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Chiral Lagrangians at finite density
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The effective SW2) chiral Lagrangian with external sources is given in the presence of nonvanishing
nucleon densities by calculating the in-medium contributions of the chiral pion-nucleon Lagrangian. As a
by-product, a relativistic quantum field theory for Fermi many-particle systems at zero temperature is directly
derived from relativistic quantum field theory with functional methods.
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In the limit of massless up and down quarks the QCD N
Lagrangian is symmetric under the chiral group SY(2) I1 a'(p,)|0)

XSU(2)z. One assumes that this symmetry is spontane-
ously broken to the diagonal subgroup SU(2g giving rise
to the appearance of three massless Goldstone bosons whi

finally acquire small masses due to the nonvanishing mass of. . )
y acq 9 with Fermi momentumkg=(372p/2)*3, p is the total

theu andd quarks. nuclear density, an¢D) is the vacuum. Our objective is to
This symmetry breaking scenario so much constrains th%valuate the yéneratin functiona[ v és ] inJ the ores-

interactions of the Goldstone bosons that the QCD Green 9 9 &SP P
«» Scalars, and pseudoscalgy

i . —ence of vectow,, axial a
functions can be calculated at low energies as an expansiof o nal fields[2] by working out the transition amplitude
oud Qin)3, Where the label just indicates the presence of

in powers of momenta and quark masses. This is known
the aforementioned external sources. In this way by taking

}t;ere the labeh includes also the spin and isospin indices,
is the number of momentum states inside the Fermi sea

chiral perturbation theoryCHPT) [1,2].
The extengion of the thgory to.the case of Ipw temperatur@,nctional derivatives ofZ[v,a,s,p] with respect to the ex-

at zero density was considered in Ri]. In this paper we  teral sources one evaluates the in-medium QCD connected

study the case of small densities at zero temperature andreen functiongspace-time averages at finite density of the

derive the corresponding chiral Lagrangian by calculatmgquark currents coupled to the a, s, andp sources To do

the in-medium contributions due to the chiral pion-nucleonthis we consider the effective chiral Lagrangiais- L .

Lagrangian[4,5] with functional metho.d.s. _AIthough we fo- 42+ L5+ -+ with an increasing number of pairs of

cus our treatment on QCD, the relativistic many-body for-nucleon fieldsy/(x). We first restrict ourselves to the term

malism deduced here for Fermi systems can be applied t@ith no nucleon fieldsC,,. and to that containing two of

processes governed by other dynamical theories, such as thf@emﬁwzg(x)[)(x) (), together with the previous exter-
traditional nonrelativistic zero temperature many-bg8y7]  na| fields. We will discuss later a way to include perturba-
quantum theory which stresses the diagrammatic approachvely the contributions of Lagrangians with a higher number
Compared with standard quantum field theory at finite temof nucleons by considering them to arise from bilinear verti-
peratureT [8,9] in the grand canonical ensemble, one avoidsces through the exchange of an arbitrary heavy particle. In-
the use of unknown chemical potentials which themselvegleed, although we are talking about CHPT, the only thing
have to be calculated in terms of the many-body forces. Thehat matters for the following derivations is thét,, is bi-
former is accomplished by following quantum field theory atlinear in the fermions. Consider now the transition amplitude
T=0, considering directly the change of the ground statefor the ground states froin— — o to t— + < in the presence
from the vacuum to one with finite fermionic densities. In theof the previous external sources together with Grassmann
same way one also avoids the nontrivial-0 limit due to  sourcesy and 5", coupled to the nucleon fields:
the so-called anomalous diagrafi®,11]. The price to pay
is to rely on the adiabatic hypothesis in order to determine +
the interacting ground state from that of the free case by<Qout|Qin>J,n,nT:f [AUILdyI[dy I Qoud (+))
turning on the interactions adiabatically. _

