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Analytical approach to the wave function of a decaying quantum system
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Recently we outlined an analytical method of solving the time-dependent@ebes equation for a model
which simulates a decaying quantum system such asdecaying nucleus. A particle in the model is initially
confined around the origin and leaks out, tunneling through a potential barrier. The solution can be expressed
as a linear combination of the Moshinsky functions, each of which is associated with a pole of the scattering
S matrix of the model. In this paper we give a full account of the method with a few explicit examples. We
examine deviations from the exponential decay law at very large times. We comment on a recent controversy
regarding the dependence of the survival and nonescape probabilities wisevery large.
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I. INTRODUCTION tates exploring various features of the decay process. In the
light of the exact wave function, we reexamine the so-called
We consider a model which simulates a decaying quanGamow wave function that has been used extensively in the
tum system such as andecaying nucleugl—5]. The model literature[17—-25. As is well known the Gamow wave func-
assumes that a particle is initially confined within a regiontion is not normalizable in the usual way. This is related to
around the origin and at a certain tinie; 0, it begins to leak the fact that the Gamow wave function consists of only an
out by tunneling through a potential barrier. This problem isoutgoing wave at and outside the potential barrier. On the
intrinsically time dependent. Let us confine ourselves to thedther hand the exact wave function always contains, in addi-
S state. We assume that the solutions of the Sdinger tion to outgoing waves, an admixtur@lthough usually
equation for the stationary states of the model are all knownsmall of incoming waves. This implies that the exact wave
Then the wave functiog(r,t) of any nonstationary state can function cannot simply be expressed as a superposition of
be expressed as a linear superposition of stationary wav@amow-type wave functions. We also examine tluepen-
functions. For a given initial wave functiog(r,0), the co- dence of the survival and nonescape probabilities when
efficients of the superposition can be determined. In thidecomes very large. Contrary to what was reported in Refs.
sense any time-dependent problem including that of the dd22—-24, we find that these probabilitiggn the absence of
cay process is solvable. It is, however, highly nontrivial tostationary bound state®oth behave like 3 ast becomes
calculatey(r,t) of this form of superposition explicitly, in very large. The wave function used in Rgf82,24,28, being
particular, for large values afand/ort. Alternatively one can a superposition of Gamow-type wave functions, is not exact.

solve the time-dependent Schiinger equation numerically In Sec. Il we explain the basic idea that underlies the
[6—10. This, however, becomes again prohibitive@nd/or  method and develop the theory. In Sec. lll we examine ex-
t become very large. amples of the method with &-function potential, a square-

Recently[11,12 we outlined a new method which en- barrier potential, and their generalizations. In Sec. IV we
ables us to obtain the(r,t) of the decay problem as a linear discuss the Gamow wave function. In Sec. V we examine the
combination of Moshinsky functiorfd3-15, each of which t dependence of the survival and nonescape probabilities
is associated with a pole of the scatterigmatrix of the ~whent is very large. A summary is given in Sec. VI. In
model. In this way we can calculate the wave function accuAppendix A we give some details of the Moshinsky function.
rately regardless of the magnituderaindt. The applicabil-  In Appendix B we expand on the numerical evaluation of the
ity of the method is limited to models for which the station- poles of theS matrix and the summation to obtain the wave
ary solutions of the Schdinger equation are known functions. In Appendix C we consider a potential that is a
analytically. Such models still exhibit rich physics of the combination of many square barriers or wells. This is an
decay process. The method is powerful in analyzing the beextension of the examples of Sec. Ill.
havior of (r,t) of the models for very large values pand
t. There are significant problems that require knowledge of Il. MODEL AND BASIC STRATEGY
Y(r,t) for very large values of andt; for example, the
atomic ionization caused by the nucleardecay[16], and
bremsstrahlung irv decay[8,9]. There is a similar problem
regardingB decay[10].

The purpose of this paper is to give a full description of
the new method with a few illustrations. The method facili- V(r)=0 for r>a. (1)

We assume a central potentidl(r) such that it has a
repulsive barrier which supports one or more unstable bound
states or resonances. There may or may not be stable bound
states. Furthermore we assume that

It is also understood thafyrV(r)dr is finite. (These as-
*Electronic address: vandijk@physics.mcmaster.ca sumptions are not literally valid foix decay because of the
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Coulomb potentia). We use units such that=1 and 2n
=1 throughout. We confine ourselves to tBetate and at-
tempt to obtain the solutiogk(r,t) (actually the wave func-
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2 (= K 2 2
_ —ik“t ikt
1//(r,t)—ﬂfo |f(k)|2C(k)e u(k,rydk+C,e'" fu,(r),

tion timesr) of the time-dependent Schdimger equation for )
t>0, where
(1) 7 .
== —F+V(r) P(r,t), $(OH)=0. (2 C(k)zf u(k,r)y(r,0)dr, (10)
0
It is understood that the wave function starts with a given o
normalizedy(r,0) that represents the state in which the par- C.= Jo u,(r)¢(r,0)dr. (11

ticle is initially confined tor <a.

We assume that the stationary solutions of the Schr

OTheu(k,r) is an entire function of compleikand so isC(k).

dinger equation are all known. Let us write the scatteringe, -thermore C(k)—0 ask—x. This is becausai(k,r)

solutions as

w(k,r,t)=e"*u(k,r), 3

1
u(k,r)=m[f(k)f(—k,r)—f(—k)f(k,r)], (4)

wherek>0 andk? is the associated ener§6]. The f(k,r)
is the Jost solution of the time-independent Sdiger
equation with energyk®. It is normalized such that
e"f(k,r)=1 whenr>a. The f(k) is the Jost function that
is related tof(k,r) by f(k)=f(k,0). The Jost solution is
complex butf*(k,r)=f(—k,r) and henceu(k,r) is real.
Furthermoreu(k,r) is an even function ok. Theu(k,r) is
normalized such that

fmu(k,r)u(k’,r)drz T lt2sk-Kk). (5
0 k2

2

The f (k) is related to the scattering phase shijtk) and the
S matrix by

f(k)

(k)= ———.

f(l0=f(k)|e'¥), e

(6)

In the above we assumed tHats a real variable. In the
following, however, it is understood thiican be complex. If
f(—k)=0 for k=ik(x>0), the S matrix obtains a pole at
k=i k. This leads to a stable bound state of energy’. Let
its normalized wave function be

(r,)=e"tu(r). (7)

tends to its free versiok™ !sinkr in this limit while ¢(r,0) is
finite. SinceC(—k)=C(k) we can writey(r,t) as

w(r,t>=fo e e In(k,r)
+e K= (—k,r)Jdk+C e tu(r)

= J e Ktelk(r=ah (K r)dk+C,e*tu,(r),

(12)
whereh(k,r) is defined by

e KAt (—k,r)
f(=k)

h(k,r)=—i;kC(k) (13

The functionh(k,r) is related tog(k,r) of Ref. [11] by
h(k,r)=g(k,r)e*. If r>a, then e *f(—k,r)=1 and
henceh(k,r) is independent of. The factore’*(' ~® of the
integrand of Eq.(12) cancelse *(""® of h(k,r). The
h(k,r) so defined is free from essential singularities as a
function of k when r>a. We discuss this point further in
Sec. lll.

