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Mixed-mode shell-model theory for nuclear structure studies
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We introduce a shell-model theory that combines traditional spherical states, which yield a diagonal repre-
sentation of the usual single-particle interaction, with collective configurations that track deformations, and test
the validity of this mixed-mode, oblique-basis shell-model scheme®®fy. The correct binding energy
(within 2% of the full-space resylias well as low-energy configurations that have greater than 90% overlap
with full-space results are obtained in a space that spans less than 10% of the full space. The results suggest
that a mixed-mode shell-model theory may be useful in situations where competing degrees of freedom
dominate the dynamics and full-space calculations are not feasible.
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[. INTRODUCTION ing the periodic motion of a well-deformed intrinsic configu-
ration about some axi6]. While, in principle, these modes
Every quantum-mechanical problem involves the solutionare reachable through multiple single-particle excitations, a
of an eigenvalue equation. In practice, there are only a fevfull many-body theory is required to offer a proper interpre-
exactly solvable analytic models, and these are realized onfi@tion of this collective motior7,8].
rarely (if even in nature, so one is often forced to consider In this paper we explore the efficacy of a mixed-mode
numerical solutions. In addition, since in the latter case théhell-model scheme by considerififjg, which is known to
dimensionality of a model space can be very large, especialljpanifest strongly competing single-particle and collective
when dealing with realistic systems, such as nuclei, wherélegrees of freedom. In particular, we examine convergence
the number of particles is more than a few but less than whaaf results towards those of full-spacé @ sd-shell calcula-
is needed to justify the use of statistical methods, it is fretions as a function of the number of particles in excited
guently necessary to consider various approximations, insingle-particle levels and the number of irreducible represen-
cluding, especially, basis truncation. tations (irreps of SU(3). The results show that a relatively
The usual approach is to select a convenient orthonorma&mall oblique space gives the right relative energy for the
basis in which to carry out a calculation. The use of a nonK=2 band that leads to the correct order for all the low-
orthogonal scheme, though, in principle, no more difficultenergy levels. The structure of the states is further tested
than using an orthogonal one, is only justified if it is driven against the exact full-space results by examining the overlap
by physical considerations. For example, when a system sugf calculated eigenstates. We begin by reviewing the math-
ports competing modes and a “preferred” basis can be ass@matical underpinning of the theory in Sec. Il. Results are
ciated with each, it makes sense to consider a nonorthogongresented in Sec. Il with conclusions and a discussion on
basis comprised of leading configurations of each of thes@pplicability of the approach given in Sec. IV.
modes. Finding a “good” orthogonal basis, which is inti-
mately related to a “good{but not exagtsymmetries can be
as difficult as solving the problem itself; nonetheless, this is Il. MATHEMATICAL BACKGROUND
usually key to understanding the dominant modasderly-
ing physics of a system and outcomes of numerical calcula-
tions[1].

The success of the current approach, which will be dem-
onstrated in detail in the following section, can be traced to

The mixed-mode system of interest to us seeks to accon]fhe fact that the spherical shell-model states are eigenstates
modate thesingle-particleandcollective-quadrupolelegrees of the one-body HamiltonianXe;a;a;) while the two-body

