
ology,

PHYSICAL REVIEW C, VOLUME 65, 025502
Extended superscaling of electron scattering from nuclei
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An extended study of scaling of the first and second kinds for inclusive electron scattering from nuclei is
presented. Emphasis is placed on the transverse response in the kinematic region lying above the quasielastic
peak. In particular, for the region in which electroproduction of resonances is expected to be important,
approximate scaling of the second kind is observed and the modest breaking of it is shown probably to be due
to the role played by an inelastic version of the usual scaling variable.
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I. INTRODUCTION

In recent studies@1,2# the concepts of scaling of the firs
and second kinds and superscaling have been explored
cusing on the region of energy loss at or below the quasie
tic peak in inclusive electron scattering from nuclei. Scali
of the first kind corresponds to the following behavior: if th
inclusive cross section is divided by the relevant sing
nucleon electromagnetic cross section~i.e., weighted by the
proton and neutron numbersZ andN, respectively, and with
appropriate relativistic effects included — see@2# for de-
tailed discussions!, then at sufficiently high values of th
momentum transferq the result so obtained becomes a fun
tion of a single scaling variable and not independently oq
and the energy transferv. Various definitions for the scaling
variable exist~see, for instance,@2#!; however, whenq is
high enough they are almost always simply functionally
lated in ways that yield scaling behavior in all cases. Sucq
independence of the reduced responseF(q,v)→F(c),
wherec5c(q,v) is the scaling variable, is called scaling
the first kind. Moreover, motivated by earlier work@4#, it has
been found that when the typical momentum scale of a gi
nucleusk̄ is appropriately incorporated in the definition
the scaling variable and the reduced response is also ap
priately scaled,F(q,v)→ f (q,v)[ k̄3F(q,v), then a sec-
ond type of scaling behavior is seen — the result becom
independent of nuclear species. This is called scaling of
second kind. When scaling of both the first and second ki
occurs, one calls the phenomenon superscaling.

The studies undertaken recently@1,2# demonstrated the
quality of the scaling behavior, finding that scaling of t
first kind is reasonably good forc,0 ~below the quasielastic
peak! and that scaling of the second kind is excellent in t
region, but that both are violated forc.0 ~above the quasi-
elastic peak!. Indeed, scaling of the first kind has bee
known for some time to be badly violated in this latter r
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gion. The recent analyses showed that so also is scalin
the second kind broken in thec.0 region, but much less so
Finally, in @2# an initial attempt was made to use the limite
information on the separate longitudinal and transverse
sponses and, hence, on the scaling behavior of the respe
reduced responses. The former appears to supers
whereas the dominant scale-breaking effects appear to re
more in the latter.

In the present work we pick up these ideas and ext
them. We begin by updating our analysis of the relevant
clusive electron scattering scaling behavior in thec,0 re-
gion, thereby obtaining refined values for the typical nucle
momentum scale@henceforth, as in our previous work whic
was motivated by the relativistic Fermi gas~RFG!, called the
Fermi momentumkF] and for a small energy shiftEshi f t
included to have the quasielastic peak occur at the p
where the scaling variable is zero. Moreover, we assess
sensitivity of the results to variations in bothkF andEshi f t to
provide some idea of how much change in one or both
be tolerated when studying the region wherec.0.

We wish to focus on the scale-breaking effects, especi
in the c.0 region, and accordingly we have isolated t
transverse response using our previous approach. Within
certainties that are unfortunately not as small as is desir
and only for a limited range of kinematics, it appears that
longitudinal reduced responsef L in fact superscales and rea
sonably satisfies the Coulomb sum rule. We shall assume
this is a universal behavior~for all kinematics and for all
nuclei — that is, the impact of having superscaling!, and we
shall then remove the longitudinal contributions and there
obtain the transverse reduced response,f T . Naturally the un-
certainties in knowledge off L propagate into correspondin
uncertainites inf T , and given betterL/T separations the pro
cedure could be refined. However, it is important to the b
of our current ability to isolate the transverse part of t
inclusive response as it is the one expected to contain
leading scale-breaking effects@2#.

Once f T has been isolated we focus on the region abo
the quasielastic peak, exploring the scaling behavior off T as
a function ofq and kF , namely, for first- and second-kin
scaling. We further divide our discussions into two regim
©2002 The American Physical Society02-1
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C. MAIERON, T. W. DONNELLY, AND INGO SICK PHYSICAL REVIEW C65 025502
~1! a study of the resonance region whereD ’s andN* ’s are
expected to play an important role along with nonreson
meson production and~2! a study of the very limited data
available in the deep inelastic scattering~DIS! region. Upon
seeing that the second-kind scaling behavior is only mod
ately violated in these regimes and motivated by the type
analysis performed in studying the European Muon Colla
ration ~EMC! effect, we also define an appropriate ratio i
volving the f T’s for a pair of nuclei. This provides a conve
nient measure of the extent to which scaling of the sec
kind is or is not respected. Indeed, as we shall see, the
is very close to unity from the most negative values of
scaling variable~i.e., far below the quasielastic peak! up
through the resonance region. Only in the DIS region d
the ratio differ from unity by as much as 25%; for most
the region the results lie typically within about 10% of unit

The paper is organized as follows. In the next section
briefly summarize the basic scaling formalism, drawing
our previous work@1,2# where more detailed discussions c
be found. In Sec. III the updated determinations ofkF and
Eshi f t are discussed, in Sec. IV the transverse scaling fu
tions f T are presented, and in Sec. V the ratios involvi
pairs of nuclei are introduced. For the last, the discussi
are focused on two kinematic regimes, the resonance re
in Sec. V A and the DIS region in Sec. V B. In the form
additional modeling is presented to help in understand
why the ratios differ from unity even by the small amou
they do. Finally, in Sec. VI we summarize our observatio
and conclusions.

II. BASIC SCALING FORMALISM

We begin by summarizing some of the essential exp
sions used in previous studies of scaling and superscalin
the quasielastic region. First, using the nucleon massmN as a
scale, it proves useful to introduce dimensionless variable
replace the three-momentum transferq and energy transfe
v, namely,

l[
v

2mN
, ~1!

k [
q

2mN
. ~2!