We are assuming that the stationary solutions of the model
are all known and henck(k,r) is known. One may then
think thaty(r,t) can be obtained by simply performing tke
integration of Eq.(12). This is true ifr is small. For the
model of thes-function potential that we examine in the next
section, Wintel{5] obtainedi(r,t) in this manner, but only
up to the potential barrier=a. The difficulty in calculating
Y(r,t) for larger values ofr in this manner has been dis-
cussed in detail in Ref6]. In contrast to Eq(12), Eq. (16)

For simplicity we assume that there is only one or no bounghat we derive below enables us to evalugig,t) accu-
state. The generalization to cases with more than one boungtely and easily no matter how largeand/ort become.

state is straightforward. The(k,r) andu,(r) form a com-
plete orthonormal set. The completeness relation is

|r(|)|2 1 1 K K .

The h(k,r) as a function of complex has an infinite
number of simple poles, which are due to the zeros of
f(—k), which in turn give rise to poles of th® matrix. The
h(k,r) has no other singularities for finite This is so be-
causef(k,r) is an entire function ok when the potential
vanishes forr>a [27] as we assumed. In the absence of
bound states, these poles are all in the lower-half comiplex

The wave functiony(r,t) can be expressed in terms of plane, located symmetrically about the imaginary d%ig|.

the stationary solutions as

Let us denote the poles in the fourth quadrant wkthv
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=1,2,3...;Rek,) increases with increasing We also de- andM(k,x,t) is the Moshinsky functiofn13—15 defined by
note the poles in the third quadrant wikh, but with v= . i2tix

—1,-2,—3,.... Thepoles are symmetrically locatetd; , M (k,x.)= '_f“’ e -e d¢ (19
=—k?% . If there is a bound state, there is an additional pole o 27) e {—K '

on the positive imaginary axis &t=i«. Such a bound-state

pole may be accompanied by another pole on the negatiVé/Nenk is real the authors of Ref§13-19 replacek by k
imaginary axis, which we will denote ds=i«’ where «’ —ie wheree>0 is infinitesimal. In the work of this papér

<0. (In all the examples of Sec. IlI, poles &k and i «’ corresponds t&, with a negative imaginary part or ia or

: o , . ik’. When Im() is finite, which is always the case in our
appear in a pajy.The quantltlesx and« QO not neces;anly discussione can be ignored. Let us emphasize that the range
have the same magnitude. In the following we consider only . - iix :

: of the ¢ integration is (~o,%). When (<0, €'** is an in-
cases with one or no bound state. In the case of no bound

state the terms involving or x' should be dropped from the COMiNg wave. The Moshinsky functiomM(k,x,t) always
expressions contains incoming waves and so does the exact wave func-

If we assumea >a so thath(k,r) has no essential singu- tion ¢(r,t). This is an important difference from the Gamow

o . . wave function which we discuss in Sec. IV.
ll?s”% 'QXE:;;]Z:?'K’ ;26 Mittag-Leffler theoreri28] allows If Im(k)<0, after the{ integration,M (k,x,t) becomes

i 11 11 M (K,x,t) = Ee‘”‘zte‘kxerfo(y) y=e—“ﬂ4x_2kt
- = - 1Ny 2 H il
h(k,r)=5— 2 (k—kv+kv c,(r)+ k—iK+iK)°K(” 24t 0
1 1 - -u? -
+( L el 14 where erfcy) = (2/\/m) [;e™""du. For Im(k)>0, we obtain
k—ik' ik’ 1,
M(k,x,t)= e Kt erfoy) —2]. (21)
where the summation is ovew==*=1,+2,.... The 2

C,(r). ©4(r), andc,(r) are, respectively, the residues asso-For some details that underlie E20) and(21), see Appen-
ciated with the poles of (2/i)h(k,r) atk,,«, and«’. When  dix A. In the limit of t—0, M(k,x,t) with Im(k)<0 be-
r>a,h(r,k) and its residues are all independentroNote  comes
that h(0,r)=0, which is due to the factok of Eq. (13). o
Equation(14) is consistent witth(0,r)=0. Whenr>a the M(K,x,t) —e"*0(—x), (22)
residues satisfy whereasM (i k,x,t) becomes

c,(r) cr) cu(r M (i k,X,t)— —e *g(x), 23
s k()+ (D) o), s (i) (x) (23
v v 1K I K whered(x) =1(0) if x>0(x<0). The above are discontinu-

ous atx=0. Fort>0 they both become smooth functions of

sinceh(k,r) —0 whenk—ce. By using this relation, Eq14)  y They satisfy the free time-dependent Safinger equation
can be simplified. It is, however, better not to do so becausgii r = x andV(r)=0.

the v summation of Eq(14), as such, converges much faster |, order to be consistent with the initial wave function
as was emphasized in R¢L2]. Whenr<a, Eq. (15) is not #(r,0) which is confined to <a, the (r,t) of Eq. (16) has

necessarily satisfied. S to vanish forr>a at t=0. The part that consists of
Equations(12) and(14) lead to the following simple ex- \j(k ' r—a t) obviously conforms to this condition by itself.
pression fory(r,t), There are two remaining terms, one wkii «,r —a,t) and
the other withc, (r)u,(r). In the limit of t—0 they both
W(r )= c (MK, r—at)+c(r)Mix,r—at) become of the form o “("~® outside the barrier>a.
v [Recall thatc,(r) is independent of whenr >a.] These two