of freedom that dominate the low-energy structure of atomicP@rt of the Hamiltonian %, ;Vy, ;aaja.a) is strongly cor-
nuclei[2]. Manifestations of important collective excitations 'elated withQ-Q, which is diagonal in the S@) basis[9].
can also be found in many other branches of phy@gsThe By combining spherical shell-model states and($tates
mixed-mode nature enters in nuclear physics because 1€ accommodates, from the onset, the dominant modes of
single-particle and collective-quadrupole modes have similafh€ System. _ _
excitation energies, both being small relative to intrashell  The usual procedure for solving the eigenvalue problem
excitation energief2,4]. Both the vibration and the rotation Hv=M\v is to cast it into the form of a matrix equation. In a
are manifestations of the collective moti¢8], vibrations  nonorthogonal basis 0], this matrix form includes the over-
being close to spherical shape oscillations and rotations béap matrix, O;; =(jliy, and has the form 2i[Hijv;
—\Oj;v;]=0. For an orthonormal basis the overlap matrix
becomes the identity matrixd(; — &;;) and the matrix form
*Corresponding author. Email address: vesselin@phys.Isu.edu of the eigenvalue problem %;H;;v;=\v;. When the over-
"Present address: Physics Directorate, L-414, Lawrence Liverap matrix® is positive definite, the Cholesky algorithm can
more National Laboratory, P.O. Box 808, Livermore, CA 94551. be used to solve the generalized eigenvalue proHlEth
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For large spaces this eigenvalue problem can be solved effirave to be evaluated in each subspadg andH;;) as well
ciently by using the Lanczos algorithfaZ2]. as between the spaceld ; andH ), see Eq(3). TheH ;4
For the calculations reported here we use a double mixedsart is normally given and evaluated in a spherical single-
mode basis. The first set consists of spherical shell-modeiarticle basis. By transforming the Hamiltonian to a cylindri-
states(ssm — statgsexpressed in terms of spherical single- cal single-particle basis one can obtain thg part of H. In
particle coordinatesn(j). The second set has a good @Y  order to compute the off-diagonal blocks,; andH;,; and
structure(su3 statesthat tracks nuclear deformatidi.3]; overlap matrix elements between &Jand ssm basis states,
this basis set is given in terms of cylindrical single-particleboth basis sets are expanded in a basis of Slater determinants
coordinates. By construction both sets have the third projeadsing cylindrical single-particle states. For #84) and(9,2)
tion M ; of the system’s total angular momentuhnas a good irreps this is an expansion into 2120 Slater determinants at
guantum numbef14,15. Schematically, these basis vectors most; each ssm state, which itself is a single Slater determi-
and their overlap matrix can be represented in the followinghant in a spherical single-particle basis, typically expands
way: into a smaller number of cylindrical-basis Slater determi-
nants which is less than 1296. We do not expand th&35U
e, :Ssm — basi states into spherical-basis Slater determinants because that
j, 1) would require significant fraction of the entire spherical
shell-model space, defeating the rationale of our approach.
Taking into account the significant number of Hamiltonian
) Q,=e,-E, (2 matrix elements Ki;; and H;z) between multicomponent
! al a I . .. . .
states, it should be clear that this is the most time consuming
part of the calculation. The extra labels associated with the
intrinsic quadrupole moment of each basis state is used to
produce well-structured bandlike matrices and to speed up
the calculation. Specifically, basis states are preordered ac-
Hog Ha cording to their deformation as reflected dynd during the
:( ) €] evaluation ofH a Ae selection rule is applied.
It is important to point out that the knowledge of the
) ) overlap matrix® and the matrix elements @f in the two
In the above,a and i span the following rangesa  gpaces K.z, Hij) is not enough to obtain the correct off-

=1,..., dimssm — basjsandi=1, ..., dim(su3 — basis  giagonal blockH,,; . This is clear from the following explicit

Calculations in a nonorthogonal obligue basis require an . . . .
9 N q expression foH ,;, which contains a summation along)

evaluation of the matrix elements of physical operators plu : . .

a knowledge of the scalar produa,( E;). While it may be ?hat lies outside of the/{,i) model spaces,
desirable to have an analytical expression for the overlap

matrix, as we have for the single-particle overlap matrix Hu=>, Haﬁ®ﬁi+2 Ho.50%5 - (5

[16], for practical purposes it suffices either to know the B B

representation of each basis state in a common set that spans , ) ) )

the full space, which is counter to the overall objective of | NUS & direct evaluation df; is required.
reducing the number of basis states to a manageable subset,'t is _mstructl\{e to consider a ge_ometncal visualization (_)f
or to expand one set in terms of the other. For the preserwe obllque—bagls:—state concept. Since a se@ of vectors _deﬂnes
work, thee,,, which can be represented by a single machiné NYPerplane, it is natural to ask the question: “What is the
word in a spherical single-particle scheme, were expanded {Andle between hyperplanes defined by the bases under con-
a cylindrical basis, which is the representation for our col-Sideration?” To answer this question, first consider the angle

lective SU3) basis vectors. This transformation is handled between a normalized $8) basis vectow and the sub-

by an efficient routine that exploits two computational aids:SpaceV spanned by the spherical shell-model basis vectors.
bit manipulation via logical operations and a weighted searciThe length of the projected vectar, eV is given by
tree for fast data storage and retrie{/h?]. In the best case cosg,V)=cosé=|v\|. The spaceV of the spherical shell-
scenario a transformation of this type has to be done at Ieaﬁ%odel basis vectors induces a natural ba;@i:m the SU3)

