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Chiral Lagrangians at finite density
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The effective SU~2! chiral Lagrangian with external sources is given in the presence of nonvanishing
nucleon densities by calculating the in-medium contributions of the chiral pion-nucleon Lagrangian. As a
by-product, a relativistic quantum field theory for Fermi many-particle systems at zero temperature is directly
derived from relativistic quantum field theory with functional methods.
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In the limit of massless up and down quarks the QC
Lagrangian is symmetric under the chiral group SU(2L

3SU(2)R . One assumes that this symmetry is sponta
ously broken to the diagonal subgroup SU(2)L1R giving rise
to the appearance of three massless Goldstone bosons w
finally acquire small masses due to the nonvanishing mas
the u andd quarks.

This symmetry breaking scenario so much constrains
interactions of the Goldstone bosons that the QCD Gr
functions can be calculated at low energies as an expan
in powers of momenta and quark masses. This is known
chiral perturbation theory~CHPT! @1,2#.

The extension of the theory to the case of low tempera
at zero density was considered in Ref.@3#. In this paper we
study the case of small densities at zero temperature
derive the corresponding chiral Lagrangian by calculat
the in-medium contributions due to the chiral pion-nucle
Lagrangian@4,5# with functional methods. Although we fo
cus our treatment on QCD, the relativistic many-body f
malism deduced here for Fermi systems can be applie
processes governed by other dynamical theories, such a
traditional nonrelativistic zero temperature many-body@6,7#
quantum theory which stresses the diagrammatic appro
Compared with standard quantum field theory at finite te
peratureT @8,9# in the grand canonical ensemble, one avo
the use of unknown chemical potentials which themsel
have to be calculated in terms of the many-body forces.
former is accomplished by following quantum field theory
T50, considering directly the change of the ground st
from the vacuum to one with finite fermionic densities. In t
same way one also avoids the nontrivialT→0 limit due to
the so-called anomalous diagrams@10,11#. The price to pay
is to rely on the adiabatic hypothesis in order to determ
the interacting ground state from that of the free case
turning on the interactions adiabatically.

Let us take first the case of symmetric and unpolariz
nuclear matter; the extension of the formalism to the asy
metric and polarized case is straightforward and will
shown below. In the following we take the Heisenberg p
ture and, closely following scattering theory@12#, we con-
sider two ground statesuVout& and uV in& which, under the
action of any time dependent operatorat asymptotic times t
→6`, respectively, behave as two symmetric Fermi sea
free protons and neutrons. The Fermi seas are filled up to
corresponding baryonic density,
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a†~pn!u0&,

where the labeln includes also the spin and isospin indice
N is the number of momentum states inside the Fermi
with Fermi momentumkF5(3p2r/2)1/3, r is the total
nuclear density, andu0& is the vacuum. Our objective is to
evaluate the generating functionalZ@v,a,s,p# in the pres-
ence of vectorvm , axial am , scalars, and pseudoscalarp
external fields@2# by working out the transition amplitude
^VoutuV in&J , where the labelJ just indicates the presence o
the aforementioned external sources. In this way by tak
functional derivatives ofZ@v,a,s,p# with respect to the ex-
ternal sources one evaluates the in-medium QCD conne
Green functions~space-time averages at finite density of t
quark currents coupled to thev, a, s, andp sources!. To do
this we consider the effective chiral LagrangiansL5Lpp

1Lc̄c1Lc̄cc̄c1••• with an increasing number of pairs o
nucleon fieldsc(x). We first restrict ourselves to the term
with no nucleon fieldsLpp and to that containing two o
themLc̄c5c̄(x)D(x)c(x), together with the previous exter
nal fields. We will discuss later a way to include perturb
tively the contributions of Lagrangians with a higher numb
of nucleons by considering them to arise from bilinear ve
ces through the exchange of an arbitrary heavy particle.
deed, although we are talking about CHPT, the only th
that matters for the following derivations is thatLc̄c is bi-
linear in the fermions. Consider now the transition amplitu
for the ground states fromt→2` to t→1` in the presence
of the previous external sources together with Grassm
sourcesh andh†, coupled to the nucleon fields:

^VoutuV in&J,h,h†5E @dU#@dc#@dc†#^Voutuc~1`!&

3ei *dx[Lpp1c̄Dc1h†c1c†h]^c~2`!uV in&

~1!

with the pion fields described by the 232 unitary matrixU.