Let us take first the case of symmetric and unpolarized X @ [0 Lt uD U Ut Tl (o) Q)
nuclear matter; the extension of the formalism to the asym- (1)

metric and polarized case is straightforward and will be
shown below. In the following we take the Heisenberg piC-\ ith the pion fields described by the<® unitary matrixU.
The ground state functiongly(*+=)|Qou) can be ex-
n

ture and, closely following scattering theof$2], we con-
sider two ground statel),,) and|Q;,) which, under the
action of any ti_me dependent operamrasymptotic timest pressed in terms of that of the vacuum by writing the
— * oo, respectively, behave as two symmetric F_erml seas Oé(pn)out operators as a function @f(x) and its time deriva-
free protons and neutrons. The Fermi seas are filled up to the™ " in

corresponding baryonic density, tive ¢(x):
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E .
a(pp)ou= lim — (P) 'E(p)tf dxe~"PXu(p,) lim J [dU](detD)e/9%Can
in tﬂimzm t— 4
t'——w
i
X ¢n(x)+?p)¢n(x) ) ) N - -
<\ 1T [ axermoutip—;
where as usual in scattering theory for o the matrix n on' (Xn)
elements are calculated as if there were no interactions. In
th_e former expressiorE(p)_is the energy of the nucleon ><ex;< _if dxf dy (x)D 1 (x,y)y°n(y)
with three-momentunp, my is the nucleon mass, angp,,)
is a Dirac spinor. Expressing(x) in terms ofy(x) (one way -
is using the Dirac equatign taking into account that H iy )
) + > . + “MmYm
W(x)el ey (YW-(Y):_|£5/577T(X)]e'fdy.n (4, the analo- <11 f dyme 577(ym)U(qm)-
gous expression foy'(x), and substituting all that in Eq.
(1), one obtains fofQou{ QLin)3, .4t After acting with the left derivatives/ 57"(x,) on the ex-
ponential depending on the Grassmann sources, the former
lim j [dU](detD)e!/9*Cn expression can be recast as

t— 4o

t/——o

N

lim f[dU](detD)eifdxﬁm(H fdxneipnxn
t—+ox n

t/ -

H (p”) f dx,e/Prnu(p,)| 1

n ~E(pn)
Xf danUT(pn)D_l(Xn,an)’yoﬂ(an)
3 nd
0 13
0 I— 440 . _
F 2y '””N) 57700 xex| i [ ax [ ayn' 00D 20y |
xexp(—if dxf dyn*(x)Dl(x,y)y(’n(y)) N 5
X dyp,e”'9mm u .
. [T [y tvn s o sutam)
S i .
XH (Qm)f dy, e~ dm¥m ! This result is equal t@'“lv2sPl when —0 and »'—0.!
m 577(ym) E(Qm) Hence we can equalize to 1 the second exponential from the
left and the remaining right derivatives ang{z,) sources
3, . . have to be paired in order to finish with a nonvanishing
X — Om oy , result. Thus we have
& oy Sy 7 gty ¥ 7 U
B &%= Iim J[dUJ(detD)e'de‘imZ e(U)H den
t—+o
where the integration over the nucleon fields and conjugate T—
momenta is also done. Furthermore we defipe (t,x,),
Ym=(t",ym), and p,=(E(pn),pn), and we do the same X f dx, ePrnu’(p,)D (X, %, )y’e PoXau(p, )
analogously folg,,,. The action of the spatial derivatives can " " "
be readily taken into account by integrating by parts. In this (4)

way, they only act on the corresponding exponentials giving

rise to three-momenta factors that can be further simplifiedvith e(o) the signature of the permutatian over all the

by applying the Dirac equation on the Dirac spinors. In thisindices—momenta, spin, and isospin. In order to continue let
way we have us write the operatorD(xX)=Dg(Xx)—A(x) with Dg(x)
=iy"d,—my the Dirac operator for the free motion of the
N

