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Effect of finite-range interactions in classical transport theory
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The effect of scattering with nonzero impact parameters between constituents in relativistic heavy-ion
collisions is investigated. In solving the relativistic Boltzmann equation, the characteristic range of the collision
kernel is varied from approximately 1.0 fm to zero while leaving the mean free path unchanged. Modifying this
range is shown to significantly affect spectra and flow observables. The finite range is shown to provide
effective viscosities, shear, bulk viscosity, and heat conductivity, with the viscous coefficients being propor-
tional to the square of the interaction range.
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I. INTRODUCTION

A principal goal of relativistic heavy-ion collisions is t
experimentally discern bulk properties of the excit
vacuum. To accomplish this aim it is imperative that o
understands the implications of the finite size and lifetime
the global reaction. Two microscopic length scales gov
the importance of finite-size effects, the mean free path,
the range of interaction. Microscopic models, e.g., tho
based on the Boltzmann equation, easily incorporate the
fects of a finite mean free path. Such effects can be linke
viscous terms in analogous hydrodynamic descriptions.

In intermediate-energy collisions, where excitation en
gies are tens of MeV per nucleon, the role of the finite ran
to the strong interaction has been studied in its relation to
surface energy of nuclear matter. In such Boltzmann desc
tions the binding energy of nuclear matter is introduced
the mean-field, with the coarseness of the mean-field m
being adjusted so that the effect of the interaction rang
effectively tuned to reproduce the surface energy of nuc
matter. In nonrelativistic molecular dynamics, the effects
hard-sphere interactions have also been investigated. In
case the size of the spheres represents a length scale w
can strongly affect bulk properties of the matter at hi
density. However, in the context of a Boltzmann descr
tion, where n-body correlations are explicitly neglecte
the effects of a finite range inherent to the scattering ke
have not been analyzed for their impact on final-state
servables.
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It is the goal of this study to ascertain the importance
this second length scale in high-energy collisions. By va
ing the interaction range in the scattering kernel, while le
ing the mean free path unchanged, we study the manife
tions of a nonzero interaction range. We demonstrate th
finite interaction range contributes to viscous terms in a m
ner similar to the finite mean free path, but with differe
dependencies with respect to density and temperature.
find that the finite range of the interaction affects the evo
tion of heavy-ion reactions and alters final-state observab
especially the elliptic flow.

In the next section we present a formal review of t
Boltzmann equation and show how viscosities arise from
interaction range. In Sec. III we show how spectra and fl
observables are sensitive to the finite range. We discus
gorithmic sensitivities which cannot be ignored when t
interaction range is nonzero, and compare results comp
from four similar numerical implementations of the Bolt
mann equation to illustrate this sensitivity. As an example
sample collision kernel is evaluated for its contribution
viscous heating in Sec. IV. In particular, we present a co
parison of heating derived from analysis of the collision k
nel with the heating observed in a simple simulation. Giv
that viscous effects from finite interaction ranges are m
important at times near 1.0 fm/c when classical transpor
theories become questionable due to issues involving cau
ity and quantum propagation, we present a discussion of
relevance of our findings in the summary.
©2002 The American Physical Society01-1
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II. CONNECTING VISCOSITIES TO FINITE-RANGE
INTERACTIONS

A. The role of the collision kernel in Boltzmann descriptions

The Boltzmann equation can be expressed

]

]t
f ~p,r ,t !1vp•¹ f ~p,r ,t !1F~r ,t !•¹pf ~p,r ,t !

5E d3qd3q8d3p8d3r 8dt8•$ f ~q,r ,t ! f ~q8,r 8,t8!

3K~r2r 8,t2t8;q,q8;p,p8!2 f ~p,r ,t ! f ~p8,r 8,t8!

3K~r2r 8,t2t8;p,p8;q,q8!%, ~1!

wheref is the phase space density andF is the forcedp/dt
felt by a particle at positionr . The collision kernelK(r
2r 8,t2t8;q,q8;p,p8) describes the differential probabilit
for scattering a pair of particles separated in space-time
x2x8 with initial momentaq and q8 into final states with
momentap andp8. The range of the collision kernel in co
ordinate space is the subject of this paper.

Integrating over the collision kernel should yield the cro
section

E d3r 8dt8K~r2r 8,t2t8;q,q8;p,p8!

5
1

~2p!3

ds

d3prel

v reld
3~p1p82q2q8!, ~2!

where prel is the relative momentum of the outgoing pa
~p2p8!/2. By inspection of Eq.~2!, one can see that th
coordinate-space dependence ofK appears rather arbitrary a
long as it integrates to the free-space cross section. Ind
results at low density, where particles interact only pairwi
are unaffected by the form ofK as long as the range is muc
less than the mean free path and much less than the ch
teristic dimensions of the reaction volume.

Any nonzero extent of the collision kernel leads to pro
lems with superluminar transport. However, these proble
are easily defeated by restricting the kernel to being lo
i.e.,

K~r2r 8,t2t8;q,q8;p,p8!

5
1

~2p!3
d3~r2r 8!d~ t2t8! •

ds

d3prel

3v reld
3~p1p82q2q8!. ~3!

The Boltzmann equation can now be written in a manifes
covariant form.
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]pmD f ~p,r ,t !

5
1

~2p!3E d3q8

Eq8

d3q

Eq
•H A~q•q8!22m4

ds

d3p̃rel

f ~q,r ,t !