The ground state functional̂c(6`)uVout
in

& can be ex-

pressed in terms of that of the vacuum by writing t

a(pn)out
in

operators as a function ofc(x) and its time deriva-

tive ċ(x):
©2002 The American Physical Society04-1
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a~pn!out
in

5 lim
t→6`

E~p!

2mN
eiE(p)tE dxe2 ipxū~pn!

3Fcn~x!1
i

E~p!
ċn~x!G , ~2!

where as usual in scattering theory fort→6` the matrix
elements are calculated as if there were no interactions
the former expression,E(p) is the energy of the nucleo
with three-momentump, mN is the nucleon mass, andu(pn)
is a Dirac spinor. Expressingċ(x) in terms ofc(x) ~one way
is using the Dirac equation!, taking into account tha
c(x)ei *dyh†(y)c(y)52 i @dW /dh†(x)#ei *dyh†(y)c(y), the analo-
gous expression forc†(x), and substituting all that in Eq
~1!, one obtains for̂ VoutuV in&J,h,h†

lim
t→1`
t8→2`

E @dU#~detD !ei *dxLpp

3S )
n

N
E~pn!

2mN
E dxneipnxnū~pn!F12

i

E~pn!

3S g0(
j 51

3

g j
]

]xn
j

1 ig0mND G d
→

dh†~xn!
D

3expS 2 i E dxE dyh†~x!D21~x,y!g0h~y! D
3)

m

N
E~qm!

2mN
E dyme2 iqmymF d

←

dh~ym!
2

i

E~qm!

3S (
k51

3
]

]ym
k

d
←

dh~ym!
gkg01 i

d
←

dh~ym!
g0mNDGg0u~qm!,

~3!

where the integration over the nucleon fields and conjug
momenta is also done. Furthermore we definexn5(t,xn),
ym5(t8,ym), and pn5„E(pn),pn…, and we do the same
analogously forqm . The action of the spatial derivatives ca
be readily taken into account by integrating by parts. In t
way, they only act on the corresponding exponentials giv
rise to three-momenta factors that can be further simpli
by applying the Dirac equation on the Dirac spinors. In t
way we have

ū~pn!F12(
j 51

3 pn
j

E~pn!
g0g j1

mN

E~pn!
g0G5

2mN

E~p!
u†~pn!,

F12(
j 51

3 pn
j

E~pn!
g0g j1

mN

E~pn!
g0Gg0u~pn!5

2mN

E~p!
u~pn!.

Applying the previous results to Eq.~3! it simplifies to
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lim
t→1`
t8→2`

E @dU#~detD !ei *dxLpp

3S )
n

N E dxneipnxnu†~pn!
d
→

dh†~xn!
D

3expS 2 i E dxE dyh†~x!D21~x,y!g0h~y! D
3)

m

N E dyme2 iqmym
d
←

dh~ym!
u~qm!.

After acting with the left derivativesdW /dh†(xn) on the ex-
ponential depending on the Grassmann sources, the fo
expression can be recast as

lim
t→1`
t8→2`

E @dU#~detD !ei *dxLppS )
n

N E dxneipnxn

3E dzn8u
†~pn!D21~xn ,zn8!g

0h~zn8!D
3expS 2 i E dxE dyh†~x!D21~x,y!g0h~y! D
3)

m

N E dyme2 iqmym
d
←

dh~ym!
u~qm!.

This result is equal toeiZ[v,a,s,p] when h→0 andh†→0.1

Hence we can equalize to 1 the second exponential from
left and the remaining right derivatives andh(zn) sources
have to be paired in order to finish with a nonvanishi
result. Thus we have

eiZ5 lim
t→1`
t8→2`

E @dU#~detD !ei *dxLpp(
s

e~s!)
n

N E dxn

3E dxsn
eipnxnu†~pn!D21~xn ,xsn

!g0e2 ipsn
xsnu~psn

!