3
_ 2m
U(pn)|: 2 pn)v Y E )7 oy

Iwithout taking the limity, '—0, the generating functional con-
tains baryonic sources and taking differential derivatives with re-
1— E u( )= —— 2m u( ). spect to them one could directly evaluate in-medium baryonic
E(pn) Y vt E(p ) y Y ulPn E(p) P Green functions, e.g., nucleon propagators. Nevertheless, since for
our present purposes the baryons in the medium constitute just a
Applying the previous results to E€R) it simplifies to background, we do not consider this case any further.
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nucleons. On the other hand, the oper&¢x) is completely  where now both andt’ are integration variables that are the

general although in our case at hand, with CHPT, it is subjectime components of, andx,, , respectively. The ellipsis just

to a chiral expansion of powers of soft three-momenta andlefers to those terms with an increasing number of insertions

quark masses. Furthermore, let us note that of the operatorA coming from the geometric expansion of
D '=[Dy—A] ! discussed above. Furthermotéx,y) is
defined such that

lim f dxePu’(p)Dy L(x,x")=—ie™ u(p),

t—+o

fdﬁRMwam=fdeRMwaww.
lim fdegl(x’,x)yOe*ipxu(p)z—ie*ipx'u(p). (5)
t——x

As a result of Eq(6) we can simply state that

This result can be easily obtained by writiﬁ?ggl(x,x’) in

four-momentum space and then performing the integral over

the temporal component of the momentum, taking care of the gl Zlv.aspl= f [dU](detD)e/ *(detF), (7)
imposed limits. For instance, let us take the first of the pre-

vious equations. Then we have

where the tilde in def indicates that the determinant has to

: ipx, T 1 , be taken in the subspace of the Fermi-sea states expanded by
IETOJ dxeP U (p)Do “(x.X') the basis functions'P™u(p,) with |p,| <kg . In this notation
Fis given by

, . dR e RU(R+my)
= lim f dxe'pXuT(p)j Z PRI ,

te oo (27) Re—my+ie _ -
fz|3—if dtf dt’eHo'yA[l,—Dg *A] te ot
with e a positive infinitesimal. Exchanging the order of the
integrations, the spatial one gives rise tom)25(R—p) _ _
which fixesR. As a result one has where 153=5(Xy = Xm) op,m and analoglouslly' |4,= (%n
—Xm)®m- On the other hand, e ™ot ePXu(p,)

R S =e " u(py) ande Pu'(p,)el=ePru' ().
J_UT(p) (R%Y°— py+my). In order to obtain from Eq(7) the contributions of the

2w R3—p2—mi+ie surrounding medium to the generating functional it is conve-
nient to exponentiate dgt as exp(Tin ) (where the tilde
has the same meaning as bejorghen we have

lim
t— 4o

Sincet— +o thent—x;>0 and we close the integration
contour overR® with a semicircle of infinite radius on the
lower half-plane picking up the pole &°=p°—ie=E(p)
—ie. Applying the Dirac equation to the result, one arrives at gi2lv.as,pl = J [d U](detD)exp{ i J’ dxC, .
Eq. (5).

Then taking into account Eq(5) and the expansion s 2
D 1y°=[Do—A] *y°=D; 'y’ + Dy 'AD; O+ -+, we Y f"F dp fd
can rewrite Eq(4) as =1 a=1 (27)32E(p)

N . .
eiZ:j [du](detD)eiIdxﬁwvz E(O’)H fdxn XJdye_lpxu:a(p)ln[ﬂhxa,ya)elpyura(p)]:
8

XIdM§”WWWm)&M—mQ%%

where we have indicated explicitly the spirand isospina
_if dtf dt’ eEPLOA(x, X )e~E(®s ) indices. It is very appropriate to stress at this point that Eq.
7n (8), although formal, is nonperturbative. From this result we
can readily read out the new effective chiral Lagrangian den-
—i f dtf dt’f dzdZeEPOA (X, ,2)Dy Y (z,2') sity £, in the presence of a nuclear density just by equating
the expression between curly brackets foxZ....
®) The perturbative theory is obtained by expanding-lm
Eq. (8), so thate'? can be written as