, P2t terms should cancel far>a. This means that
+Co(NM(ik',r—at)+C,.e“tur), (16

C.u.(a)=c,. (24
where the summation is ovew==*1,+2,.... The ) . ) .
M(k,x,t) is defined by We. dp not impose this rglatlon.' It shpuld be automatlcally
satisfied. We illustrate this relation with example Il in the
1 next section. Let us add that, while the bound-state compo-
Mk, x,t)=M(k,x,t)+ EX(XJ)- (17 nent ofy(r,t) of Eq. (16) with u,(r) remains as such, the
dependence of the component wiiH(i «,r —a,t) changes in
; . time.
Here x(x.t) is defined by In the above we assumed thiatk,r) has no essential
Qimld ix2 singularity. This assumption is valid if>a, but is not nec-
x(x,t)= ex% _) ’ (18  essarily valid ifr <a. In the examples of the next section, we
2\/5 a4t will illustrate thath(k,r) obtains essential singularities when
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r<a. Such singularities, however, can easily be handled and (— 1)n\/£ nar sinka
we can obtain the wave function in the form of a linear C(k)= 5 5 (32
combination of Moshinsky functions also forx a. k(k“a®—n“m?)

Once the wave function is obtained we can examine the
survival probabilityS(t) and the nonescape probabilRt),
which are, respectively, defined by

Let us examindn(k,r) of Eq.(13) for r>a andr<a, i.e.,
outside and inside of the repulsive barrier, separately. When
we specifically refer ta>a (r<a), we denoteh(k,r) with

% 2 h(k,r>a)[h(k,r<a)]. We obtain
S(t)= J P (r,00¢(r,tydr| (25
0 (—1)"iy2anka
a hikor=>a)= (k?a2—n27?)(kacotka+\ —ika) ' 33
—n2x _
P(t)=f l(r,b)]dr. (26)
° which is independent of. It has poles ak,’s, which are
Note thatS(t)<P(t). determined by
L. EXAMPLES kacotka+\—ika=0. (34)
We illustrate the method presented above by means ofheni>1, we obtain
three examples, |, I, and Ill. Example | is the one with _
which the method was briefly illustrated in Ref41,12. v 1 1-ivw
kV%? 1—X )\2 y (35)

A. Example I: é#-function barrier
where we have ignored terms liken®/ In the actual calcu-
lation, however, we solve Eq34) numerically; see Appen-
)N dix B. Theh(k,r>a) has no essential singularity and hence
V(r)=_dér—a), A>0. (27)  Egs. (14) and (16) hold. The residuec, of the pole of
(2mli)h(k,r>a) atk, is independent of and is given by
Since V(r) has no attractive part, there is no stationary

We assume the potential to be

bound state. All stationary scattering states can be obtained . (— 1)”2n77\/5 k,

explicitly. In numerical illustrations we sea=1. For the CV_(kZaZ—nzwz)[(1+)\—ik a)cotk,a—i—k,a]’
strength of thes-function potential we taka =6 and 100. Y ! ' " (36
These two choices represent typical situations of fast and

slow decay processés,11]. Whenr <a the situation is somewhat complicated. The

Let us first summarize relevant results of the stationaryh(k,r<a) is given by
scattering problem. The Jost solutibfk,r) of this example

is such that IN e
h(k,r<a)=h(k,r>a) 1—%l[e'<a N—-1]¢, 37

, iA .
e Kf(—kr)=1—- =——[e?* @ N_119(a-r). (28
( ) 2ka[ 10t ). (28 which shares the same set of poles Wiflk,r >a). The term

e?k(@=1) of Eq. (37) gives rise to an essential singularity of

This leads to h(k,r<a) at infinity. Therefore the Mittag-Leffler expansion
1 (14) does not hold foh(k,r <a). When substituted into Eq.

u(k,r)= F sinkr 8(a—r) (12), however, this part oh(k,r<a) can be rewritten as

sinkasir[kr+ 7(k fw e~ Kiglk(r-a)g2ik@-nh(k 1 >a)dk
. nLkr+ 7( )]e(r—a) @9 B ( )
sinka+ 7n(k)]
where the phase shifp(k) is determined from =J e~ gik@ Nh(k r>a)dk. (38)
kacot ka+ n) =\ +kacotka. (30

Combining the above with the Mittag-Leffler expansion of

Let us turn to the time-dependent problem. For the wavdl(k,r>a) we obtain a linear combination of th&1(k,,a

function att=0 we assume the normalized wave function —T.t) for the differentk,, . .
By putting the above together we obtain the wave func-

2 nar tion forr>a,
P(r,0)=\/=sinl—| fd(a—r), (31
a a
r>a,t)=2, c,M(k,,r—a,t), 39
wheren=1, 2, ... .This leads to W ) EV: ( ) (39
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and forr<a, 04 [ ' ' Exact
{k1,k_ ) approx. ———m
<at)=> 1+ I\ Mk t 0.3
l//(r a, )_ ~ Cv m ( v1r a,) .
. 04
iA (r.2)l g2 hy(r,2)!
2kVaM(kV'a r,t)}. (40 02 |

) 0.1
The above can also be written as

0.0 L L L
w(r)=> c,[M(k,,r—at)+N_(k,,r—a,¢t)], 1 10 20 30 40

(41) '

FIG. 1. The modulus of the wave functigg(r,t)| for =86,
where a=1 andt=2 in example I. Thgk,,k_,} approximation includes
only the pair of polesk; andk_;, which are the poles with the
smallest magnitude of the real part.

iN
N= (K, x,t)= so=[M(K,x,t) = M(K,—X,t)]0(—X).
= ) 2ka[ ( ) ( )16(=x) B. Example II: Combined é-function and square-well potential

“42) We assume the potential to be
The (r,t) for t>0 is continuous at=a as can be seen Y
from N_(k,0t) =0. Although it is not obvious from Eq40) V(r)=5d(r—aj-Dé(a-r), r>0, D>0.

it can be shown tha#(0t)=0. (45)
Ther derivatives ofi(r,t) are given by
Depending on the value @ there can be one or more sta-
, _ tionary bound states. We assume that there is only one or no
¥ (r,t)=|§V: ik [M(k,,r—a)+N.(k,,r—an] bound state. For the stationary scattering states, the Jost so-
lution f(k,r) is such that