once per ssm basis stagg. We transform the ssm basis S e .
states since the result is usually a vector with fewer compoSPace 0.=n,E;). The angle between each new basis vector

nents than a typical SB) basis state. There is a simple way N, and the spac¥ Wi.II again be Fhe length of its prqjection
to calculate the overlap between stdte8]; however, for the into the space/, but it has the nice property that this set o_f
calculation of matrix elements it is better to transform eachorthogonal basis vectors stays orthogonal after the projection

basis vectors: .
(Ei :su3 — basi

I o 1 Q
overlap matrix: ®=
verlap iX aQ+ 1

. . . HSSI‘T‘IXSSI’n HSSITD<SL13
Hamiltonian matrix: H=
Hsu3><ssm HSU3><SU3

e, vector in the basis used by the &) states. into the space/,
Matrix elements of the one-body and two-body Hamil- R R
tonian cosf,=cogn,,V)=|n./|,
fo, 1 tof - i 2.\a i@ o
H=2 &a] atyz > Viia ajad, 4 Nev= 2 My(Ei-€,)€,= 2 N,0;,&,,
1 1,] I, I,a
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TABLE I. Labels used to distinguish various calculations and the correspoiijrg0 dimensionalities.
The leading S(B) irrep is denoted by8,4) while (8,4&(9,2) implies that(9,2) irreps have also been
included. The SMf) spaces correspond to spherical shell-model partitions mvithlence particles excited
out of theds, shell into thes,;, anddg, levels.

Model space (8,4) (8)4.(9,2) SM(0) SM(1) SM(2) SM(4) FULL
Space dimension 23 128 29 449 2829 18290 28503
% of the full space 0.08 0.45 0.10 1.57 9.92 64.17 100
- : 2 i J_ SM(2) approximation is of particular interest since it allows
Nl =§ 2| O :;j n,0i,n.0;,. one to take into account the effect of pairing correlations

(one pair maxin the “secondary levels” §;,, andd;, for
theds shel) with a minimum expansion of the model space.
The SU3) part of the basis includes two scenarios: one with
|ﬁaV|2=ﬁs'® .OT. ﬁs, g?ly the leading rgpresentatiqn of @)ingluded, which for
Mg is the (8,4) irrep with dimensionality 23 for théV

=0 space and denoted in what follows by append8g) to

the corresponding SNh) notation; and another with the
(8,4) irrep plus the next most important representation of
SU(3), namely, the(9,2). The(9,2) irrep occurs three times,

In matrix notation this reads

where the natural basis vectoﬁg are eigenvectors of the
symmetric matrix® - 07

.
©-0'-n,=&n,. ®  once with $=0 (M,=0 dimensionality 15and twice with

N TP g s ) S=1 (M;=0 dimensionality 2 45=90). All three(9,2) ir-

It follows that |n.y|*=n,-0-07-n,=z"n,-n,=&* and  reps have totaM,=0 dimensionality of 1590=105. The

thus the matrix®- O is positive definite |n,y|?=¢2=0)  (8,4&(9,2) case has totall,=0 dimensionality of 23105

with eigenvalues determined by the @sThis construction =128 and is denoted by appendi(®4)&(9,2) to the corre-
allows for a simple visualization of the oblique-basis spacesponding SM() notation. In Table | we summarize the di-
Choose thex axis to correspond to the spatkof all the  mensionalities involved.

spherical shell-model basis vectors and represent th@SU  Now, the method described at the end of the preceding
space as a collection of unit vectors each at an angle cossection is used to visualize the structure of the oblique-basis
=g with respect to thes axis. In the following section this space. First consider the $®) space enhanced by the @Y
construction will be applied to the geometry of oblique-basisirreps (8,4&(9,2). Since the SNR) and (8,4&(9,2 spaces
space calculations to demonstrate the relative orthogonalitsire both relatively smalisee Table )l we expect the basis

of the two vector setse, andE;. vectors in these spaces to be nearly orthogonal. This orthogo-
nality is clearly seen from inséd) in Fig. 1. Inset(b) in Fig.