XA(Z' X, e EPa)V .. lePoou(p, ),
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FIG. 1. Diagrammatic expansion of E(P). Every thick line

o C1a1-1 corresponds to the insertion of a Fermi sea and each circle to the
Xf dx dyeP*u;,(p) All4—Dg "Al™ Y (xaya) insertion of an operatof = —iA[l,— Dy *A] L.
2 2 1) . o . .o
) 1 k d L="=(iy*d,—mylo+iy*ID" +i e A , 10
Xe"pyu,a(p)+§ D F 3p g = WY, —mlo+ iy T +igay*ysd )¢ (10
rs=1ap=1.J (2m)°2E(p) with A, =2u'V,Uu’ in terms of the covariant derivative
- I T L T IO
X dxdx dv’ d épx _. X) . IS | | | =3Lu, u
f (277)32E(q)f X y' dyePura(p) —|/§uT(v#+gM)u—|/2u(vM—aM)uT. The Goldstone bosons
. S (the piong are collected in the 2 unitary matrix u
XAl 4—Dg *Al Y xax € ™ Usg()€'V ugs(q)  =exple/2f), U=u?, and¢ is given by
‘ 70 \/§W+
XA[l4— DEIAT1|(y’B,ya)e7|prra(p)+ el ¢= N/
Finally, taking into account the relation On the other hand, the constamty, g, andf refer to the

mass, axial coupling of the nucleon, and pion weak decay
— constant in the S(2) chiral limit, respectively. Taking into
r=§l:2 u (p)®ur(p)=p+my account the definition of thé\(x) operator,A(x)=Dy(x)
’ —D(x), with Do(x) =iy*d,,—my, we then obtain from Eq.
we arrive at the following expression for the generating(10)

functional: AD(x) = _iyAT - iém”‘?’sﬁﬂ-
eizzf [dU](detD) The difference of‘ﬁle— my is O(p?) [4] and then it belongs
to A®. The relatedAM)(x,y) operator is justA®(x)&(x
«  dp _ —y). IndeedA"(x,y) =AM(x) 8(x—y) because of the local
xexp{if dxﬁm—if 3—f dx dyéP=¥)  character of the CHPIZ%L)/ Lagrangians.
(2m)°2E(p) The other expansion involved in E(P) is an expansion
X Tr(A[ 1 ,— D61A]71|(x o (B+my) in the nur_nber of insertions cofn-_sh_ellfermi_ons_belonging to
’ the Fermi sea, schematically indicated in Fig. 1 by a thick
1 (ke dp Ke dqg solid line. Both expansions of E¢Q) can be related by giv-
EJ 3 f 3 ing a chiral power counting t&: which can be naturally
(2m)°2E(p) (2m)°2E(q) counted asO(p) [13] since for nuclear saturation density
ke=2M . with M _ the pion mass. Moreover, the circles la-
xfdx dx dy dy ePx-Ve-iax'-y") beled byI' correspond to the nonlocal operateriA[l,
— Dy *A] L. Note that when inserting Fermi seas from the
><Tr(A[I4—DglA]‘1|(x'x,)(q+ my) expansion of the logarithm one picks up a factor

—(—1)"n where the global minus sign appears due to the
a1 fermionic closed loopn is a combinatoric factor because any
XALl4=Do Al H(yr y(bmy))+-- - p, ©) cyclic permutation in the trace af Fermi seas with their
associated I operators gives the same result, and finally the
where the traces refer both to the isospin and spinor indiceSi9" (—1)" is a pure in-medium factor that one has to keep
The previous formula implies a double expansion for obtain/N Mind and is already present in standard many-body theory
ing the contributions of the nuclear medium to the chiralm'