The ~unpolarized! inclusive electron scattering cross secti
then depends only onk5uku, l and the electron scatterin
angle ue . The dimensionless four-momentum trans
squared is given by

t[uQ2u/4mN
2 5k22l2, ~3!

andQ25v22q2,0 in the conventions used here.
In past work it became apparent that a convenient dim

sionless scale in quasielastic electron scattering from nu
is provided by the ratio of a characteristic nuclear mom
tum k̄5A^k2& to the nucleon massmN . For example, in the
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relativistic Fermi gas model the characteristic momentum
the Fermi momentumkF and the dimensionless scale
given byhF , where

hF[
kF

mN
!1, ~4!

where typically the Fermi momenta range from as small
55 MeV/c for deuterium, 200 MeV/c for 4He, to as large
as about 250 MeV/c for very heavy nuclei, and as a cons
quence the strong inequality above holds. A correspond
dimensionless energy scale is also useful,

«F[A11hF
2511

1

2
hF

21•••, ~5!

where, then,

jF[«F215
1

2
hF

21•••. ~6!

Naturally the RFG is only a first approximation to th
nuclear dynamics involved in the quasielastic region a
thus the Fermi momenta actually employed — and these
obtained by fitting data as discussed below and in@1,2# —
should really be regarded as effective parameters in the p
lem. Clearly across the periodic table the densities of nu
change and this is reflected in the fact that the character
momentum scale~here kF) should also vary, roughly such
that the density is proportional tokF

3 . As a consequence th
width of the quasielastic response goes askF .

In past studies of the region at and below the quasiela
peak it has proved to be very useful to introduce scal
variables~see, for example,@3#!. In the most familiar ap-
proach they-scaling variable is employed and one finds th
at high momentum transfers the experimental inclusive cr
sections divided by an appropriate single-nucleon cross
tion scale, i.e., become functions only ofy and not indepen-
dently of the energy or momentum transfer. Such behavio
calledscaling of the first kind. Alternatively, again using the
RFG for guidance, a dimensionless scaling variablec
emerges naturally@4,5#:

c[
1

AjF

l2t

A~11l!t1kAt~t11!
. ~7!

At the naive quasielastic peak wherel5t ~which corre-
sponds tov5uQ2u/2mN) one hasc50 and finds that the
RFG response region is mapped onto the range21<c<
11. While appearing at first sight to be quite different,
fact the variablesy andc are closely related. One can writ
@2#

c5
y~Es50!

kF
@11O~hFc,y/MA21

0 !#, ~8!

whereEs is the separation energy, the difference between
sum of the nucleon plus ground-state daughter masses
the target ground-state mass. Up to the choice made in m
2-2
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EXTENDED SUPERSCALING OF ELECTRON . . . PHYSICAL REVIEW C65 025502
ing the scaling variable dimensionless by dividing bykF ~see
below!, whenEs is set to zero the two variables differ only
order hF and order@MA21

0 #21, and accordingly when scal
ing of the first kind occurs in one it is bound to occur in t
other, as long as corrections to the leading order express
are small. In effect, what the conventionaly-scaling variable
does thatc does not is to take into account the~small! shift
in energy embodied inEs . The simple relationship begins t
fail when large excursions are made away from the qu
elastic~QE! conditionc50 — in the present work the ful
expressions are always used.

From such considerations one sees that an improved
nomenological dimensionless scaling variable can be
ployed in treatments of superscaling@6#, namely, one with an
empirical shift Eshi f t . This was done in previous analyse
@1,2# introducing a dimensionless scaling variable as abo

c8[
1

AjF

l82t8

A~11l8!t81kAt8~t811!
, ~9!

where lshi f t[Eshi f t/2mN , l8[l2lshi f t , and t8[k2

2l82.
After this brief summary of the conventional choices

scaling variables, let us next turn to the scaling functions.
begin with the inclusive electron scattering cross section
self, which may be written in various forms~see also later!:

d2s/dVedv5SL1ST

5sM@vLRL~k,l!1vTRT~k,l!#

5sM@W212W1tan2ue/2!], ~10!

where the familiar electron kinematical factors in this Ros
bluth form are given by

vL5F t

k2G 2

,

vT5
t

2k2
1tan2ue/2, ~11!

and the longitudinal~L! and transverse~T! response func-
tions are related toW1,2 via

RT52W1 ,

RL5Fk2

t G2

W22
k2

t
W1 . ~12!

The strategy in discussing scaling in the quasielastic
gion is, to the extent that it is possible, to divide out t
single-nucleoneN elastic cross leaving only nuclear fun
tions. As discussed in@2,4,5#, this can be accomplished usin
the reduced response

F~k,c![
d2s/dVedv

sM@vLGL~k,l!1vTGT~k,l!#
~13!
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for the total cross section or, when individualL andT con-
tributions are being considered~as they are in part of the
present work!, using

FL[
RL

GL~k,l!
, ~14!

FT[
RT

GT~k,l!
. ~15!

Here the functionsGL,T are given by

GL~k,l!5
~k2/t!@G̃E

21W̃2D#

2k@11jF~11c2!/2#
, ~16!

GT~k,l!5
2tG̃M

2 1W̃2D

2k@11jF~11c2!/2#
, ~17!

which involve the functionD:

D5jF~12c2!FAt~11t!

k
1

1

3
jF~12c2!

t

k2G
5

1

2
~12c2!hF

21O@hF
3 #. ~18!

As usual one has

G̃E
2[ZGEp

2 1NGEn
2 ,

G̃M
2 [ZGMp

2 1NGMn
2 ,

W̃15tG̃M
2 ,

W̃25
1

11t
@G̃E

21tG̃M
2 #, ~19!

involving the proton and neutron Sachs form factorsGEp,n
and GMp,n weighted by the proton and neutron numbersZ
andN, respectively.

In the region of the QE peak whereucu is small it is a
good approximation to setD to zero and to expand the func
tions GL,T in powers ofhF

2 , retaining only the lowest-orde
terms, namely, to use

GL~k,l!5
k

2t
G̃E

21O@hF
2 #, ~20!

GT~k,l!5
t

k
G̃M

2 1O@hF
2 #. ~21!

While such leading-order expansions inhF
2 are very good

whenhF3ucu is small, they become less so when very lar
excursions away from the QE peak are made and accordi
in the present work we have always used the full express
in Eqs.~16! and ~17!.
2-3
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C. MAIERON, T. W. DONNELLY, AND INGO SICK PHYSICAL REVIEW C65 025502
As discussed in@4,5# the RFG model then yields scalin
of the first kind, namely, theF ’s become functions only ofc
~independent ofk, that is, of q); indeed, as discussed i
@1,2#, so do the data whenc,0. Moreover, as also discusse
in @1,2,4#, the RFG model and the data both display scal
of the second kindin that theF ’s can be made independe
of the momentum scale in the problem — that is, indep
dent of kF to the order considered in the expansion in t
small dimensionless parameterhF . This is accomplished by
defining

f [kF3F, ~22!

f L,T[kF3FL,T , ~23!

namely, by making them dimensionless through multiplic
tion by the factorkF . Comparing Eq.~8! with the above, we
see that the mapping of theF ’s versusy to the f ’s versusc
~or c8) is area conserving: the dimensionless scaling v
ables contain a factorkF

21 , while the scaling functions a
factorkF

11 . In the RFG model thef ’s display scaling of both
the first and second kinds, namely, the displaysuperscaling.

