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Effect of finite-range interactions in classical transport theory
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The effect of scattering with nonzero impact parameters between constituents in relativistic heavy-ion
collisions is investigated. In solving the relativistic Boltzmann equation, the characteristic range of the collision
kernel is varied from approximately 1.0 fm to zero while leaving the mean free path unchanged. Modifying this
range is shown to significantly affect spectra and flow observables. The finite range is shown to provide
effective viscosities, shear, bulk viscosity, and heat conductivity, with the viscous coefficients being propor-
tional to the square of the interaction range.
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[. INTRODUCTION It is the goal of this study to ascertain the importance of
this second length scale in high-energy collisions. By vary-

A principal goal of relativistic heavy-ion collisions is to . : . . 7 .
: ) . .. ing the interaction range in the scattering kernel, while leav-
experimentally discern bulk properties of the excited.

vacuum. To accomplish this aim it is imperative that one"9 the mean free path unchanged, we study the manifesta-

R oot o ftions of a nonzero interaction range. We demonstrate that a
understands the implications of the finite size and lifetime of, ~. ™. . . . .
finite interaction range contributes to viscous terms in a man-

the global reaction. Two microscopic length scales govern er similar to the finite mean free path, but with different

the importance of finite-size effects, the mean free path, angependencies with respect to density and temperature. We

the range of interaction. Microscopic models, e.g., th()STi_nd that the finite range of the interaction affects the evolu-

based on the Boltzmann equation, easily incorporate the ion of heavy-ion reactions and alters final-state observables
fects of a finite mean free path. Such effects can be linked tQ vy '

. . . s especially the elliptic flow.
viscous terms in analogous hydrodynamic descriptions. : .
. . -~ o In the next section we present a formal review of the
In intermediate-energy collisions, where excitation ener-

gies are tens of MeV per nucleon, the role of the finite rangeBoltzmann equation and show how viscosities arise from the

to the strong interaction has been studied in its relation to thgﬂeractlon range. In S.PTC' Il we sho_vv how spectra ‘?‘”d flow
observables are sensitive to the finite range. We discuss al-

surface energy of nuclear matter. In such Boltzmann descrip="" hmi o hich be | d wh h
tions the binding energy of nuclear matter is introduced vigdorthmic sensitivities which cannot be ignored when the

the mean-field, with the coarseness of the mean-field megRteraction range is nonzero, and compare results compiled
being adjusted so that the effect of the interaction range iffom four similar numerical implementations of the Boltz-
effectively tuned to reproduce the surface energy of nuclea®ann equation to illustrate this sensitivity. As an example, a
matter. In nonrelativistic molecular dynamics, the effects ofSample collision kernel is evaluated for its contribution to
hard-sphere interactions have also been investigated. In thidscous heating in Sec. IV. In particular, we present a com-
case the size of the spheres represents a length scale whigarison of heating derived from analysis of the collision ker-
can strongly affect bulk properties of the matter at highnel with the heating observed in a simple simulation. Given
density. However, in the context of a Boltzmann descrip-that viscous effects from finite interaction ranges are most
tion, where n-body correlations are explicitly neglected, important at times near 1.0 fmAvhen classical transport
the effects of a finite range inherent to the scattering kernetheories become questionable due to issues involving causal-
have not been analyzed for their impact on final-state obity and quantum propagation, we present a discussion of the
servables. relevance of our findings in the summary.
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II. CONNECTING VISCOSITIES TO FINITE-RANGE P
INTERACTIONS ( ugd,+ F“—) f(p.r.t)
J M
A. The role of the collision kernel in Boltzmann descriptions P
: 1 d3q’ d3q do
The Boltzmann equation can be expressed _ 3[ — —. (q-q)2—m® ~f(a.r.b)
P (2m) Eq Eq d°Prel
do
=f diqdiq’d3p’d3r’dt’ - {f(q,r,t)f(q’,r',t") ><f(q’,r,t)—\/(p.p’)z—m“ds_, f(p,r,t)f(p’,r,t) .
Qrel
XK(r=r't—=t";q,9";p,p")—f(p,r,0)f(p’,r',t") (4
XK(r=r',t—=t";p,p";0,9")}, ()

Hereu, is the four-velocity of a particle with momentum
F*# is the forcedp#/dr, andp, is the relative momentum of

wheref is the phase space density ards the forcedp/dt the outgoing particles in the center of mass.

felt by a particle at positiorr. The collision kernelK(r
—r’,t—t";q,q9’;p,p’) describes the differential probability
for scattering a pair of particles separated in space-time by In this section we describe how interaction over a finite
x—x' with initial momentaq and q’ into final states with range contributes to the shear viscosiythe bulk viscosity,
momentap andp’. The range of the collision kernel in co- ¢, and the thermal conductivity,. We relate the range of the

B. Effective viscosities from finite-range interactions

ordinate space is the subject of this paper. interaction to all three coefficients. In order to make this
Integrating over the collision kernel should yield the crossconnection, we consider two particles which scatter from one
section another when separated by a distanea ,—r,. Combining

this finite separation with the velocity gradient, one sees that
the first particle interacts with particles which have a higher

average energy. By evaluating the rate at which energy is
f d*r’dt'K(r—r',t—t’;q,9';p,p") transferred to the first particle from colliding with more en-
ergetic particles, we find an expression for the rate at which
1 do heat is deposited to the region definedrly By comparing

vd(P+Pp'—q-0q'), (2  toanalogous expressions from hydrodynamics, we derive ex-
pressions for all three viscous coefficients in terms of the
interaction range =|r,—r,|, the densityn, and the collision

