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Analytical approach to the wave function of a decaying quantum system
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Recently we outlined an analytical method of solving the time-dependent Schro¨dinger equation for a model
which simulates a decaying quantum system such as ana-decaying nucleus. A particle in the model is initially
confined around the origin and leaks out, tunneling through a potential barrier. The solution can be expressed
as a linear combination of the Moshinsky functions, each of which is associated with a pole of the scattering
S matrix of the model. In this paper we give a full account of the method with a few explicit examples. We
examine deviations from the exponential decay law at very large times. We comment on a recent controversy
regarding thet dependence of the survival and nonescape probabilities whent is very large.
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I. INTRODUCTION

We consider a model which simulates a decaying qu
tum system such as ana-decaying nucleus@1–5#. The model
assumes that a particle is initially confined within a regi
around the origin and at a certain time,t50, it begins to leak
out by tunneling through a potential barrier. This problem
intrinsically time dependent. Let us confine ourselves to
S state. We assume that the solutions of the Schro¨dinger
equation for the stationary states of the model are all kno
Then the wave functionc(r ,t) of any nonstationary state ca
be expressed as a linear superposition of stationary w
functions. For a given initial wave functionc(r ,0), the co-
efficients of the superposition can be determined. In t
sense any time-dependent problem including that of the
cay process is solvable. It is, however, highly nontrivial
calculatec(r ,t) of this form of superposition explicitly, in
particular, for large values ofr and/ort. Alternatively one can
solve the time-dependent Schro¨dinger equation numerically
@6–10#. This, however, becomes again prohibitive asr and/or
t become very large.

Recently @11,12# we outlined a new method which en
ables us to obtain thec(r ,t) of the decay problem as a linea
combination of Moshinsky functions@13–15#, each of which
is associated with a pole of the scatteringS matrix of the
model. In this way we can calculate the wave function ac
rately regardless of the magnitude ofr andt. The applicabil-
ity of the method is limited to models for which the statio
ary solutions of the Schro¨dinger equation are known
analytically. Such models still exhibit rich physics of th
decay process. The method is powerful in analyzing the
havior ofc(r ,t) of the models for very large values ofr and
t. There are significant problems that require knowledge
c(r ,t) for very large values ofr and t; for example, the
atomic ionization caused by the nucleara decay@16#, and
bremsstrahlung ina decay@8,9#. There is a similar problem
regardingb decay@10#.

The purpose of this paper is to give a full description
the new method with a few illustrations. The method fac

*Electronic address: vandijk@physics.mcmaster.ca
0556-2813/2002/65~2!/024608~14!/$20.00 65 0246
-

s
e

n.

ve

is
e-

-

e-

f

f

tates exploring various features of the decay process. In
light of the exact wave function, we reexamine the so-cal
Gamow wave function that has been used extensively in
literature@17–25#. As is well known the Gamow wave func
tion is not normalizable in the usual way. This is related
the fact that the Gamow wave function consists of only
outgoing wave at and outside the potential barrier. On
other hand the exact wave function always contains, in ad
tion to outgoing waves, an admixture~although usually
small! of incoming waves. This implies that the exact wa
function cannot simply be expressed as a superposition
Gamow-type wave functions. We also examine thet depen-
dence of the survival and nonescape probabilities whet
becomes very large. Contrary to what was reported in R
@22–24#, we find that these probabilities~in the absence of
stationary bound states! both behave liket23 as t becomes
very large. The wave function used in Refs.@22,24,25#, being
a superposition of Gamow-type wave functions, is not exa

In Sec. II we explain the basic idea that underlies t
method and develop the theory. In Sec. III we examine
amples of the method with ad-function potential, a square
barrier potential, and their generalizations. In Sec. IV
discuss the Gamow wave function. In Sec. V we examine
t dependence of the survival and nonescape probabil
when t is very large. A summary is given in Sec. VI. I
Appendix A we give some details of the Moshinsky functio
In Appendix B we expand on the numerical evaluation of t
poles of theS matrix and the summation to obtain the wa
functions. In Appendix C we consider a potential that is
combination of many square barriers or wells. This is
extension of the examples of Sec. III.

II. MODEL AND BASIC STRATEGY

We assume a central potentialV(r ) such that it has a
repulsive barrier which supports one or more unstable bo
states or resonances. There may or may not be stable b
states. Furthermore we assume that

V~r !50 for r .a. ~1!

It is also understood that*0
`rV(r )dr is finite. ~These as-

sumptions are not literally valid fora decay because of th
©2002 The American Physical Society08-1
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Coulomb potential.! We use units such that\51 and 2m
51 throughout. We confine ourselves to theS state and at-
tempt to obtain the solutionc(r ,t) ~actually the wave func-
tion timesr ) of the time-dependent Schro¨dinger equation for
t.0,

i
]c~r ,t !

]t
5F2

]2

]r 2
1V~r !Gc~r ,t !, c~0,t !50. ~2!

It is understood that the wave function starts with a giv
normalizedc(r ,0) that represents the state in which the p
ticle is initially confined tor ,a.

We assume that the stationary solutions of the Sch¨-
dinger equation are all known. Let us write the scatter
solutions as

c~k,r ,t !5e2 ik2tu~k,r !, ~3!

u~k,r !5
1

2ik
@ f ~k! f ~2k,r !2 f ~2k! f ~k,r !#, ~4!

wherek.0 andk2 is the associated energy@26#. The f (k,r )
is the Jost solution of the time-independent Schro¨dinger
equation with energyk2. It is normalized such tha
eikr f (k,r )51 whenr .a. The f (k) is the Jost function tha
is related to f (k,r ) by f (k)5 f (k,0). The Jost solution is
complex but f * (k,r )5 f (2k,r ) and henceu(k,r ) is real.
Furthermoreu(k,r ) is an even function ofk. The u(k,r ) is
normalized such that

E
0

`

u~k,r !u~k8,r !dr5
p

2k2
u f ~k!u2d~k2k8!. ~5!

The f (k) is related to the scattering phase shifth(k) and the
S matrix by

f ~k!5u f ~k!ueih(k), S~k!5
f ~k!

f ~2k!
. ~6!

In the above we assumed thatk is a real variable. In the
following, however, it is understood thatk can be complex. If
f (2k)50 for k5 ik(k.0), theS matrix obtains a pole a
k5 ik. This leads to a stable bound state of energy2k2. Let
its normalized wave function be

ck~r ,t !5eik2tuk~r !. ~7!