III. DETERMINATION OF kF AND Eshift

In @1,2# the approach summarized in the previous sect
was applied to an analysis of the usable data involving
clusive electron scattering in the region of the quasiela
peak. While medium-energy results were included, the m
emphasis in that study was placed on the high-energy re
from SLAC and from TJNAF@7–23#. And being the first
attempt to explore scaling of the second kind and supers
ing, we chose not to perform an extensive search to find
‘‘best’’ choices of the two parameters involved in the fi
namely,kF andEshi f t , but instead selected values that we
‘‘reasonable.’’ Now, given the success of that previous stu
and the fact that scaling of the second kind appears to
quite well obeyed in the scaling region (c8,0), we have
stronger motivation to produce even better fits and to as
the uncertainties in the fit parameters.

In the next section we shall place our focus on the tra
verse scaling functionf T and it would be desirable to adjus
kF andEshi f t for each nuclear species for this quantity. U
fortunately, in the regime wherec8!0, it has not been pos
sible to separate the longitudinal and transverse inclu
responses and thus we are forced to make our fits to the
f ’s. Our hope is that the parameters obtained from fits to
total are also appropriate for the individualf L,T .

The total f ’s are very sensitive functions ofkF in the
region wherec8!0 and yet it is possible to find values ofkF
for which the data line up extremely well~see, for instance
the high-q/small-c8 data shown below!. The Eshi f t depen-
dence is less critical than is that onkF ; nevertheless, by
examining the behavior near the quasielastic peak it is c
that some shift is needed to move the response from
naive peak value ofv5uQ2u/2mN (l5t) to where the data
require it to be. In Table I we list the parameters obtain
from global fits to the data@7–23#.

Clearly the energy shift does not vary too much. Presu
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ably it incorporates the separation energyEs , the mean bind-
ing energy of nucleons in the nucleus and some global
pects of final-state interactions@for instance, random phas
approximation~RPA! correlations which are known to shif
the response slightly#. While attempts are being made to a
count for the values found here, it is not a simple problem
address for the relatively high-energy conditions of most
the current study where relativistic effects are known to
very important, and thus here we limit ourselves to t
present phenomenological discussion.

The values ofkF found vary monotonically once ‘‘typi-
cal’’ nuclei — say, beyond carbon — are reached. It sho
be understood that the values given here are relative and
absolute: if all values are scaled by a common factor, th
equally good scaling of the second kind is obtained. T
value of 228 MeV/c for carbon is typical of other studie
and so we have used this to normalize the rest. The pre
fits are done emphasizing the large negativec8 region where
‘‘contamination’’ from pion production, two-particle–two
hole ~2p-2h! meson-exchange current~MEC! effects, reso-
nances and DIS are thought to be small and where the b
underlying nuclear spectral function is presumably revea
most clearly, in contrast to some previous attempts to de
mine kF using the entire response region. Interestingly
values found here for heavy nuclei are somewhat sma
than those generally chosen — lead, for example, is so
times assumed to havekF>265 MeV/c. We believe that the
present values are more reliable determinations of the ef
tive kF’s. Note also the curious value for lithium, curiou
because thekF used for 4He is 200 MeV/c ~see @1,2#!.
However, this is easily explained if one assumes that6Li is
essentially a deuteron~with kF555 MeV/c) plus an alpha
particle. Taking the weighted mean@$43(200)212
3(55)2%/6#1/2 gives 166 MeV/c, which is very close to the
fit value of 165 MeV/c.

To get some feeling for the sensitivity of the fits in Fig.
we show the ratiof Au / f C for data from SLAC taken atue
516° and incident electron energyEe53.6 GeV—for more
discussion of the existing data used@7–23#, see@1,2#. The
top panel in the figure shows that in the regionc8,0 the
data themselves scatter at roughly the 10% level; i.e., sca
of the second kind for these kinematics is satisfied to roug
the 10% level, which is clearly better than scaling of the fi

TABLE I. Adjusted parameters.

Nucleus kF (MeV/c) Eshi f t ~MeV!

Lithium 165 15
Carbon 228 20
Magnesium 230 25
Aluminum 236 18
Calcium 241 28
Iron 241 23
Nickel 245 30
Tin 245 28
Gold 245 25
Lead 248 31
2-4
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kind ~see@1,2# and figures given below!. At positive c8 the
ratio moves above unity and constitutes the focus of the
cussions later in the present work. In the middle panel thekF
of gold has been increased by 10 MeV/c: clearly the fit is
very poor in the negativec8 region, indicating that the val
ues of kF given in Table I are rather finely determine
namely, to only a few MeV/c. In the bottom panel in the
figure, the energy shift used for gold is increased by 10 M
and again the fit is much worse than the ‘‘best-fit’’ value.
the values ofEshi f t given in the table are good to perhaps
few MeV. Finally, note that, in the large positive-c8 region
which will be discussed in depth below, the sensitivity
variations in either parameter is much weaker. This ste
from the rapid falloff of the responses belowc850, in con-
trast to the relatively flat response whenc8.0.

IV. TRANSVERSE SCALING FUNCTIONS

From our previous analysis@2# we have seen indication
that the longitudinal scaling functionf L exhibits superscal-
ing behavior; that is, it not only displays scaling behavior
the second kind~as does the totalf discussed above!, but it
has scaling behavior of the first kind. Of course, the regi
in which this superscaling has been verified is relatively li
ited, given the difficulty of separating the longitudinal an
transverse response functions. In practice, using the ana
in @24# we have made a fit to the combined set off L values
for the higher momentum transfers where scaling of the fi
kind is seen to occur. The results are shown in Fig. 2.

