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A generalizedM 1 sum rule for orbital magnetic dipole strength from excited symmetric states to mixed-
symmetry states is considered within the proton-neutron interacting boson model of even-even nuclei. Analytic
expressions for the dominant terms in 8@M 1) transition rates from the}?2 states are derived in the(®)
and S@6) dynamic symmetry limits of the model, and the applicability of a sum rule approach is examined at
and between these limits. Lastly, the sum rule is applied to the new data on mixed-symmetry st4tés of
and a quadrupolé-boson rationg(0;)/ng(2;)~0.6 is obtained in a largely parameter-independent way.
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[. INTRODUCTION be in good agreement with this sum r{ile?] as well as with
its counterpar{8] in odd-mass nucl€il13].

Heavy atomic nuclei exhibit both single-particle and col-  Initially, most of the experimental and theoretical effort
lective excitations. However, the coupling between these dehas focused on properties of ti&@=1" scissors state in
grees of freedom can lead to strong fragmentation of the@ven-even nuclei. However, the latter is only one particular
collective modes. Under such circumstances sum rules axample of mixed-symmetry states predicted by the IBM-2
useful, since they do not depend on the exact details of thEL4—17, which possess a lower symmetry with respect to
fragmentation and remain applicable in cases where the cothe interchange of proton and neutron bosoRsspin) [9].
lective modes are not exact eigenstates of the HamiltoniarDbservations of other mixed-symmetry states with total an-
Sum rules generally express direct observables in terms @ular momentund# 1 were subsequently claimed in the lit-
basic control parameters.g., deformationwhich dominate erature, e.g., Ref$18-21], but in some of these cases life-
the formation of the collective mode. In cases where thdime information was lacking, leaving the mixed-symmetry
relevant control parameter has natural boundaries, one cassignments without the knowledge of absolute transition
obtain quantitative limits for observables in a largely model-strengths less persuasive. Later on, a few mixed-symmetry
independent way. Accordingly, sum rules are used both td”=2" states in near vibrational nuclei could be identified
judge what fraction of a collective mode is present in a giveron the basis of measured absol& and M1 transition
ensemble of quantum states and as a tool to exploit the linknatrix element§22—-29. Very recently the investigation of
between direct observables and properties of a given excitanixed-symmetry states was pushed a step forward by exten-
tion mode. sive data[29—32 on mixed-symmetry states in the nucleus

One particular collective mode which has been studied®*Mo, which were obtained by the application of a variety of
extensively in recent years is the orbital magnetic dipoleclassical but state-of-the-agt-spectroscopic measurements.
scissors mod¢l], which has by now been established ex-The measurement of the large transition rate between the
perimentally as a general phenomenon in nuE®i The  mixed-symmetry(ms) 1 and 2 . states29] represents
systematics oM 1 strength from the ground state to the scis-the first direct evidence for the similar character of their
sors state and its deformation dependence have been extagave functions. The discovery of the 3 mixed-symmetry
sively measured and corroborated with a variety of sum rulestate[30] and of the 2. state[31] on the basis of electro-
both in even-mas3—7] and odd-mass nuclég]. Within the  magnetic transition matrix elements added confidence to the
proton-neutron version of the interacting boson modelyeneral existence of mixed-symmetry stategen off-yrask
(IBM-2) [9-11], a sum rule[3] has related this strength to anq allowed for the first time to judge the energy splitting of
the number of quadrupokbosons in the ground state wave the mixed-symmetry two-phonon quintupl@3]. This new

function. For deformed nuclei the latter can be expressed iata provides knowledge aboutl transition strengths from
terms of the quadrupole deformation determined fromy set of mixed-symmetry states

B(E2) values, and the measurbtil strength was shown to
M:{lltms’zltms'zg,ms'?’:tm; (1)

*Corresponding author. Email address: Nadya.Smirnovd0 the symmetricJ=0; ground stateand to the symmetric
@fys.kuleuven.ac.be J=2],2; excited states if“Mo. This data can now be ex-
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ploited in a new way, namely, the totd1 strengths be- where
tween mixed-symmetry states and different low-lying sym-
metric states of the same nucleus can be compared. 3 , NN,
The empirical identification of the states in Hd) relied C= E(gw_gv) N(N—-1)" (4)
on specific signatures as predicted by the IBM-2. These
IBM-2 predictions and assignments for mixed—symmetryHereJ(Jf) is the angular momentum of the initiéfinal)

states were found to be in an impressive agreement With th§tate and the labelgf) indicate all quantum numbers that
data[29—32 and are furthgr supported by microscopic Cal'may be needed to specify uniquely the states. In gereral
culations[34,39. This motivates us to use the IBM-2 to #0 and, therefore, there can be a magnetic dipole transition

extre:jc':/lsltnécture nformz:mpﬁgl\t/]lt Ofl tht'rS] extenswte set of ME345 the initial state proportional to the magnetic moment. This
sure ecay strengths 1 vio. In the present paper We g atic transition is not measured in the reported experiments

investigate how far a sum rule approach in the IBM-2 may_ o4 B o . :
be used for that purpose, relying on the mixed-symmetr on “Mo [29-32, hence, itis subtracted out in B@). Since