For simplicity we assume that there is only one or no bou
state. The generalization to cases with more than one bo
state is straightforward. Theu(k,r ) anduk(r ) form a com-
plete orthonormal set. The completeness relation is

2

pE0

` k2

u f ~k!u2
u~k,r !u~k,r 8!dk1uk~r !uk~r 8!5d~r 2r 8!.

~8!

The wave functionc(r ,t) can be expressed in terms
the stationary solutions as
02460
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c~r ,t !5
2

pE0

` k2

u f ~k!u2
C~k!e2 ik2tu~k,r !dk1Ckeik2tuk~r !,

~9!

where

C~k!5E
0

`

u~k,r !c~r ,0!dr, ~10!

Ck5E
0

`

uk~r !c~r ,0!dr. ~11!

Theu(k,r ) is an entire function of complexk and so isC(k).
Furthermore,C(k)→0 as k→`. This is becauseu(k,r )
tends to its free versionk21sinkr in this limit while c(r ,0) is
finite. SinceC(2k)5C(k) we can writec(r ,t) as

c~r ,t !5E
0

`

e2 ik2t@eik(r 2a)h~k,r !

1e2 ik(r 2a)h~2k,r !#dk1Ckeik2tuk~r !

5E
2`

`

e2 ik2teik(r 2a)h~k,r !dk1Ckeik2tuk~r !,

~12!

whereh(k,r ) is defined by

h~k,r !52
i

p
kC~k!

e2 ik(r 2a) f ~2k,r !

f ~2k!
. ~13!

The function h(k,r ) is related tog(k,r ) of Ref. @11# by
h(k,r )5g(k,r )eika. If r .a, then e2 ikr f (2k,r )51 and
henceh(k,r ) is independent ofr. The factoreik(r 2a) of the
integrand of Eq.~12! cancels e2 ik(r 2a) of h(k,r ). The
h(k,r ) so defined is free from essential singularities as
function of k when r .a. We discuss this point further in
Sec. III.

We are assuming that the stationary solutions of the mo
are all known and henceh(k,r ) is known. One may then
think thatc(r ,t) can be obtained by simply performing thek
integration of Eq.~12!. This is true if r is small. For the
model of thed-function potential that we examine in the ne
section, Winter@5# obtainedc(r ,t) in this manner, but only
up to the potential barrierr 5a. The difficulty in calculating
c(r ,t) for larger values ofr in this manner has been dis
cussed in detail in Ref.@6#. In contrast to Eq.~12!, Eq. ~16!
that we derive below enables us to evaluatec(r ,t) accu-
rately and easily no matter how larger and/ort become.

The h(k,r ) as a function of complexk has an infinite
number of simple poles, which are due to the zeros
f (2k), which in turn give rise to poles of theS matrix. The
h(k,r ) has no other singularities for finitek. This is so be-
causef (k,r ) is an entire function ofk when the potential
vanishes forr .a @27# as we assumed. In the absence
bound states, these poles are all in the lower-half complek
plane, located symmetrically about the imaginary axis@27#.
Let us denote the poles in the fourth quadrant withkn ,n
8-2
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51,2,3, . . . ;Re(kn) increases with increasingn. We also de-
note the poles in the third quadrant withkn , but with n5
21,22,23, . . . . Thepoles are symmetrically located;k2n

52kn* . If there is a bound state, there is an additional p
on the positive imaginary axis atk5 ik. Such a bound-state
pole may be accompanied by another pole on the nega
imaginary axis, which we will denote ask5 ik8 wherek8
,0. ~In all the examples of Sec. III, poles atik and ik8
appear in a pair.! The quantitiesk andk8 do not necessarily
have the same magnitude. In the following we consider o
cases with one or no bound state. In the case of no bo
state the terms involvingk or k8 should be dropped from th
expressions.

If we assumer .a so thath(k,r ) has no essential singu
larity in k at infinity, the Mittag-Leffler theorem@28# allows
us to expandh(k,r ) as

h~k,r !5
i

2p F(
n

S 1

k2kn
1

1

kn
D cn~r !1S 1

k2 ik
1

1

ik D ck~r !

1S 1

k2 ik8
1

1

ik8
D ck8~r !G , ~14!

where the summation is overn561,62, . . . . The
cn(r ), ck(r ), andck8(r ) are, respectively, the residues ass
ciated with the poles of (2p/ i )h(k,r ) at kn ,k, andk8. When
r .a,h(r ,k) and its residues are all independent ofr. Note
that h(0,r )50, which is due to the factork of Eq. ~13!.
Equation~14! is consistent withh(0,r )50. Whenr .a the
residues satisfy

(
n

cn~r !

kn
1

ck~r !

ik
1

ck8~r !

ik8
50, ~15!

sinceh(k,r )→0 whenk→`. By using this relation, Eq.~14!
can be simplified. It is, however, better not to do so beca
then summation of Eq.~14!, as such, converges much fast
as was emphasized in Ref.@12#. Whenr ,a, Eq. ~15! is not
necessarily satisfied.

Equations~12! and ~14! lead to the following simple ex-
pression forc(r ,t),

c~r ,t !5(
n

cn~r !M~kn ,r 2a,t !1ck~r !M~ ik,r 2a,t !

1ck8~r !M~ ik8,r 2a,t !1Ckeik2tuk~r !, ~16!

where the summation is overn561,62, . . . . The
M(k,x,t) is defined by

M~k,x,t !5M ~k,x,t !1
1

k
x~x,t !. ~17!

Herex(x,t) is defined by

x~x,t !5
eip/4

2Apt
expS ix2

4t D , ~18!
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andM (k,x,t) is the Moshinsky function@13–15# defined by

M ~k,x,t !5
i

2pE2`

` e2 i z2tei zx

z2k
dz. ~19!

When k is real the authors of Refs.@13–15# replacek by k
2 i e wheree.0 is infinitesimal. In the work of this paperk
corresponds tokn with a negative imaginary part or toik or
ik8. When Im(k) is finite, which is always the case in ou
discussion,e can be ignored. Let us emphasize that the ran
of the z integration is (2`,`). When z,0, ei zx is an in-
coming wave. The Moshinsky functionM (k,x,t) always
contains incoming waves and so does the exact wave fu
tion c(r ,t). This is an important difference from the Gamo
wave function which we discuss in Sec. IV.

