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Geometric relation between centrality and the impact parameter in relativistic heavy-ion collisions
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We show, under general assumptions which are well satisfied in relativistic heavy-ion collisions, that the
geometric relation of centralitg to the impact parametds, namely,c=wb? o, , holds to a very high
accuracy for all but most peripheral collisions. More preciselyg(iN) is the centrality of events with a
multiplicity higer thanN, thenb is the value of the impact parameter for which the average multipl'_lcﬁt;)
is equal toN. The corrections to this geometric formula are of the or(mn((o)/ﬁ(b))z, whereAn(b) is the
width of the multiplicity distribution at a given value df; hence they are very small. In other words, the
centrality effectively measures the impact parameter.
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Data from relativistic heavy-ion collisionéSPS, RHIQ One can explain the geometric nature of EL, and the
are typically categorized by introducirgntrality, c, defined  fact that it does not explicitly depend am with the follow-
as the percentile of events with the largest number of proing pedagogical example. Consider a competition where ar-
duced particlesias registered in detectgrsor the largest chers are shooting at a target of radRjseach of them once.
number of participantsas determined from zero-degree The archers are very poor, such that they shoot randomly.
calorimeters We denote this number generically asRe-  They are paid according to their aim: the more central the
sults of measurements, such as multiplici{i2=2], p, spec-  ajm, the higher the reward. We are not allowed to watch the
tra[3-5], the elliptic flow coefficienv [6,7], the HBT radii  competition; hence do not know which spot on the target has
[8], etc., are then presented for various centralities. From aggen hit, but we review the reward records later. Suppose a
experimental viewpoint the centrality is a good, unambigu-|arge number of archers scorédere we take only ten in
ous criterion,.alllowing one to d_ivide the data. On the Otherorder to write down the results explicijlyand are ranked
hand, theoreticians need to assign an impact pararbetea according to their prizes, which are $100, $100, $50, $50,

given centrality. The impact parameter is in a sense mor i
basic, since it determines the initial geometry of the coIIision%SO’ $10, $10, $10, $10, and $10. The two archers who re

and appears across the formalism. Theoretical calculations @ell\l/'ed theshlghetsht prlz($100_ n gg; ce;s)e”had r;[O hit thdeth
heavy-ion physics inpub in order to obtain predictions. ull's eye. since these comprise o of all archers, and they

Having done the calculation, the question arises as to whic/€r€ shooting randomly, we can immediately deterniire
centrality data the model results should be compared to. FGHecting the statistical errpithe radiusb of the bull's eye,
this purpose one typically applies the Glauber model in ordefince 20% is the ratio of the area of the bull's eye to the total
to compute the number of wounded nucleons or binary colaréa of the target: 20%mb®/(wR?). Therefore, b
lisions at a giverb, which are subsequently related to mul- =Ry20%. Now imagine another competition is held, with
tiplicities or number of participantf9,10]. Since these are all rules the same but the prizes assigned differently to the
measured in the experiment, one is able to idertifyith c. rings of the target. Suppose the ten archers got $500, $500,
In this paper we argue that such an effort is not necessar$100, $100, $100, $50, $50, $50, $50, and $50. Again, we
since, under general assumptions which hold very well ircan determine that the 20% of the highest rewards corre-
relativistic heavy-ion collisions, we have, to a very high pre-spond to hitting the central spot, and can determine its radius

cision, the relation b exactly as before. Note that in the determinatiorbafe
are not using the actual values of the rewards at all—the
wb(N)? _ function used can be any monotonic function of the central-
C(N)= - for b<R, (1) ity. The rewards are only used tmtegorizethe data. Once

this is done, we can identify the"most central” archers and
determineb according to Eq(1), irrespective of the function

where Tinel IS the total inelastic nucleus-nucleus cross S€Csed for categorizing. Our example can be translated into

tion, andR is of the order of the sum of the radii of the heavy-ion collisions in the following way: archery
colliding nuclei. The centralityc(N) is the centrality of  competition—heavy-ion experiment, archer that scored—
events with a multiplicity higher thaN, while b(N) is the  event, rewards in competition I-number of participants, re-
value of the impact parameter for which the average multiyards in competition II-multiplicity of produced patrticles,
plicity n(b) is equal toN. As will be shown, Eq(1) holds to  percentile of highest-scoring archers—centrality, radii of rings
a high accuracy for all but most peripheral collisions. Noteon the target—impact parameters.