. . . _ ratel.

where pr is the relative momentum of the outgoing pair  choosing a reference frame such that the velocity of bulk

(p—p’)/2. By inspection of Eq(2), one can see that the maer at the location of the first particle is zero, the collec-
coordinate-space dependence&kdappears rather arbitrary as e velocity atr, is

long as it integrates to the free-space cross section. Indeed,

(23 dPpyg

results at low density, where particles interact only pairwise, Jv;

are unaffected by the form df as long as the range is much vi=Ar, A= 6)
less than the mean free path and much less than the charac- !

teristic dimensions of the reaction volume. For an elastic collision where two particles of identical

Any nonzero extent of the collision kernel leads to prob-mass simultaneously change their momenta, the radial com-
lems with superluminar transport. However, these problemgonents of the momenta must be interchanged by the colli-
are easily defeated by restricting the kernel to being localsjon if energy, linear momentum, and angular momentum are
le., to be conserved. Physically, this corresponds to the scattering

from the interior or exterior surface of a hard sphere. The
average energy change of the first particle is then
K(r—r',t=t";0,9";p,p")

m ~
Y s enstetn. 97 (8E1)=(Eap) —(Eap)=5((v-1)?). ®)
T

The mass ternm is not to be taken literally as the mass of
X0 (p+p' —q—q’). (3)  the particles, since the averaging may include factors of the
velocity to account for the flux or it may have a complicated
form to accommodate a desired differential cross section. For
The Boltzmann equation can now be written in a manifestlyrelativistic motion, the mass might incorporate the lateral
covariant form. motion of the particles. WritingSE;) in terms ofA,
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m particles separated by If collisions occur between two par-
(6E1)=——((riA;r)?). (7)  ticles at locations with different temperatures, the average
2r? energy exchanged is

One can perform the average over the directions a$ing

1
the identity 5E1=§Crr -VT. (14

4
r
AijAk|<rirjrkr,>=AijAk|E(éij5k|+ Sikji + 8 6j). (8) Here C, represents the change in radial kinetic energy per
particle per change in temperature,

One can then expreg®E;) in terms of A andr: p

Cr:ﬁEr

mr 1 (15
(9E1)=—=5 ((TrA)2 =2 (AjFA)) )
ij

In the nonrelativistic limit,C, =1/2.
Since the exchange corresponds to moving an energy a
(9 finite distance over an effective time given by the collision
rate, one can define the average momentum density in terms

The rate at which the entropy increases due to these interaf! the energy flow:
tions is given by the density multiplied by the rate at which nrC T
collisions deposit energy nonlocally, M, =— _'<rirj> 07 (16)

av; &Uj 2
_t —
(?r]' arj

r? 1
‘%[W'”)z*z >

Jvj (9Uj)2

r2 1
oo 3 5

nI’

+ 2
ary  ar _ nI'Cyr
(10) M= 1 v (17

Here,I" is the collision rate experienced by a single particlean extra factor of 1/2 was added to correct for double count-
andn is the density. ing the collisions.

It is notable that only the symmetric part Afcontributes One can relate the energy flow to the entropy production,
to (SE,). This owes itself to conservation of angular mo-
mentum which forbids rotational motion from being trans- ds 1 Je
ferred between particles. In fact, if one had derived an ex- at J 3XTE (18

pression for(SE;) using v? instead ofv?, the resulting

expression would have included the odd partsAoivhich 1
would correspond to rotational motioN,Xv. These terms :_f d3x=V-M (19
would have no hydrodynamical analog as they would have T
reflected a violation of angular momentum conservation.

We now provide analogous expressions for @d) in the 3
language of hydrodynamics. The expression for entropy pro- f d°x
duction[1] in terms of velocity gradients is

VT)2 (20)

v v, 2 2 where the continuity equation has been applied. One can
J.-S=—— 2 e ~8,V-v now compare to the last term in E(.1) to obtain the ther-
2T x; - ax 3 mal conductivityy,
' 5 X 2 nI'C,r2
+ ?(VV) + F(VT) . (11 = 12r ] (22)
One can extract the coefficients by comparing &) to the The forms for the three coefficients ¢, andy fundamen-
first two terms in Eq(11): tally differ from the forms that result from considering a
2 nonzero mean free pathThe viscous coefficients that result
mnl'r from finite | are independent of density and scale i !
7= 7 (12) rom finite | are independent of density and scale inversely
30 with the cross sectiofil]. The coefficients arising from a
nonzero interaction rangescale as the square of the density
_ mnlr? and are proportional to the cross section. Thus, nonlocal in-
(= 18 (13 teractions provide viscosities that are important in wholly

