
PHYSICAL REVIEW C, VOLUME 65, 024905
Geometric relation between centrality and the impact parameter in relativistic heavy-ion collisions

Wojciech Broniowski and Wojciech Florkowski
The H. Niewodniczan´ski Institute of Nuclear Physics, PL-31342 Cracow, Poland

~Received 9 October 2001; published 25 January 2002!

We show, under general assumptions which are well satisfied in relativistic heavy-ion collisions, that the
geometric relation of centralityc to the impact parameterb, namely,c.pb2/s inel , holds to a very high
accuracy for all but most peripheral collisions. More precisely, ifc(N) is the centrality of events with a

multiplicity higer thanN, thenb is the value of the impact parameter for which the average multiplicityn̄(b)

is equal toN. The corrections to this geometric formula are of the order (Dn(b)/n̄(b))2, whereDn(b) is the
width of the multiplicity distribution at a given value ofb; hence they are very small. In other words, the
centrality effectively measures the impact parameter.
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Data from relativistic heavy-ion collisions~SPS, RHIC!
are typically categorized by introducingcentrality, c, defined
as the percentile of events with the largest number of p
duced particles~as registered in detectors!, or the largest
number of participants~as determined from zero-degre
calorimeters!. We denote this number generically asn. Re-
sults of measurements, such as multiplicities@1,2#, p' spec-
tra @3–5#, the elliptic flow coefficientv2 @6,7#, the HBT radii
@8#, etc., are then presented for various centralities. From
experimental viewpoint the centrality is a good, unambig
ous criterion, allowing one to divide the data. On the oth
hand, theoreticians need to assign an impact parameterb to a
given centrality. The impact parameter is in a sense m
basic, since it determines the initial geometry of the collis
and appears across the formalism. Theoretical calculation
heavy-ion physics inputb in order to obtain predictions
Having done the calculation, the question arises as to wh
centrality data the model results should be compared to.
this purpose one typically applies the Glauber model in or
to compute the number of wounded nucleons or binary c
lisions at a givenb, which are subsequently related to mu
tiplicities or number of participants@9,10#. Since these are
measured in the experiment, one is able to identifyb with c.

In this paper we argue that such an effort is not necess
since, under general assumptions which hold very wel
relativistic heavy-ion collisions, we have, to a very high p
cision, the relation

c~N!.
pb~N!2

s inel
for b,R̄, ~1!

wheres inel is the total inelastic nucleus-nucleus cross s
tion, and R̄ is of the order of the sum of the radii of th
colliding nuclei. The centralityc(N) is the centrality of
events with a multiplicity higher thanN, while b(N) is the
value of the impact parameter for which the average mu
plicity n̄(b) is equal toN. As will be shown, Eq.~1! holds to
a high accuracy for all but most peripheral collisions. No
that it is geometric in nature, and does not explicitly invol
the variablen needed to categorize the data~multiplicities,
number of participants, number of binary collisions, etc.!. At
first glance, this fact may seem a bit surprising.
0556-2813/2002/65~2!/024905~5!/$20.00 65 0249
-

n
-
r

re
n
in

h
or
r

l-

ry,
n
-

-

i-

One can explain the geometric nature of Eq.~1!, and the
fact that it does not explicitly depend onn, with the follow-
ing pedagogical example. Consider a competition where
chers are shooting at a target of radiusR, each of them once
The archers are very poor, such that they shoot rando
They are paid according to their aim: the more central
aim, the higher the reward. We are not allowed to watch
competition; hence do not know which spot on the target
been hit, but we review the reward records later. Suppos
large number of archers scored~here we take only ten in
order to write down the results explicitly!, and are ranked
according to their prizes, which are $100, $100, $50, $
$50, $10, $10, $10, $10, and $10. The two archers who
ceived the highest prize~$100 in this case! had to hit the
bull’s eye. Since these comprise 20% of all archers, and t
were shooting randomly, we can immediately determine~ne-
glecting the statistical error! the radiusb of the bull’s eye,
since 20% is the ratio of the area of the bull’s eye to the to
area of the target: 20%5pb2/(pR2). Therefore, b
5RA20%. Now imagine another competition is held, wi
all rules the same but the prizes assigned differently to
rings of the target. Suppose the ten archers got $500, $
$100, $100, $100, $50, $50, $50, $50, and $50. Again,
can determine that the 20% of the highest rewards co
spond to hitting the central spot, and can determine its rad
b exactly as before. Note that in the determination ofb we
are not using the actual values of the rewards at all—
function used can be any monotonic function of the cent
ity. The rewards are only used tocategorizethe data. Once
this is done, we can identify thec ‘‘most central’’ archers and
determineb according to Eq.~1!, irrespective of the function
used for categorizing. Our example can be translated
heavy-ion collisions in the following way: archer
competition–heavy-ion experiment, archer that score
event, rewards in competition I–number of participants,
wards in competition II–multiplicity of produced particles
percentile of highest-scoring archers–centrality, radii of rin
on the target–impact parameters.