3 f ~q8,r ,t !2A~p•p8!22m4
ds

d3q̃rel

f ~p,r ,t ! f ~p8,r ,t !J .

~4!

Hereup is the four-velocity of a particle with momentump,
Fm is the forcedpm/dt, andp̃rel is the relative momentum o
the outgoing particles in the center of mass.

B. Effective viscosities from finite-range interactions

In this section we describe how interaction over a fin
range contributes to the shear viscosity,h, the bulk viscosity,
z, and the thermal conductivity,x. We relate the range of the
interaction to all three coefficients. In order to make th
connection, we consider two particles which scatter from o
another when separated by a distancer5r22r1. Combining
this finite separation with the velocity gradient, one sees t
the first particle interacts with particles which have a high
average energy. By evaluating the rate at which energ
transferred to the first particle from colliding with more e
ergetic particles, we find an expression for the rate at wh
heat is deposited to the region defined byr1. By comparing
to analogous expressions from hydrodynamics, we derive
pressions for all three viscous coefficients in terms of
interaction ranger 5ur12r2u, the densityn, and the collision
rateG.

Choosing a reference frame such that the velocity of b
matter at the location of the first particle is zero, the colle
tive velocity atr2 is

v i5Ai j r j , Ai j 5
]v i

]r j
. ~5!

For an elastic collision where two particles of identic
mass simultaneously change their momenta, the radial c
ponents of the momenta must be interchanged by the c
sion if energy, linear momentum, and angular momentum
to be conserved. Physically, this corresponds to the scatte
from the interior or exterior surface of a hard sphere. T
average energy change of the first particle is then

^dE1&5^E2,r&2^E1,r&5
m

2
^~v• r̂ !2&. ~6!

The mass termm is not to be taken literally as the mass
the particles, since the averaging may include factors of
velocity to account for the flux or it may have a complicat
form to accommodate a desired differential cross section.
relativistic motion, the mass might incorporate the late
motion of the particles. WritinĝdE1& in terms ofA,
1-2
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^dE1&5
m

2r 2
^~r iAi j r j !

2&. ~7!

One can perform the average over the directions ofr using
the identity

Ai j Akl^r i r j r kr l&5Ai j Akl

r 4

15
~d i j dkl1d ikd j l 1d i l d jk!. ~8!

One can then express^dE1& in terms ofA and r:

^dE1&5
mr2

30 S ~Tr A!21
1

2 (
i j

~Ai j 1Aji !
2D

5
mr2

30 F ~¹•v !21
1

2 (
i j

S ]v i

]r j
1

]v j

]r i
D 2G . ~9!

The rate at which the entropy increases due to these inte
tions is given by the density multiplied by the rate at whi
collisions deposit energy nonlocally,

]•S5
nG

T
^dE1&5

nGmr2

30T F ~¹•v !21
1

2 (
i j

S ]v i

]r j
1

]v j

]r i
D 2G .
~10!

Here,G is the collision rate experienced by a single parti
andn is the density.

It is notable that only the symmetric part ofA contributes
to ^dE1&. This owes itself to conservation of angular m
mentum which forbids rotational motion from being tran
ferred between particles. In fact, if one had derived an
pression for^dE1& using v2 instead ofv r

2 , the resulting
expression would have included the odd parts ofA which
would correspond to rotational motion,¹3v. These terms
would have no hydrodynamical analog as they would h
reflected a violation of angular momentum conservation.

We now provide analogous expressions for Eq.~10! in the
language of hydrodynamics. The expression for entropy p
duction @1# in terms of velocity gradients is

]•S5
h

2T (
i j

S ]v i

]xj
1

]v j

]xi
2

2

3
d i j ¹•vD 2

1
z

T
~¹•v!21

x

T2
~¹T!2. ~11!

One can extract the coefficients by comparing Eq.~10! to the
first two terms in Eq.~11!:

h5
mnGr 2

30
, ~12!

z5
mnGr 2

18
. ~13!

Applying similar reasoning, one can also derive an e
pression for the thermal conductivity. First, we relate t
temperature gradient to the energy flow. Again, we cons
02490
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particles separated byr . If collisions occur between two par
ticles at locations with different temperatures, the avera
energy exchanged is

dE15
1

2
Crr•¹T. ~14!

Here Cr represents the change in radial kinetic energy
particle per change in temperature,

Cr5
]

]T
Er . ~15!

In the nonrelativistic limit,Cr51/2.
Since the exchange corresponds to moving an energ

finite distance over an effective time given by the collisi
rate, one can define the average momentum density in te
of the energy flow:

Mi52
nGCr

4
^r i r j&

]T

]xj
, ~16!

M52
nGCrr

2

12
¹T. ~17!

An extra factor of 1/2 was added to correct for double cou
ing the collisions.

One can relate the energy flow to the entropy producti

dS

dt
5E d3x

1

T

]e

]t
~18!

52E d3x
1

T
¹•M ~19!

5E d3x
nGCrr

2

12T2
~¹T!2, ~20!

where the continuity equation has been applied. One
now compare to the last term in Eq.~11! to obtain the ther-
mal conductivityx,

x5
nGCrr

2

12
. ~21!