If Im( k),0, after thez integration,M (k,x,t) becomes

M ~k,x,t !5
1

2
e2 ik2teikxerfc~y!, y5e2 ip/4

x22kt

2At
,

~20!

where erfc(y)5(2/Ap)*y
`e2u2

du. For Im(k).0, we obtain

M ~k,x,t !5
1

2
e2 ik2teikx@erfc~y!22#. ~21!

For some details that underlie Eqs.~20! and~21!, see Appen-
dix A. In the limit of t→0, M (k,x,t) with Im(k),0 be-
comes

M ~k,x,t !→eikxu~2x!, ~22!

whereasM ( ik,x,t) becomes

M ~ ik,x,t !→2e2kxu~x!, ~23!

whereu(x)51(0) if x.0(x,0). The above are discontinu
ous atx50. For t.0 they both become smooth functions
x. They satisfy the free time-dependent Schro¨dinger equation
with r 5x andV(r )50.

In order to be consistent with the initial wave functio
c(r ,0) which is confined tor ,a, thec(r ,t) of Eq. ~16! has
to vanish for r .a at t50. The part that consists o
M (kn ,r 2a,t) obviously conforms to this condition by itself
There are two remaining terms, one withM ( ik,r 2a,t) and
the other withck(r )uk(r ). In the limit of t→0 they both
become of the form ofe2k(r 2a) outside the barrierr .a.
@Recall thatck(r ) is independent ofr whenr .a.# These two
terms should cancel forr .a. This means that

Ckuk~a!5ck . ~24!

We do not impose this relation. It should be automatica
satisfied. We illustrate this relation with example II in th
next section. Let us add that, while the bound-state com
nent ofc(r ,t) of Eq. ~16! with uk(r ) remains as such, ther
dependence of the component withM ( ik,r 2a,t) changes in
time.

In the above we assumed thath(k,r ) has no essentia
singularity. This assumption is valid ifr .a, but is not nec-
essarily valid ifr ,a. In the examples of the next section, w
will illustrate thath(k,r ) obtains essential singularities whe
8-3
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r ,a. Such singularities, however, can easily be handled
we can obtain the wave function in the form of a line
combination of Moshinsky functions also forr ,a.

Once the wave function is obtained we can examine
survival probabilityS(t) and the nonescape probabilityP(t),
which are, respectively, defined by

S~ t !5U E
0

`

c* ~r ,0!c~r ,t !drU2

, ~25!

P~ t !5E
0

a

uc~r ,t !u2dr. ~26!

Note thatS(t)<P(t).

III. EXAMPLES

We illustrate the method presented above by means
three examples, I, II, and III. Example I is the one wi
which the method was briefly illustrated in Refs.@11,12#.

A. Example I: d-function barrier

We assume the potential to be

V~r !5
l

a
d~r 2a!, l.0. ~27!

Since V(r ) has no attractive part, there is no stationa
bound state. All stationary scattering states can be obta
explicitly. In numerical illustrations we seta51. For the
strength of thed-function potential we takel56 and 100.
These two choices represent typical situations of fast
slow decay processes@6,11#.

Let us first summarize relevant results of the station
scattering problem. The Jost solutionf (k,r ) of this example
is such that

e2 ikr f ~2k,r !512
il

2ka
@e2ik(a2r )21#u~a2r !. ~28!

This leads to

u~k,r !5
1

k H sinkr u~a2r !

1
sinka sin@kr1h~k!#

sin@ka1h~k!#
u~r 2a!J , ~29!

where the phase shifth(k) is determined from

ka cot~ka1h!5l1ka cotka. ~30!

Let us turn to the time-dependent problem. For the wa
function att50 we assume the normalized wave function

c~r ,0!5A2

a
sinS npr

a D u~a2r !, ~31!

wheren51, 2, . . . .This leads to
02460
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C~k!5
~21!nA2a np sinka

k~k2a22n2p2!
. ~32!

Let us examineh(k,r ) of Eq. ~13! for r .a andr ,a, i.e.,
outside and inside of the repulsive barrier, separately. W
we specifically refer tor .a (r ,a), we denoteh(k,r ) with
h(k,r .a)@h(k,r ,a)#. We obtain

h~k,r .a!5
~21!niA2a nka

~k2a22n2p2!~ka cotka1l2 ika!
, ~33!

which is independent ofr. It has poles atkn’s, which are
determined by

ka cotka1l2 ika50. ~34!

Whenl@1, we obtain

kn'
np

a S 12
1

l
1

12 inp

l2 D , ~35!

where we have ignored terms like 1/l3. In the actual calcu-
lation, however, we solve Eq.~34! numerically; see Appen-
dix B. Theh(k,r .a) has no essential singularity and hen
Eqs. ~14! and ~16! hold. The residuecn of the pole of
(2p/ i )h(k,r .a) at kn is independent ofr and is given by

cn5
~21!n2npA2a kn

~kn
2a22n2p2!@~11l2 ikna!cotkna2 i 2kna#

.

~36!

When r ,a the situation is somewhat complicated. Th
h(k,r ,a) is given by

h~k,r ,a!5h~k,r .a!H 12
il

2ka
@e2ik(a2r )21#J , ~37!

which shares the same set of poles withh(k,r .a). The term
e2ik(a2r ) of Eq. ~37! gives rise to an essential singularity o
h(k,r ,a) at infinity. Therefore the Mittag-Leffler expansio
~14! does not hold forh(k,r ,a). When substituted into Eq
~12!, however, this part ofh(k,r ,a) can be rewritten as

E
2`

`

e2 ik2teik(r 2a)e2ik(a2r )h~k,r .a!dk

5E
2`

`

e2 ik2teik(a2r )h~k,r .a!dk. ~38!

Combining the above with the Mittag-Leffler expansion
h(k,r .a) we obtain a linear combination of theM(kn ,a
2r ,t) for the differentkn .

By putting the above together we obtain the wave fun
tion for r .a,

c~r .a,t !5(
n

cnM~kn ,r 2a,t !, ~39!
8-4
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and for r ,a,

c~r ,a,t !5(
n

cnF S 11
il

2knaDM~kn ,r 2a,t !

2
il

2kna
M~kn ,a2r ,t !G . ~40!

The above can also be written as

c~r ,t !5(
n

cn@M~kn ,r 2a,t !1N2~kn ,r 2a,t !#,

~41!

where

N6~k,x,t !5
il

2ka
@M~k,x,t !6M~k,2x,t !#u~2x!.

~42!