To make any further progress on the problem, it is nec

FIG. 1. The ratio off Au over f C for energy 3.6 GeV and scat
tering angle 16°. The top panel shows the ratio using@kF#Au

5245 MeV/c, @Eshi f t#Au525 MeV and @kF#C5228 MeV/c,
@Eshi f t#C520 MeV, the ‘‘best-fit’’ values. In the middle pane
@kF#Au has been increased by 10 MeV/c, while in the bottom panel
@Eshi f t#Au has been increased by 10 MeV.
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sary to make an assumption and we do so now: we ass
that the so-determined longitudinal scaling function shown
Fig. 2 is universal~i.e., superscaling works!. Given this uni-
versal f L we can immediately reconstruct the longitudin
cross section for any kinematical condition using the expr
sions given in Sec. II,

SL5
1

kF
f LsMvLGL , ~24!

from this isolate the transverse part of the cross section,

ST5
d2s

dVedv
2SL , ~25!

and so obtain the transverse scaling function

f T~c8!5
ST

sMvTGT
. ~26!

Using this procedure we arrive at the transverse scaling fu
tion f T . In Fig. 3 we show the results obtained for all kin
matics from medium-energy measurements at 500 MeV
60° (q>0.4 GeV/c) to results from both SLAC and
TJNAF ranging up toq>4 GeV/c. For c8,20.3 we see a
reasonable convergence of the results to a band, althoug
width of the band is not negligible, reflecting~at least! break-
ing of scaling of the first kind. Since the span of momentu
transfers is so large in the results shown in the figure, we
emphasizing the lack of first-kind scaling, and focusing o
smaller range ofq produces less spread, as discussed be
Note also that the region abovec8>20.3 contains a very
large spread, that is, a very large degree of scale breakin
motivation of the present work is to begin to get some insi
into the nature of this behavior.

In Fig. 4 we show only the medium-energy results forf T .
Here, at energy 500 MeV and scattering angle 60°, the m
mentum transfer varies from about 490 MeV/c at c8521
down to about 430 MeV/c at the largest values ofc8. We
see, on the one hand, that now the band in the negativec8

FIG. 2. Averagedf L(c8) together with a convenient parametr
zation of the results.
2-5
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C. MAIERON, T. W. DONNELLY, AND INGO SICK PHYSICAL REVIEW C65 025502
region is fairly tight, an indication that the breaking seen
Fig. 3 is indeed mainly due to first-kind scale breaking a
not to second-kind breaking. On the other hand, the beha
at positive c8 shows that there one also has breaking
second-kind scaling behavior. Clearly as one proceeds f
light nuclei with low kF to heavy nuclei with largekF the
trend is to increasingly large values off T in this region. This
indicates that the mechanisms that produce the scale br
ing must go as some positive power ofkF . Indeed, in recent
work @25–27# such breaking of both first and second kin
due to MEC and correlation effects in the 1p-1h sector has
been investigated in detail and work is in progress to arr
at a relativistic extension of older work@28# in which scale
breaking in the 2p-2h sector was also identified.

Next, in Fig. 5 we showf T for SLAC data at 3.6 GeV and
16° scattering angle. At the lowest values ofc8 the momen-

FIG. 3. ~Color! Transverse scaling functionf T for a wide range
of nuclei and for kinematics ranging from medium energies~500
MeV and 60°) to high energies~up to 4.045 GeV and 74°). The
longitudinal response has been removed using the supersc
assumption discussed in the text. The fit parameters are liste
Table I.
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tum transfer is roughly 990 MeV/c while at c8>4 it has
risen to about 1.7 GeV/c. As the inset on a semilogarithmi
scale clearly shows, the quality of second-kind scaling
havior at higherq values is excellent in the negative-c8 re-
gion. At positivec8 second-kind scaling is not perfect, a
though it is only modestly broken. The lower the value ofkF
the smaller isf T , indicating again that the scale-breakin
mechanisms go as some positive power ofkF , as expected.

Finally, in Fig. 6 we show several sets of data taken a
GeV energy and various scattering angles. In this single
ure one is able to assess scale breaking of both kinds. E
fairly tightly grouped set of data displays the extent
second-kind scale breaking and clearly the results are v
similar to those already seen in the previous figure. On
other hand, the various scattering angles yield correspo
ingly different values for the momentum transfer, rangin
for instance, atc8511, from about 1.2 GeV/c at 15° to
3.9 GeV/c at 74°. For each different choice of kinematics
different grouped set of results is obtained, indicating ag
the extent to which scaling of the first kind is broken.

In summary, we deduce from these results forf T that in
the region belowc8>0 scaling of the second kind is exce
lent, while scaling of the first is violated, although not to
badly. In contrast, forc8.0 scaling of the second kind i
also broken to some extent, whereas scaling of the first k
is very badly broken. Accordingly, let us next turn to a clos
examination of the region above the quasielastic peak to
if further insight can be obtained on how the moderate sc
breaking of the second kind arises.

V. RATIOS OF TRANSVERSE SCALING FUNCTIONS

The results given in the previous section clearly show t
several different regions are involved when studying
first- and second-kind scaling behaviors off T . In the region
below the quasielastic peak (c8,0) at highq the first-kind
scaling is reasonably good — this is what is usually cal
simply y scaling — and the second-kind scaling is excelle
Another example is shown in Fig. 7 containing TJNAF da
at 4 GeV and 55° (q>3.4–3.5 GeV/c). Clearly one could
present the results as aratio, that is, as @ f T(c8)#2 /
@ f T(c8)#1, where 1 and 2 denote two different nuclei. F
c8,0 one would obtain unity with very small uncertaintie
at all but the lowest values of the scaling variable, while
c8.0 the ratios deviate from unity. In particular, if 1↔
light nucleus and 2↔ heavy nucleus, then the ratio rise
above unity in the region above the quasielastic peak.
instance, in Fig. 7 atc8511 the Au/C ratio is about 1.2
Thus, even at such high values of the momentum transfer
ratio in the entire region from very large negativec8 to very
large positivec8 falls within roughly 20% of unity.