The forms for the three coefficientsh, z, andx fundamen-
tally differ from the forms that result from considering
nonzero mean free pathl. The viscous coefficients that resu
from finite l are independent of density and scale invers
with the cross section@1#. The coefficients arising from a
nonzero interaction ranger scale as the square of the dens
and are proportional to the cross section. Thus, nonloca
teractions provide viscosities that are important in who
different conditions than those where the finite mean f
path plays an important role. For a rapidly expanding syst
finite-range interactions play an important role when the
teraction range multiplied by the velocity gradient provid
1-3
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velocities of similar magnitudes to local thermal velocitie
Such conditions exist in the first 1.0 fm/c of highly relativ-
istic hadronic collisions.

The expressions here derive from a very specific pictu
nonrelativistic particles moving on straight-line trajectori
punctuated by sharp collisions when the separation equar.
However, all interaction at a finite distance should result
viscous behavior. Relating the distancer to the cross section
might involve a detailed microscopic evaluation of the co
sion kernel. This is especially true for relativistic motio
Despite the complications, one indeed expects the dista
r 2 to be of similar magnitude to collision cross sections.
would be interesting to discern whether the ratio between
shear and bulk viscosities varies for different scatter
models.

III. SPECTRA AND FLOW

A. Sampling factors and scattering algorithms

Numerical realization of the Boltzmann equation is us
ally accomplished by performing a classical simulation
the event and applying a large oversampling factorl @2,3#.
For instance, if one is sampling a system with 100 partic
the Boltzmann simulation might simulate the trajectories
3200 particles which would correspond tol532. The scat-
tering kernel must be diminished by a factor of 1/l to ensure
that the scattering rate and mean free path are independe
l. As the Boltzmann equation is built on the hypothesis t
the evolution is completely described by the one-body dis
bution, the Boltzmann limit is realized for largel as the
correlations between particles become negligible.

The most common way in which the scattering rates
scaled by 1/l is through reducing the cross section. Usua
particles that pass within a distanceAs/p of one another are
scattered. Scaling the cross section by a factor of 1/l leaves
the collision rate and mean free path unchanged, and in
limit of large l leads to a purely local scattering kern
which solves numerous problems associated with nonca
transmission of information and invariance to Loren
boosts.

Although one can solve the covariance problems
choosing a largel, one must then understand whether ign
ing the finite interaction range has affected the results. M
realistically, particles do interact at a finite range throu
mutually coupling to classical fields or through the quant
exchange of particles. A variety of ideas have been discus
in the literature for including such interactions in ways whi
preserve covariance and are consistent with the uncerta
principle @4#. However, due to an assortment of technic
challenges, all such approaches remain in the developm
stage. Since most comparisons with experiment continu
be performed with Boltzmann approaches and since un
standing the effect of finite interaction will be more cle
with a simple model, we begin our study of finite-ran
effects by analyzing classical Boltzmann treatments.

For the investigations described in this subsection,
will always associate large sampling factors with a reduct
in the effective range of the interaction. However, that is
necessarily the case. Instead of reducing the spatial exte
02490
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the cross section, one could reduce the probability of sca
ing by a factor of 1/l, i.e., not all particles passing within
distanceAs/p of one another would scatter. For high sam
pling rates collision-finding meshes with granularities det
mined by the interaction range are necessary for effic
numerical algorithms. By reducing the cross section, inst
of reducing the scattering probability, one is able to redu
the mesh size which results in significantly faster executi

As mentioned above, particles typically scatter in Bol
mann algorithms when they pass withinAs/p of one an-
other, at a time chosen to correspond to the point of clos
approach. Aside from choosing the range of the collis
kernel, many other aspects of such algorithms are arbitr
For instance, one might expect that particles should sca
with an impact-parameter-dependent probability that ha
more complicated form than a simple step function. Even
the nonrelativistic limit, scattering at the point of closest a
proach violates conservation of angular momentum. In so
algorithms the reaction plane is preserved in each scatte
which has been shown to affect resulting flows in the casc
limit ~l51! @5#. Finally, scatterings need not occur instant
By delaying the particles a certain time before they eme
with their asymptotic momenta, one can effectively alter t
pressure. One must coordinate the time delays with
medium modifications and knowledge of the phase shifts
order to be ergodically consistent with thermodynamic pro
erties at the level of the second virial coefficient@6#.

In the cascade limit, all scattering algorithms carry a d
gree of arbitrariness due to issues involving Lorentz inva
ance@7,8#. One problem deals with the ordering of collision
in time. Each collision can be assigned a point in space-ti
Since many points would have spacelike separations, t
ordering is frame dependent. Finally, since each collision
volves changing trajectories over a finite separation~when
lÞ`! the final outcome can be affected by the tim
ordering prescription.

A second aspect of arbitrariness deriving from relativis
considerations derives from what is meant by ‘‘point of clo
est approach.’’ Since altering the two trajectories simul
neously is inherently frame dependent one must choos
prescription for the time at which each particle is to chan
course due to the collision. To illustrate this we consider t
particles with momentap1 andp2 at space-time coordinate
x1 andx2. One can solve for the points on their trajectorie
x18 andx28 , where they would reach the point of closest a
proach as measured by an observer in the two-particle ce
of mass, by solving for the point where the relative sepa
tion becomes perpendicular to the relative momentum,

x
1

8,m
5x1

m1p1
m P•~X2x1!

p1•P
, ~22!

x
2

8,m
5x1

m1p2
m P•~X2x2!

p2•P
, ~23!