~4!

with e(s) the signature of the permutations over all the
indices—momenta, spin, and isospin. In order to continue
us write the operatorD(x)[D0(x)2A(x) with D0(x)
5 igm]m2mN the Dirac operator for the free motion of th

1Without taking the limith,h†→0, the generating functional con
tains baryonic sources and taking differential derivatives with
spect to them one could directly evaluate in-medium baryo
Green functions, e.g., nucleon propagators. Nevertheless, sinc
our present purposes the baryons in the medium constitute ju
background, we do not consider this case any further.
4-2
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CHIRAL LAGRANGIANS AT FINITE DENSITY PHYSICAL REVIEW C 65 025204
nucleons. On the other hand, the operatorA(x) is completely
general although in our case at hand, with CHPT, it is sub
to a chiral expansion of powers of soft three-momenta
quark masses. Furthermore, let us note that

lim
t→1`

E dxeipxu†~p!D0
21~x,x8!52 ieipx8ū~p!,

lim
t→2`

E dxD0
21~x8,x!g0e2 ipxu~p!52 ie2 ipx8u~p!. ~5!

This result can be easily obtained by writingD0
21(x,x8) in

four-momentum space and then performing the integral o
the temporal component of the momentum, taking care of
imposed limits. For instance, let us take the first of the p
vious equations. Then we have

lim
t→1`

E dxeipxu†~p!D0
21~x,x8!

5 lim
t→1`

E dxeipxu†~p!E dR

~2p!4

e2 iR(x2x8)~R” 1mN!

R22mN
2 1 i e

,

with e a positive infinitesimal. Exchanging the order of th
integrations, the spatial one gives rise to (2p)3d(R2p)
which fixesR. As a result one has

lim
t→1`

E dR0

2p
u†~p!

eip0te2 iR0(t2x08)e2 ipx8

R0
22p22mN

2 1 i e
~R0g02pg1mN!.

Since t→1` then t2x08.0 and we close the integratio
contour overR0 with a semicircle of infinite radius on th
lower half-plane picking up the pole atR05p02 i e5E(p)
2 i e. Applying the Dirac equation to the result, one arrives
Eq. ~5!.

Then taking into account Eq.~5! and the expansion
D21g05@D02A#21g05D0

21g01D0
21AD0

21g01•••, we
can rewrite Eq.~4! as

eiZ5E @dU#~detD !ei *dxLpp(
s

e~s!)
n

N E dxn

3E dxsn
e2 ipnxnu†~pn!Fd~xn2xsn

!dn,sn

2 i E dtE dt8eiE(pn)tg0A~xn ,xsn
!e2 iE(psn

)t8

2 i E dtE dt8E dzdz8eiE(pn)tg0A~xn ,z!D0
21~z,z8!

3A~z8,xsn
!e2 iE(psn

)t81••• Geipsn
xsnu~psn

!, ~6!
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where now botht andt8 are integration variables that are th
time components ofxn andxsn

, respectively. The ellipsis jus
refers to those terms with an increasing number of inserti
of the operatorA coming from the geometric expansion o
D215@D02A#21 discussed above. FurthermoreA(x,y) is
defined such that

E dxc̄~x!A~x!c~x!5E dxdyc̄~x!A~x,y!c~y!.

As a result of Eq.~6! we can simply state that

eiZ[v,a,s,p]5E @dU#~detD !ei *dxLpp~det̃F!, ~7!

where the tilde in det˜F indicates that the determinant has
be taken in the subspace of the Fermi-sea states expand
the basis functionseipnxu(pn) with upnu,kF . In this notation
F is given by

F[I 32 i E dtE dt8eiH 0tg0A@ I 42D0
21A#21e2 iH 0t8,

where I 3[d(xn2xm)dn,m and analogously I 4[d(xn

2xm)dn,m . On the other hand, e2 iH 0t8eipnx8u(pn)
5e2 ipnx8u(pn) ande2 ipnxu†(pn)eiH 0t5eipnxu†(pn).

