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Mixed-mode shell-model theory for nuclear structure studies

V. G. Gueorguiev,* W. E. Ormand,† C. W. Johnson, and J. P. Draayer
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001
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We introduce a shell-model theory that combines traditional spherical states, which yield a diagonal repre-
sentation of the usual single-particle interaction, with collective configurations that track deformations, and test
the validity of this mixed-mode, oblique-basis shell-model scheme on24Mg. The correct binding energy
~within 2% of the full-space result! as well as low-energy configurations that have greater than 90% overlap
with full-space results are obtained in a space that spans less than 10% of the full space. The results suggest
that a mixed-mode shell-model theory may be useful in situations where competing degrees of freedom
dominate the dynamics and full-space calculations are not feasible.
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I. INTRODUCTION

Every quantum-mechanical problem involves the solut
of an eigenvalue equation. In practice, there are only a
exactly solvable analytic models, and these are realized
rarely ~if ever! in nature, so one is often forced to consid
numerical solutions. In addition, since in the latter case
dimensionality of a model space can be very large, espec
when dealing with realistic systems, such as nuclei, wh
the number of particles is more than a few but less than w
is needed to justify the use of statistical methods, it is f
quently necessary to consider various approximations,
cluding, especially, basis truncation.

The usual approach is to select a convenient orthonor
basis in which to carry out a calculation. The use of a n
orthogonal scheme, though, in principle, no more diffic
than using an orthogonal one, is only justified if it is drive
by physical considerations. For example, when a system
ports competing modes and a ‘‘preferred’’ basis can be a
ciated with each, it makes sense to consider a nonorthog
basis comprised of leading configurations of each of th
modes. Finding a ‘‘good’’ orthogonal basis, which is in
mately related to a ‘‘good’’~but not exact! symmetries can be
as difficult as solving the problem itself; nonetheless, this
usually key to understanding the dominant modes~underly-
ing physics! of a system and outcomes of numerical calcu
tions @1#.

The mixed-mode system of interest to us seeks to acc
modate thesingle-particleandcollective-quadrupoledegrees
of freedom that dominate the low-energy structure of atom
nuclei @2#. Manifestations of important collective excitation
can also be found in many other branches of physics@3#. The
mixed-mode nature enters in nuclear physics because
single-particle and collective-quadrupole modes have sim
excitation energies, both being small relative to intrash
excitation energies@2,4#. Both the vibration and the rotatio
are manifestations of the collective motion@5#, vibrations
being close to spherical shape oscillations and rotations
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ing the periodic motion of a well-deformed intrinsic config
ration about some axis@6#. While, in principle, these mode
are reachable through multiple single-particle excitations
full many-body theory is required to offer a proper interpr
tation of this collective motion@7,8#.

In this paper we explore the efficacy of a mixed-mo
shell-model scheme by considering24Mg, which is known to
manifest strongly competing single-particle and collect
degrees of freedom. In particular, we examine converge
of results towards those of full-space 0\v sd-shell calcula-
tions as a function of the number of particles in excit
single-particle levels and the number of irreducible repres
tations ~irreps! of SU~3!. The results show that a relativel
small oblique space gives the right relative energy for
K52 band that leads to the correct order for all the lo
energy levels. The structure of the states is further tes
against the exact full-space results by examining the ove
of calculated eigenstates. We begin by reviewing the ma
ematical underpinning of the theory in Sec. II. Results
presented in Sec. III with conclusions and a discussion
applicability of the approach given in Sec. IV.

II. MATHEMATICAL BACKGROUND

The success of the current approach, which will be de
onstrated in detail in the following section, can be traced
the fact that the spherical shell-model states are eigens
of the one-body Hamiltonian ((« iai

†ai) while the two-body
part of the Hamiltonian (( i , jVkl,i j ai

†aj
†akal) is strongly cor-

related withQ•Q, which is diagonal in the SU~3! basis@9#.
By combining spherical shell-model states and SU~3! states
one accommodates, from the onset, the dominant mode
the system.

The usual procedure for solving the eigenvalue probl
ĤvW 5lvW is to cast it into the form of a matrix equation. In
nonorthogonal basis@10#, this matrix form includes the over
lap matrix, Q i j 5^ j u i &, and has the form ( j@Hi j v j
2lQ i j v j #50. For an orthonormal basis the overlap mat
becomes the identity matrix (Q i j →d i j ) and the matrix form
of the eigenvalue problem is( jHi j v j5lv i . When the over-
lap matrixQ is positive definite, the Cholesky algorithm ca
be used to solve the generalized eigenvalue problem@11#.
r-
©2002 The American Physical Society14-1



e

e
d

e-

le
je

rs
in

a
lu

rla
rix
he
p
o
b
e
in
d
ol
ed
s
rc

ea
is
po
y

c

il-

le-
ri-

,
ants

s at
rmi-
ds
i-

that
al
ch.

an
t
ing
the
to

up
ac-

e

f-

of
fines
he
con-
gle

ors.

tor

of
tion

GUEORGUIEV, ORMAND, JOHNSON, AND DRAAYER PHYSICAL REVIEW C65 024314
For large spaces this eigenvalue problem can be solved
ciently by using the Lanczos algorithm@12#.