+x(r—a,t)}, (43
ik 1 koiNy o
e (—kr)=6(r—a)+ 3 1_E_q_a gla@-n
P(rty=—2> c, i KMk, r—at)+N_(k, ,r—a,)] .
' + 1+E+ﬂ g la@™n
+r—a+2k,,t ) +)\5 JoaD g Qga
———x(r—a, —do(r—a)y(a,t). ,
ot X a o 4 x k@ Ngg—r), (46)
(44) where
It is not difficult to confirm thaty given above does satisfy —kJ1+(D/KD) 4
Eq. (2). The 5-function part ofy/” exactly cancel&/ in the q ( ) (47
Schralinger equation. :
We show the wave function for a fairly weak barrier in 0.05 {hyk ) ap‘g’;g,i? ___________ ]
Fig. 1 and for a strong barrier in Fig. 2. In Figs. 1 and 2 we ) ’
also show wave functions obtained in tfg ,k_,} approxi- 0.04
mation in which only the pair of polek; andk_; are in- ' 15
cluded. These are the poles with the smallest magnitude Gy, 10)10.03 | 10k
the real part. For the strong barrier case when1, the ’ (100 o |
wave function has a clear wave-front structure. It drops ofi 0.02 0.0 .
sharply asr exceedsvt wherev~Re(K;)/m~2m. Recall 00 05 10
that 2m=1. Furthermore there are small humps with speed: 001 ,
2v,3v, etc., which correspond to the escape of the state
; ; . X . 0.00 . :
with the higher resonance energies. Their amplitudes ar ) 0 100 150 200

small since the initial state contains only small component:
of them. The system decays extremely slowly as is evident
from the wave function inside the barrier being close to the FIG. 2. The modulus of the wave functiop(r,t)| for \
initial state and the small size of the amplitude of the wave=100,a=1, andt=10 in example I. For thék, ,k_,} approxima-
function outside the barrier. tion, see the caption of Fig. 1.

r
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For the wave function of the decay problem, we assumé&he pole positiork, can be determined by
the initial condition, Eq(31). This leads to

—1)"y2a nwsinga acotga+\—ika=0. 50
clio=" )"V2anwsinga s gacotq (50
q(g*a®—n?m?)

1) 2ank The h(k,r>a) has no singularity other than simple poles.
h(k,r>a)= (- 17iv2anka (49 The residuec, of (2=/i)h(k,r>a) is independent of and
(g2a?—n?m?)(qacotqa+ N —ika) is given by

(-D" 2nmy2ak,q,
CV: . .
(q2a?—n?m?)[(1+N—ik,a)k, cotg,a— (i +k,a)q,]

(—1)"2nm+2a k,g%a?

= , 51
(q?a?—n?m?)[k,a(\ —ik,a)(1+\—ik,a)+ (i +k,a)q%a?] )
|
whereq,=k,/1+ (D/K3). The normalization factoN is given by
The case of <a can be handled in a manner similar to
the corresponding case of example |. Thék,r<a) and , 1 ) singq,a cosq,a
h(k,r>a) are related by N™“=35|atsing.a —— (56)
1 k0N B - L
h(k,r<a)=h(k,r>a)><§ 1— a_ q_a gl (k+a)(a=r) The coefficientC, is given by
k iN) . (—1)"J2awsing,a
+ 14+ -+ —|eka@n| 52 C.=—N . 5
q qa &3 al—rin? (57

When |k| —%,k—qg—0. The terme'®**9@=1 of Eq. (52),
however, gives rise to an essential singularityh¢k,r <a)
at infinity. When substituted into Eq(12), this part of
h(k,r<a) goes like

The residuec,. of h(k,r>a) for the bound-state pole is in-
dependent of and is given by Eq(51) with q,=q, and
k,=ik. With the understanding that,(a)=Nsing,a, a
little algebra confirms that Eq24) is indeed satisfied.

- The wave function)(r,t) which starts with thej(r,0) of
f e*‘kzteik(f*a)e‘(k“D(a*f)h(k,r>a)dk Eq. (31) is given, forr>a, by

:fw e~ KAgik(a-Ng-ik-a)@-Np(k r>a)dk. w(r>at)=> c,M(k,,r—a,t)+C.e<tu(r).

14

(58)
(53
Here and in the following the summation over tBenatrix
poles includes those on the imaginary axis which lead to
terms such asc,(r)M(ix,r—a,t) and c, (r)M(i«',r
—a,t). Forr<a we obtain

The positions of the poles are common betwéé¢k, r <a)
andh(k,r>a).

Let us now turn to the stationary bound state, which
emerges when th® matrix has a pole on the positive imagi-
nary axisk=ix wherex>0. This is the case if

1 k, x|

g.acotg.a+h+xa=0, q,=VD—«?> (54

is satisfied. IfD is sufficiently large, this equation can have XM(k,,r—a,t)
one root. Let us calculatg,, of Eq. (11). The wave function K in .
of the bound state is given by +|1- q_V_ 1A e '(kma)@mn
u(r)=N[sing,r 6(a—r)+e “~dsing,a o(r—a)]. .
(55 X M(k,,a—r,t)|+C, e r). (59
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04 f Exact
{k1,k_ ) approx. ———
D0 g e v —
0.3
1.5
h(r.2)l g o | 1o
. 2
y(r,2) 05 b
0.0
0.1 F 0.0

0.0

1 10 30 40
FIG. 3. The modulus of the wave functiofy(r,t)| for A
=6,D=10,a=1, andt=2 in example Il. This system supports a

single bound state witlk =1.4964.

If there is no bound state, the terms involvikgshould be

dropped. The above is not a simple superposition of the
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. k .
X 1+B)e'p°+(1+— 1—B)e"p°}
q p q
xeld(b=r 4 1—E (1—B e'Pe+ 1+E
p q p
x| 1+ D] e-iee e““(b")]e“‘(a‘r)e(b—r),
q

(61)

whereq is defined by Eq(47) and p=ky1—(H/K?). It is
understood thak becomes purely imaginary whekf<<H.
Foru(k,r) we obtain

1 1
u(k,r)= asinqr O(b—r)+ Ecosqbsinpc

1 sinkr+ n(k
+asinqbcospc i 7]

sitkat (k] 2~

Moshinsky functions in the sense that the coefficients are not

constants.