In order to obtain from Eq.~7! the contributions of the
surrounding medium to the generating functional it is con
nient to exponentiate det˜F as exp(Tr˜ ln F) ~where the tilde
has the same meaning as before!. Then we have

eiZ[v,a,s,p]5E @dU#~detD !expH i E dxLpp

1(
r 51

2

(
a51

2 EkF dp

~2p!32E~p!
E dx

3E dye2 ipxura
† ~p!ln@F#u(x a,y a)e

ipyura~p!J ,

~8!

where we have indicated explicitly the spinr and isospina
indices. It is very appropriate to stress at this point that
~8!, although formal, is nonperturbative. From this result w
can readily read out the new effective chiral Lagrangian d
sity L̃pp in the presence of a nuclear density just by equat
the expression between curly brackets toi *dx L̃pp .

The perturbative theory is obtained by expanding lnF in
Eq. ~8!, so thateiZ can be written as
4-3
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E @dU#~detD !

3expH i E dxLpp2 i (
r 51

2

(
a51

2 EkF dp

~2p!32E~p!

3E dx dyeipxūra~p! A@ I 42D0
21A#21u(xa,ya)

3e2 ipyura~p!1
1

2 (
r ,s51

2

(
a,b51

2 EkF dp

~2p!32E~p!

3EkF dq

~2p!32E~q!
E dx dx8 dy8 dyeipxūra~p!

3A@ I 42D0
21A#21u(xa,x8b)e

2 iqx8usb~q!eiqy8ūsb~q!

3A@ I 42D0
21A#21u(y8b,ya)e

2 ipyura~p!1•••J .

Finally, taking into account the relation

(
r 51,2

ur~p! ^ ūr~p!5p”1mN

we arrive at the following expression for the generati
functional:

eiZ5E @dU#~detD !

3expH i E dxLpp2 i EkF dp

~2p!32E~p!
E dx dyeip(x2y)

3Tr„A@ I 42D0
21A#21u(x,y)~p”1mN!…

1
1

2E
kF dp

~2p!32E~p!
EkF dq

~2p!32E~q!

3E dx dx8 dy dy8 eip(x2y)e2 iq(x82y8)

3Tr„A@ I 42D0
21A#21u(x,x8)~q”1mN!

3A@ I 42D0
21A#21u(y8,y)~p”1mN!…1•••J , ~9!

where the traces refer both to the isospin and spinor indi
The previous formula implies a double expansion for obta
ing the contributions of the nuclear medium to the chi
Lagrangian. One is the standard chiral expansion by expa
ing the vacuum operator A@ I 42D0

21A#215A1AD0
21A

1AD0
21AD0

21A1••• together withA itself, A5A(1)1A(2)

1A(3)1••• in increasing powers of momenta and qua
masses valid at low energies. Explicit expressions ofA up to
O(p3) can be obtained from the meson-baryon CH
Lagrangians given in Ref.@5#. As an example let us conside
the lowest orderA(1)(x) operator with one derivative from
02520
s.
-
l
d-

L c̄c
(1)

5c̄~ igm]m2m° NI 21 igmGm1 ig° Agmg5Dm!c, ~10!

with Dm5 1
2 u†¹mU u† in terms of the covariant derivative

¹mU(x)5]mU(x)2 i @ vm(x)1am(x) # U(x)1 iU (x) @vm(x)
2am(x)#. Gm is the chiral connection,Gm5 1

2 @u†,]mu#
2 i /2u†(vm1am)u2 i /2u(vm2am)u†. The Goldstone boson
~the pions! are collected in the 232 unitary matrix u
5exp(if/2f ), U5u2, andf is given by

f5S p0 A2p1

A2p2 2p0 D .

On the other hand, the constantsm° N , g° A , andf refer to the
mass, axial coupling of the nucleon, and pion weak de
constant in the SU~2! chiral limit, respectively. Taking into
account the definition of theA(x) operator,A(x)[D0(x)
2D(x), with D0(x)5 igm]m2mN , we then obtain from Eq.
~10!

A(1)~x!52 igmGm2 ig° Agmg5Dm .