Let us now focus on the region above the quasiela
peak and see if more light can be shed on the remain
~modest, i.e.,'20%) second-kind scale breaking. To beg
with, note that the scaling functionsf, f L, and f T have been
constructed with the quasielastic responses in mind: the
nominator in Eq.~13! contains the elasticeN form factors
weighted byZ and N, the proton and neutron numbers, r
spectively. In the region below the quasielastic peak we

ing
in
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FIG. 4. ~Color! As in Fig. 3,
but only for medium-energy data
~500 MeV and 60°).
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pect the dominant contributions to the response function
arise from the tails of the QE response and accordingly
moving such a weighted elasticeN cross section make
sense. However, in the region above the quasielastic pea
do not expect things to be so simple. Certainly resona
excitation and pion production play an important role and
asymptotically high values of momentum transfer, one
pects DIS to take over. Because of this, one expects the
gitudinal and transverse responses to have quite diffe
characters — for instance, the first important new contri
tion beyond QE scattering in entering thec8.0 region is
expected to come fromN→D excitations on nucleons mov
ing in the nucleus, and this is~1! essentially transverse an
~2! isovector. For this reason we have extracted the tra
verse response using the superscaling assumption for the
gitudinal contributions. Then, focusing on the transverse
sults, we can attempt variations on the theme that motiva
y scaling in the first place. Specifically, instead of weighti
protons and neutrons withGMp

2 and GMn
2 , respectively, we

can make a scaling function that varies only with total m
numberA5Z1N and notZ and N individually — this is
more in the spirit of what is done for the ratio consider
when studying the EMC effect. For instance, if an isovec
excitation such asN→D dominates in the response, the
equal weighting of protons and neutrons should be better
the weighting provided using the elastic magnetic form f
tors of the nucleons. Accordingly let us consider
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f̄ T[
kFST

AsMvTS t

k DGD
2

, ~27!

whereGD is the dipole form factor~a compromise between
the Q2 dependences ofGMp and GMn — its form is not
important here as it will cancel in constructing the ratio d
fined below!. This provides an alternative forf T defined
above in Eqs.~15! and ~23!. The two differ roughly by a
factor

m̄2[
ZGMp

2 1NGMn
2

AGD
2

>
Z

A
mp

21
N

A
mn

2

>5.73 @120.36~N2Z!/A#, ~28!

which is a relatively slowly varying function of (Z,N). Such
an approximation will allow us to interconnect the quasiel
tic and DIS analyses in an approximate way~see below!.

With these definitions, let us next consider two differe
nuclei have charge and neutron numbers (Zi ,Ni) with i 51,
2. Labeling as above with nuclear species numbers 1 an
we consider the ratio
2-7
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FIG. 5. ~Color! As in Fig. 3,
but only for data at 3.6 GeV and
16°.
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r12[
@ f̄ T~c8!#2

@ f̄ T~c8!#1

. ~29!

With m̄12
2 [m̄1

2/m̄2
2 we then have that

@ f T~c8!#2

@ f T~c8!#1

>m̄12
2 3r12>r12, ~30!

where the last approximation holds to the degree that

m̄12
2 >

120.36~N12Z1!/A1

120.36~N22Z2!/A2
~31!

is nearly unity across the periodic table. For instance, in
ing from a nucleus such as carbon (N15Z1) to gold (N2

5118, Z2579) one hasm̄12
2 >1.08. Thus the ratio of thef ’s

will be about 8% larger than the quantityr12 for gold/carbon
and even closer to unity for ratios involving nuclei clos
together in the periodic table.

From this simple analysis we can see that some of the
discussed above for the ratio@ f T(c8)#2 /@ f T(c8)#1 in the
region c8.0 occurs because of the different weighting
protons and neutrons in regions dominated by proce
other than quasielastic scattering. Two examples of the r
r12 are shown in Fig. 8. These have been obtained by
tracting the transverse contributions from the experime
cross sections for each nucleus using the superscaling
02550
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se

es
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x-
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sumption to remove the longitudinal contributions, as d
cussed in the previous section, calculatingf̄ T(c8) for each
nucleus using Eq.~27!, fitting the results and finally using
Eq. ~29! for specific pairs of nuclei. The upper panel in th
figure corresponds to momentum transfers of about
GeV/c ~nearc851) to 1.7 GeV/c ~nearc854), whereas the
lower panel ranges from about 2.1 GeV/c ~nearc851) to
2.4 GeV/c ~nearc852.5). Thus, as the momentum transf
grows the ratio seems to stabilize at roughly 5%–10% ab
unity ~no error bands are shown in the figure, but typica
the uncertainties are62%). The analysis in terms ofr12
accounts for some of the second-kind scale breaking in
region above the quasielastic peak; however, it still does
explain the full effect, but only perhaps half of the 20
discussed above. To get more insight we need to invok
model of the transverse response in the regionc8.0. We
proceed in the following two subsections by examining t
resonance region and DIS separately.

A. Resonance region

Let us begin by focusing on the region in which we e
pect the excitation of resonances and meson productio
become relevant, in addition to the tail of the quasielas
response. In Fig. 8 this corresponds toc8;1 –2 ~upper
panel! and somewhat smaller~lower panel!; see below where
the scaling variablec* is introduced for a more quantitativ
measure of where a given baryon resonance has its pea
2-8



EXTENDED SUPERSCALING OF ELECTRON . . . PHYSICAL REVIEW C65 025502
FIG. 6. ~Color! As in Fig. 3,
but for data at 4.045 GeV and
angles ranging from 15° to 74°.
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@29# an extension of the RFG model was discussed. Inst
of building the model from elastic scatterings of electro
from nucleons in this work the inelasticN→D transition was
considered and again a relativistic Fermi gas model c
structed. Of course the ideas can be extended even furth
inelastic excitation of any baryon resonance, that is, with
massm* . Following @29# the RFG hadronic tensor for th
production of a stable resonance of this mass is given b

Wmn5
3p2NmN

2

kF
3 E dp

E~p!E* ~p1q!
u~kF2p!

3 f mn~p,p1q!d@E* ~p1q!2E~p!2v#, ~32!

where N is the number of protons or neutrons~the total
nuclear response should beZ times the result for target pro
tons plusN times the result for target neutrons!. As usual
E(p)5Ap21mN

2 and now alsoE* (p1q)5A(p1q)21m
*
2 .

Here f mn is the single-nucleoninelastichadronic tensor:

f mn~p,p1q!52w1~t!Fgmn2
QmQn

Q2 G
1w2~t!

1

mN
2 F Pm2

P•Q

Q2
QmGF Pn2

P•Q

Q2
QnG ,

~33!
02550
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wherew1,2 are the analogs ofW1,2 for elastic scattering —
the w’s for the N→D case are discussed in@29#; however,
for the present purposes it is sufficient simply to know th
they are functions only of the four-momentum transfert.

For the strict RFG model one assumes that an on-s
nucleon moving in the initial-state momentum distribution
struck by the virtual photon and an on-shell baryon re
nance of massm* is produced. Of course this is a ver
oversimplified model~the struck nucleons are not on she
the single-nucleon process is not all, the final state is no
stable baryon but a decaying resonant or nonresonant s
etc.!, although it does provide some insight into a possi
scaling violation mechanism. In particular it can shed so
light on when such scale breakings do or do not appear to
very large; that is, it helps to define characteristic kinema
conditions where the QE-type scaling could be expected
evolve into another type of scaling behavior.