. ) . he IBM-2 r m hav repin and th
interpretation for the states in E@.). In Sec. Il we present a the states are assumed to have pkrspin and the

sum rule for theM1 excitation strength from an arbitrary Nitial stateJ hasF=F,, then only the {,—J,) term in
symmetric state which generalizes an earlier expression fdrd- (2) (which is an F-splp vecto). can contrlbgte toM1
the total M1 ground state excitation strength within the ransitions, and the sum in E¢3) involves all final states
IBM-2. Section IIl discusses the applicability of the sum rule SuPject toF spin and angular momentum selection rules:
in the U5) and S@6) dynamic symmetryDS) limits of the Fmax—Fmax—1 "?md‘]f:‘]_l’ J, ‘]J.rl (M1 transitions be-
model as well as in transitional cases preserving théss0 Ween states withk =F, are forbidden due to the symme-
symmetry. In Sec. IV we apply the sum rule to the new datd"Y of their wave function$36]). The totalM 1 strengthS; in
on %Mo and extract the relative quadrupaiéboson content Ed- (3) depends on the boson numbé,, the boson effec-
of the J=0; and J=2; states. The sum rule analysis is tive g factors,g,, and |n\iolveAs theAexpectat|on value of the
critically examined in Sec. V and the paper is summarized irf-boson number operatarg=ny_+ng in the initial stateJ.
Sec. VI The dependence oN,, reflects the local shell structure and
their values are fixed to be half the number of valence par-
Il. GENERALIZED M1 SUM RULE ticles or holes with respect to the nearest closed shell. The
o ) bosong factors defining theM1 operator of Eq.(2) are
The standard one-body magnetic dipoléX) operatorin  qge| parameters which are needed in order to extract from

the 1BM-2 has the fornj11] the sum rule information omy(J)=(J|ny|J), the average
. 3 A . number ofd bosons in the IBM-2 wave function. For tlle
T(M1)= \/E(gﬁ\] +9,J,) =01+ ground state, the sum rule in E@) reduces to that of
Ref.[3]. This special case was used ear]iE2] to extract the

- /i[(ngrgv)A (9,—9,) d-boson content of the ground state from the measitdd
Vg

> J+ 5 (37,—3”) , (2 excitation strengths. In that analysis the parameggra/ere

assumed to have the values of bare orlgtédctors, namely,

where], are the individual boson angular momentum opera-M”f 1tlrL Nna?r? gil;;“(l\)/ll TF;gregg ntreéitgnswsvme?suzler%ems of
tors for protons =) or neutrons f=v), g, the respec- Strengtns 0 —o4 provide a way 10 avo €

) oA A assumption of effective-bosanfactors by considering ratios
tive bosong factors, andJ=J,+J, the total angular mo- ¢ \11 excitation strengths from different symmetric states:
mentum operator. We_ are mtere_sted in a sum rule foMte _Ry.(J)=S,/S; . Such ratios are independent gf and are
strength from an excited state in an even-even nucleus with ™© .0 .
angular momentund and maximalF spin, F ., =N/2= (N pure functions of the average nuTbersd)boE(?ns in the
+N,)/2. The integerdN, denote the total number of proton states], andJ. For example, ify=2" andJ=0, it follows
or neutron bosons of monopole) or quadrupole(d) type.  ToM Ed.(3) that
These IBM-2 bosons represent correlated monopole and
quadrupole pairs of identical valence nucleons in the shell So; ng(0;)
model [9,10]. The derivation of the sum rule follows the Rp+(0))= —=—"—"—,
same steps as for the ground stétdrich hasJ=0") given S+ Ny(27)—1IN
in Ref. [3], except that the terms proportional to the total ng(07)
angular momentum are not dropped. The derivation has been ~
sketched already in Ref8] in which a sum rule forM 1 ng(2")
ground state excitation strength of odd-mass nuclei is de-
rived. The sum rule we are interested in here corresponds thus, forN sufficiently large, one can directly extract from
the part due to the core in E¢B) of Ref.[8]. It is given by  the measuredl1 strengths the relativd-boson contents of
the corresponding states in a largely parameter-independent
S,=S B(ML:i,J—f,J;)=6C (3|Agl3)— JO+1) way. The relatived-boson content contains important infor-
=i v ' 6N |’ mation on the structure of wave functions and is sensitive to
3 the Hamiltonian parameters, i.e., to the residual interactions.

