[12] S. Rock, R.G. Arnold, B.T. Chertok, Z.M. Szalata, D. Day, J.S. A. Molinari, Phys. Rep(to be publisheg
McCarthy, F. Martin, B.A. Mecking, I. Sick, and G. Tamas, [27] J. Carlson, J. Jourdan, R. Schiavilla, and I. Sick, Phys. Rev. C
Phys. Rev. @26, 1592(1982. (in press.
[13] P. Barreau, M. Bernheim, M. Brussel, G.P. Capitani, J. Duclos[28] J.W. Van Orden and T.W. Donnelly, Ann. PhykLY.) 131, 451
J.M. Finn, S. Frullani, F. Garibaldi, D. Isabelle, E. Jans, J. (1981).
Morgenstern, J. Mougey, D. Royer, B. Saghai, E. de Sanctis, 1[29] J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, and
Sick, D. Tarnowski, S. Turck-Chieze, and P.D. Zimmermann, A. Molinari, Nucl. Phys.A657, 161(1999.
Nucl. Phys.A358, 287 (1981). [30] F.E. CloseAn Introduction to Quarks and Partoridcademic,
[14] P. Barreau, M. Bernheim, J. Duclos, J.M. Finn, Z. Meziani, J. New York, 1979.
Morgenstern, J. Mougey, D. Royer, B. Saghai, D. Tarnowski,[31] S.R. Dasu, “Precision Measurement oK, Q? and
S. Turck-Chieze, M. Brussel, G.P. Capitani, E. de Sanctis, S. = A-dependence dR= o /ot andF, in Deep Inelastic Scatter-
Frullani, F. Garibaldi, D.B. Isabelle, E. Jans, I. Sick, and P.D. ing,” Report No. UR-1059, ER13065-535, 1988, Ph.D. thesis,
Zimmermann, Nucl. PhysA402, 515(1983. University of Rochester, 1988.
[15] D.T. Baran, B.F. Filippone, D. Geesaman, M. Green, R.J. Holt[32] S. Dasuet al, Phys. Rev. Lett60, 2591 (1988; 61, 1061
H.E. Jackson, J. Jourdan, R.D. McKeown, R.G. Milner, J. (1988; Phys. Rev. ™9, 5641(1994.

025502-15