Specifically, using theN→D RFG model of @29# and
forming the ratior12 defined above one typically obtain
results above unity in thec8 region lying between the quas
elastic and ‘‘D ’’ peaks. This is to be compared with the ex
perimental ratio, shown in Fig. 8. For the upper panel in
figure theN→D RFG peak occurs atc8>1.3 for carbon~1.2
for gold!, while for the lower panel the peak occurs atc8
>0.72 for carbon~0.67 for gold!. The model yields a typica
ratio rAu/C in the region between the QE andN→D peaks of
approximately 1.08. For the conditions of the lower panel
model yields a ratio that is closer to unity, approximate
2-9
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within 4%–5% of unity in the region between the QE a
N→D peaks. Thus we see, even with this oversimplifi
model, that the remaining few percent deviation from un
of the ratior12 is reasonably compatible with resonance p
duction in thec8.0 region corresponding to excitation o
the D.

Some further insight can be gained about why the ra
behaves as it does by examining some of the specifics o
modeling. In fact, in@29# a scaling variable emerged nat
rally from consideration of the RFG model for the ‘‘D ’’ re-
gion. Here we generalize this to the scaling variable t
occurs in this model for inelastic single-nucleon transitio
(mN→m* ). With

r* [11
b*
t

, ~34!

whereb* [(m
*
2 2mN

2 )/4mN
2 >0, we have the analog of Eq

~7!:

FIG. 7. ~Color! As in Fig. 6, but only for data at 4.045 GeV an
55°.
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c* [
1

AjF

l2tr*

A~11lr* !t1kAt~tr
*
2 11!

. ~35!

Futhermore, following the discussions in Sec. II, one m
shift the energy to obtain the analog of Eq.~9!,

c
*
8 [

1

AjF

l82t8r
*
8

A~11l8r
*
8 !t81kAt8~t8r

*
8 211!

, ~36!

wherer
*
8 [11b* /t8. If m* 5mN , thenb* 50, which im-

plies thatr* 51 and the above generalized scaling varia
yields the standard results in Eqs.~7! and ~9!. The RFG
model for inelastic excitation of a stable resonance of m
m* has scaling behavior of both the first and second kind
the variablec* . In particular, if auniversaltransverse scal-
ing function f T underlies both quasielastic scattering and
excitation of some given resonance from nucleons in
nucleus, then we expect the former to occur in the total tra
verse cross section asf T(c8) weighted with the usualeN
elastic cross section and the latter asf T(c

*
8 ) weighted by the

N→N* inelastic cross section. Thus we expect~at least! that
the scaling behavior involves the wayf T(c8) varies withc8

FIG. 8. The ratior12 defined in the text for two kinematic con
ditions, 3.6 GeV with 16° and 30°.
2-10
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EXTENDED SUPERSCALING OF ELECTRON . . . PHYSICAL REVIEW C65 025502
— it scales — versus the wayf T(c
*
8 ) varies with c8 —

note: not how it varies withc
*
8 in which it scales.

Relationships can be established betweenc* and c ~or
c* 8 and c8 using the primed kinematic variables as abo
— in the following for simplicity we consider only the un
shifted variables!:

c* 5A11g
*
2 c2g*A 2

jF
1c2, ~37!

where 2g
*
2 [@(11t)(11r

*
2 t)#1/22(11r* t). Substituting

for r* one can write

g* 5
b*

A2t~11t!

3FAS 11
b*

11t D 2

1
1

t S b*
11t D 2

111
b*

11tG21/2

~38!

→ b*
2At~11t!

, ~39!

where the limiting behavior is fort@1 for fixed b* ~i.e.,
fixed m* ). Under these conditionsg* falls as @t(1
1t)#21/2. Thus, if one keepsm* fixed, focusing on a par-
ticular resonance, for instance, and examines the behavi
c* as a function oft and c, it is clear that ast becomes
very largeg* →0 and thereforec* →c, so that there will be
no distinction between the two scaling variables. Indeed
get an idea of how larget must be for this to occur, suppos
that in addition one hasuhFcu!1, then a simple approxima
tion for c* is the following:

c* >c2
b*

hFAt~11t!
. ~40!

So the value oft that characterizes the coalescence ofc*
and c is t05$@11(2b* /hF)2#1/221%/2. For instance, if
m* 5mD andkF5230 MeV/c, then one hast0>0.4, corre-
sponding touQ0

2u>1.4 (GeV/c)2. As the mass of the reso
nance grows then so does the characteristict0, and the coa-
lescence is postponed until larger values oft.

Given these relationships between the various sca
variables, let us now return to the analysis of second-k
scale breaking in the resonance region. As noted above
expect some linear combination off T(c8) and f T(c

*
8 ) with

weightings according to the elastic and inelasticeN cross
sections to be involved in the region between the quasiela
peak (c850) and the peak of the specific resonance of
terest (c

*
8 50). As a function ofc8 the quasielastic contri

bution is assumed to exhibit second-kind scaling, wher
theN→N* contribution does not, because of the depende
on kF in the expressions above. Consider for simplicity t
result in Eq.~40!. With t fixed and considering a given valu
of m* and hence ofb* we see thatc* is less thanc by the
offset b* /@hFAt*(1 1t)#, so c is some positive number
whereas~being between the QE peak and the resona
02550
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peak! c* is some negative number. For a smallkF the offset
is large, whereas for a largekF it is small. That is, forkF
small c* is further away from zero than whenkF is large.
Or, said a different way, the difference

c* ~kF1!2c* ~kF2!5
b*

At* ~11t!
F 1

hF2
2

1

hF1
G ~41!

is positive if kF1.kF2, and soc* (kF1) is closer to zero in
this case than isc* (kF2). Since the inelastic response pea
whenc* 50, this implies that in the region between the Q
and N→N* peaks the case with the largerkF should be
larger than for the lower-kF case. Indeed this is just what w
observe from the data and, in fact, if the offset given abov
computed for typical conditions, the degree to which scal
of the second kind is broken is found to be quite compati
with those results. These ideas have natural extensions
distribution of resonances between each of which the sa
type of phenomenon will occur. The actual magnitude of
effect of course depends on the cross section weighting
each contribution and thus the present arguments should
be regarded as qualitative ones — a more quantitative ap
proach is presently being pursued.

In summary, in effect, the kinematic offset from the Q
scaling variable which occurs in the scaling variable th
enters naturally when considering baryon excitation fro
nucleons in the nucleus alone appears to be capable o
plaining most of the breaking of second-kind scaling in t
resonance region.