The above example shows the essence of our argum
valid for the classical physics of relativistic heavy-ion col
sions. There are, however, two additional features wh
need to be considered. First, a collision at a particular imp
©2002 The American Physical Society05-1
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parameterb produces values ofn which are statistically dis-
tributed around some mean valuen̄(b) with a distribution
width Dn(b). As we will show, Eq.~1!, formally valid at
Dn(b)!n̄(b), is accurate even for a realistically large val
of Dn(b), such as obtained from statistical models of p
ticle production. Second, there are boundary effects neab
;R—at lower values ofb the inelastic cross section is th
cross section for collidingblack disks, whereas at the bound
ary the target gradually becomes transparent.

We now proceed with a formal derivation. LetP(n) de-
note the probability of obtaining a valuen for the categoriz-
ing function ~multiplicity of produced particles, number o
participants, number of binary collisions, etc.!. For simplicity
of language we call thismultiplicity, bearing in mind it could
be any of these quantities. The centralityc is defined as the
cumulant ofP(n), namely,

c~N!5 (
n5N

`

P~n!. ~2!

Thus c(N) is the probability of obtaining an event with
multiplicity larger than or equal toN. A particular value of
the multiplicity n may be collected from collisions with vari
ous impact parametersb8; thus we can write

c~N!5 (
n5N

` E
0

`2pb8db8

s inel
r~b8!P~nub8!, ~3!

where 2pb8db8 is the area of the ring between impact p
rametersb8 andb81db8, the quantityr(b8) is the probabil-
ity of an event~inelastic collision! at impact parameterb8,
andP(nub8) is the conditional probability of producing mu
tiplicity n provided the impact parameter isb8. The function
r(b8) is unity for b8 belowR, and drops smoothly to zero a
b8 aroundR, reflecting the washed-out shape of the nucl
density functions at the edges. The interpretation of Eq.~3! is
clear: the probabilities for hitting the ring betweenb8 and
b81db8, the probability for an event to occur atb8, and the
probability to produce multiplicityn ~provided the event oc
curred atb8) are multiplied, as requested by the classi
nature of the problem. Since we have(n51

` P(nub8)51, and,
by definition,*0

`2pb8db8r(b8)5s inel , we verify the proper
normalization in Eq.~3!, namely,c(1)51. Furthermore, for
heavy nuclei we may use the continuity limit(n5N

` →*N
`dn

5*0
`dnu(n2N).

The functionP(nub8) is not known; however, by the sta
tistical nature of the particle production, and from the exp
rience of various models, we expect that for large valuesn
it is narrowly peaked around an average valuen̄(b8). Thus
we begin our study by taking the limit of an infinitely narro
distribution,P(nub8)5d@n2n̄(b8)#. In this case,

c~N!5E
0

`

dnu~n2N!E
0

`2pb8db8

s inel
r~b8!d@n2n̄~b8!#

5E
0

`2pb8db8

s inel
r~b8!u@ n̄~b8!2N#. ~4!
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Since n̄(b8) is a monotonicallydecreasingfunction of b8,
we haveu@ n̄(b8)2N#5u@b(N)2b8#, where b(N) is the
solution of the equationn̄(b)5N. Therefore,

c~N!5E
0

`2pb8db8

s inel
r~b8!u@b~N!2b8#

5E
0

b(N)2pb8db8

s inel
r~b8!5

s inel@b~N!#

s inel
, ~5!

wheres inel(b(N)) is the inelastic cross section accumulat
from b8<b(N). Equation~5! is a generalization of formula
~1!. In Ref. @11# it was quoted in the context of the Glaub
model. We note that althoughc andb depend implicitly onN,
their relation does not explicitly involveN.

We now turn to a quantitative analysis of dispersion
fects. Assume that

P~nub8!5
1

Dn~b8!A2p
expS 2

@n2n̄~b8!#2

2Dn~b8!2 D , ~6!

which is a good approximation whenDn(b8),n̄(b8). Then

c~N!5E
0

`2pb8db8

s inel
r~b8!H 1

2 FerfS n̄~b8!2N

A2Dn~b8!
D 11G J .