different conditions than those where the finite mean free

Applying similar reasoning, one can also derive an ex-path plays an important role. For a rapidly expanding system,
pression for the thermal conductivity. First, we relate thefinite-range interactions play an important role when the in-
temperature gradient to the energy flow. Again, we consideteraction range multiplied by the velocity gradient provides
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velocities of similar magnitudes to local thermal velocities.the cross section, one could reduce the probability of scatter-
Such conditions exist in the first 1.0 foof highly relativ-  ing by a factor of 1K, i.e., not all particles passing within a
istic hadronic collisions. distancey o/ 7 of one another would scatter. For high sam-
The expressions here derive from a very specific picturepling rates collision-finding meshes with granularities deter-
nonrelativistic particles moving on straight-line trajectoriesmined by the interaction range are necessary for efficient
punctuated by sharp collisions when the separation equals numerical algorithms. By reducing the cross section, instead
However, all interaction at a finite distance should result inof reducing the scattering probability, one is able to reduce
viscous behavior. Relating the distanc® the cross section the mesh size which results in significantly faster execution.
might involve a detailed microscopic evaluation of the colli-  As mentioned above, particles typically scatter in Boltz-
sion kernel. This is especially true for relativistic motion. mann algorithms when they pass withifu/7 of one an-
Despite the complications, one indeed expects the distanasther, at a time chosen to correspond to the point of closest
r? to be of similar magnitude to collision cross sections. Itapproach. Aside from choosing the range of the collision
would be interesting to discern whether the ratio between theernel, many other aspects of such algorithms are arbitrary.
shear and bulk viscosities varies for different scatteringror instance, one might expect that particles should scatter

models. with an impact-parameter-dependent probability that has a
more complicated form than a simple step function. Even in
ll. SPECTRA AND FLOW the nonrelativistic limit, scattering at the point of closest ap-

_ ) _ proach violates conservation of angular momentum. In some

A. Sampling factors and scattering algorithms algorithms the reaction plane is preserved in each scattering

Numerical realization of the Boltzmann equation is usu-Which has been shown to affect resulting flows in the cascade
ally accomplished by performing a classical simulation oflimit (\=1) [5]. Finally, scatterings need not occur instantly.
the event and applying a large oversampling faetde,3]. By delaying the particles a certain time before they emerge
For instance, if one is sampling a system with 100 particlegvith their asymptotic momenta, one can effectively alter the
the Boltzmann simulation might simulate the trajectories ofpressure. One must coordinate the time delays with in-
3200 particles which would correspond xe=32. The scat- Mmedium modifications and knowledge of the phase shifts in
tering kernel must be diminished by a factor ok 16 ensure ~ order to be ergodically consistent with thermodynamic prop-
that the scattering rate and mean free path are independent@ties at the level of the second virial coeffici¢ft.

\. As the Boltzmann equation is built on the hypothesis that In the cascade limit, all scattering algorithms carry a de-
the evolution is completely described by the one-body distrigree of arbitrariness due to issues involving Lorentz invari-
bution, the Boltzmann limit is realized for large as the —ance[7,8]. One problem deals with the ordering of collisions

correlations between particles become negligible. in time. Each collision can be assigned a point in space-time.

The most common way in which the scattering rates arédince many points would have spacelike separations, time
scaled by IX is through reducing the cross section. Usually,ordering is frame dependent. Finally, since each collision in-
particles that pass within a distange/# of one another are Volves changing trajectories over a finite separatishen
scattered. Scaling the cross section by a factor pflddves A#%) the final outcome can be affected by the time-
the collision rate and mean free path unchanged, and in therdering prescription.
limit of large N\ leads to a purely local scattering kernel A second aspect of arbitrariness deriving from relativistic
which solves numerous problems associated with noncaus&pnsiderations derives from what is meant by “point of clos-
transmission of information and invariance to Lorentz€st approach.” Since altering the two trajectories simulta-
boosts. neously is inherently frame dependent one must choose a

Although one can solve the covariance problems byprescription for the time at which each particle is to change
choosing a larga, one must then understand whether ignor-course due to the collision. To illustrate this we consider two
ing the finite interaction range has affected the results. Morarticles with momentg@; andp, at space-time coordinates
realistically, particles do interact at a finite range throughXi andx,. One can solve for the points on their trajectories,
mutually coupling to classical fields or through the quantumX; andx,, where they would reach the point of closest ap-
exchange of particles. A variety of ideas have been discussgaroach as measured by an observer in the two-particle center
in the literature for including such interactions in ways which of mass, by solving for the point where the relative separa-
preserve covariance and are consistent with the uncertaintion becomes perpendicular to the relative momentum,
principle [4]. However, due to an assortment of technical

challenges, all such approaches remain in the development X"’*:X,L+pup'(x_x1) (22)
stage. Since most comparisons with experiment continue to 1 1R P

be performed with Boltzmann approaches and since under-

standing the effect of finite interaction will be more clear - P (X=X,)

with a simple model, we begin our study of finite-range X :Xll’-+pl2i—2, (23

effects by analyzing classical Boltzmann treatments. 2 p2-P
For the investigations described in this subsection, we

will always associate large sampling factors with a reduction

in the effective range of the interaction. However, that is not 0=(x}—X})- ( q— p_> . (24)