In Fig. 3 we display the wave function of a decaying
system when the system supports a bound state. The

{kq,k_q,k,,k_,} approximation includes only the poles
Ky, k_1,ky, andk_.

C. Example llI: Square-well plus square-barrier potential
In this example we replace th&function barrier of ex-
ample Il with a square barrier of height,

V(r)y=H6é(a—r)0(r—b)—Dao(b—r), (60)

whereH>0,D>0, anda>b. The potential shape is shown
in Fig. 4; c=a—b is the width of the repulsive square bar-
rier.

The Jost solution is such that

e*ikrf(_kr)ze(r_a)_i_i 1_5 eip(a*r)
1 2 p

+

14X eip(ar)}
p

=

a 1
x gk(@ r)e(a—r)e(r—b)+z

vir)

-D

+

1 1
Bcosq bsinp(r—b)+ asinqbcosp(r —b)

X 0(a—r)6(r—b). (62
The phase shifty(k) is determined by
cotgbh—ptanpc
k cot’ka+ )= a.corqb b fanp (63

(g/p)cotgb+1 °

In the limits ofc—0 andHc—\/a, we haveq/p—0 and
ptanpc—N\/a.

We assume the same initial condition as E2fl) except
that we replacea with b. Then C(k) is given by Eq.(48)
with a replaced withb. The functionh(k,r>a) for r>ais
given by

(—1)"i\/2b kbeke

h(k,r>a)= , 64
( : (9°b*—n?w?)F(k) ©4
where
F(k)= psinqa[q cosgb(p cospc—ik sinpc)
—psingb(p sinpc+ik cospc)]. (65

Whenc—0,F(k) is reduced tagacotqa+\—ika. The pole
position k,, of h(k,r>a) can be determined b¥(k)=0.
The h(k,r>a) has no singularity other than simple poles.
The residuec, is independent of and is given by

(—-1)"2m7y2bk,b  ekic
C,=—— , (66)
(g?b?—n?72) dF(k,)/dk

wherepv=ky\/1—(H/k2V) andqv=ky\/1+(D/k2V).

Next let us turn toh(k,a>r>b) which is related to

FIG. 4. The potential of example Ill with the parameters shown.h(k,r>a) by
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o
~
T

Example I —— 1
Example III, ¢=0.25 -
Example III, c=0.50 - .
Example III, ¢=1.00 e

1
h(k,a>r>b)=h(kr>a)xz

1— 5) gipa-n
p

03 .

+ e—ip(a—r)

k .
1+ o elk@n, (67) 15
. hy(r2)l g2 |
The part withe'“*P@~") has an essential singularity at in-
finity. We rewrite this ag~'(k-P(@Ng2k(@"1) and do a ma-
nipulation similar to Eqs(38) and (40). 0.1

For h(k,b>r) we obtain

1 K Pl K 0, 10 0 10 40
h(k,b>r)=h(k,r>a) X—={ || 1—=|| 1+ =|e'P°+| 1+ —
4 p q p r
1 P} _—ipc|aigb-r) 1 k FIG. 5. The modulus of the wave functidg(r,t)| whent=2
X _a e e + h for \=6,a=1, andD=5 of example Il, and fon=Hc, D=5,
b=1, andc=0.25,0.5, and 1.0 in example lIl.
p\ . k p\ .
X[ 1-= e'P°+(1+— 1+ —|e'PC
Q) p q Xei[fpuc+q,,(bfr)+kV(a72b+r)]M(kV,b_r,t)
Xe—iq(b—f)}ei“a—f). (69) +l1- k_) ( 1— Py eilp,c—a,(b—1)—k,(a-2b+r)]
pV 14

Each of the combinations of the exponential factors other
than the last one, i.ee 'Pce~14(b-Nek(@=1) gives rise to an X M(k,,a—b,t)
essential singularity at infinity.

The wave functiony(r,t) which starts with thej(r,0) of

+C et (). (72)

Eq. (31 with a replaced byb is given, forr>a, by The results obtained above can be generalized to the case in
which the potentiaV(r) has many steps. We will do this in
pr>at)=> c,M(k,,r—a,t)+C.e*tur). Appendix C. _ o I
v The wave function for example Il is displayed in Fig. 5

(69)  for barriers of different widths and compared with the wave

H d'in the following th . : . function for the zero-width barrier of example Il. We con-
ere and in the following the summation over atrix  sider a few different values of the barrier widthbut keep

poles includes those on the imaginary axis, if any, WhiChthe “area” of the repulsive barrier the same, ildg=\ with
leads to terms such asc(r)M(ix,r—at) and | _¢ '

cK/Igr)M(i K”k:_a't)k') . The behavior of the wave function, at times which differ
ora>r>h we obtain by orders of magnitude, is shown in Fig. 6 and Fig. 7. In Fig.

1 . 6 the barrier is a fairly weak one andtat 10 the largest part
pa>r>b,t)=3 > e x| |1+ Zeltpa@n of the wave function exists outside the barrier although there
v v is still a finite probability of finding the particle inside the
K barrier. Att=100 andt= 1000 the particle has almost com-
X M(k,,r—a,t)+ 1—p—”)
-
. =100 -
xe"(kv‘pv)(a‘r)M(kV,a—r,t)} 02 b (=1000 e
. hy(r.2)l
+CKe"‘2‘uK(r). (70) Wer2)
. hy(r.o)l
For b>r we obtain v 0.1
1 k, p,\
b>r,t)=—2, ¢, (1+— 14 —|e IPeta,b-n]
" 72 p. 1",
kV Y . 00 TR ¢ ot ;n"/ ;) -J-\":‘ . --------- LS
xM(kV,r—a,t)+(1—— 1+p— e[P,etay(b=n)] 0 2 4 6 8 10
Py dv 1n()
X/\/l(kp,a—r,t)+(l+& (1_&) FIG. 6. The modulus of the wave functiony(r,t)| for D
Py qv =5,H=24,b=1, andc=0.25 in example IlI.
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0.005