The c(r ,t) for t.0 is continuous atr 5a as can be seen
from N2(k,0,t)50. Although it is not obvious from Eq.~40!
it can be shown thatc(0,t)50.

The r derivatives ofc(r ,t) are given by

c8~r ,t !5 i(
n

cn$kn@M~kn ,r 2a,t !1N1~kn ,r 2a,t !#

1x~r 2a,t !%, ~43!

c9~r ,t !52(
n

cnH kn
2@M~kn ,r 2a,t !1N2~kn ,r 2a,t !#

1
r 2a12knt

2t
x~r 2a,t !J 1

l

a
d~r 2a!c~a,t !.

~44!

It is not difficult to confirm thatc given above does satisf
Eq. ~2!. Thed-function part ofc9 exactly cancelsVc in the
Schrödinger equation.

We show the wave function for a fairly weak barrier
Fig. 1 and for a strong barrier in Fig. 2. In Figs. 1 and 2
also show wave functions obtained in the$k1 ,k21% approxi-
mation in which only the pair of polesk1 and k21 are in-
cluded. These are the poles with the smallest magnitud
the real part. For the strong barrier case whenl@1, the
wave function has a clear wave-front structure. It drops
sharply asr exceedsvt where v'Re(k1)/m'2p. Recall
that 2m51. Furthermore there are small humps with spe
2v,3v, etc., which correspond to the escape of the sta
with the higher resonance energies. Their amplitudes
small since the initial state contains only small compone
of them. The system decays extremely slowly as is evid
from the wave function inside the barrier being close to
initial state and the small size of the amplitude of the wa
function outside the barrier.
02460
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B. Example II: Combined d-function and square-well potential

We assume the potential to be

V~r !5
l

a
d~r 2a!2Du~a2r !, l.0, D.0.

~45!

Depending on the value ofD there can be one or more sta
tionary bound states. We assume that there is only one o
bound state. For the stationary scattering states, the Jos
lution f (k,r ) is such that

e2 ikr f ~2k,r !5u~r 2a!1
1

2 F S 12
k

q
2

il

qaDeiq(a2r )

1S 11
k

q
1

il

qaDe2 iq(a2r )G
3eik(a2r )u~a2r !, ~46!

where

q5kA11~D/k2!. ~47!

FIG. 1. The modulus of the wave functionuc(r ,t)u for l56,
a51 andt52 in example I. The$k1 ,k21% approximation includes
only the pair of poles,k1 and k21, which are the poles with the
smallest magnitude of the real part.

FIG. 2. The modulus of the wave functionuc(r ,t)u for l
5100,a51, andt510 in example I. For the$k1 ,k21% approxima-
tion, see the caption of Fig. 1.
8-5
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For the wave function of the decay problem, we assu
the initial condition, Eq.~31!. This leads to

C~k!5
~21!nA2a np sinqa

q~q2a22n2p2!
, ~48!

h~k,r .a!5
~21!niA2a nka

~q2a22n2p2!~qa cotqa1l2 ika!
. ~49!
to

ich
i-

e

02460
eThe pole positionkn can be determined by

qa cotqa1l2 ika50. ~50!

The h(k,r .a) has no singularity other than simple pole
The residuecn of (2p/ i )h(k,r .a) is independent ofr and
is given by
cn5
~21!n212npA2a knqn

~qn
2a22n2p2!@~11l2 ikna!kn cotqna2~ i 1kna!qn#

5
~21!n2npA2a knqn

2a2

~qn
2a22n2p2!@kna~l2 ikna!~11l2 ikna!1~ i 1kna!qn

2a2#
, ~51!
-

to
whereqn5knA11(D/kn
2).

The case ofr ,a can be handled in a manner similar
the corresponding case of example I. Theh(k,r ,a) and
h(k,r .a) are related by

h~k,r ,a!5h~k,r .a!3
1

2 F S 12
k

q
2

il

qaDei (k1q)(a2r )

1S 11
k

q
1

il

qaDei (k2q)(a2r )G . ~52!

When uku→`,k2q→0. The termei (k1q)(a2r ) of Eq. ~52!,
however, gives rise to an essential singularity ofh(k,r ,a)
at infinity. When substituted into Eq.~12!, this part of
h(k,r ,a) goes like

E
2`

`

e2 ik2teik(r 2a)ei (k1q)(a2r )h~k,r .a!dk

5E
2`

`

e2 ik2teik(a2r )e2 i (k2q)(a2r )h~k,r .a!dk.

~53!

The positions of the poles are common betweenh(k,r ,a)
andh(k,r .a).

Let us now turn to the stationary bound state, wh
emerges when theS matrix has a pole on the positive imag
nary axisk5 ik wherek.0. This is the case if

qka cotqka1l1ka50, qk5AD2k2 ~54!

is satisfied. IfD is sufficiently large, this equation can hav
one root. Let us calculateCk of Eq. ~11!. The wave function
of the bound state is given by

uk~r !5N@sinqkr u~a2r !1e2k(r 2a)sinqka u~r 2a!#.
~55!
The normalization factorN is given by

N225
1

2 Fa1sinqkaS sinqka

k
2

cosqka

qk
D G . ~56!

The coefficientCk is given by

Ck52N
~21!nA2a p sinqka

qk
2a22n2p2

. ~57!

The residueck of h(k,r .a) for the bound-state pole is in
dependent ofr and is given by Eq.~51! with qn5qk and
kn5 ik. With the understanding thatuk(a)5N sinqka, a
little algebra confirms that Eq.~24! is indeed satisfied.

The wave functionc(r ,t) which starts with thec(r ,0) of
Eq. ~31! is given, forr .a, by

c~r .a,t !5(
n

cnM~kn ,r 2a,t !1Ckeik2tuk~r !.

~58!

Here and in the following the summation over theS-matrix
poles includes those on the imaginary axis which lead
terms such asck(r )M( ik,r 2a,t) and ck8(r )M( ik8,r
2a,t). For r ,a we obtain

c~r ,a,t !5
1

2 (
n

cnF S 11
kn

qn
1

il

qnaDei (kn2qn)(a2r )

3M~kn ,r 2a,t !

1S 12
kn

qn
2

il

qnaDe2 i (kn2qn)(a2r )

3M~kn ,a2r ,t !G1Ckeik2tuk~r !. ~59!
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If there is no bound state, the terms involvingk should be
dropped. The above is not a simple superposition of
Moshinsky functions in the sense that the coefficients are
constants.