Lagrangian. One is the standard chiral expansion by expandﬁ A generally nonrl]opal vertel?dpomes frot|;n the iteration of
ing the vacuum operator A[l,— Dy 'A] 1=A+ADg'A  heA operator with intermmediate free baryon propagators

JrADalADalAJr .. together withA itself, A= AL+ A Dgl, obeying.the usual Feynman ruEs, see Fig.. 2. Notice
+A®) 4 ... in increasing powers of momenta and quarkthatA was defined from the LagrangaifD ¢, removing the
masses valid at low energies. Explicit expressiond ap to  free termy¢Dy¢, and changing the sign to the rest. This is
O(p® can be obtained from the meson-baryon CHPTwhy a minus sign appears in front @f in Fig. 2. On the
Lagrangians given in Ref5]. As an example let us consider other handi D, (x,y)=if[d*p/(2m)*1(p+my) /(p?>—mZ

the lowest ordeA()(x) operator with one derivative from  +i¢) is the usual baryon propagator.
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FIG. 2. Expansion of the generalized nonlocal vacuum vdrtex
Every solid line corresponds to a vacuum baryon propagator anc

each circle to the insertion of an operateiA from D .

a) c) e)
Hence a final diagram, when expandifigup to the re- >‘O\ ~ >—<>\
quired accuracy, will be a set of=1 Fermi-sea insertions, e I (
m=0 free baryon propagators, anmtt n vertices—iA. First i Oj
we include the—1 global sign because of the fermionic
closed loop, and the combinatoric facton ltbgether with b) d
the sign ¢ 1)". Then, fO”OV‘_"”Q the diagram in the opposite  gig. 3, (a) and (b) represent some typical many-particle dia-
sense to that of the fermionic arrows, we write for eachyams generated from Eq) and (9). The circle indicates a
Fermi sea an integraf*cdp(jp+m)/(2m)32E(p) with p®  operator insertiorfwhich in addition can have attached to it more
=E(p), for each vaccum baryon propagator with free mo-jines than shownand the dashed line corresponds to a pion ex-
mentum p we write i [dp/(27)*(p+ mN)/(pz—mﬁ-l-ie) change.(c) and (d) arise by considering the ultraviolet divergent
and for a vertex in momentum space a termA(2m)4, part of the pion loops leading to local terms denoted by squéses.
keeping in mind the energy-momentum conservation at eacis a localwN counterterm, indicated by a diamond. For more details
vertex. Finally we sum over the spin and isospin indices ofsee the text.
the fermions. This defines explicitly the Feyman rules in mo-
mentum space in order to obtaif27)* times the desired by including simultaneously local nucleon interactions in or-
connected graph accompanied by the global delta of energgler to reabsorb the divergences. This is denoted by the
momentum conservation. Analogous Feynman rules hold o$quares in Figs.(8) and 3d). It is important to realize that
course in configuration space, e.g., see [@4. while in Fig. 3a) the pion is exchanged inside the same
An equivalent way to state the previous rules, withoutvertex (in the generalized sense of abpue Fig. 3(b) the
including explicitly the integral symbols and factorg2isto  pions are exchanged between two of them. This implies the
write the same sign-combinatoric facter(—1)"/n and ver-  presence of only one Dirac trace in FigcB(the flow of the
tices—iA as before. Then for the free nucleons one has jusPirac indices along the propagators on both sides of the
the free propagatoii(p+m)/(p>—m?+ie) and for the square is indicated by the arrows of the open solid )ires!
Fermi-sea baryons the factor £28(p?—m?)6(p°)(p  two Dirac traces in Fig. @). Thus, when writing the matrix
+m) é8(ke—|p|). Finally we sum over all the discrete indices elements corresponding to diagrams of the type in Figs. 3
attached to the fermions and integrate over all the free fourand 3d) (with local interactionsone has to keep track of the
momenta with the measu@*p/(2)* after taking into ac- number of closed traces in the spinor indices since each of
count energy-momentum conservation at each vertex. them will lead to a sign £1) and its own combinatoric
Figure 1 fixes the skeleton structure of standard infactor 1h; (with n; the number of Fermi-sea insertions in the