that it is geometric in nature, and does not explicitly involve  The above example shows the essence of our argument,
the variablen needed to categorize the ddtaultiplicities,  valid for the classical physics of relativistic heavy-ion colli-
number of participants, number of binary collisions, ett  sions. There are, however, two additional features which
first glance, this fact may seem a bit surprising. need to be considered. First, a collision at a particular impact
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parameteb produces values af which are statistically dis-

tributed around some mean valaéb) with a distribution
width An(b). As we will show, Eq.(1), formally valid at

An(b)<n(b), is accurate even for a realistically large value
of An(b), such as obtained from statistical models of par-
ticle production. Second, there are boundary effects bear
~R—at lower values ob the inelastic cross section is the

cross section for collidingplack disks whereas at the bound-
ary the target gradually becomes transparent.

We now proceed with a formal derivation. LB{(n) de-
note the probability of obtaining a valuefor the categoriz-
ing function (multiplicity of produced particles, number of
participants, number of binary collisions, gtdor simplicity
of language we call thimultiplicity, bearing in mind it could
be any of these quantities. The centralitis defined as the
cumulant ofP(n), namely,

c<N>=n§N P(n). (2)

Thus c(N) is the probability of obtaining an event with a
multiplicity larger than or equal tdN. A particular value of
the multiplicity n may be collected from collisions with vari-
ous impact parametets’; thus we can write

“ (=2wb’db’
=3 [ 0Py, @)

0 Oinel

where 2rb’db’ is the area of the ring between impact pa-

rameters’ andb’+db’, the quantityp(b’) is the probabil-
ity of an event(inelastic collision at impact parameten’,
andP(n|b’) is the conditional probability of producing mul-
tiplicity n provided the impact parameterhs. The function
p(b") is unity forb’ belowR, and drops smoothly to zero at

b’ aroundR, reflecting the washed-out shape of the nuclear

density functions at the edges. The interpretation of(Bxjs
clear: the probabilities for hitting the ring betweénh and
b’ +db’, the probability for an event to occur hat, and the
probability to produce multiplicityn (provided the event oc-
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Sinceﬁ(b’)_is a monotonicallydecreasingfunction of b’,
we havea[n(b’)—N]=_0[b(N)—b’], where b(N) is the
solution of the equatiom(b)=N. Therefore,

»2ab'db’
C(N)Zfo Tp(b')ﬁ[b(N)—b']
b(N)27rb’'db’ inel D(N
=f ;p(b,)zw, 5
0 Tinel OTinel

whereai,o(b(N)) is the inelastic cross section accumulated
from b’ <b(N). Equation(5) is a generalization of formula
(2). In Ref.[11] it was quoted in the context of the Glauber
model. We note that althoughandb depend implicitly on\,
their relation does not explicitly involval.
We now turn to a quantitative analysis of dispersion ef-
fects. Assume that
n—n(b’)]?
P(nfb’)= —%) ®)
2An(b")

1
An(b')ﬂem{

which is a good approximation whehn(b’)<ﬁ(b’). Then
n(b’)—N

=2mb’db’ 1
C(N):f W—p(b,){z erf(m)—i-lu
(7

0 inel
For smallAn(b’) the function in curly brackets resembles

the function a[ﬁ(b’)—N], washed out over the range
An(b"). Thus we introduce the function

X
erff ——|+1
(ﬁAn)

The integral ofd(x) with a regular functionf(x) can be
expanded in even powers Ah as follows(this is analogous
in spirit to the Sommerfeld expansion of the Fermi-Dirac

1
d(x)= 5 —6(x). (8

curred atb’) are multiplied, as requested by the classicaldistribution function at low temperatunes

nature of the problem. Since we haxé_,P(n|b")=1, and,
by definition, [§27b’db’ p(b") = oi,e, We verify the proper
normalization in Eq(3), namely,c(1)=1. Furthermore, for
heavy nuclei we may use the continuity lintif,_— f{dn
=[odné(n—N).