In Fig. 3 we display the wave function of a decayin
system when the system supports a bound state.
$k1 ,k21 ,k2 ,k22% approximation includes only the pole
k1 ,k21 ,k2, andk22.

C. Example III: Square-well plus square-barrier potential

In this example we replace thed-function barrier of ex-
ample II with a square barrier of heightH,

V~r !5Hu~a2r !u~r 2b!2Du~b2r !, ~60!

whereH.0,D.0, anda.b. The potential shape is show
in Fig. 4; c5a2b is the width of the repulsive square ba
rier.

The Jost solution is such that

e2 ikr f ~2k,r !5u~r 2a!1
1

2 F S 12
k

pDeip(a2r )

1S 11
k

pDe2 ip(a2r )G
3eik(a2r )u~a2r !u~r 2b!1

1

4 H F S 12
k

pD

FIG. 3. The modulus of the wave functionuc(r ,t)u for l
56, D510, a51, andt52 in example II. This system supports
single bound state withk51.4964.

FIG. 4. The potential of example III with the parameters show
02460
e
ot

he

3S 11
p

qDeipc1S 11
k

pD S 12
p

qDe2 ipcG
3eiq(b2r )1F S 12

k

pD S 12
p

qDeipc1S 11
k

pD
3S 11

p

qDe2 ipcGe2 iq(b2r )J eik(a2r )u~b2r !,

~61!

whereq is defined by Eq.~47! and p5kA12(H/k2). It is
understood thatk becomes purely imaginary whenk2,H.
For u(k,r ) we obtain

u~k,r !5
1

q
sinqr u~b2r !1F1

p
cosqbsinpc

1
1

q
sinqbcospcG sin@kr1h~k!#

sin@ka1h~k!#
u~r 2a!

1F1

p
cosqbsinp~r 2b!1

1

q
sinqbcosp~r 2b!G

3u~a2r !u~r 2b!. ~62!

The phase shifth(k) is determined by

k cot~ka1h!5
q cotqb2p tanpc

~q/p!cotqb11
. ~63!

In the limits of c→0 andHc→l/a, we haveq/p→0 and
p tanpc→l/a.

We assume the same initial condition as Eq.~31! except
that we replacea with b. Then C(k) is given by Eq.~48!
with a replaced withb. The functionh(k,r .a) for r .a is
given by

h~k,r .a!5
~21!niA2b kbeikc

~q2b22n2p2!F~k!
, ~64!

where

F~k!5
a

p sinqa
@q cosqb~p cospc2 ik sinpc!

2p sinqb~p sinpc1 ik cospc!#. ~65!

Whenc→0,F(k) is reduced toqa cotqa1l2ika. The pole
position kn of h(k,r .a) can be determined byF(k)50.
The h(k,r .a) has no singularity other than simple pole
The residuecn is independent ofr and is given by

cn5
~21!n2pA2b knb

~qn
2b22n2p2!

eiknc

dF~kn!/dk
, ~66!

wherepn5knA12(H/kn
2) andqn5knA11(D/kn

2).
Next let us turn toh(k,a.r .b) which is related to

h(k,r .a) by.
8-7
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h~k,a.r .b!5h~k,r .a!3
1

2 F S 12
k

pDeip(a2r )

1S 11
k

pDe2 ip(a2r )Geik(a2r ). ~67!

The part withei (k1p)(a2r ) has an essential singularity at in
finity. We rewrite this ase2 i (k2p)(a2r )e2ik(a2r ) and do a ma-
nipulation similar to Eqs.~38! and ~40!.

For h(k,b.r ) we obtain

h~k,b.r !5h~k,r .a! 3
1

4 H F S 12
k

pD S 11
p

qDeipc1S 11
k

pD
3S 12

p

qDe2 ipcGeiq(b2r )1F S 12
k

pD
3S 12

p

qDeipc1S 11
k

pD S 11
p

qDe2 ipcG
3e2 iq(b2r )J eik(a2r ). ~68!

Each of the combinations of the exponential factors ot
than the last one, i.e.,e2 ipce2 iq(b2r )eik(a2r ), gives rise to an
essential singularity at infinity.

The wave functionc(r ,t) which starts with thec(r ,0) of
Eq. ~31! with a replaced byb is given, forr .a, by

c~r .a,t !5(
n

cnM~kn ,r 2a,t !1Ckeik2tuk~r !.

~69!

Here and in the following the summation over theS-matrix
poles includes those on the imaginary axis, if any, wh
leads to terms such asck(r )M( ik,r 2a,t) and
ck8(r )M( ik8,r 2a,t).

For a.r .b we obtain

c~a.r .b,t !5
1

2 (
n

cn3F S 11
kn

pn
Dei (kn2pn)(a2r )

3M~kn ,r 2a,t !1S 12
kn

pn
D

3e2 i (kn2pn)(a2r )M~kn ,a2r ,t !G
1Ckeik2tuk~r !. ~70!

For b.r we obtain

c~b.r ,t !5
1

4 (
n

cnF S 11
kn

pn
D S 11

pn

qn
De2 i [ pnc1qn(b2r )]

3M~kn ,r 2a,t !1S 12
kn

pn
D S 11

pn

qn
Dei [ pnc1qn(b2r )]

3M~kn ,a2r ,t !1S 11
kn

pn
D S 12

pn

qn
D

02460
r

h

3ei [ 2pnc1qn(b2r )1kn(a22b1r )]M~kn ,b2r ,t !

1S 12
kn

pn
D S 12

pn

qn
Dei [ pnc2qn(b2r )2kn(a22b1r )]

3M~kn ,a2b,t !G1Ckeik2tuk~r !. ~71!

The results obtained above can be generalized to the ca
which the potentialV(r ) has many steps. We will do this in
Appendix C.

The wave function for example III is displayed in Fig.
for barriers of different widths and compared with the wa
function for the zero-width barrier of example II. We con
sider a few different values of the barrier widthc but keep
the ‘‘area’’ of the repulsive barrier the same, i.e.,Hc5l with
l56.

The behavior of the wave function, at times which diff
by orders of magnitude, is shown in Fig. 6 and Fig. 7. In F
6 the barrier is a fairly weak one and att510 the largest part
of the wave function exists outside the barrier although th
is still a finite probability of finding the particle inside th
barrier. At t5100 andt51000 the particle has almost com

FIG. 5. The modulus of the wave functionuc(r ,t)u when t52
for l56, a51, andD55 of example II, and forl5Hc, D55,
b51, andc50.25,0.5, and 1.0 in example III.