05~x182x28!•S q2P
P•q

P2 D . ~24!
1-4
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EFFECT OF FINITE-RANGE INTERACTIONS IN . . . PHYSICAL REVIEW C65 024901
Here P and q are the total and relative momenta, respe
tively, andP•X/As is the time at which the collision occur
as measured by an observer in the center-of-mass frame.
can solve Eqs.~22!–~24! for P•X, then inserting into Eqs
~22! and ~23!, one can solve forx18 andx28 .

An algorithmic choice that would retain covariance at t
two-body level would be to alter the two momenta atx18 and
x28 even though the times would not be simultaneous in ot
frames. However, in a dense medium particles may be
volved in several collisions which may result in a variety
events being scheduled between the timest18 andt28 . In fact,
a particle might be assigned a collision time that precede
creation. Additionally, Boltzmann algorithms often incorp
rate collision-finding or mean-field meshes. Prescriptio
where the two scattered particles have their trajectories
tered at different times become problematic when coordin
ing the evolution with the mesh. The most common algori
mic choice involves choosing a fixed frame to defi
collision times, then altering the trajectories at the point
closest approach as measured in that frame. This prescrip
becomes questionable when collective velocities beco
relativistic. Such is the case with a relativistic heavy-ion c
lision ~RHIC! where particle emission is spread over 10 un
of rapidity. This problem can be somewhat alleviated by
dering the collisions according tot5(t22z2)1/2. This choice
seems reasonable for ultrarelativistic collisions where con
tions are determined largely byt, but seems unreasonable f
lower-energy collisions where longitudinal boost invarian
is not realized.

B. Comparing results from four algorithms

To illustrate the sensitivity of results to algorithm
choices, we compare results from four numerical approxim
tions to the Boltzmann equation which are realized in fo
separate models, each arising from a different author. All
algorithms discussed here scatter particles instantaneous
the point of closest approach, and all the models assum
simples-wave form to the cross section. Each algorithm w
executed from the same initial conditions, and each was
ecuted both in the cascade limit~l51! and with a high sam-
pling factor,l516. Due to the arbitrariness inherent to alg
rithms with finite-range interactions it should not b
surprising for results to vary between codes withl51, but it
is expected that results from the four approaches should
indistinguishable in the largel limit.

The four models differ in their definition of ‘‘simulta
neous,’’ in their time-ordering prescriptions, and in wheth
they preserve the scattering plane in two-particle scatter
The four algorithms compared here represent the follow
choices:

~1! ZPC: A parton cascade code authored by Zhang@9#.
Particles scatter at the point of closest approach, simu
neous in a fixed reference frame. This time is determined
first finding the space-time pointsx18 andx28 , where the two
particles would scatter should they alter their trajectories
multaneously in the two-particle center-of-mass frame. I
designated laboratory frame, a time is determined by ave
ing t18 and t28 . The trajectories of both particles are simult
02490
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neously altered at this average time. The reaction plan
preserved in each two-body scattering, and rescattering
tween the same partners is allowed after one particle
rescattered.

~2! GROMIT-t: A generic scattering engine developed f
the RHIC Transport Theory Collaboration~RTTC! @10#. This
should be identical toZPC.

~3! MPC~0.4.0!: A Boltzmann description authored b
Molnár and Gyulassy@11#. The principal difference with this
and the codes above is that the reaction plane is not
served in the two-body scattering. Another difference is t
rescattering between collision partners is not allowed u
both particles have rescattered. It should be noted thatMPC

has switches which make it possible to reproduce the cho
described inZPC andGROMIT-t.

~4! GROMIT-t: Another version of the cascade/Boltzman
engine developed by the RTTC Collaboration with collisio
ordered byt to be appropriate for ultrarelativistic collision
@10#. The space-time points at which the two particles wou
scatter had the particles scattered simultaneously in
two-particle rest frame,x18 andx28 , are used to generate tw
proper times,t18 andt28 . The averaget85(t181t28)/2 is then
used for ordering. Both trajectories are altered when th
proper time equalst8. The reaction plane is preserved in th
scattering and scattering between the same pair of particl
allowed after one of the particles has rescattered.

Calculations were performed for all four models wi
identical initial conditions based on a thermal Bjorken geo
etry @12#. In Bjorken coordinates, the time is replaced by
proper time,

t[At22z2, ~25!

and the position along the beam axis,z, is replaced by the
effective coordinate,

h[
1

2
logS t1z

t2zD . ~26!

The coordinateh also gives the rapidity of an observer mo
ing at constant velocity from the origin att50 to the space-
time point (t,z).

Thermal emission from a Bjorken geometry would be
alized by choosing thermal sources with positions equa
distributed inh, with source rapiditiesys5h, and with emis-
sion taking place at a fixed proper time,t. Such emission
would appear invariant to boosts along the beam axis. In
calculations described here, the sources are confined
finite range inh,

22,h,2. ~27!

The transverse spatial coordinates were randomly placed
cylinder of radius 5 fm. The simulation involved 2400 pion
and 240 protons which were assigned momenta accordin
a thermal distribution with a temperatureT5180 MeV for
the protons andT5165 MeV for the pions, to roughly
achieve consistency with spectra resulting from heavy-
collisions. The initial particle densities were 7.64 pions a
1-5
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SEN CHENGet al. PHYSICAL REVIEW C 65 024901
0.764 protons per fm3. To be as simple as possible, consta
cross sections were imposed independent of the spe
involved.