pletely escaped the system and propagates as a wave packet

=10 with constant speed. The peaks of the wave packets occur
0.004 H almost precisely at
0.003 | r=ut, v=2m?-D. (72)
hy(r,)l 214 i
0002 | The v</4 is the energy of the system &0. Recall that
2m=1. With D=5, we obtainv =4.413.
0.001 | The system considered in Fig. 7 is one with a strong bar-
rier and a very long half-life. The striking feature is that the
. amplitude of the outgoing wave increases exponentially as a
0.000 . : « ”
0 10 12 function of r and it drops sharply at a “wave front.” The
(a) (") drops occur at the same valuesroés the peaks in Fig. 6.
0.005 . . This can be attributed to the fact that we used the same initial
’ =100 —— state in both cases so that the energy composition of the
initial wave packet is the same in both cases. The wave func-
0.004 tion of Fig. 7 becomes more regular as time increases. Pre-
ceding the main wave front there is a miniature replica of the
0.003 1 same shape. This is due to higher energy resonance states
hy () which are contained in the initial wave function with much
0.002 ¥ smaller amplitude.
In Ref. [11] we proposed a heuristic form for the wave
0.001 1 function of a slowly decaying system, which we subse-
quently employed in a model study of the atomic ionization
0.000 o = following the « decay of the nucleugl6]. The form of the
proposed wave function is, for>a,
(b) In(r)
0.005 ¢(r,t)= \/fei ye—]‘/2(t—r/v)e—i[k2_(1~/4k)2]teikr0 t— lr))
0.004 (73
0003 H wherel is the width of the decaying state=v/2, andv is
(o) the speed defined by E(72). The constant phase facter”
0.002 1 is related to the choice of the initial wave function. This is a
good approximation based on studies with thdunction
0.001 | potential. The graph of Fig. 7 indicates that the wave func-
’ tion of a potential with a barrier of finite width is also well
0,000 described by this function especially after a long timetAt
' =10%, the main wave front has traveled-4.4x 10%, which,
(c) if r=1 is the nuclear radius, is of the order of magnitude of
the atomic radius. Thus the abovgr,t) is an appropriate
0.005 wave function for the study of atomic ionization due do
decay[16]. Note that the strength of the potential that we are
0.004 1 assuming is such that it gives a half-life which is much
smaller than those of the knowm emitting nuclei. If we
0.003 1 increase the strength of the potential barrier so that the decay
Iy (r o)l o o A half-life becomes more realistigy(r,t) will become an even
0.002 | 1 better approximation.
0.001 | 1 IV. THE GAMOW WAVE FUNCTION
0.000 . . . . . ) Let us examine the Gamow wave functiph7—20 by
0 2 4 6 8 10 12 focusing on its behavior outside the barrier-a. The
(d) In(r) Gamow wave functions(r,t), is an eigenstate of the
Hamiltonian
H=—(3%ar®)+V(r). (74)

FIG. 7. The modulus of the wave functions(r,t)| for D It is subject to two boundary conditions. The first one is
=5,H=400,b=1, andc=0.25 in example IlI. ¥s(0t)=0. The second one is that, outside the barrier
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>3a, it consists of outgoing waves only. The latter condition
cannot be satisfied unless the energy eigenvalue is comple;

The ¢(r,t) can be related to the scattering solution of
Egs. (3) and (4) as follows. Whenr>a,u(k,r) takes the
form

u(k,r)o«S(k)ekr—eikr, (75)

In S(2), In P(1)

where§(k) is the S matrix. If k=k; wherek; is one of the
poles of theS matrix, S(k;)=% and u(ky,r)=e*1" for r
>a and the second boundary condition is satisfied. Thus we
obtain

2 -30 ' - : : :
Po(r,tyce  Kiltu(ky,r). (76) 2 25 3 35 4 45 5

Since Imk,) <0, the amplitude of/(r,t) grows exponen- Int

tially asr increases. This wave function is not normalizable FIG. 8. The survival and nonescape probabilities plotted as

in the usual sensgl7-21,29. functions oft, in a log-log scale, for thes-shell potential of ex-
The ¢(r,t) satisfies the time-dependent Sdfirger ample | withA=6 anda=1.

equation(2) but not the initial condition with given)(r,0).

The yg(r,t) represents a state such that the decay procegst ' long-time behavior. The issue is not settled. These

started att=—o and it has been going on in stationary  analyses involved the expansion of the wave function in

manner. This is why the wave function is not normalizableterms of Gamow resonance states.

[17,29. Theyg(r,t) has no memory as to how and when the  Let us reexamine this problem by means of our examples.

decay process started. As we have shown in the preceding sections, the wave func-
The exact wave function that we have constructed is notion (r,t) can be expressed in the form of a linear combi-

an eigenfunction of. It consists of the Moshinsky func- nation of M(k, ,x,t) wherex is of the form of x==xr
tionsM (k,x,t). As we emphasized below EQL9), M (k,x,t) +const. Whent—oo the Moshinsky functiorM (k,x,t) be-
is a superposition of incoming and outgoing waves. Each ofOMeS
the Moshinsky functions involved has a wave front and is (x4 )
square integrable. Our wave function is always normalized t%(k X,t)— — e 1 1 e 3 i...
unity. For the normalizability, the presence of the incoming v 2Vm kot 2Kkt 4k%?
waves is essential. (77

A technique to expand the wave function in terms of
Gamow-type wave functions has been developed; see, e.dn the M(k,x,t) of Eq. (17), the leading term oM (k,x,t)
Ref. [20]. However, the fact that the exact wave function proportional to 14/t is exactly canceled by the added term of
contains incoming waves at the boundarya implies that  (1/k) y(x,t). It then follows thatM(k,x,t)~t~%? ast—o.
such an expansion is not possible in a strict sense. The out- |f there is no bound state, thi(r,t) for very large values
going wave component is much larger than the incomingf t becomes
wave component in general. Therefore such an expansion is
usually a good approximation but it cannot be exact. We will P(r,t)~t32 as t—oo. (78
see a relevance of this aspect in the next section.