FIG. 6. The modulus of the wave functionuc(r ,t)u for D
55, H524, b51, andc50.25 in example III.
8-8
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FIG. 7. The modulus of the wave functionuc(r ,t)u for D
55, H5400,b51, andc50.25 in example III.
02460
pletely escaped the system and propagates as a wave p
with constant speed. The peaks of the wave packets o
almost precisely at

r 5vt, v52Ap22D. ~72!

The v2/4 is the energy of the system att50. Recall that
2m51. With D55, we obtainv54.413.

The system considered in Fig. 7 is one with a strong b
rier and a very long half-life. The striking feature is that th
amplitude of the outgoing wave increases exponentially a
function of r and it drops sharply at a ‘‘wave front.’’ The
drops occur at the same values ofr as the peaks in Fig. 6
This can be attributed to the fact that we used the same in
state in both cases so that the energy composition of
initial wave packet is the same in both cases. The wave fu
tion of Fig. 7 becomes more regular as time increases.
ceding the main wave front there is a miniature replica of
same shape. This is due to higher energy resonance s
which are contained in the initial wave function with muc
smaller amplitude.

In Ref. @11# we proposed a heuristic form for the wav
function of a slowly decaying system, which we subs
quently employed in a model study of the atomic ionizati
following the a decay of the nucleus@16#. The form of the
proposed wave function is, forr .a,

f~r ,t !5AG

v
eige2G/2(t2r /v)e2 i [k22(G/4k)2] teikruS t2

r

v D ,

~73!

whereG is the width of the decaying state,k5v/2, andv is
the speed defined by Eq.~72!. The constant phase factoreig

is related to the choice of the initial wave function. This is
good approximation based on studies with thed-function
potential. The graph of Fig. 7 indicates that the wave fu
tion of a potential with a barrier of finite width is also we
described by this function especially after a long time. At
5104, the main wave front has traveledr;4.43104, which,
if r 51 is the nuclear radius, is of the order of magnitude
the atomic radius. Thus the abovef(r ,t) is an appropriate
wave function for the study of atomic ionization due toa
decay@16#. Note that the strength of the potential that we a
assuming is such that it gives a half-life which is mu
smaller than those of the knowna emitting nuclei. If we
increase the strength of the potential barrier so that the de
half-life becomes more realistic,f(r ,t) will become an even
better approximation.

IV. THE GAMOW WAVE FUNCTION

Let us examine the Gamow wave function@17–20# by
focusing on its behavior outside the barrierr .a. The
Gamow wave function,cG(r ,t), is an eigenstate of the
Hamiltonian

Ĥ52~]2/]r 2!1V~r !. ~74!

It is subject to two boundary conditions. The first one
cG(0,t)50. The second one is that, outside the barrier
8-9
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W. VAN DIJK AND Y. NOGAMI PHYSICAL REVIEW C 65 024608
.a, it consists of outgoing waves only. The latter conditi
cannot be satisfied unless the energy eigenvalue is com

The cG(r ,t) can be related to the scattering solution
Eqs. ~3! and ~4! as follows. Whenr .a,u(k,r ) takes the
form

u~k,r !}S~k!eikr2e2 ikr , ~75!

whereS(k) is theS matrix. If k5k1 wherek1 is one of the
poles of theS matrix, S(k1)5` and u(k1 ,r )}eik1r for r
.a and the second boundary condition is satisfied. Thus
obtain

cG~r ,t !}e2 ik1
2tu~k1 ,r !. ~76!

Since Im(k1),0, the amplitude ofcG(r ,t) grows exponen-
tially as r increases. This wave function is not normalizab
in the usual sense@17–21,29#.

The cG(r ,t) satisfies the time-dependent Schro¨dinger
equation~2! but not the initial condition with givenc(r ,0).
The cG(r ,t) represents a state such that the decay pro
started att52` and it has been going on in astationary
manner. This is why the wave function is not normalizab
@17,29#. ThecG(r ,t) has no memory as to how and when t
decay process started.

The exact wave function that we have constructed is
an eigenfunction ofĤ. It consists of the Moshinsky func
tionsM (k,x,t). As we emphasized below Eq.~19!, M (k,x,t)
is a superposition of incoming and outgoing waves. Each
the Moshinsky functions involved has a wave front and
square integrable. Our wave function is always normalize
unity. For the normalizability, the presence of the incomi
waves is essential.

A technique to expand the wave function in terms
Gamow-type wave functions has been developed; see,
Ref. @20#. However, the fact that the exact wave functi
contains incoming waves at the boundaryr 5a implies that
such an expansion is not possible in a strict sense. The
going wave component is much larger than the incom
wave component in general. Therefore such an expansio
usually a good approximation but it cannot be exact. We w
see a relevance of this aspect in the next section.

V. ASYMPTOTIC BEHAVIOR OF THE SURVIVAL AND
NONESCAPE PROBABILITIES

In this section we are interested in the behavior of
survival probabilityS(t) and the nonescape probabilityP(t)
as functions oft when t→`. We assume that there is n
stable bound state withk in this section until towards the
end. Garcı´a-Caldéron, Mateos, and Moshinsky@22,23# ex-
amined these probabilities for a decaying system and st
that S(t) and P(t) obey different power laws after lon
times, i.e., S(t);t23 and P(t);t21. Recall that S(t)
<P(t) in general. In a comment on Ref.@22#, Cavalcanti
@25# showed thatS(t) and P(t) both vary ast23 as t→`.
Garcı́a-Caldéron et al. @24# responded that Cavalcanti eval
atedP(t) by taking the long-time limit prior to integrating
over r, whereas reversing the order of the operations lead
02460
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a t21 long-time behavior. The issue is not settled. The
analyses involved the expansion of the wave function
terms of Gamow resonance states.

Let us reexamine this problem by means of our examp
As we have shown in the preceding sections, the wave fu
tion c(r ,t) can be expressed in the form of a linear com
nation of M(kn ,x,t) where x is of the form of x56r
1const. Whent→` the Moshinsky functionM (k,x,t) be-
comes

M ~kn ,x,t !→2
ei (p1x2/t)/4

2Ap

1

knAt
S 12

i

2kn
2t

2
3

4kn
4t2

1••• D .

~77!

In the M(k,x,t) of Eq. ~17!, the leading term ofM (k,x,t)
proportional to 1/At is exactly canceled by the added term
(1/k)x(x,t). It then follows thatM(k,x,t);t23/2 as t→`.