The functionP(n|b’) is not known; however, by the sta-

tistical nature of the particle production, and from the expe-

rience of various models, we expect that for large values of

it is narrowly peaked around an average vaﬂb’). Thus

we begin our study by taking the limit of an infinitely narrow

distribution,P(nlb’)=5[n—F(b’)]. In this case,

o «27b’db’
c(N)=f dn0(n—N)J _—
0 0

b’)s[n—n(b’
o p(b)oln=n(b")]
f@Zwb’db’
0 Tinel

p(b")6[n(b")—N].

(4)

o dif(x
fdxf(x)d(x)z— > a(Anyitt (. ,
j=135,... dx/ <0
9
with the coefficients
4 j
(i+3)2p| _
lfxd " 2 2F(2+1)
ai=— x¥d(X)= —————,
o) Jar(j+1)!
_ _l _l _ 0
al_lv aS_Zv aS ﬁ! a7_E21 RO (1 )
We rewrite the integral in Eq.(7) as [2b’'db’

=fdndb’?/dn, and use expansioi®) to obtain
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c(N)= Tine D(N)] 1
Tinel
o o 0.8
d [ wp[b(n)] db?(n)
—[An(b(N))]*= _ = - i
dn Tinel dn N 0.6
c(N)
(1D 0.4
For innerb, where_p(b(E)):l, the correction term is pro- /
portional tod’[b?(n)]/dn®. In the models considered below 02 1 b?(N)/o.
this quantity is proportional_to ff, and as a resulc(N) 'T‘el . 3
=Tinel D(N) ]/ ine+ O(AN?/n?), quantitatively showing 100 200 300 400
that the geometric identificatioriEq. (1) or (5)] is good for N

narrow distributions. o ) .

In order to illustrate the above results and to obtain more_ FIG- 1. Centrality in modeléi) and(ii) (dot-dashed and dashed
detailed numerical estimates for the corrections, we considafe9: and the functionmb(N)*/ine (solid line), plotted as func-
two models: a model inspired by theounded-nucleon tions of the number of participants
model[12], and the optical limit of theGlauber mode[13]
for the binary collisions. A combination of these models hasthe model curves foc(b) for choices(i) and (ii) overlap
been used to explain the observed hadron multiplicities prowith the curve wb? o, except for very peripheral b
duced in RHIC[14]. We look at the Ad-Au reaction, with  >14 fm) and very centrall(<2 fm) collisions. This be-
the nucleus density profilp(r) described be the standard havior directly reflects the behavior of Fig. 1. The size of the
Woods-Saxon  function  with  the  radius ro  correction of Eq.(11) is, at intermediaté, of the order of
=(1.12AY3-0.86A 3 fm, with A=197, and the width pa- 1073,
rametera=0.54 fm. The nucleus-nucleon thickness func-  As another illustrative example we consider the Glauber
tion is given byTA(s)= [ .dzpa(\/S°+Z?), and the average model of nucleus-nucleus collisions and analyze binary col-
number of wounded nucleons is lisions, n=n¢y,. We use the optical limit of the model,

which results in simple expressions. In this model

_ ® 27
Iﬂ(b)=2Af sds| deTa(\/s?+b%+2sbcose)
0 0

X{1-[1-0Ta(s)]%}, (12

where, following Ref.[14], we take =40 mb as the
nucleon-nucleon inelastic cross section. The total nucleus-
nucleus cross section obtained in this model dg
=7.05 b. The expressions for the dispersion of wounded
nucleons produced at a givénis very complicated. Instead

of computing multidimensional integrals, we explore, for our

illustrative purpose, two caseAn~n, andAn~ \/F— Led by
the sample numerical results for the distributions given in
Fig. 1 of Ref.[15], we take(i) An=n/10, or(ii) An= \/ﬁ In b
Fig. 1 we show the results of computitgN) according to os | (b)
Egs.(7) and(12) with p(b")= 0(\ojne/ m—b"), and for the

choices (i) and (i) (dot-dashed and dashed lines, respec- 06
tively). These are compared tob(N)?/ o, (solid line),
whereb(N) is defined as the solution of the equatio¢b) >
=N. The curves overlap within the width of the line, except %o,
for tiny regions at very lowN (N<<2), corresponding to very 02
peripheral collisions, and at largd, corresponding tdb

o~

0

S’
(&)