The difference ofm° NI 22mN is O(p2) @4# and then it belongs
to A(2). The relatedA(1)(x,y) operator is justA(1)(x)d(x
2y). IndeedAn(x,y)5A(n)(x)d(x2y) because of the loca
character of the CHPTL c̄c

(n) Lagrangians.
The other expansion involved in Eq.~9! is an expansion

in the number of insertions ofon-shellfermions belonging to
the Fermi sea, schematically indicated in Fig. 1 by a th
solid line. Both expansions of Eq.~9! can be related by giv-
ing a chiral power counting tokF which can be naturally
counted asO(p) @13# since for nuclear saturation densi
kF.2Mp with Mp the pion mass. Moreover, the circles l
beled by G correspond to the nonlocal operator2 iA@ I 4

2D0
21A#21. Note that when insertingn Fermi seas from the

expansion of the logarithm one picks up a fact
2(21)n/n where the global minus sign appears due to
fermionic closed loop,n is a combinatoric factor because an
cyclic permutation in the trace ofn Fermi seas with their
associatedn G operators gives the same result, and finally t
sign (21)n is a pure in-medium factor that one has to ke
in mind and is already present in standard many-body the
@7#.

A generally nonlocal vertexG comes from the iteration o
the A operator with intermmediate free baryon propagat
D0

21, obeying the usual Feynman rules, see Fig. 2. No

that A was defined from the Lagrangainc̄Dc, removing the
free termc̄D0c, and changing the sign to the rest. This
why a minus sign appears in front ofA in Fig. 2. On the
other handi D 0

21(x,y)5 i *@d4p/(2p)4#(p”1mN) /(p22mN
2

1 i e) is the usual baryon propagator.

FIG. 1. Diagrammatic expansion of Eq.~9!. Every thick line
corresponds to the insertion of a Fermi sea and each circle to
insertion of an operatorG[2 iA@ I 42D0

21A#21.
4-4
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Hence a final diagram, when expandingG up to the re-
quired accuracy, will be a set ofn>1 Fermi-sea insertions
m>0 free baryon propagators, andm1n vertices2 iA. First
we include the21 global sign because of the fermion
closed loop, and the combinatoric factor 1/n together with
the sign (21)n. Then, following the diagram in the opposi
sense to that of the fermionic arrows, we write for ea
Fermi sea an integral*kFdp(p”1m)/(2p)32E(p) with p0

5E(p), for each vaccum baryon propagator with free m
mentum p we write i *dp/(2p)4(p”1mN )/(p22mN

2 1 i e)
and for a vertex in momentum space a term2 iA(2p)4,
keeping in mind the energy-momentum conservation at e
vertex. Finally we sum over the spin and isospin indices
the fermions. This defines explicitly the Feyman rules in m
mentum space in order to obtaini (2p)4 times the desired
connected graph accompanied by the global delta of ene
momentum conservation. Analogous Feynman rules hold
course in configuration space, e.g., see Eq.~9!.

An equivalent way to state the previous rules, witho
including explicitly the integral symbols and factors 2p, is to
write the same sign-combinatoric factor2(21)n/n and ver-
tices2 iA as before. Then for the free nucleons one has
the free propagatori (p”1m)/(p22m21 i e) and for the
Fermi-sea baryons the factor (2p)d(p22m2)u(p0)(p”
1m)u(kF2upu). Finally we sum over all the discrete indice
attached to the fermions and integrate over all the free fo
momenta with the measure*d4p/(2p)4 after taking into ac-
count energy-momentum conservation at each vertex.

Figure 1 fixes the skeleton structure of standard
mediumverticessince one still has to consider the pion fiel
contained inA, over which one has to integrate in Eqs.~8!
and ~9! to finally obtain the generating functional. That i
from the verticesA as well as fromLpp , one can generate
internal as well as external~coupled to the sources! pionic
legs denoted by dashed lines in Figs. 3~a! and 3~b!. Here one
has essentially the same Feynman rules as one has in va
in order to proceed in a perturbative way. Simply, for ea
pionic line with four-momentumq, one writes the vacuum
propagatori *dq/(2p)4(1/q22Mp

2 1 i e), for the first version
of the in-medium Feynman rules. For the second, one
i /(q22Mp

2 1 i e). The important remark to keep in mind
that a generalized vertex has properties analogous to tho
a standardlocal quantum field theory one, to the effect o
determing the numerical factors accompanying the excha
of pion lines inside a given diagram. This can be seen jus
applying standard perturbative techniques in path integra
the action given between brackets in Eq.~8! or more explic-
itey in Eq. ~9!. Several examples are discussed in detai
Ref. @13#.