necessarily the case. Instead of reducing the spatial extent of p2
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Here P and q are the total and relative momenta, respec-neously altered at this average time. The reaction plane is
tively, andP- X/ /s is the time at which the collision occurs preserved in each two-body scattering, and rescattering be-
as measured by an observer in the center-of-mass frame. Otween the same partners is allowed after one particle has
can solve Eqs(22)—(24) for P-X, then inserting into Eqgs. rescattered.
(22) and(23), one can solve fok; andx; . (2) GrOMIT-t: A generic scattering engine developed for
An algorithmic choice that would retain covariance at thethe RHIC Transport Theory Collaborati¢RTTC) [10]. This
two-body level would be to alter the two momentaxatand ~ Should be identical tapc. o
x5 even though the times would not be simultaneous in other (3) MPc(0.4.0: A Boltzmann description authored by
frames. However, in a dense medium particles may be inMolnar and Gyulass{ll_]. The principal d_lfference Wlth this
volved in several collisions which may result in a variety of 21d the codes above is that the reaction plane is not pre-
events being scheduled between the titjeandt . In fact served in the two-body scattering. Another difference is that
a particle might be assigned a collision time that precedes it stﬁattertl_n? behtween collltflondp?trtnﬁrs |:js bnot allo(;/vmelfmum"
creation. Additionally, Boltzmann algorithms often incorpo- oth particies have rescattered. 1t should be note .
rate collision-finding or mean-field meshes. Prescriptiond!2S SWitches which make it possible to reproduce the choices
where the two scattered particles have their trajectories af_iesznbed Irepc aAnd(t?’rTOM'T't', i delBolt
tered at different times become problematic when coordinat- (4 GROMIT-7. Another version of the cascade/Boltzmann

ing the evolution with the mesh. The most common algorith-engine developed by the RTTC Collaboration with collisions

mic choice involves choosing a fixed frame to defineordered byr to be appropriate for ultrarelativistic collisions
collision times, then altering the trajectories at the point of[lo]' The space-time points at which the two particles would

closest approach as measured in that frame. This prescriptioifatte! _had the particles scattered simultaneously in the
becomes questionable when collective velocities becomBVo-Particle rest framex; andx;, are used to generate two
relativistic. Such is the case with a relativistic heavy-ion col-Proper timesg; andr, . The average’ =(r; + 75)/2 is then
lision (RHIC) where particle emission is spread over 10 unitsused for ordering. Both trajectories are altered when their
of rapidity. This problem can be somewhat alleviated by or-Proper time equals’. The reaction plane is preserved in the
dering the collisions according to= (t2—z%) Y2 This choice  Scattering and scattering betyveen the same pair of particles is
seems reasonable for ultrarelativistic collisions where condi@llowed after one of the particles has rescattered. .
tions are determined largely by but seems unreasonable for  Calculations were performed for all four models with
lower-energy collisions where longitudinal boost invarianceidentical initial conditions based on a thermal Bjorken geom-

is not realized. etry [12]. In Bjorken coordinates, the time is replaced by a
proper time,
B. Comparing results from four algorithms = m (25)

To illustrate the sensitivity of results to algorithmic
choices, we compare results from four numerical approximaand the position along the beam axis,is replaced by the
tions to the Boltzmann equation which are realized in foureffective coordinate,
separate models, each arising from a different author. All the
algorithms discussed here scatter particles instantaneously at
the point of closest approach, and all the models assume a
simples-wave form to the cross section. Each algorithm was
executed from the same initial conditions, and each was exfhe coordinate; also gives the rapidity of an observer mov-
ecuted both in the cascade linit=1) and with a high sam- ing at constant velocity from the origin &0 to the space-
pling factor,\=16. Due to the arbitrariness inherent to algo-time point {,z).
rithms with finite-range interactions it should not be  Thermal emission from a Bjorken geometry would be re-
surprising for results to vary between codes withl, butit  alized by choosing thermal sources with positions equally
is expected that results from the four approaches should bistributed in7, with source rapiditieg.= 7, and with emis-
indistinguishable in the large limit. sion taking place at a fixed proper time, Such emission
The four models differ in their definition of “simulta- would appear invariant to boosts along the beam axis. In the
neous,” in their time-ordering prescriptions, and in whethercalculations described here, the sources are confined to a
they preserve the scattering plane in two-particle scatteringinite range in,
The four algorithms compared here represent the following
choices: —2<p<2. (27)
(1) zrPc: A parton cascade code authored by Zhaag
Particles scatter at the point of closest approach, simultafhe transverse spatial coordinates were randomly placed in a
neous in a fixed reference frame. This time is determined byylinder of radius 5 fm. The simulation involved 2400 pions
first finding the space-time poinig andx;, where the two  and 240 protons which were assigned momenta according to
particles would scatter should they alter their trajectories sia thermal distribution with a temperatufie=180 MeV for
multaneously in the two-particle center-of-mass frame. In ahe protons andT=165 MeV for the pions, to roughly
designated laboratory frame, a time is determined by averagchieve consistency with spectra resulting from heavy-ion
ing t; andt;. The trajectories of both particles are simulta- collisions. The initial particle densities were 7.64 pions and

t+z

= (26)

1
n= §|09
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FIG. 1. Spectra froncroMmIT-7 are displayed for four cross sec- FIG. 3. Spectra for pions and protons resulting from four models
tions. run with 0=40 mb: (zprc. squaresmpc: diamonds,GROMIT-t: tri-