04

around 0. The discrepancy at larjefollows from the fact 2 4 6 8 10 12 14

that c(N) evaluated exactly continues to be nonzero till the b [fm]

maximum value of wounded nucldy=2A, whereash(N)

by construction goes to zero Blt=n(b=0)~377. This ef- FIG. 2. (a) Centrality as a function of the impact parameter for
fect is visible in Fig. 1 only for choicéi) for the widths. models(i) (dot-dashed lingand (i) (dashed ling (b) The same for

We can treat the dependencems parametric, and plot the Glauber model for binary collisioridashed ling The solid line
c[b(N)] vs b(N). The result is shown in Fig.(d). Again,  showswb?/ iy
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=2mb'db’

0 Oinel

AZ
c(N>=n§N Ps(n,b’)

A2

=2ab'db’
DR
n=N

0 OTinel

n

AZ
( )[T(b')U]n

X[1-T(b")o]A (13)

where forPg(n,b") we have used the formula for the prob-
ability of the occurrence of inelastic baryon-baryon colli-
sions at an impact parametef [13] [note thatP plays the
role of the producp(b’)P(n|b") from the previous discus-
sion|. HereT(b) is the nucleus-nucleus thickness function:

o) [oe) el 27T
T(b)=f dsf dzAf dzz do
0 —oo — o 0

X p(\/$?+z2) p(\/s?+b?+ 2shcose +73).
(14

The sum in Eq(13) can be carried out exactly, yielding, with
the notationx=T(b") o, the expression

C(N):szb db (

0  Oinel

AZ

0 )(1—x)’*2xN

X
1,N—A2;N+1;—).

X
2F1 x—1

(19

We perform the integration in Eq15) numerically. On the
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2
2782 B (A2 [ oi2ap?) B 2
2| fo dyy' H(1-y)A "

Oinel n=N

_ 27

Tinel

where | ,(a,b)=B,(a,b)/B4(a,b), and B,(a,b) is the in-
complete beta function. For large? and smallo/(2m3?)
the functionl g,(zwﬁz)(n,lJrAz—n) is well approximated by
the step functiord A%o/(273?) — n]. Replacing the sum by
the integral in Eq(16), we find the leading expression

2mwpB% (2mwpB?
In NJ.
Tinel ABO’

On the other handp?(N) = —282 In[275°N/(ABo)], which
immediately results in Eq(1). Since An>=A?T(b)o|1
—T(b)o]=n, the correction of Eq.(11) becomes
=27 3% 0inel(ANIN)?= — 271 8%/ e 1IN) = — 0.2N, and
hence is very small at largs.

As already mentioned, there were attenit] to explain
the multiplicity of produced particles through a combination
of the woundednucleon model12], associated with soft
processes, and production proportional to the number of bi-
nary nucleon-nucleon collisions, associated with hard phys-
ics. The folding of the distributions of wounded nucleons,
n,, or number of collisionsn.y,, with the distribution of
particles produced in an elementary evéy the wounded
nucleon or in a single binary collisignmay result in a
broadening effect in the observed distribution of the multi-
plicity of the produced particles). However, we expect this

broadening to be negligible in the ration/n, which is the
quantity controlling the accuracy of E€L). In particular, for

the wounded nucleon mode[15] one has An/n)?

c(N)=

2 AB

>

n=N

1
—I
n

0./(2,".'32)(n,1+A2_n), (16)

c(N)=— (17)

other hand, the average number of collisions at a fixed valuec2(AH)2/(FWFE|)+(AnW/FW)2, where the subscript; re-

of the impact paramete is n(b?)=A2T(b)o. Repeating

fers to the nucleon-nucleon collision. Assuming )2

the steps of the previous example results in the identification-ny, we find that the contribution from the first term is
c(N)=c[F(b2)]=c[A2T(b)a]. This function is compared smaller than that from the second term already for moder-
to wb?/ ane in Fig. 2(b). The agreement is excellent, and the ately largen,,, andAn/n=An,,/n,,. This indicates that Eq.
two curves are indistinguishable except for very peripherall) remains very accurate when the multiplicities of pro-
collisions (0>13.5 fm). duced particles are used as the centrality criterion.

With a Gaussian parametrization of the thickness func- e wish to thank Andrzej Biatas, Andrzej Budzanowski,
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use T(b")=1/(2mB%)exd—b'%(28%], with B=4.6 fm,
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