This holds for any value af and for any of the examples that
we have examined. Thus we find th&ft) and P(t) both
vary ast™® ast—ox. Figure 8 shows the behavior of the
survival and nonescape probabilities as functions of time for
In this section we are interested in the behavior of thea particular case of example I.
survival probabilityS(t) and the nonescape probabil®(t) In Fig. 9 we showS(t) and P(t) of example Il with\
as functions oft whent—o~. We assume that there is no =6, D=5, anda=1. With this value ofD there is no sta-
stable bound state witk in this section until towards the tionary bound state. The two probabilities again vary a5
end. Gar@-Caldeon, Mateos, and Moshinskj22,23 ex-  at large times. Oscillations of both probabilities occur in the
amined these probabilities for a decaying system and stateeansition region where the exponential decay changes into a
that S(t) and P(t) obey different power laws after long power-law behavior. In calculating th&(t) and P(t), we
times, i.e., S(t)~t~3 and P(t)~t 1. Recall that S(t) used the exact evaluation gf(r,t) at all values oft. Con-
<P(t) in general. In a comment on Ref22], Cavalcanti trary to the remark of GaratCaldeon et al. [24], the order
[25] showed thatS(t) and P(t) both vary ast™3 ast— . of the operations of integrating overand lettingt become
Garca-Caldeon et al.[24] responded that Cavalcanti evalu- large is irrelevant in our calculation.
ated P(t) by taking the long-time limit prior to integrating It should be noted that in our calculations b@&¢t) and
overr, whereas reversing the order of the operations leads tB(t) fluctuate as a function of time when these quantities

V. ASYMPTOTIC BEHAVIOR OF THE SURVIVAL AND
NONESCAPE PROBABILITIES
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constant. The method is such that, if one knows all the solu-
tions for stationary states analytically, one can obtain the
solution of the time-dependent Schinger equation in the
form of a linear combination of the Moshinsky functions.
Since the method is analytical, one can obtain the solution
regardless of the magnitudesroénd/ort. This is an impor-
tant advantage of the method over purely numerical methods.
Our method will enable us to examine various features of
slow decay processes. One such example is the deviation
from the exponential law for very large times, which we
discussed in Sec. V. All the results presented in this paper,
except for the deviation from the exponential decay law at
very large times, were confirmed by numerically solving the
) 25 3 35 4 45 5 time-dependent Schadinger equation. This gives us full con-
Inz fidence in our analytical method.
Misicu et al.[9] considered a model that simulates the
FIG. 9. The nonescape and survival probabilities plotted asjecay of >*2Po. For the ground state of their modé,,
functions oft, in a log-log scale, for the potential of example Il with —g 88 MeV and the decay half-life i$,,=1.5x 1079 s.
A=6,D=5, anda=1. They show the time development of the system up=@®
o _ X102 s, which is 2< 10 **T,,,. In order to be able to see
make the transition from the exponential decay law 10 th&neresting features of the decaying system, one would like to
power-oft decay law. This feature of quantum decaying sys-gqye the time-dependent Séhinger equation at least up to
tems was first pointed out by Wint¢b]. In Refs.[22,23 1 tis prohibitive to do so by numerical integration of
only S(t) shows the fluctuations while(t) makes a smooth 14 time-dependent Schiimger equation. Misu et al. also
transition from one region in time to the other. This is be- ., cidered an excited state with,=19.3 MeV andT,,
cause, as we pointed out in Sec. 1V, the wave function thal 4 5. 19-21 5 |n this case they presented results upi to
was used in Refl22] has no incoming wave component at _ . 10-2L s which is as large as thB,,. This case, how-
and outside the potential barrier. In contrast the exact WaVeyer is one for which no experimental data are avéilable. In

funcpon always COﬂt;iII’]S incoming Waves. Cavalcd@s]  4qes for which there are experimental data, the initial state
obtained the corredt ° behavior ofP(t), but used the same of the « particle is one of the lowest energy states

-10

U
w
T

In S(2), In P(1)

Y
S
T

'neé(?]d expﬁ'nsmn IOf Fhe; wave furlmtlon as that of RReg], We pointed out an important difference between our exact
an ?nce 'ﬁ analysis 1S |3C(;mphete. . . b I{g::lve function and the Gamow wave function. The latter has
So far we have assumed that there is no stationary bou ly outgoing waves outside the barrier. Our wave function

state. Let us consider example Il with a bound state of energy,taing”incoming waves. This difference is related to the
—«°. The wave function has the bound-state terMe,cy that the Gamow wave function is not normalizable in the
C.e"tu,(r). In the limit of t—o, all other terms with ysual sense whereas our wave function remains normalized
Moshinsky functions are dispersed in the entire space. In thiy unity throughout. The Gamow wave function has no
sense z,//(r,t)—>CKe“‘2‘uK(r). The probabilitiesP(t) and memory about the beginning of the decay process. The pres-
S(t), respectively, approach finite constant values, ence of the incoming wave component in the exact wave
function manifests itself through the fluctuations of the non-
escape probability?(t) in the transition time region from the
exponential law behavior to the power-law behavior.
The method that we have developed has a few conceiv-
a able extensions. A potential of an arbitrary form can be ap-
F’(°°)=|CK|ZJ0 |u.(r)|?dr. (80 proximated by a potential with many steps. We briefly dis-
cussed such a case in Appendix C. In the beginning of Sec. Il
The differences(t) — S(=) andP(t) — P(«) both behave as We stated: “We assume a central potentigr) such that it
t~3 ast becomes very large. has a repulsive barrier which supports one or more unstable
The deviation from the exponential law for very small bound states or resonances.” The method, however, can

values oft is an interesting subject. We examined it in con-handle potentials of different forms, e.g., an attractive
siderable detail for example | in RdfL2]. The situations for ~Square-well potential. We assumed the initial wave function

examples Il and Ill are similar to that of example I. #(r,0) that is confined withir<a. This restriction can be
easily removed. For example, we can start with a wave

packet that is incident towards the “nucleus.” Thus in prin-

ciple this approach can be used for a time-dependent analysis
We have presented a full account of an analytical methoaf the scattering problem.

of solving the time-dependent Schiinger equation for a Having developed the method for tl&wave decay, we

model that simulates the nucleardecay. For the potential surmise that it is fruitful to consider higher partial wave de-

for the a particle we assumed a potential that is piecewisecay situations. Furthermore since the Jost functions for po-

2

S()=|C,|? , (79

fxzp*(r,muk(r)dr
0

VI. DISCUSSION
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Im( £ » e~ 5ds 2 erfqy)—2 if Im(z)>0,
Lo s—z "% lerfay) if Im(z)<O0.
(A4)

Combining the above results we obtain E(0) and(21).