[Ng(27)>1N]. (5
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Before a sum rule approach can be applied to the oblowest-lying 2" states. Since we aim at the application of the
servedM1 strength from low-lying symmetric states, it is sum rule to they-soft nucleus®Mo, we pay particular at-
crucial to assess to what extent the mixed-symmetry statagntion toF-scalar Hamiltonians with S@) symmetry. We
identified in ®Mo can be expected to exhaust the sum rule consider first the (5) and S@6) DS limits of the IBM-2
For that purpose we need to examine the following partialyhich contain the S®) subgroup, and derive analytic ex-
strengthsy.;, pressions for the relevarM1 excitation strengthgtotal

strengthsS; and partial strength® ;) on top of the excited
EJ:fEM BIMLi,J.Fma—f.dr.Fmax—1),  (6) 2 and 2 states. Next we address the evolution of

- B(M1;2],—J;) values in a S(v)-preserving transition path

to the set of mixed-symmetry statéd of Eq. (1), and com-  petween the (5) and S@6) DS limits. The results from this
pare to the full strength§; in Eq. (3). The analysis will be  saction will serve as a guideline for judging whether the

done first for the dynamic symmetries of the IBM-2 and for ¢ ;rrently available experimental data #iMo contains suf-
transitional cases which are of relevancéilo. In the next ficient information to qualify for a sum rule analysis.

section we consider specific types of Hamiltonians in order
to study the relative contributions to the sum rule of different
M1 branches from some low-lying states. o
A. U(5) and SO(6) DS limits

. M1 SUM RULES FOR F-SPIN INVARIANT

HAMILTONIANS In the U5) and SQ@6) DS limits, the eigenstates of the

Hamiltonian have quantum numbers which are the labels of
In order to clarify the discussion we analyze in this sec-irreducible representation§rreps of the groups in the
tion the contribution to theM1 sum rule from the two chains[11],

Un(6) ® Uy 6) D Ug(6) D Ug(5) D SO.L(5) D  S0.(3)

1 | l l ! !
[N] [N,] [N1,N;] (Ng,nz) (11,72)  {ei} J (7
and
U.(6) ® U 6) D U,(6) D SO,6) DO SO,(05 D S0,,3)
1 | | l ! !
[N] [N,] [N1,Nz] (01,02) (11,72)  {ai} J )
|
respectively. HereN;+N,=N, and F=(N;—N,)/2=N/2 U(5) SQ(6)

-k (k=0,1,...),while a; (i=1,2) are missing labels,

necessary to completely classify the SOSO(3) reduc- ny(0%) 0 N(N—1)
tion. Within these DS limits the average numberddfosons dtte 2(N+1)
in any Fspin symmetric state is given by

oty g NIN-D 2
Na(21) 2(N+1)  N+1
U(S) nd[F:mei(ndio)v(Tao)aJ]:nd1 N(N_l) 5
ng(25) 2 (10

2(N+1) N+1°
SQ(6): I’ld[F=FmaX,<0'=N,0>,(7',O),J]

N(N-1) #(7+3) As can be seemy(2*) is of order unity in the (B) limit
= 2(NT1) + 2NF1) 9 and is of ordeN in the S@6) limit. Therefore, the condition
ng(2*)>1/N, mentioned in Eq(5), is satisfied already for
N=4 within 16% forJ=2; and 11% forJ=2; near the
For the lowest symmetric states wilk-0;, 2; , and 2 and  SQ(6) limit. Substituting the values afy(J) into Eq.(3) we
7=0, 1, and 2, respectively, which are of particular interestobtain the following expressions for the tofslll strength,
to the present discussion, we have S;, from these states
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u(5) SA6),
woe e
S,¢ CG(NN—l) 3(N;—:§i—(l]\.l)—l)

whereC is given in Eq.(4). The states which contribute to thelgll strengths have the following classification in theés)Jor
SQ(6) limits:

U F U5 (ny,ny) SQ6) (o1,05) SAB) (71,7)

0 F max (0,0 (N,0) (0,0
27 F max (1,0 (N,0) (1,0
2; F max (2,0 (N,0) (2,0
21 ms Frmax— 1 (1,0) (N—1,1) (1,0)
17 e 31 ms Fmax— 1 (1,9 (N-1,1) (1,9
23 ms Fmax— 1 (2,0 (N-1,1) (2,0
15 ms 23 ms» 32.ms Fmax— 1 (2,2 (N-1,2 (2,3
13 ms 24 ms 33.msr 3ams  Fmax— 1 (3, (N-1,12 (3,2). (12)