Notice also that ultraviolet parts in the integration ov
running pionic momenta generate local multinucleon verti
and hence a proper treatment of pion loops can only be d

FIG. 2. Expansion of the generalized nonlocal vacuum vertexG.
Every solid line corresponds to a vacuum baryon propagator

each circle to the insertion of an operator2 iA from c̄Dc.
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by including simultaneously local nucleon interactions in o
der to reabsorb the divergences. This is denoted by
squares in Figs. 3~c! and 3~d!. It is important to realize that
while in Fig. 3~a! the pion is exchanged inside the sam
vertex ~in the generalized sense of above! in Fig. 3~b! the
pions are exchanged between two of them. This implies
presence of only one Dirac trace in Fig. 3~c! ~the flow of the
Dirac indices along the propagators on both sides of
square is indicated by the arrows of the open solid lines! and
two Dirac traces in Fig. 3~d!. Thus, when writing the matrix
elements corresponding to diagrams of the type in Figs. 3~c!
and 3~d! ~with local interactions! one has to keep track of th
number of closed traces in the spinor indices since eac
them will lead to a sign (21) and its own combinatoric
factor 1/nj ~with nj the number of Fermi-sea insertions in th
closed Dirac loop! together with the sign (21)nj . One can
also arrive at the same conclusions by considering that
dashed lines originate from the exchange of an arbitr
heavy meson~the only relevant point in our derivations is th
bilinear character of the meson-N̄N interaction in the
nucleon fields!. In this way it is straightforward to realize th
presence of a factor 1/2 in front of Fig. 3~d! together with the
factors) j (21)nj 11/nj , which here are simply 1. The rela
tion between contact four nucleon interactions at low en
gies in effective field theories and its saturation by integr
ing out heavy meson resonances has been established in
@14#.

There is still an important difference to be discussed wh
comparing Figs. 3~c! and 3~d!, which in fact is related to the
presence of the factor (detD) in all the formulas from Eq.
~3! to Eq. ~9!. The latter corresponds to contributions to t
chiral Lagragian from closed fermion loops in the vacuu
and in the spirit of the effective field theories these contrib
tions, coming from states with masses close to or above
chiral scaleLx'M r , are incorporated in the counterterm
of the vacuum effective field theory. In this way we will s
detD51 in the following. Indeed on the right hand side
the square of Fig. 3~c! we can recognize a momentum loo

d

FIG. 3. ~a! and ~b! represent some typical many-particle di
grams generated from Eqs.~8! and ~9!. The circle indicates anA
operator insertion~which in addition can have attached to it mo
lines than shown! and the dashed line corresponds to a pion
change.~c! and ~d! arise by considering the ultraviolet diverge
part of the pion loops leading to local terms denoted by squares~e!
is a localpN counterterm, indicated by a diamond. For more deta
see the text.
4-5
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flowing along the free baryon propagators without any ins
tion of a Fermi sea. This simply means that since all
momenta that could go into this closed momentum loop
soft because they come from the circles, it just correspo
to vacuum renormalization from heavy particles and is re
sorbed in the low energy counterterms. This is schematic
shown in Fig. 3~e! with a diamond corresponding to a high
order pN counterterm. This is consistent as far as one
restricted to the low energy and momentum regime. Ho
ever, when a Fermi-sea baryon line is present the momen
running though the baryon lines is of the formpj5p1Qj
he
th

02520
r-
e
e

ds
-

ly

s
-
m

with p5@E(p),p# and upu,kF . Thus one is inserting a me
dium parameterkF and shifting upward up to aroundmN the
energy level around which one is perturbating.

We now turn to the generalization of the formalism to t
case of asymmetric nuclear matter, with different densities
neutrons,rn , and protons,rp , with Fermi momentakF

(n)

5(3p2rn)1/3 and kF
(p)5(3p2rp)1/3, respectively. Following

the previous derivation of Eq.~8! one can easily convince
oneself that the only change is to remove the sum over is
pin indices and to distinguish betweena51 ~proton! and
a52 ~neutron!. In this way we will have
ider in
eiZ[v,a,s,p]5E @dU#expH i E dxLpp1(
r 51

2 EkF
(p) dp

~2p!32E~p!1
E dxE dye2 ipxur 1

† ~p!ln@F#u(x 1,y 1)e
ipyur 1~p!