angles, an@RoMmIT-7; circles. In the upper panel calculations were

0.764 protons per féh To be as simple as possible, constantPerformed with a sampling factor of 1, while in the lower panel
cross sections were imposed independent of the Specij§§Ch model used a sampling factor16. Due to different scatter-
involved. ing algorithms, the models generated different results Nerl,
The resulting spectra at midrapidity as calculated withWhile generating identical results for larger
GROMIT-7 are shown in Fig. 1 for four different cross sec-
tions, 0, 10, 20, and 40 mb. These calculations were pemarely distinguishable. In all the models investigated here,
formed with a sampling factox=32. For larger cross sec- the final-state transverse energies were higher for small sam-
tions, the pion spectra are cooler while the proton spectra angling factors. We attribute this reduction in cooling to vis-
somewhat hotter. The difference would be more pronouncedous effects arising from finite-range interactions.
had the pion and proton distributions been initialized with  In the upper panel of Fig. 3 the resulting spectra from the
identical temperatures. four algorithms are displayed in the cascade limit. The slopes
Figure 2 displays spectra fro@romIT-7 with =40 mb  vary by approximately 20 MeV. The same results are dis-
for four different sampling factors\=1, 2, 8, and 32. The played in the lower panel of Fig. 3 but with a high sampling
sensitivity to\ is remarkable. For small it appears that factor,\=16. The various algorithms are then in agreement.
both the pion and proton spectra become hotter. Results aince the hadrons are initially separated by approximately
pear to converge fox—c as thexn=8 and\=32 results are 1/3 fm, while the interaction range is 1.1 fm, it is not sur-
prising that thex=1 result is sensitive to the scattering
algorithm.

10 For each algorithm the spectra fall significantly more
o steeply when produced with a higher sampling faatorhis
g 10’ is especially true for the proton spectra, which suggests that
3 radial flow might be stronger in the cascade limit. Since the
: B average transverse energy for pions is also larger in the cas-
> cade limit, one can infer that longitudinal cooling is signifi-
= cantly suppressed through particles interacting at a finite
o, range.
£ 10
10 C. Elliptic flow
3 107" As a second exploration of the sensitivities to the sam-
% pling factor, we consider elliptic flow as observed from the
N P BRI GROMIT-7 algorithm. In this case cyclic boundary conditions
0.0 0.5 1.0 1.5 in » were employed to simulate a truly boost-invariant sys-

m,—m (GeV) tem. The densities of protons and pions were chosen identi-
cally as aboven,=7.64 fm 3, n,=0.764 fm 3 at 7=1.0
FIG. 2. Spectra for pions and protons resulting freromiT-7  fm/c. The temperatures for the pions and protons were again
with 40 mb cross sections for four sampling factoxsz1,2,8, chosen to be 165 MeV and 180 MeV, respectively. Aside
and 32. from the cyclic boundary conditions in the only difference
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FIG. 4. Elliptic flow is shown as a function of transverse energy  FIG. 5. Again, elliptic flow is shown as a function of transverse
for both pions and protons for several sampling factorghe cross  energy for both pions and protons for several sampling factors. In
sections were not varied aswas varied, but instead only a fraction this case the cross sections were scaled by a fackotolaccount
1/\n of the particles was scattered. The insensitivity\t@lemon-  for the oversampling. The reduced flow resulting for calculations
strates that the Boltzmann limit is effectively realized, even forwith small \ (larger cross sectiopss attributed to viscous effects
A=1. arising from the finite interaction range.

with the initial conditions used in the previous subsection iSThis lenath scale is determined by the cross sectién
that the particles were confined to an ellipse rather than a g y '

circle in the transverse direction. The two radii of the ellipse , U/Tr’.bUt the constant of proportlo_nahty IS not trivially
determined and can depend on seemingly arbitrary aspects of
were 5 fm and 2.5 fm.

o . - . scattering algorithms. In the following subsection, we illus-

The elliptical shape resulted in elliptic flow which is pa- . . .

. trate how viscous heating can also be directly related to the
rametrized by the observabie, gy g .
collision kernel by considering a simple example of one-
v,=(c0S A p— o)), (28)  dimensional expansion with a Bjorken space-time geometry.
In the subsequent subsection we compare predictions based
where ¢, specifies the direction of the reaction plane whichon the form of the scattering kernel with results from simu-
contains the short axis of the ellipse. Elliptic flow has beenlations based on the same kernel.
proposed as a means for determining the equation of state of
the matter at early timegsl3—20.

Resulting flows are shown in Figs. 4 and 5 for two cross
sections, 10 mb and 40 mb, and for four sampling factors. In As a simple example we again consider a one-
Fig. 4 the cross section was left constanth\awas varied.  dimensionally boost-invariant system of infinite extent in all
Instead, only a fraction, 1/ of the possible scatterings was dimensions. We keep the number of particles fixed so that the
executed to account for the oversampling. The lack of a serdensity scales inversely with
sitivity to N suggests that the Boltzmann limit is reached
even fora=1, i.e.,n-body correlations do not significantly
affect the flow. The same quantities were calculated in Fig. 5,
except that the cross sections were scaled ®gdlAccount
for the oversampling. The results are then highly sensitive to

N\ which suggests that the finite interaction range that accom\’—vhere the number of particles per area per rapidity interval,

panies small leads to a reduced elliptic flow. The reduction IdN/(dA?”l)’ is fixed. To simplify matters we consider mass-
in longitudinal work and the damping of elliptic flow due to esa particies. ht lculate th te at which iicle at
the incorporation of a finite-range interaction into a Boltz- —Oer:e we I\I,'wts 0 ??Cuﬁ © e.r?eg a /\év Ic 3 ﬁar icle a
mann treatment suggests that viscous effects have effectiveggt_ h'a?\ C.Ct) Isions wit |°t er partic ch m anh t e".ra.te
been introduced into the reaction. which It gains or loses energy irom such cofisions,
d{E,)/d7. We assume the particles are in local thermal equi-
IV. ANALYZING THE COLLISION KERNEL r;)trélgm, and analyze the collision kernel to determine the
In Sec. Il B a finite range of interaction, characterized by Referring to the colliding partners with the subscript “2,”
a length scaler, was shown to generate viscous behavior.the collision and heating rates per particle are