B. DIS region

Turning now to the DIS region, let us recall the conve
tional analysis ofx scaling~see, for example,@30#!. Noting
that the quantityn employed in DIS analyses is calledv in
our work, as is usual, and employing the above dimensi
less kinematic variables we can write

x5
t

l
~42!

and see that whenc,0 we havex.1 and the reverse: whe
c50 we havex51.

Using the fact thatx5t/l one can construct expression
that directly relatex to the scaling variablec and Fermi
momentum~via jF) — in particular one useful form is the
following:

x5
2

jF
F S c1A 2

jF
1c2D 2

1HA11
1

t
21J 2cA 2

jF
1c2G21

. ~43!

Or alternatively, if one wishes to work with the Nachtma
variablej ~not to be confused withjF used in this and othe
RFG-motivated studies!, then again various useful relation
ships exist. In particular,
2-11
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j52~k2l! ~44!

5
jF

11A11
1

t

FA 2

jF

1c22cG 2

. ~45!

Moreover, it is possible to incorporate the energy shiftEshi f t
as above by replacing all quantities on the right-hand side
Eqs.~43!–~45! by their primed counterparts to obtain shifte
variablesx8 andj8.

Let us examine thex variable a little more closely. As
written in Eq.~43! it is a function oft, jF ~and hencekF),
and c. The last two enter only in the combinationz
[AjF/2c>hFc/2, since

1

x
5@A11z21z#21HA11

1

t
21J 2zA11z2. ~46!

Thus, ast→` one finds that

1

x
→ 1

x`
[@A11z21z#2. ~47!

This behavior holds fort@tcrit , where, by comparingx
with x` in the regime wherec.0, one finds that

tcrit5
zA11z2

@A11z21z#2
<1/4. ~48!

That is, for uQ2u@1 (GeV/c)2 one has thatx is well ap-
proximated byx`. In this regimex becomes a function only
of z and thus DIS scaling inx ~i.e., independence oft) and
first-kind scaling inc will occur together. Furthermore, th
above expression forx` yields

1

x`
>112z for c!A2/hF ~49!

>4z2 for c@A2/hF . ~50!

The ‘‘asymptotic regime’’ then occurs whenuQ2u
@1 (GeV/c)2 andx is small enough thatc@A2/hF ~typi-
cally >5 –6!, and under these conditions,

x→ 1

~hFc!2
. ~51!

Thus in the asymptotic regimex}1/kF
2 .

Reexpressing what we have seen in the analyses so
throughout the regionx.1, nearx51 ~essentially the QE
peak!, and down to aboutx50.3–0.4~corresponding toc8
53 –4 in Fig. 8! we find that the ratior12 is close to unity
and that its deviation can be reasonably accounted for by
modest second-kind scale breaking expected for reson
02550
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excitation. Now we wish to explore the higher-uQ2u, small-x
region in which DIS is expected to be the dominant react
mechanism.

We begin by providing some ‘‘translations’’ between th
nomenclature and conventions employed for most stud
done within the context of nuclear physics and those don
particle physics studies. Specifically, what are usually ca
sL and sT in the latter are given in terms of the respons
W1,2 and hence via Eqs.~12! of RL,T by the following@here
K is an arbitrary factor conventionally taken to beq or some-
timesv2v(c50)]:

sT5
4p2a

K
W1 , ~52!

sL5
4p2a

K Fk2

t
W22W1G . ~53!

Their ratioR is then

R[
sL

sT
5

W2

W1
F11

l2

t G21, ~54!

not to be confused with a different ratio

R[
RL

RT
5

k2

2t
R. ~55!

As in the previous discussions, we wish, to the degree
we can, to isolate the transverse part of the inclusive cr
section. In the DIS regime we must depend on the limi
information available for the ratioR defined in Eq.~54!
@31,32#. We then construct

ST5
s

F11
vL

vT
RG 5

s

F11
vL

vT

k2

2t
RG ~56!

and from this the transverse scaling functionf T and the ratio
r12, as above. In addition to the results shown in Fig.
which are not really in the DIS region, we show in Fig.
some of the~limited! information available at higheruQ2u—
apparently no information on individualeA cross sections is
available at very high momentum transfers and only
usual EMC ratio at constantx has been measured.

Scaling in the DIS regime is usually discussed in terms
the quantitiesF1[mNW1 andF2[nW2. The so-called EMC
ratio is chosen to be@F2 /A#2 /@F2 /A#1, where, as above, 1
and 2 label a given pair of nuclei. When this is plotted vers
x at very highuQ2u it is seen to be independent ofuQ2u and to
exhibit the so-called EMC effect. Now our previous analys
and the above discussions show that if one chooses for
abscissa on a plot to use the scaling variablec8, scaled by
the Fermi momentum, then one should also incorporate th
charge of variables into the ordinate in the plot by multip
ing by kF . Explicitly this was the procedure used withc8
>y/kF @see Eqs.~8! and ~9!# and f [kF3F @see Eqs.~22!
and ~23!#. Since here we always display results as functio
of c8, we are then motivated also to employ a modifi
2-12
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‘‘EMC-type’’ ratio involving the structure functions for the
two nuclear species 1 and 2, but now with factors ofkF for
each:

r12
DIS[

@kFF2 /A#2

@kFF2 /A#1
. ~57!

Let us now provide the connections between the QE-t
ratio and the EMC-type ratio. These may be related via

r12
DIS[X12r12, ~58!

where the factorX12 in turn may be decomposed into thre
factors,

X125R12G12K12. ~59!

The first of these,

R125
@11R#2

@11R#1
, ~60!

arises simply because different parts of the total cross sec
are conventionally chosen in forming the two ratios. Wh
comparing two different nuclear speciesat constantc8 it

FIG. 9. The ratio r12 defined in the text for uQ2u
55 (GeV/c)2 and the same ratio multiplied by (x2)2/(x1)2 for
pairs of nuclei 1 and 2.
02550
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must be remembered thatx for species 1 is not the same asx
for species 2, but that the twox values are slightly different.
In fact,R12 is quite close to unity for the range of kinematic
under study in this work. The second factor,

G125
@GD

2 #2

@GD
2 #1

, ~61!

stems from the fact that the QE ratio is defined in Eq.~29!
via Eq. ~27! to have the typical dipole form factor behavio
expected for the transverse part of the elasticeN cross sec-
tion, whereas the DIS ratio is not — in the latter we expe
e-quark scattering to begin to dominate. Again, the fact t
we display results versusc8 for experiments where inciden
electron energyEe and scattering angleue are fixed means
that for the two nuclear species the four-momentum trans
are slightly different. Indeed,G12 is typically quite close to
unity for the range of kinematics under study. Note that
sufficient information were available to allow one to spec
uQ2u, rather than have it vary as here~excepting the case
shown in Fig. 9!, then this factor would be irrelevant.