1 shows a loss of orthogonality between the (8Mvand the

_ . . ) ) . (8,4&(9,2) basis vectors. This is due to the fact that @M

.. this section the oblique-basis technique is tested fogpace is about 64% of the fudti-space and therefore there is

Mg, which is a strongly deformed nucleus with well- 3 relatively high probability that some linear combinations of
known collective properties and one of the best manifestathe SU3) basis vectors lie in the SM) space. Indeed, it can
tions of the Elliott's SU3) symmetry{8]. In terms of dimen-  pe shown that there are five vectors fré8¥)&(9,2) that lie
sionality of the model space, adding a few leading(BU jthin the SM4) space. Such redundant vectors must, of
irreps to a highly truncated spherical shell-model basis regoyrse, be excluded from the calculation.
sults in significant gains in the convergence of the low- e now turn to a consideration of the main results of the
energy spectra towards the full-space result. In particular, the
addition of leading S(B) irreps yields the right placement of
the K=2 band and the correct order for most of the low- @
lying levels. Indeed, an even more detailed analysis show:
that the structure of the low-lying states is significantly im-
proved through the addition of a few &) irreps. The
Hamiltonian used in our analysis is the Wildenthal interac-
tion [19].

Our model space fof*Mg consists of four valence pro-
tons and four valence neutrons in thé® sd shell. The FIG. 1. Orthogonality of the basis vectors in the oblique geom-
m-scheme dimensionalityM ,=0) of this space is 28503, ety The SU3) space consists d8,4& (9,2 basis vectors with the
which in the figures that follow is denoted FULL. To test the ghell-model spaceisSM(n) with n=2 and 4 indicated by a hori-
effects of truncations, calculations were also carried out 0Rgntal line.(a) SM(2) and the natural S(3) basis vectors an¢b)

Ill. AN ILLUSTRATIVE EXAMPLE

(b)

SU(3) basis SU(3) basis

SM(2) space SM(4) space

permitting n particles to be excited out of the lowedt,
orbit, i.e.,dg,’zn(dg,zsl,z)“, and are denoted as SN). The

SM(4) and the natural S(3) basis vectors. In the latter case there
are five SW3) vectors that lie in the SK) space.
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-76

are shown in Fig. 3. As can be seen from the Fig. 3 results,
M(0) =S an SM4) calculation (64% of the full model spageis
B B e — —0- SM+ one SU(3) irrep needed to get the ordering of the lowest angular momentum
swit) st U8 e states correct. Also notice that in this case the third and
-82 HIOST e fourth energy levels are practically degenerate. On other

hand, it only takes 0.5% of the full space to achieve compa-
rable success with SB). In particular, Fig. 3 shows that an
SU(3) calculation using only thé€8,4) and(9,2) irreps gives
the right ordering of the lowest levels. Note that the first few
low-energy levels for SNR) are close in energy to the cor-
responding low-energy levels for th€3,4&(9,2) result.
Since these two spaces are nearly orthogdseé Fig. 1,

-85

-88

-91

Ground State Energy ( MeV)

-94 ' + these two sets of levels mix strongly in an oblique calcula-
-2000 4000 10000 16000 22000 28000 tion and yield excellent results. The comparable ground-state
Number of Basis States energies of the SMZ_) and (8,4&(9,2 configurations can
also be seen from Fig. 2.
FIG. 2. Calculated ground-state energy f8¥g as a function of The spectra shown in Fig. 3 are to be compared with the

the various model spaces. Note the dramatic increase in bindingesults from the oblique-basis calculations shown in Fig. 4.
(3.3 MeV) in going from SM2) to SM(2)+(8,49&(9,2) (a 0.5%  From this comparison one can see that the correct level struc-
increase in the dimensionality of the model spagnlarging the  ture can be achieved by using 1.§%M(1)+(8,4)] of the
space from SNR) to SM(4) (a 54% increase in the dimensionality full sd space. However, one should also notice that for the
of the model spageadds 4.2 MeV in the binding energy. SM(0)+(8,4) space, which is only 0.2% of the full space and
the minimum oblique-basis calculation, the results are quite
oblique-basis calculation, starting with ground-state convercjose to the correct level structure. Despite the fact that the
gence issues. The results shown in Fig. 2 illustrate that thground-state energy of the oblique-basis calculations is
oblique-basis calculation gives good dimensional converhigher than the ground-state energy for the (@Mype cal-
gence in the sense that the calculated ground-state energy f@iilation, the oblique calculations are favorable in terms of
the SM2)+(8,4&(9,2) calculation is 3.3 MeV below that dimensionality considerations and correctness of the level
calculated energy for the Si) space alone. Adding the structure.
SU() irreps only increases the size of the space from 9.9% Figures 5—8 focus on the actual structure of the states by
to 10.4% of the full space. This 0.5% increase in the size ohowing overlaps of eigenstates calculated in the 1§M(
the space is to be compared with the hi§é%) increase in  SU(3), and oblique bases with the corresponding states of the
going from SM2) to a SM4) calculation. For the latter the fy|l-space calculation. Specifically, in Fig. 5 overlaps of
ground-state energy is 4.2 MeV lower than @\result,  states for pure SM{) and pure S\(B)-type calculations are
somewhat better than for the $M+(8,4)& (9,2 calculation given' Note that the SM) states have b|g over|d900/0) for