The M1 operator of Eq(2) transforms as a211{2£H.01  In the U5) DS limit there are fewer alloweM 1 transitions
tensor under the () chain, Eq.(7), and as ariz1 (a1 due to an additional selection rule, namely, that transi-

tensor under the S®) chain, Eq.(8). Using standard tech- ti_ons can only connect () states (1,nz) such thatng
niques for coupling irrepE37] it is possible to show that Eq. — N1 N2 iS preserved. Analytic expressions B(M1) val-

(12) lists all mixed-symmetry states which are relevant for UéS forM1 transitions in the (5) and SQ@6) DS limits,
M1 transitions from the chosen initial statess0;, 2; which are relevant for the present discussion, are collected in
and 2, . The conservation al parity[26,38 further restricts Table I.

» In general, we see from E@13) that the total strengths,
the allowedM1 trgn5|t|ons. For SCB) symmetry ea_ch state S;, of Eq.(11) are sums of contributions involving different
can be characterized by a definite value dfparity, my

—(—1)7""2, and theM 1 operator hasry=+ 1. Altogether SO multiplets. Specifically, if we denote bg"™ ™ the
the only allowedM1 transitionsJ(7,0)—J;(7y,7,) in the summedM 1 strength from the initial statto all final states

U(5) or SO6) DS limits are }Mt(;] J;=J,J=%1 in a given S@) irrep (71,72), we then
n
u(s5),
27(1,0—-27 41,0, sofzsgl;l), (149
1
2;(20—-2;nd2.0;  1pe3imd 1.0,
(133 (1,0), (2.1)
5Q6), TS (14b
0;(0,0—1; {1, w20 6D

=S+ s+ s, 149
2/ (1,0-2{ nd1,0; 151625 ms 3 md 2., Sy TS TS Sy (149

2;(20—2;,d2,0; 11 3e31md1LD); . _
. N N From Table | we deduce the following expressions for the
13 ms24ms 33.4md 3, D). (13D separate S®) contributions to these strengths:
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TABLE I. Some relevant analytic expressions BfM 1) values in the (5) and S@6) DS limits for M 1
transitions from symmetric state§ € F,,,) to mixed-symmetry states=EF,,,—1) and S@5) quantum
numbers ¢, ,7,) as indicated. The factdt is given in Eq.(4).

Transition us) @ SQ(6)
01 (0,0)=1{md1,1) 0 %b
27 (1,00—27 ,{1,0) S(N—1) 3(N+4)(N+2)(N-1)
’ N AN(N+1)
2/ (1,00-1;5,.{2,2) 0 3(N-1)(N-2)
10(N+1)
21 (1,0)-25,{2,1) 0 3(N-1)(N-2)
4(N+1)
27(1,00—=3F, (2,1 0 6(N—-1)(N-2)
1(1,0)-3;1{2,1) s
25(2,00-17 (1,1 21 3(N+5)(N+4)
2(2,0)—17,{1,1) cT wb
27(2,00—-3F (1,1 24 12(N+5)(N+4)
2(2,0)=31n{1,1) cs e
2 (2,0)—2;5 ,{2.0) S(N=2) 3(N+5)(N+2)(N-2)
’ N 10N(N+1)

3From Ref.[39].
bFrom Ref.[36].

u(s) sQ(6), Sor =83, (163
1
, 3N(N-1
Sélrl) 0 C# (1.0)
N+1 EZI:SZI , (16b)
(10 _6(N—-1) 3(N—=1)(N+2)(N+4)
S;i7 C (11) , «(2,0)
1 N AN(N+1) S,r=S57+ S, (160
2 2 2
52D 9(N—-2)(N—-1)
2y 0 4(N+1) Comparing with the corresponding expressions for total
strengths in Eq(14), we see that th&11 strength from the
LD 9C C9(N+4)(N+5) J=0; ground state arises entirely from the transition
2, 14N+1) 0;(0,00—1; ,{1,1), e.2or=Sp+ in Eq. (16a. However,

20 3(N-2) 3(N+5)(N+2)(N—2) thf M1 transitions from the symmetric excited state§,ahd
.1 C 25, to the mixed-symmetry states of E(.) exhaust only
2 N ION(N+1) part of the total strengths. Using E@l5) these partial
strengths in the (5) and S@6) DS limits are found to be