The resulting spectra at midrapidity as calculated w
GROMIT-t are shown in Fig. 1 for four different cross se
tions, 0, 10, 20, and 40 mb. These calculations were
formed with a sampling factorl532. For larger cross sec
tions, the pion spectra are cooler while the proton spectra
somewhat hotter. The difference would be more pronoun
had the pion and proton distributions been initialized w
identical temperatures.

Figure 2 displays spectra fromGROMIT-t with s540 mb
for four different sampling factors,l51, 2, 8, and 32. The
sensitivity to l is remarkable. For smalll it appears that
both the pion and proton spectra become hotter. Results
pear to converge forl→` as thel58 andl532 results are

FIG. 1. Spectra fromGROMIT-t are displayed for four cross sec
tions.

FIG. 2. Spectra for pions and protons resulting fromGROMIT-t
with 40 mb cross sections for four sampling factors,l51,2,8,
and 32.
02490
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barely distinguishable. In all the models investigated he
the final-state transverse energies were higher for small s
pling factors. We attribute this reduction in cooling to vi
cous effects arising from finite-range interactions.

In the upper panel of Fig. 3 the resulting spectra from
four algorithms are displayed in the cascade limit. The slo
vary by approximately 20 MeV. The same results are d
played in the lower panel of Fig. 3 but with a high samplin
factor,l516. The various algorithms are then in agreeme
Since the hadrons are initially separated by approxima
1/3 fm, while the interaction range is 1.1 fm, it is not su
prising that thel51 result is sensitive to the scatterin
algorithm.

For each algorithm the spectra fall significantly mo
steeply when produced with a higher sampling factorl. This
is especially true for the proton spectra, which suggests
radial flow might be stronger in the cascade limit. Since
average transverse energy for pions is also larger in the
cade limit, one can infer that longitudinal cooling is signi
cantly suppressed through particles interacting at a fi
range.

C. Elliptic flow

As a second exploration of the sensitivities to the sa
pling factor, we consider elliptic flow as observed from t
GROMIT-t algorithm. In this case cyclic boundary condition
in h were employed to simulate a truly boost-invariant sy
tem. The densities of protons and pions were chosen ide
cally as above,np57.64 fm23, np50.764 fm23 at t51.0
fm/c. The temperatures for the pions and protons were ag
chosen to be 165 MeV and 180 MeV, respectively. As
from the cyclic boundary conditions inh the only difference

FIG. 3. Spectra for pions and protons resulting from four mod
run with s540 mb: ~ZPC: squares,MPC: diamonds,GROMIT-t: tri-
angles, andGROMIT-t: circles!. In the upper panel calculations wer
performed with a sampling factor of 1, while in the lower pan
each model used a sampling factorl516. Due to different scatter-
ing algorithms, the models generated different results forl51,
while generating identical results for largerl.
1-6
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EFFECT OF FINITE-RANGE INTERACTIONS IN . . . PHYSICAL REVIEW C65 024901
with the initial conditions used in the previous subsection
that the particles were confined to an ellipse rather tha
circle in the transverse direction. The two radii of the ellip
were 5 fm and 2.5 fm.

The elliptical shape resulted in elliptic flow which is p
rametrized by the observablev2,

v25^cos 2~f2f0!&, ~28!

wheref0 specifies the direction of the reaction plane whi
contains the short axis of the ellipse. Elliptic flow has be
proposed as a means for determining the equation of sta
the matter at early times@13–20#.

Resulting flows are shown in Figs. 4 and 5 for two cro
sections, 10 mb and 40 mb, and for four sampling factors
Fig. 4 the cross section was left constant asl was varied.
Instead, only a fraction, 1/l, of the possible scatterings wa
executed to account for the oversampling. The lack of a s
sitivity to l suggests that the Boltzmann limit is reach
even forl51, i.e., n-body correlations do not significantl
affect the flow. The same quantities were calculated in Fig
except that the cross sections were scaled as 1/l to account
for the oversampling. The results are then highly sensitive
l which suggests that the finite interaction range that acc
panies smalll leads to a reduced elliptic flow. The reductio
in longitudinal work and the damping of elliptic flow due t
the incorporation of a finite-range interaction into a Bol
mann treatment suggests that viscous effects have effect
been introduced into the reaction.

IV. ANALYZING THE COLLISION KERNEL

In Sec. II B a finite range of interaction, characterized
a length scale,r, was shown to generate viscous behav

FIG. 4. Elliptic flow is shown as a function of transverse ener
for both pions and protons for several sampling factors,l. The cross
sections were not varied asl was varied, but instead only a fractio
1/l of the particles was scattered. The insensitivity tol demon-
strates that the Boltzmann limit is effectively realized, even
l51.
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This length scale is determined by the cross section,r 2

;s/p, but the constant of proportionality is not triviall
determined and can depend on seemingly arbitrary aspec
scattering algorithms. In the following subsection, we illu
trate how viscous heating can also be directly related to
collision kernel by considering a simple example of on
dimensional expansion with a Bjorken space-time geome
In the subsequent subsection we compare predictions b
on the form of the scattering kernel with results from sim
lations based on the same kernel.

A. Viscous heating in a Bjorken expansion

As a simple example we again consider a on
dimensionally boost-invariant system of infinite extent in
dimensions. We keep the number of particles fixed so that
density scales inversely witht,

n~t!5
1

t
dN/~dAdh!. ~29!

where the number of particles per area per rapidity interv
dN/(dAdh), is fixed. To simplify matters we consider mas
less particles.