but is 64.2% rather than 10.4% of the full-model space. the first few eigenstates. This should not be too surprising
Figures 3 and 4 show that the oblique basis calculatiorsince SM4) covers 64% of the full space.

positions theK=2 band head correctly. Furthermore, most  The results of Fig. 5 show that in general @Ubased
of the other low-energy levels are also positioned correctlycalculations give much better results then low-dimensional
The results for pure spherical and pure (Slcalculations  SM(n)-type calculations. The SN based calculations
have irregular overlaps along the low-lying states and require

-70
-70
SM(0) SM(1) SM(1)
sl 88 (84 (82 /
_ — - (9:2) SM(2)
o - = = (8,4)
é’ < == aa = 92 SM(4) SM(4)
< L -80 [ i i = (8,4)(8,4)
> £ ol — " (0.2
= = A3 — (9,2)
dc.) 9 s —
L @ -85 |- g wmmmeeee i
c 4
IT] - 3
o SM(0) e
(2L R~ 2
©2) g4y e 0
.95 H—()} FULL
-95

FIG. 3. Structure of the energy levels f&Mg: purem-scheme
spherical basis space calculations are on the left-hand side of the FIG. 4. Energy levels fo”*Mg as calculated for different ob-

graph; pure S(B) basis space calculations are on the right-handlique bases. The SM) basis calculation is included for compari-
side; the spectrum from the FULL-space calculation is in the centerson.
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‘ OSM(0) MESM(1) ESM(2) BESM(4) O(8,4) [(8,4)&(9,2) SM(n) +(8.4) +(9,2)
100 R 100 5100
A SM(0) 2 [sm(1)
S 90 S 80 § 80
g 80 - .é 60 g 60
S 70 5 40 € 40
= o 5]
= 601 £ 20 c 20 H
Bt [} =
£ 50+ = o = ol
S 404 1 2 3 4 5 6 1 2 3 4 5 6
2 30 - 100 SM(2) Eigenvectors 100 SM(4 Eigenvectors
= N N3
20 2 i
2 -§ 80 § 80
101 3 60, ELLR B |
0 - Z £ £
1 2 3 4 5 6 § ¢ §4°
Eigenvectors £ 2 e
= = o U ‘
FIG. 5. Overlaps of the pure spherical shell-model and pure 1 # 3 & b & 1 &2 & & 5 6
SU(3) eigenstates with the corresponding FULL-space results for Eigenvectors Eigenvectors

2%Mg. The first four bars represent the W SM(1), SM(2), and
SM(4) calculations, the next two bars represent$lEalculations,
etc.

FIG. 7. Overlaps of oblique-basis states with the exact eigen-
states from the FULLsd-shell calculation. Each inset represents a
particular SMg)—type calculation, showing how the overlaps
change along the corresponding oblique-basis calculation.

SM(4), which is 64% of the full space, to get relatively well
behaved overlaps. This can be seen most clearly from the
. inset labeled SM in Fig. 6. Note that the 8 contributions

.
sm to the third, fifth, and sixth states are very low, while @\
80 and SM2) have varying contributions. The structure of
&6 states obtained in any $8)-type calculation leads to a
stable picture for the oblique calculations as shown in the
40 inset SMn) +(8,4) and SM() +(8,4)&(9,2) in Fig. 6.
In Fig. 7 the improvement in the structure of the calcu-
l lated states is followed as the &) states are added to the
1 SM(n) basis. From this graph one can see that the improve-