If there is no bound state, thec(r ,t) for very large values
of t becomes

c~r ,t !;t23/2 as t→`. ~78!

This holds for any value ofr and for any of the examples tha
we have examined. Thus we find thatS(t) and P(t) both
vary as t23 as t→`. Figure 8 shows the behavior of th
survival and nonescape probabilities as functions of time
a particular case of example I.

In Fig. 9 we showS(t) and P(t) of example II withl
56, D55, anda51. With this value ofD there is no sta-
tionary bound state. The two probabilities again vary ast23

at large times. Oscillations of both probabilities occur in t
transition region where the exponential decay changes in
power-law behavior. In calculating theS(t) and P(t), we
used the exact evaluation ofc(r ,t) at all values oft. Con-
trary to the remark of Garcı´a-Caldéron et al. @24#, the order
of the operations of integrating overr and lettingt become
large is irrelevant in our calculation.

It should be noted that in our calculations bothS(t) and
P(t) fluctuate as a function of time when these quantit

FIG. 8. The survival and nonescape probabilities plotted
functions of t, in a log-log scale, for thed-shell potential of ex-
ample I withl56 anda51.
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make the transition from the exponential decay law to
power-of-t decay law. This feature of quantum decaying s
tems was first pointed out by Winter@5#. In Refs. @22,23#
only S(t) shows the fluctuations whileP(t) makes a smooth
transition from one region in time to the other. This is b
cause, as we pointed out in Sec. IV, the wave function t
was used in Ref.@22# has no incoming wave component
and outside the potential barrier. In contrast the exact w
function always contains incoming waves. Cavalcanti@25#
obtained the correctt23 behavior ofP(t), but used the same
inexact expansion of the wave function as that of Ref.@22#,
and hence his analysis is incomplete.

So far we have assumed that there is no stationary bo
state. Let us consider example II with a bound state of ene
2k2. The wave function has the bound-state te
Ckeik2tuk(r ). In the limit of t→`, all other terms with
Moshinsky functions are dispersed in the entire space. In
sense c(r ,t)→Ckeik2tuk(r ). The probabilitiesP(t) and
S(t), respectively, approach finite constant values,

S~`!5uCku2U E
0

`

c* ~r ,0!uk~r !drU2

, ~79!

P~`!5uCku2E
0

a

uuk~r !u2dr. ~80!

The differencesS(t)2S(`) andP(t)2P(`) both behave as
t23 as t becomes very large.

The deviation from the exponential law for very sma
values oft is an interesting subject. We examined it in co
siderable detail for example I in Ref.@12#. The situations for
examples II and III are similar to that of example I.

VI. DISCUSSION

We have presented a full account of an analytical met
of solving the time-dependent Schro¨dinger equation for a
model that simulates the nucleara decay. For the potentia
for the a particle we assumed a potential that is piecew

FIG. 9. The nonescape and survival probabilities plotted
functions oft, in a log-log scale, for the potential of example II wit
l56, D55, anda51.
02460
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constant. The method is such that, if one knows all the so
tions for stationary states analytically, one can obtain
solution of the time-dependent Schro¨dinger equation in the
form of a linear combination of the Moshinsky functions.

Since the method is analytical, one can obtain the solu
regardless of the magnitudes ofr and/ort. This is an impor-
tant advantage of the method over purely numerical metho
Our method will enable us to examine various features
slow decay processes. One such example is the devia
from the exponential law for very large times, which w
discussed in Sec. V. All the results presented in this pa
except for the deviation from the exponential decay law
very large times, were confirmed by numerically solving t
time-dependent Schro¨dinger equation. This gives us full con
fidence in our analytical method.

Mişicu et al. @9# considered a model that simulates thea
decay of 212Po. For the ground state of their model,Ea
58.88 MeV and the decay half-life isT1/251.531029 s.
They show the time development of the system up tot53
310220 s, which is 2310211T1/2. In order to be able to see
interesting features of the decaying system, one would lik
solve the time-dependent Schro¨dinger equation at least up t
t'T1/2. It is prohibitive to do so by numerical integration o
the time-dependent Schro¨dinger equation. Mis¸icu et al. also
considered an excited state withEa519.3 MeV andT1/2
54.5310221 s. In this case they presented results up tt
55310221 s which is as large as theT1/2. This case, how-
ever, is one for which no experimental data are available
cases for which there are experimental data, the initial s
of the a particle is one of the lowest energy states.

We pointed out an important difference between our ex
wave function and the Gamow wave function. The latter h
only outgoing waves outside the barrier. Our wave funct
contains incoming waves. This difference is related to
fact that the Gamow wave function is not normalizable in t
usual sense whereas our wave function remains normal
to unity throughout. The Gamow wave function has
memory about the beginning of the decay process. The p
ence of the incoming wave component in the exact wa
function manifests itself through the fluctuations of the no
escape probabilityP(t) in the transition time region from the
exponential law behavior to the power-law behavior.

The method that we have developed has a few conc
able extensions. A potential of an arbitrary form can be
proximated by a potential with many steps. We briefly d
cussed such a case in Appendix C. In the beginning of Se
we stated: ‘‘We assume a central potentialV(r ) such that it
has a repulsive barrier which supports one or more unst
bound states or resonances.’’ The method, however,
handle potentials of different forms, e.g., an attract
square-well potential. We assumed the initial wave funct
c(r ,0) that is confined withinr ,a. This restriction can be
easily removed. For example, we can start with a wa
packet that is incident towards the ‘‘nucleus.’’ Thus in pri
ciple this approach can be used for a time-dependent ana
of the scattering problem.

Having developed the method for theS wave decay, we
surmise that it is fruitful to consider higher partial wave d
cay situations. Furthermore since the Jost functions for

s
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W. VAN DIJK AND Y. NOGAMI PHYSICAL REVIEW C 65 024608
tentials which do not have a sharp boundary and the a
logue of the Jost functions for the Coulomb potential a
known @30#, exploration of the method with such potentia
may give further insight into the decay and scattering pr
lems. The Coulomb potential is important ina decay and
ways of combining it with a potential well would be impo
tant to study details of more realistica decay.
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APPENDIX A: THE MOSHINSKY FUNCTION

We need the Moshinsky functionM (k,x,t) with k that
corresponds to the poles of theS matrix, i.e.,kn ,ik(k.0),
or ik8(k8,0). It is convenient to change the integratio
variable fromz to z85z2(x/2t). ThenM (k,x,t) becomes

M ~k,x,t !5
i

2p
eix2/(4t)E

2`

` e2 i z82t

z82S k2
x

2t D
dz8. ~A1!