A. Viscous heating in a Bjorken expansion

n(T)Z%dN/(dAdﬂ). (29

024901-7



SEN CHENGet al.

e o N fd drpd®
ar Wm 772120120702

dN T )
xda—.(s(rc—r) ;—b : (30)

P2

d<E1)_2 dN fd dr-d®
ar WdAdn 7720 20T07P;

dN oo,
xdg—pz.é(rc—r) ——b?|SE;. (3D
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If one calculated the times at which the collision occurtgd,
andt;, they would only be simultaneous in the two-particle
center-of-mass frame. Similarly, if one calculatef= (t;?
—2;9)Y2 and 5= (52— 25?)*2, one would find that the two
Bjorken proper times would not be simultaneous. One must
arbitrarily choose a prescription to choose in terms

of x; and x;. For our purposes, we choose the following
prescription:

12 12
5 T1 + 75
’TC —2

(39

Here 5E, is the average change in energy of the particle “1” Our only motivation in averaging the’'s rather than the’s
due to the collision and, and 7, describe the position of the is that the algebra simplified. Using this choice,
second particle. The impact parameter for the two-particle

collision isb and 7., is the collision time.

The strategy employed here is to calculate the collision

time, 7.. The first particle is at a positioxy = (7,0,0,0) with
four-momentump;. The second particle is at a positian
= (7 cosh,,r,,0,7 sinh,), with a four-momentunp,. Once
7. IS understood in terms of,, 7,, p; andp,, one can
replace the delta function in the expression above,

ar¢
(17— 1) = 6(re—ry)—

e’

(32

wherer . is the position required to make the collision occur

at 7. By substituting the delta function with, for the delta
function with 7., the integrals in Eq(30) and Eq.(31) can
be simplified and solved numerically.

The first step one must perform is to fimdin terms ofr.

The prescription for finding. is somewhat arbitrary due to
covariance issues. For our purposes, we will first define a

, Cor’2+2Cyr'+C,
T=T T > ,

(40

Co= ?’ipi + 7gp§L ,
C1=yia1+ 8171PT, + Y202+ 827205,
C,=85pf, +281a1+ 85p5, +258,a,.
The coefficients are defined
a;=Ejt—py,z,

a2= E2t+p2’ZZ, (41)

01=22Py,/(P1-P2), 62=—2Zp1,/(P1-P2),

Y1=2P2x/(P1-P2),  ¥2= —2P1x/(P1-P2)-

time in the rest frame of the two particles where the particles

run abreast of one anothdy,. With x.=(t.0,0,0) in the
center-of-mass frame and=p,;+p,, the collision time is
determined by the condition

(P1—P2) - (X;—X%3)=0, (33
' P'(Xc_xl)
X1 =Xyt “p.op, Pu (34)
; P'(XC_XZ)
Xo=Xo+ P—p2p2 (35)
One can solve foP - x.:
P-Xc=p1- X1+ P2-X2. (36)
One can now solve fox; andx;:
P2 (X2—X1)
X=Xy + , 3
S (37)
P1-(X1—X2)
X5=Xo+ 38
2= Xat P (38)

Heret, r, andz are the positions describing the first particle
in a frame where the particles are centered abpa0 and
r=0,

, T2

"
n'=5 t=rcoshy’, z=-rsinhy’, r’=§2.

(42)

In terms of these new variables, one can rewrite the rates
above,

dN, dN

= T

- - I 1 A3
a- 16 dAdnfdnrdrdpz

d°p,

=16 dN fd ’ /d/d3

= ’7TdAd7] 7' r'dr’ d°p,

W IN s r—2T @(U b2> 43)
—8(r'=rg))———0| =—b?|,
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03 fo——————————- —

d{E;) 167 dN fd dr’ d@ dN 5 ) 0.
= TA A n'r’dr’ d°p, ~o(r'=re
dr dAdpy d3p, o | 0
T |~ o o
27 o ) > ’E F o ° 7
X————0| ——Db"|SE;. (44) ull e
Cor ! + Cl ™ Vv % O g
T~
» =z
When solving forr ., there are two solutions to E¢40). If 'zt =10 mb -
one uses solutions for both positive and negatiye the 002 L i
factor 167 should be reduced to8 R S I
One can express these results as averagee\eandp,, 0 5 10
T (fm/¢)
dN; dN ) re oo,
F:32777m dn Cr +C. () ;—b ) FIG. 6. The heating due to nonlocal interactions as calculated
K ote 1 (45) numerically from the collision kerné(circles is scaled in such a
way that it would be constant if the simple hydrodynamic scaling
d(E,) dN r o arguments were valid. The dashed line represents the asymptotic
Y WT—f 7' ¢ SE;) O ——Db? value.
dr dAdy Cors+Cq

the 10 mb cross section. The departure of the ratio from a
If scattering angles are chosen with equal probability for_stra|ght line illustrates the limitation of simple hydrodynamic

wards and backwards, the average change in the two energit@egg:crt?g:;s to describe the viscous heating from nonlocal in-
is :