3,1 T2N—2)(N-3
S cAN—2IN=3) 35(le 0 e
u(5) Sq6),

o , ) i s 6(N—1) 3(N=1)(N+2)(N+4)
whereC is given in Eq.(4). As mentioned in Sec. |, so far 2! CT AN(NF 1)
only the mixed-symmetry states shown in Et). have been
identified in *Mo. Using their S@5) classification given in 6(2N—1)  3(N+5)(1IN?+30N—14)
Eq. (12), we see that empirical information is available only 22; C N 35N(N+1)
for M1 strengths to S®) multiplets with (71,75)
=(1,1), (1,0), and (2,0). No comparable firm information (17

exists at present on the multiplets with &Dguantum num-

bers (2,1) and (3,1). Considering thElL strengths that have whereC is given in Eq.(4). In order to be able to apply the
been measured, the partiglet observefistrengths 2 ;, of  sum rule of Eq(3) to the existing data, we need to assess the
Eq. (6) can be transcribed as goodness of the approximation in replacing the tdvl
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strengthsS; by the partial strengths ;. From Eqgs(11) and
(17) we get the following expressions for the rati¥$J)
= EJ /SJ .

U(5) SA6),

(N+2)(N+4)

Y(27)=3,+1S;+
(1) 21 S21 W

1

(N+5)(1IN2+ 30N — 14)
35(N3—N?+8N—2)

Y(25)=3;1S;
(18

We see that in the () limit Y(J)=1 for J=2;,2; and
hence the seiM of mixed-symmetry states in Eql) ex-
hausts the totall1 1 strength. This is not the case in the(®D
limit in which Y(J)<1. In this case, the fractioN(J) of
exhausted strength dependsMrand is seen to be a mono-

tonic decreasing function of the boson number. For example,

from Eq. (18) we haveY(2;)=0.58, 0.41, and 0.35 and
Y(2,)=0.85, 0.61, and 0.51 foN=5, 10, and 15, respec-
tively. For largeN the asymptotic values aré(2;)—0.25
and Y(2,)—0.31. We conclude that for nuclei near the
SQ6) DS limit, the approximation involved in the substitu-
tion X, ;< S; is better for smalN and becomes less justified
for large values olN. To exhaust at least 75% of the total
strength requirebl<3 for J=2; andN<6 for J=2; . Fur-
thermore, for a giverN,222+ is seen to provide a better ap-

proximation to the total strengtﬁzz, than221+ to Szl+. This

suggests that near the @D limit, a sum rule approach,
based on the currently available data, is likely to be reliabl
for moderate values dfl when applied to thd=0; andJ
=2, states but not for thd=2; state.

B. U(5) to SO(6) transition

The majority of transitionaly-soft nuclei lie between the
U(5) and S@6) limits and retain good S(B) symmetry. The

main features of the evolution in structure accompanying th
transition between these two DS limits can be studied b

considering the following schematke-scalar Hamiltonian:

Fi=al (1= 0~ 4y (@0, (@, Q)+
(19

Here Q,=[dxs,+s/xd,]® (p=m,v) is the quadrupole
operator relevant for this transition region akidis the Ma-
jorana operator in Casimir forifill]. The Majorana term is
diagonal and determines the energy stpftoportional to\)
between eigenstates in accord with thEBirspin quantum
numbers. Neither the parametemnor the parametea in Eq.

PHYSICAL REVIEW C 65 024319
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FIG. 1. d-boson contentny(J), of the J=07, 27, and Z
states(top) and the corresponding ratios of tot&l1 excitation
strengthsSy+ /S, and S, /S, (bottom as a function of. Cal-
culations are done with the Hamiltonian of E@.9) with boson
numbersN =4 andN,=1 (N=5).

below are done wittN,.=4 andN,=1(N=5) which are the
appropriate boson numbers fétVio.
The top part of Fig. 1 shows thetboson contentny(J),
of the symmetricJ=0; , 2; , and 2 states withF =F .,
as a function of. The curves shown interpolate between the

eU(5) and S@6) values of Eq(10) for N=5. The lower part

of Fig. 1 shows the corresponding ratios of strengths,
RZI(J):SJ/SZI, evaluated as in Eq3). For given boson

numbers these ratios depend only on the structural param-
eters of the Hamiltoniafin this case only o) and not on
parameters of thiM1 operator in Eq(2). The sensitivity of
such ratios to the transition path between thé&)land the

L§O(6) DS limits can be used to determine the location of a

iven y-soft nucleus along the transition leg between these
wo DS limits.
The Hamiltonian of Eq(19) is F scalar and although it

does not have dynamic symmetry for an arbitrary valué,of
it still always has S() symmetry. Away from the (5) and
SQ(6) DS limits, the eigenstates are no longer pure with
respect to 6) and S@6). However, they do retain good
SQ(5) quantum numbers and, consequently, the pattern of
allowed M1 transitions shown in Eq13b) persists also in
the transition region. In particular, the ) and d-parity
selection rules foM1 transitions are still in effect and the
total strengthsS;, maintain the same S6) decomposition
as in Eq.(14). Figure 2 displays the ratios of partial to total
strengthsY(J)=3,/S,, as a function of for J=07, 2],