mediumverticessince one still has to consider the pion fields closed Dirac loop together with the sign<{1)". One can
contained inA, over which one has to integrate in E¢8)  also arrive at the same conclusions by considering that the
and (9) to finally obtain the generating functional. That is, dashed lines originate from the exchange of an arbitrary
from the verticesA as well as fromZ,.,., one can generate heavy mesofithe only relevant point in our derivations is the
internal as well as extern@toupled to the sourcggpionic  bilinear character of the mesdN interaction in the
legs denoted by dashed lines in Fig&)3and 3b). Here one  nucleon fields In this way it is straightforward to realize the
has essentially the same Feynman rules as one has in vaccyiesence of a factor 1/2 in front of Fig(d together with the
in order to proceed in a perturbative way. Simply, for eachfactorsnj(_l)nj+1/nj , which here are simply 1. The rela-
pionic line with four-momentuny, one writes the vacuum tion between contact four nucleon interactions at low ener-
propagatoi [dg/(27)*(1/g2— M2 +i€), for the first version  gies in effective field theories and its saturation by integrat-
of the in-medium Feynman rules. For the second, one haiag out heavy meson resonances has been established in Ref.
i/(g?>—M2+i€). The important remark to keep in mind is [14].
that a generalized vertex has properties analogous to those of There is still an important difference to be discussed when
a standardocal quantum field theory one, to the effect of comparing Figs. &) and 3d), which in fact is related to the
determing the numerical factors accompanying the exchangeresence of the factor (dBY in all the formulas from Eg.
of pion lines inside a given diagram. This can be seen just by3) to Eq.(9). The latter corresponds to contributions to the
applying standard perturbative techniques in path integrals tohiral Lagragian from closed fermion loops in the vacuum
the action given between brackets in E8). or more explic- and in the spirit of the effective field theories these contribu-
itey in Eq. (9). Several examples are discussed in detalil intions, coming from states with masses close to or above the
Ref. [13]. chiral scaleA,~M,, are incorporated in the counterterms
Notice also that ultraviolet parts in the integration overof the vacuum effective field theory. In this way we will set
running pionic momenta generate local multinucleon verticesletD=1 in the following. Indeed on the right hand side of
and hence a proper treatment of pion loops can only be dorthe square of Fig. @) we can recognize a momentum loop
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flowing along the free baryon propagators without any inserwith p=[E(p),p] and|p|<kg. Thus one is inserting a me-
tion of a Fermi sea. This simply means that since all thedium parametekg and shifting upward up to around, the
momenta that could go into this closed momentum loop arenergy level around which one is perturbating.

soft because they come from the circles, it just corresponds We now turn to the generalization of the formalism to the
to vacuum renormalization from heavy particles and is reabease of asymmetric nuclear matter, with different densmes of
sorbed in the low energy counterterms. This is schematicallpeutrons,p,, and protons,,, with Fermi momentek "
shown in Fig. 3e) with a diamond corresponding to a higher = (372p,)*® and kP’ = (37%p,) 1% respectively. FoIIowmg
order 7N counterterm. This is consistent as far as one ighe previous derivation of Ec{8) one can easily convince
restricted to the low energy and momentum regime. How-oneself that the only change is to remove the sum over isos-
ever, when a Fermi-sea baryon line is present the momentupin indices and to distinguish between=1 (proton and
running though the baryon lines is of the fonm=p+ Q; a=2 (neutron. In this way we will have

a,s, k(p) —ipx i
gl Zlvaspl= f[dU]exp{ fdxﬁm+2 f mj dxf dye "Pul ,(p)IN[F]| (x 1y 1)€'PU; 1(P)
2

k(n) —ipx
+r:lf mf fdye P rz(p)ln[ﬂ|(x2y2)epyurz(p)] (12)