E.—Es

B. Comparing to numerical results
Er=—5. (47) panng

Finally, we present numerical results involving a boost-
The nonlocal aspect of the collision kernel should contrib—mvaﬂant .Boltzm.ann descr|pt|o(GR_c_>M|T-r) Wh'.Ch was ex-
. X . ) . ecuted with cyclic boundary conditions, both#nand in the
ute to heating the particles in their local frame. From physi- ; : :
- ransverse coordinates. We compare the viscous heating rate
cal arguments, one expects the nonlocal contribution to hea%— . ; . . )
) i o ._observed in the numerical calculation with the viscous heat-
ing to scale with temperature, density, time, and cross section d f h i di
in a simple manner ing rate expected from the scaling arguments expressed in
' Eq. (48), where the coefficienB was determined from ana-
lyzing the collision kernel from the last section. The tem-

2
dE, _ 3 d{Ey _, dN o°T (48)  perature was set to 400 MeV at a time-0.1 fmk, and the

dr 4w dr dAdn ' cross section was chosen to be 10 mb. A sinspleave form
was used for the angular dependence of the cross section.
whereE; is the mean transverse energy per particle Arisl The resulting mean transverse energy is displayed in Fig.
a dimensionless constant. 7 as a function ofr. The initial heating derives from the
The simple scaling derives from the hydrodynamically
motivated Egs(11) and(12). One expects the collision rate 4 —rrT——Trrrr—r—r
to scale proportional to the density, which requires the factor N L o GROMIT—7 |
dN/(dAdz), one inverse power of, and the cross section. £ \N'S'
The squared-velocity gradient suggests an extra factor of o 3T AN I
72, and the range of the interaction requires an extra factor S C ooan o 7
of o. The constang is determined by the form of the differ- w2 F ~Bjorken
ential cross section, e.gs;wave scattering would result in a ~ L ocal . _
higher B8 than a highly forward-peaked form. Since one \‘7_‘ ] non OTG | N
L L L1 s )

power of o comes from the range of interactiof, should - 5 ]
scale inversely with the sampling factor Finally, the effec- 10 10 10
tive mass should be proportional to the temperature. T (fm/c)

The heating rate due_ to nonlocal_lnteractlon§ IS calculated FIG. 7. The mean transverse energy for particles participating in
from_ Eq_. (46) by num_erlcally a”a'YZ'”g the collision kernel a boost-invariant Bjorken expansion is displayed as a function of
and is displayed in Fig. 6 after being scaled by the temperage proper time(circles. Also displayed are the Bjorken hydrody-
ture, time and cross section. Had the simple scaling argumephmic result(dotted ling, the Navier-Stokes correction which ac-
been correct the ratio would have been a consgartiow-  counts for viscous shear arising from a finite mean free path
ever, due to higher order corrections im,lthe ratio varies as (dashed ling and the correction due to nonlocal interactions as
a function of 7. The ratio approaches a constant for latge expected from simple scaling argumexsslid line). Nonlocal in-
7?> . The scaling fails whem becomes less than the range teractions are important at small times when the velocity gradients
of the interaction, which for this example is1.0 fm due to  and collision rates are high.
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nonlocal nature of the interactions. Longitudinal cooling ul- > 4 LA I B
timately dominates the behavior as the nonlocal contribution ~ L o GROMIT—T1 |
to the heating falls roughly at™ 3. E 3 L i
The dotted line in Fig. 7 describes the evolution of the Te N.S.
transverse energy in the limit of ide@honviscou hydro- 3‘:‘ '\& Bjorken |
dynamics. In that limit, the stress-energy tensor has a simple & 2 & 7
form E L \sew J
— - -
T = eu®uP+ P(uuP—g¥). (49 e ! kol
10 10 10
In the Bjorken limit, dv/9z=1/7 and the evolution of the T (fm/¢)

energy density becomes FIG. 8. The mean transverse energy is plotted as a function of

time for the case where a forward-peaked cross section as described
in Eq. (61) is implemented. The results frosrRomIT-7 (circles are

well described by the Navier-Stokédashed lingcorrection to the
Bjorken solution(dotted ling. As compared tes-wave scattering,

the Navier-Stokes viscosity is increased while the nonlocal contri-
bution to the viscosity becomes negligible.

0 P+e
Eal T

(50

For the massless cade= ¢/3, which gives the result

S\ 43
e(7)=¢( To)(T—O) : (51)

T

—(4/3)(1-Cp9)
R

e(r)=¢€(1) ( P
The velocity gradient generates a shear which contributes °
an additional term to the stress-energy tensor The Navier-Stokes result is represented by a dashed line in
Fig. 7. The value ofCys was determined by evaluating the
asymmetry of the stress-energy tensor in the simulation at
large times. Running simulations with large sampling ratios
generated results in excellent agreement with the Navier-
Stokes result.