(19), which sets the overall energy scale, affects the structuréd % . As shown, the partial strength, to the set\ of
of wave functions. The latter are completely determined byMx€d-symmetry states of E¢l) exhaust the sum ruleS:
the parametet of H. For {=0 the Hamiltonian possesses cOmpletely andS,: to a large extentmore than 85%)
the U5) DS, while for /=1 it attains the S@) DS. By throughout the transition region. Less than 15% of th&
varying ¢ from 0 to 1 we can study in a simple way the strength from theJ=2; state goes into the S6) irrep (3,1)
transition between the two limits. The calculations presentedvhich is not included in the partial strengmzz of Eq.
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o ' ' ' ' of TABLE Il. MeasuredM1 transition strengths if*“Mo in units
: \1_ of u2 (Refs.[29-32). The notation “n.o.” denotes cases where the
08l 25 - corresponding transitions were too weak to be observed, although
T other decay branches of the issuing level were detected. The states
o 061 1 ! 17,3;,2;, an(_j % are the main fragments qf the] 1e. 3_Ims,
= 21+,m5, and %msmlxed-symmetry states, respectived{J) e,y is the
04r 1 experimental summel 1 strength from the initial stat&
0.2r i Observable Experiment
% 02 04 06 03 1 B(M1;0; —1;) 0.473)*
¢ B(M1;0f —13) 0.14(5)?
FIG. 2. Calculated ratios¥=3,,/S; of partial to total M1 S(07) expr 0.61(7)

strengths as a function gffor J=0;, 27, and Z andN=5. The
partial strength& ; to the mixed-symmetry states of Eg) exhaust

cot + 4a
the sum rules of Eq3), So: completely, ands,; to more than 85% Egm 1?—’%; 006(())014;;)1ad
. e . o1 — 4y . '
in the whole U5)-to-SQ(6) transition path. B(M1:2; —2;) 0.062)
B(M1;2] —23) 0.486)2

(160. On the other hand, in most of the transition region, a

Lo+ +
considerable fraction d¥11 strength from thed =27 state is B(M1i21+—>21) 0'07(2)2
not concentrated in the above set of mixed-symmetry stateE(Mljziﬁzi) 0'0:{1)7,
About 40% of the total strengtszf goes into the S() :Emiéﬁ:;i; égﬂg;c
irep (2,1) which is left out of the partial strengihy+ in Eq. B T
(16b). We conclude that foN=5 throughout the transition g2, 0.677)
region between the 8) and S@6) DS limits, the partial
strengths®, ; of Eq. (6) provide an adequate approximation to B(M1;25 —17) 0.263)2
the total strengthss; of Eq. (3) for the J=0; andJ=2,  g(m1;2;—1;) n.od
states but not for théd=2] state. This identifies the initial B(M1;2; —23) n.od
statesJ in ®*Mo which qualify for a sum rule analysis based B(M1;2} —27) <0.02
on the measuredM1 strengths to the mixed symmetry B(M1;2f —27) 0.0956)
states of Eq(1). B(M1;25 —27) 0.3511)°

B(M1;2; —27) 0.009' P
IV. APPLICATION TO ‘MO B(M1;2; —27) n.o?

.t + 20c
The primary goal of the present investigation is to extraclB(Ml'22 —3;) 0.34"4

structure information, via a sum rule approach, out of the . -

recent extensive data on mixed-symmetry states*Mo. S(22)expr 1.05'35

Table Il displays a compilation of the available dataMi aFrom Ref.[29].

transitions from thed=0;, 2/ , and Z states in®Mo [29—  bprom Ref [31],

32]. This data has been used to identify the A¢tof mixed-  cgrom Ref.[30].

symmetry states listed in E(L). The experimental summed drrom Ref.[32).

M1 strengthsS(J) eyt given in Table Il correspond to the

calculated partial strength®; of Eqg. (6) to these mixed- 1/N=0.2 with respect tmy(2;) and, as in Eq(5), extract
symmetry states. In accord with the discussion of the previfrom the data a relative-boson content ratio

ous section(see in particular Fig. )2 for a y-soft nucleus

such asMo with N=5, these partial strengths exhaust to a ng(07)

+ + 1 11
large extent theM1 sum rule forJ=0; andJ=2; . For o ~0.58" . (21
these states, it is therefore justified to compare the measured Na(2;) 9o

rati
atlo We find that theJ=0" ground state of*Mo contains more
S(07 ) e than half as manyl bosons as th@=2, state. This number
R2+(01+)expt= " =0.58'13 (200  is considerably higher than that for a spherical vibrator
2 23 ) expt [ng(07)/ng(25)=0 in the U5) DS limit] and is in fact