1(
r 51

2 EkF
(n) dp

~2p!32E~p!2
E dxE dye2 ipxur 2

† ~p!ln@F#u(x 2,y 2)e
ipyur 2~p!J . ~11!

Notice that we have indicated separately the energies of protonsE(p)1 and neutronsE(p)2 with three-momentump, since the
previous equation is valid for the nonisospin limit as well. Nevertheless, in order to simplify the formulas, we will cons
the following the case with equal nucleon masses. We also introduce the 232 matrix:

n~p!5S u~kF
(p)2p! 0

0 u~kF
(n)2p!

D[S n~p!1 0

0 n~p!2
D 5n̂~p!I 21n̄~p!t3 ~12!

with I 2 the 232 unity matrix, t3 the usual Pauli matrix diag(1,21), and n̂(p)5@n(p)11n(p)2#/2 and n̄(p)5@n(p)1
2n(p)2#/2. Then Eq.~11! can be rewritten as

eiZ[v,a,s,p]5E @dU#expH i E dxLpp1E dxE dyE dp

~2p!32E~p!
e2 ip(x2y)Tr$n~p!ln@F#u(x,y)~p”1m!%J

5E @dU#expH i E dxLpp2 i E dp

~2p!32E~p!
E dx dy eip(x2y)Tr$A@ I 42D0

21A#21u(x,y)~p”1mN!n~p!%

1
1

2E dp

~2p!32E~p!
E dq

~2p!32E~q!
E dx dx8 dy dy8 eip(x2y)e2 iq(x82y8)

3Tr$A@ I 42D0
21A#21u(x,x8)~q”1mN!n~q!A@ I 42D0

21A#21u(y8,y)~p”1mN!n~p!%1•••J . ~13!

Comparing this equation with Eq.~9!, the only difference in the Feynman rules is the inclusion of an isospin matrixn(p)
associated to every Fermi-sea insertion.

The case of polarized nuclear matter can be treated in the same way just by doing in Eq.~11! the replacement

(
r 51

2 EkF
dpura

† ~p!•••ura~p!→EkF
dpur 1a

† ~p!•••ur 1a~p!1EkF
dpur 2a

† ~p!•••ur 2a~p! ~14!

since there are two spin states per momentum state.
ent
a

on-
kes
The present formalism is applied in Ref.@13# to evaluat-
ing several quantities relevant for low energy QCD in t
nuclear medium. There we will also address in detail
issue of the chiral counting from Eq.~13! in the nuclear
e

medium and the limitations of a plain perturbative treatm
of CHPT at finite density. We will mention that instead of
relativistic treatment of the baryons we could also have c
sidered in the same way the nonrelativistic case. This ma
4-6
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more straightforward the evaluation of baryon loops@15# al-
though one has also to take into account recent developm
in the field of effective field theories with propagation
relativistic heavy particles@16–18#. In any case the main
issue still to be addressed in the medium, as discusse
Refs.@16,14#, is to deal with the problem of the largeS-wave
scattering lengths in the nucleon-nucleon scattering wh
introduces a new extra scale of only;10 MeV already in the
vaccum case, where consistent power counting schemes
been developed@19#. Some interesting findings in this direc
tion, requiring further consideration, can be found in R
@20# for a theory without pions.

To conclude, we have derived the SU~2! chiral Lagrang-
ian with external sources in the presence of nonzero nuc
density by explicitly working out in quantum field theory th
in-medium contributions from thepN chiral Lagrangian, Eq.
~9! ~symmetric nuclear matter!, Eq.~13! ~asymmetric nuclear
matter!, and Eq.~14! ~asymmetric and unpolarized nucle
-

02520
nts

in

h

ave

.

ar

matter!. Then the perturbative theory was developed and
corresponding Feynman rules were given. Contrarily to st
dard many-body techniques, the rules and diagrams der
here for the general relativistic case are analogous to
usual ones from vacuum quantum field theory without mo
fication of the baryon propagators, establishing a neat se
ration between in-medium and vacuum contributions, as
dicated in Figs. 1 and 2. Applications of this many-partic
relativistic quantum field theory formalism to actual calcu
tions can be found in Ref.@13#.
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