~7!

For smallDn(b8) the function in curly brackets resemble
the function u@ n̄(b8)2N#, washed out over the rang
Dn(b8). Thus we introduce the function

d~x!5
1

2 FerfS x

A2Dn
D 11G2u~x!. ~8!

The integral ofd(x) with a regular functionf (x) can be
expanded in even powers ofDn as follows~this is analogous
in spirit to the Sommerfeld expansion of the Fermi-Dir
distribution function at low temperatures!:

E dx f~x!d~x!52 (
j 51,3,5, . . .

aj~Dn! j 11
dj f ~x!

dxj U
x50

,

~9!

with the coefficients

aj5
1

j ! E2`

`

dxxjd~x!5

2( j 13)/2GS j

2
11D

Ap~ j 11!!
,

a151, a35
1

4
, a55

1

24
, a75

1

192
, . . . . ~10!

We rewrite the integral in Eq. ~7! as *2b8db8

5*dn̄db82/dn̄, and use expansion~9! to obtain
5-2
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GEOMETRIC RELATION BETWEEN CENTRALITY AND . . . PHYSICAL REVIEW C65 024905
c~N!5
s inel@b~N!#

s inel

2[Dn~b~N!!] 2
d

dn̄
S pr@b~ n̄!#

s inel

db2~ n̄!

dn̄
D U

n̄5N

2••• .

~11!

For innerb, wherer(b(n̄)).1, the correction term is pro
portional tod2@b2(n̄)#/dn̄2. In the models considered belo
this quantity is proportional to 1/n̄2, and as a resultc(N)
5s inel@b(N)#/s inel1O(Dn2/n̄2), quantitatively showing
that the geometric identification@Eq. ~1! or ~5!# is good for
narrow distributions.

In order to illustrate the above results and to obtain m
detailed numerical estimates for the corrections, we cons
two models: a model inspired by thewounded-nucleon
model @12#, and the optical limit of theGlauber model@13#
for the binary collisions. A combination of these models h
been used to explain the observed hadron multiplicities p
duced in RHIC@14#. We look at the Au1Au reaction, with
the nucleus density profilerA(r ) described be the standar
Woods-Saxon function with the radius r 0
5(1.12A1/3–0.86A21/3) fm, with A5197, and the width pa-
rametera50.54 fm. The nucleus-nucleon thickness fun
tion is given byTA(s)5*2`

` dzrA(As21z2), and the average
number of wounded nucleons is

n̄~b!52AE
0

`

sdsE
0

2p

dwTA~As21b212sbcosw!

3$12@12sTA~s!#A%, ~12!

where, following Ref. @14#, we take s540 mb as the
nucleon-nucleon inelastic cross section. The total nucle
nucleus cross section obtained in this model iss inel
57.05 b. The expressions for the dispersion of wound
nucleons produced at a givenb is very complicated. Instead
of computing multidimensional integrals, we explore, for o

illustrative purpose, two cases:Dn;n̄, andDn;An̄. Led by
the sample numerical results for the distributions given

Fig. 1 of Ref.@15#, we take~i! Dn5n̄/10, or~ii ! Dn5An̄. In
Fig. 1 we show the results of computingc(N) according to
Eqs.~7! and~12! with r(b8)5u(As inel /p2b8), and for the
choices ~i! and ~ii ! ~dot-dashed and dashed lines, resp
tively!. These are compared topb(N)2/s inel ~solid line!,
whereb(N) is defined as the solution of the equationn̄(b)
5N. The curves overlap within the width of the line, exce
for tiny regions at very lowN (N,2), corresponding to very
peripheral collisions, and at largeN, corresponding tob
around 0. The discrepancy at largeN follows from the fact
that c(N) evaluated exactly continues to be nonzero till t
maximum value of wounded nuclei,N52A, whereasb(N)
by construction goes to zero atN5n̄(b50)'377. This ef-
fect is visible in Fig. 1 only for choice~i! for the widths.

We can treat the dependence onN as parametric, and plo
c@b(N)# vs b(N). The result is shown in Fig. 2~a!. Again,
02490
e
er

s
-

-

s-

d

r

n

-

t

the model curves forc(b) for choices~i! and ~ii ! overlap
with the curve pb2/s inel except for very peripheral (b
.14 fm) and very central (b,2 fm) collisions. This be-
havior directly reflects the behavior of Fig. 1. The size of t
correction of Eq.~11! is, at intermediateb, of the order of
1023.