Here we wish to calculate the rate at which a particle
h50 has collisions with other particles,dNc /dt, and the rate
at which it gains or loses energy from such collision
d^E1&/dt. We assume the particles are in local thermal eq
librium, and analyze the collision kernel to determine t
rates.

Referring to the colliding partners with the subscript ‘‘2
the collision and heating rates per particle are

r

FIG. 5. Again, elliptic flow is shown as a function of transver
energy for both pions and protons for several sampling factors
this case the cross sections were scaled by a factor 1/l to account
for the oversampling. The reduced flow resulting for calculatio
with small l ~larger cross sections! is attributed to viscous effects
arising from the finite interaction range.
1-7
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dNc

dt
52p

dN

dA dhE dh2r 2dr2d3p2

3
dN

d3p2

•d~tc2t!QS s

p
2b2D , ~30!

d^E1&
dt

52p
dN

dA dhE dh2r 2dr2d3p2

3
dN

d3p2

•d~tc2t!QS s

p
2b2D dE1 . ~31!

HeredE1 is the average change in energy of the particle ‘‘
due to the collision andr 2 andh2 describe the position of the
second particle. The impact parameter for the two-part
collision is b andtc is the collision time.

The strategy employed here is to calculate the collis
time, tc . The first particle is at a positionx15(t,0,0,0) with
four-momentump1. The second particle is at a positionx2
5(t coshh2,r2,0,t sinhh2), with a four-momentump2. Once
tc is understood in terms ofr 2 , h2 , p1 and p2, one can
replace the delta function in the expression above,

d~tc2t!→d~r c2r 2!
]r c

]tc
, ~32!

wherer c is the position required to make the collision occ
at t. By substituting the delta function withr c for the delta
function with tc , the integrals in Eq.~30! and Eq.~31! can
be simplified and solved numerically.

The first step one must perform is to findtc in terms ofr.
The prescription for findingtc is somewhat arbitrary due t
covariance issues. For our purposes, we will first defin
time in the rest frame of the two particles where the partic
run abreast of one another,tc . With xc5(tc,0,0,0) in the
center-of-mass frame andP5p11p2, the collision time is
determined by the condition

~p12p2!•~x182x28!50, ~33!

x185x11
P•~xc2x1!

P•p1
p1 , ~34!

x285x21
P•~xc2x2!

P•p2
p2 . ~35!

One can solve forP•xc :

P•xc5p1•x11p2•x2 . ~36!

One can now solve forx18 andx28 :

x185x11p1

p2•~x22x1!

p1•p2
, ~37!

x285x21p2

p1•~x12x2!

p1•p2
. ~38!
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If one calculated the times at which the collision occurredt18
and t28 , they would only be simultaneous in the two-partic
center-of-mass frame. Similarly, if one calculatedt185(t18

2

2z18
2)1/2 andt285(t28

22z28
2)1/2, one would find that the two

Bjorken proper times would not be simultaneous. One m
arbitrarily choose a prescription to choosetc in terms
of x18 and x28 . For our purposes, we choose the followin
prescription:

tc
2[

t18
21t28

2

2
. ~39!

Our only motivation in averaging thet2’s rather than thet’s
is that the algebra simplified. Using this choice,

tc
25t21

C0r 8212C1r 81C2

2
, ~40!

C05g1
2p1'

2 1g2
2p2'

2 ,

C15g1a11d1g1p1'
2 1g2a21d2g2p2'

2 ,

C25d1
2p1'

2 12d1a11d2
2p2'

2 12d2a2 .

The coefficients are defined

a15E1t2p1,zz, a25E2t1p2,zz, ~41!

d152zp2,z /~p1•p2!, d2522zp1,z /~p1•p2!,

g152p2,x /~p1•p2!, g2522p1,x /~p1•p2!.

Here t, r, andz are the positions describing the first partic
in a frame where the particles are centered abouth50 and
r 50,

h85
h2

2
, t5t coshh8, z52t sinhh8, r 85

r 2

2
.

~42!

In terms of these new variables, one can rewrite the ra
above,

dNc

dt
516p

dN

dA dhE dh8 r 8 dr8 d3p2

3
dN

d3p2

•d~t2tc!QS s

p
2b2D

516p
dN

dA dhE dh8 r 8 dr8 d3p2

3
dN

d3p2

•d~r 82r c!
2t

C0r 81C1

QS s

p
2b2D , ~43!
1-8
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EFFECT OF FINITE-RANGE INTERACTIONS IN . . . PHYSICAL REVIEW C65 024901
d^E1&
dt

516p
dN

dA dhE dh8 r 8 dr8 d3p2

dN

d3p2

•d~r 82r c!

3
2t

C0r 81C1

QS s

p
2b2D dE1 . ~44!

When solving forr c , there are two solutions to Eq.~40!. If
one uses solutions for both positive and negativer c , the
factor 16p should be reduced to 8p.

One can express these results as averages overp1 andp2,

dNc

dt
532pt

dN

dA dhE dh8K r c

C0r c1C1
L QS s

p
2b2D ,

~45!

d^E1&
dt

532pt
dN

dA dhE dh8K r c

C0r c1C1
dE1L QS s

p
2b2D .

~46!

If scattering angles are chosen with equal probability f
wards and backwards, the average change in the two ene
is

dE15
E22E1

2
. ~47!