The important factor for our purposes is the third one,

K125
@lt2/k3#2

@lt2/k3#1

, ~62!

which contains all of the kinematic behavior involved in r
lating the two types of ratios. At the quasielastic peak this
unity ~for simplicity Eshi f t is neglected in these arguments!,
whereas above the peak it in general differs from unity a
so must typically be taken into account. To get some feel
for how it enters in the extreme DIS regime wheret→` and
x!1, note that there one has

K12
` 5

@x2#2

@x2#1

. ~63!

Thus in extreme-DIS kinematics the ratio defined in t
present work in Eq.~29! for use in QE scattering differs from
the conventional EMC-type ratio essentially by the fac
@x2#2 /@x2#1 in Eq. ~63!. From Eq.~51! above we see tha
this immediately implies that in the asymptotic regime,

K12
` >

@kF
4 #1

@kF
4 #2

. ~64!

Returning to Fig. 9, we see from the lower panel th
scaling of the second kind in this kinematic region is not
good as it was for the resonance region and below. Multip
ing r12 by the ratio of thex’s as in the upper panel in th
figure yields results much closer to unity, as expect
Namely, the upper panel corresponds to the EMC beha
when results are displayed versusc8. Indeed, uncertainties
are not shown in the figure as they are hard to quantify; w
is clear is that the results in the upper panel are essent
consistent with only small deviations from unity. Finall
note that from the above arguments asymptotically we wo
expect factors of@kF

4 #1 /@kF
4 #2, which from Table I are 1.15,
2-13
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1.25, and 1.33 for Al/C, Fe/C, and Au/C, respectively. Wh
not unreasonable in fact these are somewhat further f
unity than the actual ratios in the lower panel in the figu
Indeed, whileuQ2u is reasonably large here@t>1.42.tcrit
in Eq. ~48!#, x is not very small, ranging as it does from
roughly 0.7 at the left-hand side of the figure down to a
proximately only 0.25 at the right-hand side. Or, in oth
words, the asymptotic regime wherec8 is sufficiently large
for Eq. ~50! to be valid is only barely reached at the righ
hand side of Fig. 9 and the behavior seen here reflects
fact that these data lie somewhere between the quasiel
and asymptotic regimes.

VI. DISCUSSION AND CONCLUSIONS

In undertaking this study we have begun by refining o
previous analysis of the kinematic region lying below t
quasielastic peak. We had seen in our past work that sca
of the second kind is excellent in this region and that val
of kF andEshi f t can be determined for each nuclear spec
for which medium- to high-energy data exist. In the pres
work we have taken these determinations a step further
evaluated how sensitive the scaling function is to variatio
around the best-fit values ofkF and Eshi f t , finding that the
former is very well determined~relative to an overall multi-
plicative factor!, whereas the latter is less important,
found in our previous studies.

We have then employed the hypothesis of longitudi
superscaling to extract the longitudinal contributions fro
the total inclusive response and so obtain the transverse
sponse and scaling function. It should be stressed that
kinematic regime in which the superscaling off L is tested
experimentally is unfortunately rather limited and hence
extraction of f T over a wide range of kinematics is contin
gent on havingf L superscale. However, it is important
note that especially at highq, where theL/T ratio becomes
small, the cross section is known to be dominated by
transverse response. Our focus in the present work is
region and thus the extraction procedure should be rea
ably good here. Proceeding with this as a basic assump
using thef L determined by whatTL-separated data can b
relied upon, we deducef T for an extended range of kinema
ics. We expect that breaking of scaling of both the first a
second kinds will be more prominent inf T than in f L due to
the well-known reaction mechanisms—for instance, p
production, N→D excitations, and two-body meson
exchange current effects, all of which are expected to
transverse dominated—and accordingly have placed our
cus onf T . This is not to say thatf L cannot also have inter
esting scaling-breaking behavior—for instance, final-state
teraction effects such as those arising in the random-ph
approximation can differ in longitudinal and transverse, is
calar and isovector channels—however, isolatingf L except
as we do here via the universal superscaling approach
proved to be very difficult and thus the focus onf T is inevi-
table at present.
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We have selected two regimes for the present exten
study: ~1! the resonance region above the quasielastic p
where we expectN→D andN→N* contributions to be im-
portant and~2! still higher inelasticity where DIS takes ove
Unfortunately, there are very few cases for the latter in wh
eA cross sections are available for a range of nuclei; m
data involve ratios involving a pair of nuclei forx held con-
stant, not what we want, namely, the individual cross s
tions as functions ofuQ2u and scaling variablec8.

What we observe is that scaling of the first kind is clea
violated when one proceeds above the QE peak (c8.0↔x
,1), whereas scaling of the second kind is better. Inde
for sufficiently high momentum transfers it is excellent f
c8,0↔x.1 and typically is broken only by 10%–15% u
through the resonance region. Moreover, from simple m
eling and even from simple kinematic arguments involvi
the introduction of the scaling variablec

*
8 that occurs natu-

rally when discussing the electroexcitation of resonanc
this modest second-kind scale breaking is reasonably
counted for, with very little further scaling violation left to
explain. This does not leave very much room for the oth
reaction mechanisms that are known to violate scaling of
second kind. For instance, we know that at least some of
meson-exchange effects depend onkF very differently than
does the usual one-body QE contribution~typically in a way
that breaks scaling of the second kind by contributions p
portional tokF

3), and thus the absence of significant cont
butions with this behavior limits how much of a role they c
play. In only a very limited number of cases has it be
possible to carry through modeling of MEC effects with t
requisite relativistic content and at present a concerted e
is being made to extend past nonrelativistic treatments
MEC and interaction effects to the kinematic regime of
terest and thereby to test these ideas in more depth.

Finally, in the DIS region we see that there is clearly mo
breaking of scaling of the second kind, indicating~as ex-
pected! that the reaction mechanism is becoming differe
presumablye-quark physics rather thaneN physics. The
crossover from the resonance region, where second-
scale breaking is reasonably small and can be explained
ing simple arguments, to the DIS region, where such d
not appear to be the case, may in fact be a relatively c
indicator of the shift from hadronic to QCD degrees of fre
dom.
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