. ] closer to the value expected for &-unstable rotor
with the calculated rat|cSO+/822+ of total strengthsS; ob- [Ng(03)/ng(23)=2/3 in the S@6) DS limit with N=5].

tained from the sum rule in E@3). Since between the(@)  These findings are consistent with previous observations that
and S@6) DS limits the value ofhy(2;) varies in the range the M1 andE2 strengths involving mixed-symmetry states
2—2.5 for N=5 [see Fig. 1 and Eq10)], we can neglect in ®*Mo compare favorably with the S6) predictions/29—
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1.0 . - . - IBM-2, the justification for applying it to the new data on
%Mo is less straightforward and relies on the following as-
0.8 T sumptions.(i) All strong M1 transitions between low-lying
o P e states of**Mo can be modeled by the IBM-Zii) F spin is a
;5 0.6 - ZXP. —— good symmetry for the states considered®#Vo. (iii) The
B T SO e ] structure of®*Mo is consistent with a (5)-to-SQ6) transi-
g, 04r e 7 tion path.
= g The first assumption is necessary to justify the compari-
02 - “ Theo. i son of the experimental summad1 strengths to the sums
e . . calculated in the IBM-2. Sizeable, hypothetical contributions
0'00 02 0.4 0.6 038 | to th_e experimental sums from states ar_1d degrees of freedom
Us) ¢ SO(6) outside the IBM-2 space could potentially obscure the re-

sults. However, the fact thafl 1 transitions in Table Il with
FIG. 3. The calculated-boson ratio of theJ=0; andJ=2; strengths larger tham=0.1u? are understandable in the
stategdashed curveas a function of compared with the empirical  |BM-2 suggests that foP*Mo the excluded degrees of free-
value (solid line with experimental uncertainties indicated by the gom are not likely to have a significant impact on the em-
dotted lines of Eq. (21) extracted from the measurédil strengths  irical summed strengths in the considered energy region.
in *Mo. Futhermore, eventually existing, additional strength can be

accounted for, to a large extent, by renormalizing the param-

31. However, that comparison relied on an _assumption foBters of theM 1 operator in Eq(2). In the present analysis
the parameters of thd 1 operator(boson effectivey factors e avoid any assumption on these effective-bogdactors
andE2 operator(boson effective quadrupole chargds the by considering ratios of strengths.

present approach such an assumption is avoided by using The primary motivation for the use of the IBM-2 in the

ratios of M1 strengths. Thel-boson ratio of Eq(21) is ex-  present sum rule analysis is the model's impressive success
tracted directly from the data and its value is independent of, pregicting the experimental data #Mo [29-32. The
any model parameters. IBM-2 interpretation of these low-energy structures as

Thed-boson content is_sensitive_ to the transition path be'mixed—symmetry states implies that thél excitations in-
tween the W5) and SQ@6) limits, which are not easy to dis- yqlved are predominantly of orbital character, and suggests
tinguish otherW|se{4O]. We can therefore use its emp|'r|ca| that in %Mo the spin contribution to th#11 strength at low
value to pin down the location dt'Mo along the transition  energy is suppressed. This conjecture is supported by recent
leg between these limits. For that purpose we show in Fig. $nicroscopic studies of mixed-symmetry states in this nucleus
the calculated rationg(0;)/ng(2;) as a function of{  [34,35. Results of a realistic calculation within the
(dashed lingand the valugng(0;)/nu(2;)]s,~0.6 of EQ.  quasiparticle-phonon modéQPM) [35] indicate that quan-
(21) extracted from the datésolid line). The comparison titatively, theM 1 strengths resulting from using the standard
between the calculated and empirical values strongly sugvalues for the spin quenching factog &0.6—0.7) are
gests a structural parameter 0.7 for the IBM-2 description larger than the experimental ones by at least a factor of 2.
of Mo and unambiguously identifies this nucleus to beThe best overall agreement with experiments is reached for
closer to the S@) y-unstable rotor rather than the(%) 0gs=0.3. Even forgs=0.6 the spin contribution is consis-
spherical vibrator. tently smaller than the orbital one and is about half the or-