As another illustrative example we consider the Glau
model of nucleus-nucleus collisions and analyze binary c
lisions, n5ncoll . We use the optical limit of the mode
which results in simple expressions. In this model

FIG. 1. Centrality in models~i! and~ii ! ~dot-dashed and dashe
lines!, and the functionpb(N)2/s inel ~solid line!, plotted as func-
tions of the number of participants,N.

FIG. 2. ~a! Centrality as a function of the impact parameter f
models~i! ~dot-dashed line! and~ii ! ~dashed line!. ~b! The same for
the Glauber model for binary collisions~dashed line!. The solid line
showspb2/s inel .
5-3
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c~N!5 (
n5N

A2

E
0

`2pb8db8

s inel
PG~n,b8!

5 (
n5N

A2

E
0

`2pb8db8

s inel
S A2

n D @T~b8!s#n

3@12T~b8!s#A22n, ~13!

where forPG(n,b8) we have used the formula for the pro
ability of the occurrence ofn inelastic baryon-baryon colli-
sions at an impact parameterb8 @13# @note thatPG plays the
role of the productr(b8)P(nub8) from the previous discus
sion#. HereT(b) is the nucleus-nucleus thickness function

T~b!5E
0

`

dsE
2`

`

dzAE
2`

`

dzBE
0

2p

dw

3r~As21zA
2 !r~As21b212sbcosw1zB

2 !.

~14!

The sum in Eq.~13! can be carried out exactly, yielding, wit
the notationx5T(b8)s, the expression

c~N!5E
0

`2pb8db8

s inel
S A2

n D ~12x!A2
xN

3 2F1S 1,N2A2;N11;
x

x21D . ~15!

We perform the integration in Eq.~15! numerically. On the
other hand, the average number of collisions at a fixed va
of the impact parameterb is n̄(b2)5A2T(b)s. Repeating
the steps of the previous example results in the identifica
c(N)5c@ n̄(b2)#5c@A2T(b)s#. This function is compared
to pb2/s inel in Fig. 2~b!. The agreement is excellent, and t
two curves are indistinguishable except for very periphe
collisions (b.13.5 fm).

With a Gaussian parametrization of the thickness fu
tion, the model can be treated analytically a bit further. W
use T(b8)51/(2pb2)exp@2b82/(2b2)#, with b54.6 fm,
which leads to a quite good approximation of the exact thi
ness function. Then
2;
,

00
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c~N!5
2pb2

s inel
(
n5N

A2 S A2

n D E
0

s/(2pb2)
dyyn21~12y!A22n

5
2pb2

s inel
(
n5N

AB
1

n
I s/(2pb2)~n,11A22n!, ~16!

where I z(a,b)5Bz(a,b)/B1(a,b), and Bz(a,b) is the in-
complete beta function. For largeA2 and smalls/(2pb2)
the functionI s/(2pb2)(n,11A22n) is well approximated by
the step functionu@A2s/(2pb2)2n#. Replacing the sum by
the integral in Eq.~16!, we find the leading expression

c~N!52
2pb2

s inel
lnS 2pb2

ABs
ND . ~17!

On the other hand,b2(N)522b2 ln@2pb2N/(ABs)#, which
immediately results in Eq.~1!. Since Dn25A2T(b)s@1
2T(b)s#.n̄, the correction of Eq. ~11! becomes
22pb2/s inel(Dn/N)2.22pb2/s inel(1/N).20.2/N, and
hence is very small at largeN.

As already mentioned, there were attempts@14# to explain
the multiplicity of produced particles through a combinati
of the woundednucleon model@12#, associated with soft
processes, and production proportional to the number of
nary nucleon-nucleon collisions, associated with hard ph
ics. The folding of the distributions of wounded nucleon
nw , or number of collisions,ncoll , with the distribution of
particles produced in an elementary event~by the wounded
nucleon or in a single binary collision!, may result in a
broadening effect in the observed distribution of the mu
plicity of the produced particles,n. However, we expect this
broadening to be negligible in the ratioDn/n̄, which is the
quantity controlling the accuracy of Eq.~1!. In particular, for
the wounded nucleon model@15# one has (Dn/n̄)2

52(DH)2/(n̄wn̄H
2 )1(Dnw /n̄w)2, where the subscriptH re-

fers to the nucleon-nucleon collision. Assuming (DH)2

;n̄H , we find that the contribution from the first term
smaller than that from the second term already for mod
ately largen̄w , andDn/n̄.Dnw /n̄w . This indicates that Eq
~1! remains very accurate when the multiplicities of pr
duced particles are used as the centrality criterion.
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