SM(0) SM(1) SM(2) SM(4)

o\o 20
cC o -t I
__g 100] SMH(84) ment to the SND)- and SM1)-type calculation is due mainly
=2
Q2 80 120
= o
C 60 S 100
Q g
O 4o £ 80 -
= =
‘© 201 'E 60 -
= S -
0 O 40 4
SM+(8,4)&(9,2) £ I I
100 s 20
: I
80 - 0.
1 2
60 1 CI1SM(2) 57.77 53.02 39.78 42.50
40 (8,4) 63.02 63.77 71.49 59.46
W SM(2)+(8,4)&(9,2) 91.58 90.95 87.72 89.06 87.35 82.23
20 ]SM(4) 93.25 92.81 89.98 92.47 91.10 88.33
ESM(4)+(8,4)&(9,2) 98.57 98.73 97.92 98.41 98.55 96.59
0 o 1 1
Eigenvectors
1 2 3 4 5 6
Eigenvectors FIG. 8. Representative overlaps of pure $iyl(pure SU3), and

oblique-basis results with the exact fali-shell eigenstates. A num-
FIG. 6. Overlaps of calculated eigenstates for oblique-basis calber within a bar denotes the state with the overlap shown by the bar
culations with the exact results from FULdd-shell calculations. if it is different from the number for the exact full-space calculation
Inset SM contains the overlaps for the pure spherical shell-modeshown on the abscissa. For example, for(3Mhe third eigenvec-
basis states only. Inset SM8,4) contains the overlaps of the SM tor overlaps the most with the fourth exact eigenstate, not the third,
basis enhanced by the leading @V irrep (8,4. Inset SM  while the fifth SM2) eigenvector has the overlap shown with the
+(8,4&(9,2) has the(9,2) irreps included as well. third exact eigenstate.
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to the goodness of §8) itself. The improvement obtained in There are some natural choices for further development of
the oblique calculation is due to the &) enhancement of the theory and its application. The most straightforward is a
the SM2) space. From this graph one can also conclude thagtudy of othersd-shell nuclei as well apf-shell nuclei.
there is only a small gain in going to the $M based ob- Such studies will further test the theory and the codes that
lique calculation. However, this improvement cannot behave been developed. These are currently underway. Another
achieved by any other means with such a small increase ipossibility is to integrate the oblique-basis concept into no-
the model space. This is clear from a careful examination o€ore calculations of the type developed [80]. Such an
Fig. 2 where one can see that the GMresult, which has extension would involve the symplectic group for multishell
25142 basis vector88% of the full sd space, gives the correlations rather than just $8) [21]. A third even broader
same ground-state energy as the (8M-(8,4&(9,2) result  extension of the theory would involve a general procedure
(64.6% of the fullsd space. for the identification of dominant modes from any one- and
Finally, to compare the three schemes—3yJ SM(n), two-body Hamiltonian along with a complementary parti-
and the various oblique-basis combinations—representativiioning of the model space into physically relevant subspaces
overlaps are shown in Fig. 8. From these results it is verywith small overlaps. One can then start with eigenstates for
clear that SWI3)-type basis states yield the right structure inan arbitrary subspace and constructively improve the results
very low order. In particular, in Fig. 8 it can be seen that aby including corrections from the remaining subspaces. It
90% overlap with the exact eigenvectors can be achieved bghould be possible to do this by keeping only a small set of
using only 10% of the total space, $®i+(8,4&(9,2). Fur-  the calculated lowest energy states at each iteration.
thermore, Fig. 8 also shows that &Y enhances the SM) The results presented here show very clearly that when
results yielding eigenstates with overlaps that are very closanportant modes can be isolated one can build an oblique
(~98%) to the exact results. theory that incorporates leading configurations of each mode
and get good convergence in a limited model space.
IV. CONCLUSION AND DISCUSSIONS

In this paper we have shown that the knowledge about the
important modes of a physical system can be used to obtain
good eigenstates in relatively small model spaces. In particu- We acknowledge the support provided by the U.S. De-
lar, for the 2Mg example with typical one-body and two- partment of Energy under Grant No. DE-FG02-96ER40985,
body interactions, the proposed oblique scheme gives gooahd the U.S. National Science Foundation under Grant No.
dimensional convergence for the ground-state energy, goddHY-9970769, and by Cooperative Agreement No. EPS-
spectral structure for all the low-energy states, and goo®720652 that includes matching from the Louisiana Board of
overlaps of these states with fidb-shell calculations. Regents Support Fund.
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