The nonlocal aspect of the collision kernel should contr
ute to heating the particles in their local frame. From phy
cal arguments, one expects the nonlocal contribution to h
ing to scale with temperature, density, time, and cross sec
in a simple manner,

dE'

dt
5

3

4p

d^E1&
dt

5b
dN

dAdh

s2T

t3
, ~48!

whereEt is the mean transverse energy per particle andb is
a dimensionless constant.

The simple scaling derives from the hydrodynamica
motivated Eqs.~11! and ~12!. One expects the collision rat
to scale proportional to the density, which requires the fac
dN/(dAdh), one inverse power oft, and the cross section
The squared-velocity gradient suggests an extra facto
t22, and the range of the interaction requires an extra fa
of s. The constantb is determined by the form of the differ
ential cross section, e.g.,s-wave scattering would result in
higher b than a highly forward-peaked form. Since on
power of s comes from the range of interaction,b should
scale inversely with the sampling factorl. Finally, the effec-
tive mass should be proportional to the temperature.

The heating rate due to nonlocal interactions is calcula
from Eq. ~46! by numerically analyzing the collision kerne
and is displayed in Fig. 6 after being scaled by the tempe
ture, time and cross section. Had the simple scaling argum
been correct the ratio would have been a constantb. How-
ever, due to higher order corrections in 1/t, the ratio varies as
a function oft. The ratio approaches a constant for larget,
t2@s. The scaling fails whent becomes less than the rang
of the interaction, which for this example is;1.0 fm due to
02490
-
ies

-
i-
t-

on

r

of
or

d

a-
nt

the 10 mb cross section. The departure of the ratio from
straight line illustrates the limitation of simple hydrodynam
arguments to describe the viscous heating from nonloca
teractions.

B. Comparing to numerical results

Finally, we present numerical results involving a boo
invariant Boltzmann description~GROMIT-t) which was ex-
ecuted with cyclic boundary conditions, both inh and in the
transverse coordinates. We compare the viscous heating
observed in the numerical calculation with the viscous he
ing rate expected from the scaling arguments expresse
Eq. ~48!, where the coefficientb was determined from ana
lyzing the collision kernel from the last section. The tem
perature was set to 400 MeV at a timet50.1 fm/c, and the
cross section was chosen to be 10 mb. A simples-wave form
was used for the angular dependence of the cross sectio

The resulting mean transverse energy is displayed in
7 as a function oft. The initial heating derives from the

FIG. 6. The heating due to nonlocal interactions as calcula
numerically from the collision kernel~circles! is scaled in such a
way that it would be constant if the simple hydrodynamic scal
arguments were valid. The dashed line represents the asymp
value.

FIG. 7. The mean transverse energy for particles participatin
a boost-invariant Bjorken expansion is displayed as a function
the proper time~circles!. Also displayed are the Bjorken hydrody
namic result~dotted line!, the Navier-Stokes correction which ac
counts for viscous shear arising from a finite mean free p
~dashed line!, and the correction due to nonlocal interactions
expected from simple scaling arguments~solid line!. Nonlocal in-
teractions are important at small times when the velocity gradie
and collision rates are high.
1-9
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SEN CHENGet al. PHYSICAL REVIEW C 65 024901
nonlocal nature of the interactions. Longitudinal cooling
timately dominates the behavior as the nonlocal contribu
to the heating falls roughly att23.

The dotted line in Fig. 7 describes the evolution of t
transverse energy in the limit of ideal~nonviscous! hydro-
dynamics. In that limit, the stress-energy tensor has a sim
form

Tab5euaub1P~uaub2gab!. ~49!

In the Bjorken limit, ]v/]z51/t and the evolution of the
energy density becomes

]

]t
e52

P1e

t
. ~50!

For the massless case,P5e/3, which gives the result

e~t!5e~t0!S t

t0
D 24/3

. ~51!

The velocity gradient generates a shear which contribu
an additional term to the stress-energy tensor

Th
ab5h~2gag2uaug!S ]ug

]xb
1

]ub

]xg
2

2

3
gg

b]•uD . ~52!

In a simulation, one can determinehNS by evaluating the
stress-energy tensor

Txx1Tyy

2
2Tzz52

hNS

t
. ~53!

The components of the stress-energy tensor are extracte
analyzing the momenta of particles as measured in the l
rest frame

Ti j 5
1

V (
pipj

Ep
. ~54!

The Navier-Stokes evolution of the energy density is g
erned by the equation

]

]t
e52

P1e

t
1

4

3

hNS

t2
. ~55!

For massless particles interacting with a constant cross
tion, dimensional arguments force the viscosity to rise l
early witht since the mean free path should grow witht due
to the density falling as 1/t,

hNS5CNSet, ~56!

whereCNS is a constant, determined only by the form of t
cross section. The energy density then follows the Nav
Stokes form@21#. This form should be valid unless the vis
cous contribution to the stress-energy tensor approache
same order as the equilibrated pressure@22#,
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e~t!5e~t!S t

t0
D 2(4/3)(12CNS)

. ~57!

The Navier-Stokes result is represented by a dashed lin
Fig. 7. The value ofCNS was determined by evaluating th
asymmetry of the stress-energy tensor in the simulation
large times. Running simulations with large sampling rat
generated results in excellent agreement with the Nav
Stokes result.