The inclusion of nonlocal effects is responsible for the
discrepancy between the simulation results in Fig. 7 and the
Navier-Stokes results. Equatiob2) suggests that the nonlo-

cal correction to the viscosity should scale proportional to
-2
-

u,

IXg

20y

Ix

2
_ S8
~gfs-u
Y 3'}/

ToF= n(—gay—u"‘u’)( . (52

In a simulation, one can determings by evaluating the
stress-energy tensor

L
2

_qzz_oINS

(53

The components of the stress-energy tensor are extracted by
analyzing the momenta of particles as measured in the local

rest frame where C,, is independent ofr and scales witho? as ex-
plained in the previous section. One can now determine the
evolution of the energy density by solving the hydrodynami-

7= Cpi€l 7, (58)

1 Pip;
Ti=y 2 E, Y cal equations of motion,
The Navier-Stokes evolution of the energy density is gov- 4 € 4 €

erned by the equation €=~ 3(1=Cng+ §Cn|;- (59

4 Pte 4 ys This equation has a simple solution:

—e=— = —. (55)

ar T 3 72

( )— ( ) l 4/3(1_CNS)ex ﬁ i_ i

For massless particles interacting with a constant cross sec- AT)= €70 To 3 TS 21
tion, dimensional arguments force the viscosity to rise lin- (60)

early with 7 since the mean free path should grow wittue
to the density falling as %/ This form is shown with the solid lines in Fig. 7. The con-
stantC,, was determined by the asymptotic limit of Fig. 6.
The effect of nonlocal interactions is somewhat overesti-
mated at small times by E@60) as would be expected by
whereCysis a constant, determined only by the form of the considering Fig. 6 which shows that growth of the viscous
cross section. The energy density then follows the Navieheating at smalkis somewhat slower than the naive expec-
Stokes form[21]. This form should be valid unless the vis- tation that it scales as™°.

cous contribution to the stress-energy tensor approaches the The effect of nonlocal interactions is lessened for scatter-

same order as the equilibrated presd@a, ings that are more forward peaked. Figure 8 illustrates the

7ns= CnseT, (56)
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behavior ofE; as a function ofr for a screened Rutherford field theory have been applied to both hadrdrd8,24] and

scattering, QGP description$25] and transport coefficients have been
extracted. Lattice gauge theory has also been used to gener-
do 97 a§ ate viscous coefficients nonperturbativgB6]. In these ap-
dt - 2 m (61) proaches the viscous coefficients are determined by evaluat-
ing correlations of the stress-energy teng8,27].
9ol Although classical transport theory should not be used to
S

(62) determine the viscous coefficient, the lessons learned in this
study allow one to tune classical Boltzmann simulations to
reproduce wanted transport coefficients by either adjusting

t=(p1—ps)> (63)  the collision kernel or changing the sampling factor. The
simple manner with which the viscous parameters scale with

Here, as=\/2/9, and the screening magsis chosen to pro- density and cross section might simplify such a procedure.

vide a cross section of 10 mb. As compared to sheave As transport theories address the firstdof a relativistic

scattering result in Fig. 7, the effect of nonlocal interactionsheavy-ion collision, the role of viscosities arising from non-
is diminished while the Navier-Stokes viscosity is increasedtrivial short-range interactions and correlations becomes in-
This is expected since the mean free path is effectively increasingly important. For times above 2 @it is unlikely
creased while the energy transfer inherent to collisions ishat these viscosities play any significant role as the effects
decreased. scale asr3. Since the nuclei pass one another at RHIC's in
less than 0.2 fnw, whereas characteristic scales of interac-

V. DISCUSSION AND SUMMARY tions are near 1.0 fm, these viscosities might provide a non-

negligible source of stopping as the viscous drag converts

Tongitudinal collective velocity to heat. The role for such

vide an unwelcom_e complication to the an_a_lys_|s and 'n.ter'effects in the stopping phase at LHC collisions could be even
pretation of experimental results from relativistic heavy-ion greater

collisions. Flow observables are most significantly affected, Finally, we mention the degree one might expect such

eﬁpfc"?"% S"'p?% f:gw. I-:_Ihlus;] tri]r?t ?;jdr't'ocvai‘,:hlen?thbﬁiialte’effects to alter the evolution of the big bang. In that case
gx’?r;; ebuslkcn?att:r (r:g eSrtci)ess, due? t(? ?ﬁe finitzuvglum)e/ ichWCross sections should become perturbative and particles
prop should be approximately massless. In this case cross sections

space-time subtended by heavy-ion collisions. should scale aa?/T?, wherea is the unified coupling con-
By increasing the sampling ratio in Boltzmann treatments

while simultaneously reducing the cross section, one can efs_tant. Sincd would scale as ¥ the Navier-Stokes viscosity
. S Y g th L . ~and the nonlocal viscosity should both scale identically with
fectively eliminate these effects in models. Aside from sim-

o . ) ; : 7. Since the nonlocal terms scale a$ while the Navier-
plifying the analysis, large sampling ratios are attractive 8tokes terms scale as L. the terms would differ in impor-

they eliminate sensitivities to a variety of arbitrary ch0|cestance by a constant proportional &. Thus, if the system

inherent to simulations and solve a variety of problems re; .
becomes perturbative, one expects the nonlocal terms to be

lated to acausal propagation. However, in nature part|clesegligible compared to the Navier-Stokes terms. However,

indeed mterqct over a finite range, elther by exchange Othe physics of high-energy hadronic collisions is far from
off-shell particles or through a mutual interaction through

classical fields. Therefore, it is important to understand thé)erturbanve, and the large coupling constants m_agnlfy the
degree to which these effects are physical as opposed to re|rr_1portance of the nonlocal terms relative to Navier-Stokes
; : : erms.

resenting numeric artifacts.

One cannot expect the extracted viscous coefficients from
the analy§|§ of th_e collision ke_rnel to a_lccurately represent the ACKNOWLEDGMENTS
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