Besides theV1 properties, one may attempt to considerbital strength in the transition{]ms—>22+ for which the larg-
the knownE2 rates in order to determine the appropriateest discrepancy between theory and experiment occurs. The
parameter space of the IBM-2 Hamiltonian féVo. An low-lying spin transitions were found to be very sensitive to
observable which can distinguish between th&)land the  small components of the wave functions, yet the appropriate
SQ(6) DS limits is the shape invariatt, [41,42 which can  quenching mechanism in the QPM has not been identified so
be well approximatedi41] by the experimentally accessible far. A shell model calculation foP*Mo [34] shows the is-
B(E2) ratioK§P"'=(7/10)B(E2;4; —27)/B(E2;2; —0;). ovectorM1 ground state excitation strength to be concen-
For largeN,K,=1.4 in the U5) limit and K,=1 in the trated in the ];msstate and to be composed of almost equal
SQ(6) limit, with small deviations for finiteN [42]. Unfortu-  spin and orbital contributions. This considerable fraction of
nately, for ®*Mo the measured valug43,44 is K3  orbital M1 strength is to be regarded as a lower limit on the
=1.16(17) and hence the large error bars prohibit any defiactual orbital contribution, given the small model space used
nite conclusion about the symmetry characte®®flo from  in the calculation {&Sr core, employing large effectivie2
E2 data. More precise lifetime experiments on low-lying charges neglect of important orbitals, e.g7(ps/2,97/),
symmetric states would be of interest for this issue. and insistence on pure isovectdtl transitions. Clearly,
large-scale shell model calculations are desirable to pin down
the relative orbital and spin contributions to thel strength
in %Mo. Empirically, properties of thed=1; . state ob-

Some critical remarks on the implementation of td served in®*Mo were found to be consistent with systematics
sum rule are in order. While E¢B) is an exact relation in the of the scissors mode extrapolated from the deformed rare

V. CRITICAL EXAMINATION OF THE ANALYSIS
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earth nuclei[29]. For the latter, the predominantly orbital total strengths, one can avoid any assumption on the
character was empirically established by a comparison oéffective-bosory factors and thus eliminate to a large extent
(v,7'), (e,e'), and (p,p’) spectra[45]. It will be worth-  a model dependence from the extracted ratiosi dfoson
while in the future to verify experimentally to what extent contents.

such dominance of orbital character for low-lying 1 Before the sum rule can be applied, one needs, however,
strengths persists also in transitional nuclei such®®80.  to be sure that the experimental sumniéd strengths to the
This can be investigated by a comparison with inelastic hadmixed-symmetry states of E¢L) exhaust a significant frac-
ronic scattering and by exploiting the fact that while thejon of the totalM1 strengths. This was verified to be the
orbital contribution is enhanced by deformation, the spin parEase’ analytically, for the (8) and S@6) DS limits and,

haﬁ_r?nticorrelgtion with pollec;tivitEéG]. . is th numerically, throughout the transition region, between these
e second assumption of gosdspin symmetry IS the i The analysis employe#-spin scalar and S®) in-

basis for the derivation of the sum rult_e In E(q;)._Vano_us variant Hamiltonians relevant for-soft nuclei. The presence
procedures have been proposed to estimaté thein purity of an additional S() symmetry restricts the allowell 1
of low-lying states in nuclef47]. These involve examining . y y .

transitions and foN=5 enables the mixed-symmetry states

M1 transitions (which should vanish between purE
=F,.., States[36]), magnetic moment§48,49d, the differ- of Eq. (1) to exhaust more than 85% of the sum rule for the
max 1 ’ )

ence in proton-neutron deformatiofs0], and properties of J=01 and 2 states. We have applied the sum rule’tblo
F spin multiplets[51,52. In the majority of analyses the-  and deduced from the data a relatiekboson content ratio
spin admixtures in low-lying states are found to be a fewny(0;)/ny(2;)~0.6. The extracted value is independent of
percent € 10%), typically 2%- 4% [47]. Although the em- any model parameters and suggests the structur&nad
pirical M1 strengths shown in Table Il are fragmented, thebeing close to the S@) DS limit of the IBM-2. The results
pattern of dominant transitions to the mixed-symmetry statesbtained show that existing and future high-quality data on
in %Mo as well as their energy systematics agree favorablexcited mixed-symmetry states in nuclei can qualify for a
with the assignment ofF-spin quantum numbers. The sum rule analysis from which one can extract valuable
smallness of the observed1l rate, B(M1;2; —2;)  model-independent structure information. The present analy-
=0.06(2)uy , which isF spin forbidden, is a benchmark for sis relies on the IBM-2 interpretation of mixed-symmetry
the anticipated=-spin mixing in low-lying states of*Mo. states as predominantly orbifdl1 excitations. This interpre-
The last assumption is adequate fesoft nuclei and en- tation is consistent with presently available data °fvio
sures that the SG) symmetry is preserved. This additional [29_32 and with microscopic calculatiorf84,35. Further
symmetry played a significant role in the current analysis bytheoretical and experimental work on orbital and spin exci-

imposing further constraints on the allow#til _transitions, tations is highly desirable to verify the character\i ex-
which in turn enabled the observed four mixed-symmetry jo+ions in transitional nuclei such 84vio.

states of Eq(1) to exhaust an appreciable fraction of the sum
rules,S;, for J=0; , 2, .
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