Notice that we have indicated separately the energies of pr&@p)s and neutron&(p), with three-momentunp, since the
previous equation is valid for the nonisospin limit as well. Nevertheless, in order to simplify the formulas, we will consider in
the following the case with equal nucleon masses. We also introducext@er2atrix:

okP'=p) 0 Hn(pn
=

0 R _
0 ok —p 0 n(p)2)=n(p)|2+n(p)7'3 (12

n(p)=(

with 1, the 2<2 unity matrix, 73 the usual Pauli matrix diag(%,1), and n(p)=[n(p);+n(p),1/2 and n(p)=[n(p),
—n(p),]/2. Then Eq.(11) can be rewritten as

g Zlv.aspl = J[du]exp[ fdxﬁmﬁfdxj yjm Gl y)Tf{n(p)m[ﬂkxy)(lb"'m)}]

=J[dU]exp{inx£M—iJmJ dx dy ePCITHA[l,— Do *AT Y yy (B+my)n(p)}

+}f dp f fd dx dy dy ePxVe~ iq(x’ —y")
2J (2m)%2E(p) (2w>32E<q>

XTHA[ 4= Do Al Y ) (d+my)N(Q)A[1 ;= Do Al Yy ) (B+my)n(p)}+ - - - ] . (13)

Comparing this equation with E9), the only difference in the Feynman rules is the inclusion of an isospin nagpX
associated to every Fermi-sea insertion.

The case of polarized nuclear matter can be treated in the same way just by doing11)Ehe replacement

2
> dpura(p) um(p)ﬂf dpuf (p)---u, a(p)+f dpu; . (P)- - U u(P) (14
r=1

since there are two spin states per momentum state.

The present formalism is applied in R¢L3] to evaluat- medium and the limitations of a plain perturbative treatment
ing several quantities relevant for low energy QCD in theof CHPT at finite density. We will mention that instead of a
nuclear medium. There we will also address in detail therelativistic treatment of the baryons we could also have con-
issue of the chiral counting from Edq13) in the nuclear sidered in the same way the nonrelativistic case. This makes
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more straightforward the evaluation of baryon logpS] al-  matted. Then the perturbative theory was developed and the
though one has also to take into account recent developmentsrresponding Feynman rules were given. Contrarily to stan-
in the field of effective field theories with propagation of dard many-body techniques, the rules and diagrams derived
relativistic heavy particle§16—-18. In any case the main here for the general relativistic case are analogous to the
issue still to be addressed in the medium, as discussed imsual ones from vacuum quantum field theory without modi-
Refs.[16,14], is to deal with the problem of the lar@wave fication of the baryon propagators, establishing a neat sepa-
scattering lengths in the nucleon-nucleon scattering whichation between in-medium and vacuum contributions, as in-
introduces a new extra scale of onlyl0 MeV already in the dicated in Figs. 1 and 2. Applications of this many-particle
vaccum case, where consistent power counting schemes hanslativistic quantum field theory formalism to actual calcula-
been developefil9]. Some interesting findings in this direc- tions can be found in Ref13].

tion, requiring further consideration, can be found in Ref.

[20] for a theory without pions.

To conclude, we have derived the @Ychiral Lagrang- | would like to thank Andreas Wirzba and UIf-G. Meil3ner
ian with external sources in the presence of nonzero nucledor useful discussions and for a critical reading of the manu-
density by explicitly working out in quantum field theory the script. This work was supported in part by funds from
in-medium contributions from theN chiral Lagrangian, Eq. DGICYT under Contract No. PB96-0753 and from the EU
(9) (symmetric nuclear mattgrEq. (13) (asymmetric nuclear TMR network Eurodaphne, Contract No. ERBFMRX-CT98-
matte), and Eq.(14) (asymmetric and unpolarized nuclear 0169.
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