By using the contour in the complexz8 plane shown in Fig.
10 and setting

z85e2 ip/4
s

At
, z52 iy52eip/4

x22kt

2At
, ~A2!

we obtain

M ~k,x,t !5
i

2p
eix2/(4t)E

2`

` e2s2
ds

s2z
1se2 ik2teikx,

~A3!

where the last term on the right hand side is determined
the position of the pole atk2x/(2t);s51 if the pole lies
inside the contour in the fourth quadrant,s521 if it lies
inside the contour in the second quadrant, ands50 other-
wise. Thes integration can be done with the result@31#

FIG. 10. The integration contour in the complexz8 plane.
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a-
e

-

d

y

E
2`

` e2s2
ds

s2z
52 ipey2H erfc~y!22 if Im~z!.0,

erfc~y! if Im ~z!,0.
~A4!

Combining the above results we obtain Eqs.~20! and ~21!.

APPENDIX B: DETERMINATION OF THE S-MATRIX
POLES AND PERFORMING SUMMATIONS

In order to solve the nonlinear Eqs.~34! and ~50! and
F(k)50 whereF(k) is given by Eq.~65! for their complex
roots, we use the Muller method@32#. The poles and residue
need to be calculated only once to determine the wave fu
tion of a particular potential at different values ofr and t.
Given a convergence criterion for the series of the wa
function, different numbers of terms are required to obt
c(r ,t) at different values ofr and t. Therefore we initially
evaluate more than the maximum number of poles and r
dues required. The Muller method, like other fixed-point
erative procedures, requires initial guesses and so we
with the poles with the largest magnitude since, according
Ref. @27#, asn→`,

Re~kn!5np/a1O~1!, ~B1!

Im~kn!} ln n1O~1!. ~B2!

The relation for Re(kn) is very useful for bracketing the
position of the pole. The initial estimate for Im(kn) can be
obtained quickly by trial and error. Once the first pole f
some largen is known,kn2p/a is a good initial estimate for
the (n21)th pole. As we get to poles which are close to t
origin some adjustments have to be made to ensure tha
iterations do not converge to the same pole twice or ski
pole. For smallr andt we have made comparisons ofc(r ,t)
calculated using the method of this paper and that obtai
by integrating the time-dependent Schro¨dinger equation di-
rectly. When they are identical we are confident that we h
the correct set of poles. The poles have been obtained
an absolute and relative error of 10210. The poles in the
fourth quadrant are obtained in this manner, whereas thos
the third quadrant are simply obtained by changing the s
of the real part.

For the calculation shown in Fig. 1 we used a stringe
condition on the summation so that the magnitude of the
term was less than 1028 times the sum. We definenmax as
the maxunu needed for a convergent series. For the calculat
of example I, minnmax521 and maxnmax5318. The maxi-
mum value occurred when the wave function had the sm
est magnitude. Fewer terms would have sufficed for the p
poses of the graph, and the number could have been red
further by including an absolute error criterion for the sum
well.

In example I, Eq.~15! is satisfied for bothr ,a and r
.a. Simplifying Eq.~14! to exclude the 1/kn terms, we also
obtain Fig. 1. In this case however minnmax52819 and
maxnmax531 799. Clearly the rate of convergence is mu
improved by retaining the 1/kn terms. For examples II and II
these terms must be included whenr ,a since Eq.~15! does
not hold in those cases.
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APPENDIX C: POTENTIAL WITH MANY STEPS

Consider a sequence of positions 05a0,a1,a2, •••

,aJ5a with which we divide the space intoJ11 regions
including the one for whichr .a. Assume thatV(r ) is a
constant in each of the regions:V(r )50 for r .a, and

V~r !5Vj for aj 21,r ,aj , ~C1!

where j 51, 2, . . . ,J.
Let us consider a stationary solution of the Schro¨dinger

equationf(k,r )e2 ik2t such that

f~k,r !5Aeikr1Be2 ikr for r .a, ~C2!

f~k,r !5Aje
ik j r1Bje

2 ik j r for aj 21,r ,aj , ~C3!

where the coefficientsAj ’s andBj ’s are all constants and

kj5kA12~Vj /k2!. ~C4!

If A51 andB50, thenf(k,r ) becomes the Jost solutio
f (2k,r ). Similarly, f(k,r )5 f (k,r ) if A50 andB51.

For givenA5AJ11 andB5BJ11 , Aj andBj can be de-
termined by repeated applications of the following transf
mation,

S Aj 8

Bj 8
D 5Tj 8 j S Aj

Bj
D , ~C5!
02460
-

Tj 8 j5
1

2 S e2 ik j 8aj 8 0

0 eik j 8aj 8
D S 11

kj

kj 8

12
kj

kj 8

12
kj

kj 8

11
kj

kj 8

D
3S eik jaj 8 0

0 e2 ik j aj 8
D , ~C6!

where j 85 j 21 andkJ115k. This enables us to write the
Jost solutionsf (6k,r ), Jost functionsf (6k), and then
h(k,r ) of Eq. ~13! for the model. Example III is a specia
case withJ52, a15b, a25a,V152D,V25H, k15q, and
k25p.

Next let us turn to some details ofh(k,r ) and the wave
function c(r ,t). Assume the same initial wave functio
c(r ,0) as that of Eq.~31!. Theh(k,r .a) and its residuecn
are independent ofr andh(k,r .a) is a meromorphic func-
tion of k. Thec(k,r .a) is of the same form as Eqs.~16! or
~69! except that the residuecn is different.

When r ,a, h(k,r )5e2 ikr f (2k,r )h(k,r .a) obtains an
essential singularity at infinity. This is because of the exp
nential factors involved ine2 ikr f (2k,r ) as we have shown
in the examples of Sec. III. There is always one combinat
of the exponential factors that is harmless, i.e., it does
give rise to an essential singularity toh(k,r .a). This is the
one of the form of

exp$2 i @kj~aj2r !1kj 11~aj 112aj !1 . . . 1kJ~a2aJ21!#

1 ik~a2r !%. ~C7!

This combination leads to a term withM(kn ,r 2a,t) of
c(r ,t) as shown, e.g., in Eqs.~70! and~71!. Other combina-
tions can be manipulated such that they lead to terms w
M(kn ,a2r ,t), etc.
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