The inclusion of nonlocal effects is responsible for t
discrepancy between the simulation results in Fig. 7 and
Navier-Stokes results. Equation~12! suggests that the nonlo
cal correction to the viscosity should scale proportional
t22,

hnl5Cnle/t, ~58!

where Cnl is independent oft and scales withs2 as ex-
plained in the previous section. One can now determine
evolution of the energy density by solving the hydrodynam
cal equations of motion,

]

]t
e52

4

3
~12CNS!

e

t
1

4

3
Cnl

e

t3
. ~59!

This equation has a simple solution:

e~t!5e~t0!S t

t0
D 4/3(12CNS)

expH 2Cnl

3 S 1

t0
2

2
1

t2D J .

~60!

This form is shown with the solid lines in Fig. 7. The co
stantCnl was determined by the asymptotic limit of Fig.
The effect of nonlocal interactions is somewhat overe
mated at small times by Eq.~60! as would be expected b
considering Fig. 6 which shows that growth of the visco
heating at smallt is somewhat slower than the naive expe
tation that it scales ast23.

The effect of nonlocal interactions is lessened for scat
ings that are more forward peaked. Figure 8 illustrates

FIG. 8. The mean transverse energy is plotted as a functio
time for the case where a forward-peaked cross section as desc
in Eq. ~61! is implemented. The results fromGROMIT-t ~circles! are
well described by the Navier-Stokes~dashed line! correction to the
Bjorken solution~dotted line!. As compared tos-wave scattering,
the Navier-Stokes viscosity is increased while the nonlocal con
bution to the viscosity becomes negligible.
1-10
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EFFECT OF FINITE-RANGE INTERACTIONS IN . . . PHYSICAL REVIEW C65 024901
behavior ofEt as a function oft for a screened Rutherford
scattering,

ds

dt
5

9p

2

as
2

~ t2m2!2
, ~61!

s5
9pas

2

2m2
, ~62!

t5~p12p3!2. ~63!

Here,as5A2/9, and the screening massm is chosen to pro-
vide a cross section of 10 mb. As compared to thes-wave
scattering result in Fig. 7, the effect of nonlocal interactio
is diminished while the Navier-Stokes viscosity is increas
This is expected since the mean free path is effectively
creased while the energy transfer inherent to collisions
decreased.

V. DISCUSSION AND SUMMARY

The effects of short-range, but nonlocal, interactions p
vide an unwelcome complication to the analysis and int
pretation of experimental results from relativistic heavy-i
collisions. Flow observables are most significantly affect
especially elliptic flow. Thus, the additional length sca
characteristic of hard collisions, interferes with our ability
extract bulk matter properties due to the finite volume
space-time subtended by heavy-ion collisions.

By increasing the sampling ratio in Boltzmann treatme
while simultaneously reducing the cross section, one can
fectively eliminate these effects in models. Aside from si
plifying the analysis, large sampling ratios are attractive
they eliminate sensitivities to a variety of arbitrary choic
inherent to simulations and solve a variety of problems
lated to acausal propagation. However, in nature partic
indeed interact over a finite range, either by exchange
off-shell particles or through a mutual interaction throu
classical fields. Therefore, it is important to understand
degree to which these effects are physical as opposed to
resenting numeric artifacts.

One cannot expect the extracted viscous coefficients f
the analysis of the collision kernel to accurately represent
true coefficients in a strongly interacting system. In additi
to the causality problems, classical simulations also neg
the uncertainty principle which plays a role at small tim
when the average energies become of order 1/t. Further-
more, these systems are strongly interacting with nontriv
correlations, which suggests that the viscous coefficie
should be calculated with far more sophisticated models.
instance, perturbative approaches based on finite-temper
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field theory have been applied to both hadronic@23,24# and
QGP descriptions@25# and transport coefficients have be
extracted. Lattice gauge theory has also been used to g
ate viscous coefficients nonperturbatively@26#. In these ap-
proaches the viscous coefficients are determined by eva
ing correlations of the stress-energy tensor@23,27#.

Although classical transport theory should not be used
determine the viscous coefficient, the lessons learned in
study allow one to tune classical Boltzmann simulations
reproduce wanted transport coefficients by either adjus
the collision kernel or changing the sampling factor. T
simple manner with which the viscous parameters scale w
density and cross section might simplify such a procedu

As transport theories address the first fm/c of a relativistic
heavy-ion collision, the role of viscosities arising from no
trivial short-range interactions and correlations becomes
creasingly important. For times above 2 fm/c, it is unlikely
that these viscosities play any significant role as the effe
scale ast23. Since the nuclei pass one another at RHIC’s
less than 0.2 fm/c, whereas characteristic scales of intera
tions are near 1.0 fm, these viscosities might provide a n
negligible source of stopping as the viscous drag conv
longitudinal collective velocity to heat. The role for suc
effects in the stopping phase at LHC collisions could be e
greater.

Finally, we mention the degree one might expect su
effects to alter the evolution of the big bang. In that ca
cross sections should become perturbative and part
should be approximately massless. In this case cross sec
should scale asa2/T2, wherea is the unified coupling con-
stant. SinceT would scale as 1/t, the Navier-Stokes viscosity
and the nonlocal viscosity should both scale identically w
t. Since the nonlocal terms scale ass2 while the Navier-
Stokes terms scale ass21, the terms would differ in impor-
tance by a constant proportional toa6. Thus, if the system
becomes perturbative, one expects the nonlocal terms t
negligible compared to the Navier-Stokes terms. Howe
the physics of high-energy hadronic collisions is far fro
perturbative, and the large coupling constants magnify
importance of the nonlocal terms relative to Navier-Stok
terms.
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