APPENDIX B: DETERMINATION OF THE S-MATRIX
Re(§") POLES AND PERFORMING SUMMATIONS

In order to solve the nonlinear Eq&34) and (50) and
F (k) =0 whereF (k) is given by Eq.(65) for their complex
roots, we use the Muller meth¢d2]. The poles and residues
need to be calculated only once to determine the wave func-
tion of a particular potential at different values ofand t.
Given a convergence criterion for the series of the wave
function, different numbers of terms are required to obtain

FIG. 10. The integration contour in the compléx plane. W(r,t) at different values of andt. Therefore we initially

evaluate more than the maximum number of poles and resi-
tentials which do not have a sharp boundary and the anatues required. The Muller method, like other fixed-point it-
logue of the Jost functions for the Coulomb potential areerative procedures, requires initial guesses and so we start
known [30], exploration of the method with such potentials with the poles with the largest magnitude since, according to
may give further insight into the decay and scattering probRef.[27], asv— o,
lems. The Coulomb potential is important in decay and
ways of combining it with a potential well would be impor- Rek,)=vm/a+0(1), (BY)
tant to study details of more realistic decay.
Im(k,)<Inv+0O(1). (B2)

ACKNOWLEDGMENTS The relation for Re,) is very useful for bracketing the
This work was supported by the Natural Sciences and)osit_ion of t_he pole. The initial estimate for ““9 can be
Engineering Research Council of Canada. obtained qw_ckly by trial and error. Onge_ 'Fhe f|r_st pole for
some larger is known,k,— 7r/a is a good initial estimate for
) the (v—1)th pole. As we get to poles which are close to the
APPENDIX A: THE MOSHINSKY FUNCTION origin some adjustments have to be made to ensure that the
We need the Moshinsky functiol (k,x,t) with k that iterations do not converge to the same pole twice or skip a
corresponds to the poles of tiSematrix, i.e.,k, ,ix(x>0),  pole. For small andt we have made comparisons @fr,t)
or iK/(K,<0). It is convenient to Change the integration calculated USing the method of this Paper and that obtained
variable from¢ to ¢'=¢—(x/2t). ThenM(k,x,t) becomes by integrating the time-dependent Sctiirger equation di-
rectly. When they are identical we are confident that we have
i, N the correct set of poles. The poles have been obtained with
M(k,X,t):ze'x /(‘")f 7d¢". (Al)  an absolute and relative error of 18. The poles in the
_“g' — ( k— E) fourth quadrant are obtained in this manner, whereas those in

the third quadrant are simply obtained by changing the sign
By using the contour in the complex plane shown in Fig.

of the real part.
10 and setting

For the calculation shown in Fig. 1 we used a stringent
condition on the summation so that the magnitude of the last
term was less than 18 times the sum. We defing,,y as
.S . - x—2kt . .
(=e T z=_jy=—¢lmA . (A2) the may| needed for a convergent series. For the calculation
Jt 24t of example |, mim,,=21 and maxy,,=318. The maxi-

) mum value occurred when the wave function had the small-
we obtain est magnitude. Fewer terms would have sufficed for the pur-
. "y poses of the gra_ph, and the number cogld_have been reduced
M (k1) = I—eixz’(‘“)f e S+ e ktgike further by including an absolute error criterion for the sum as
2 w S—Z well.

(A3) In example I, Eq.(15) is satisfied for bothr<a andr
>a. Simplifying Eq.(14) to exclude the ¥, terms, we also
where the last term on the right hand side is determined bgbtain Fig. 1. In this case however mijp,,=2819 and
the position of the pole at—x/(2t);oc=1 if the pole lies  maxy,,,=31799. Clearly the rate of convergence is much
inside the contour in the fourth quadraet=—1 if it lies  improved by retaining the &/ terms. For examples Il and IlI
inside the contour in the second quadrant, arel0 other-  these terms must be included whesda since Eq.(15) does
wise. Thes integration can be done with the res[8t] not hold in those cases.

024608-12



ANALYTICAL APPROACH TO THE WAVE FUNCTION OF . ..

APPENDIX C: POTENTIAL WITH MANY STEPS

Consider a sequence of positions-fy<a;<a,< - - -
<aj=a with which we divide the space intd+ 1 regions
including the one for whiclr>a. Assume thatv(r) is a
constant in each of the regiong(r)=0 forr>a, and

V(r)=V; for a;_;<r<aj, (Cy

wherej=1,2, ... J.
Let us consider a stationary solution of the Schinger
equationa(k,r)e~* such that

o(k,r)=Aek" +Be k' for r>a, (C2

d(kr)=Aje*"+Be ™" for a,_,<r<a;, (C3

where the coefficientd’s andB;’s are all constants and

K =ky1—(V;/k?). (C4)

If A=1 andB=0, then¢(k,r) becomes the Jost solution
f(—k,r). Similarly, ¢(k,r)=f(k,r) if A=0 andB=1.
For givenA=A;,; andB=B;, 1, A; andB; can be de-

termined by repeated applications of the following transfor-

mation,

Bj’ :Tj'j BJ y (CS)

PHYSICAL REVIEW C 65 024608

j Kj
: 1+ — 1-—
1/e a0 ki i
I 2 0 elkj/ajr
1- L 1+ -
i’ i’
eikiayr 0
X\ g ek (C6)
wherej’=j—1 andk;,;=Kk. This enables us to write the

Jost solutionsf(=k,r), Jost functionsf(*=k), and then
h(k,r) of Eqg. (13) for the model. Example Ill is a special
case withJ=2,a,=b, a,=a,V,=-D,V,=H, k;=q, and
k2: p

Next let us turn to some details bfk,r) and the wave
function #(r,t). Assume the same initial wave function
#(r,0) as that of Eq(31). Theh(k,r>a) and its residue,
are independent af andh(k,r>a) is a meromorphic func-
tion of k. The /(k,r>a) is of the same form as Eq&L6) or
(69) except that the residue, is different.

Whenr<a, h(k,r)=e "f(—k,r)h(k,r>a) obtains an
essential singularity at infinity. This is because of the expo-
nential factors involved ire ' "f(—k,r) as we have shown
in the examples of Sec. Ill. There is always one combination
of the exponential factors that is harmless, i.e., it does not
give rise to an essential singularity bdk,r >a). This is the
one of the form of

exp{—i[kj(aj—r)+kj (a1 —a)+ ... Tkya—a;_4)]
+ik(a—r)}. (C7n

This combination leads to a term with(k,,r—a,t) of

#(r,t) as shown, e.g., in Eq§70) and(71). Other combina-

tions can be manipulated such that they lead to terms with
M(k,,a—r,t), etc.
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