For the calculations reported here we use a double mix
mode basis. The first set consists of spherical shell-mo
states~ssm – states! expressed in terms of spherical singl
particle coordinates (nl j ). The second set has a good SU~3!
structure~su3 states! that tracks nuclear deformation@13#;
this basis set is given in terms of cylindrical single-partic
coordinates. By construction both sets have the third pro
tion MJ of the system’s total angular momentumJ as a good
quantum number@14,15#. Schematically, these basis vecto
and their overlap matrix can be represented in the follow
way:

basis vectors: S ea :ssm – basis

Ei :su3 – basisD , ~1!

overlap matrix: Q5S 1 V

V1 1 D , Va i5ea•Ei , ~2!

Hamiltonian matrix: H5S Hssm3ssm Hssm3su3

Hsu33ssm Hsu33su3
D

5S Hab Ha j

Hib Hi j
D . ~3!

In the above, a and i span the following ranges:a
51, . . . , dim~ssm – basis! and i 51, . . . , dim~su3 – basis!.

Calculations in a nonorthogonal oblique basis require
evaluation of the matrix elements of physical operators p
a knowledge of the scalar product (ea•Ei). While it may be
desirable to have an analytical expression for the ove
matrix, as we have for the single-particle overlap mat
@16#, for practical purposes it suffices either to know t
representation of each basis state in a common set that s
the full space, which is counter to the overall objective
reducing the number of basis states to a manageable su
or to expand one set in terms of the other. For the pres
work, theea , which can be represented by a single mach
word in a spherical single-particle scheme, were expande
a cylindrical basis, which is the representation for our c
lective SU~3! basis vectors. This transformation is handl
by an efficient routine that exploits two computational aid
bit manipulation via logical operations and a weighted sea
tree for fast data storage and retrieval@17#. In the best case
scenario a transformation of this type has to be done at l
once per ssm basis stateea . We transform the ssm bas
states since the result is usually a vector with fewer com
nents than a typical SU~3! basis state. There is a simple wa
to calculate the overlap between states@18#; however, for the
calculation of matrix elements it is better to transform ea
ea vector in the basis used by the SU~3! states.

Matrix elements of the one-body and two-body Ham
tonian

H5(
i

« iai
†ai1

1

4 (
i , j

Vkl,i j ai
†aj

†akal ~4!
02431
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have to be evaluated in each subspace (Hab andH ji ) as well
as between the spaces (Ha i andH j b), see Eq.~3!. TheHab
part is normally given and evaluated in a spherical sing
particle basis. By transforming the Hamiltonian to a cylind
cal single-particle basis one can obtain theH ji part of H. In
order to compute the off-diagonal blocksHa i and H j b and
overlap matrix elements between SU~3! and ssm basis states
both basis sets are expanded in a basis of Slater determin
using cylindrical single-particle states. For the~8,4! and~9,2!
irreps this is an expansion into 2120 Slater determinant
most; each ssm state, which itself is a single Slater dete
nant in a spherical single-particle basis, typically expan
into a smaller number of cylindrical-basis Slater determ
nants which is less than 1296. We do not expand the SU~3!
states into spherical-basis Slater determinants because
would require significant fraction of the entire spheric
shell-model space, defeating the rationale of our approa
Taking into account the significant number of Hamiltoni
matrix elements (Hi j and Hib) between multicomponen
states, it should be clear that this is the most time consum
part of the calculation. The extra labels associated with
intrinsic quadrupole moment« of each basis state is used
produce well-structured bandlike matrices and to speed
the calculation. Specifically, basis states are preordered
cording to their deformation as reflected by« and during the
evaluation ofH a D« selection rule is applied.

It is important to point out that the knowledge of th
overlap matrixQ and the matrix elements ofH in the two
spaces (Hab , Hi j ) is not enough to obtain the correct of
diagonal blockHa i . This is clear from the following explicit
expression forHa i , which contains a summation along (b̄)
that lies outside of the (b,i ) model spaces,

Ha i5(
b

HabQb i1(
b̄

Hab̄Qb̄ i . ~5!

Thus a direct evaluation ofHa i is required.
It is instructive to consider a geometrical visualization

the oblique-basis-state concept. Since a set of vectors de
a hyperplane, it is natural to ask the question: ‘‘What is t
angle between hyperplanes defined by the bases under
sideration?’’ To answer this question, first consider the an
u between a normalized SU~3! basis vectorvW and the sub-
spaceV spanned by the spherical shell-model basis vect
The length of the projected vectorvW VPV is given by
cos(vW,V)5cosu5uvWVu. The spaceV of the spherical shell-
model basis vectors induces a natural basisnW « in the SU~3!

space (nW «5n«
i EW i). The angle between each new basis vec

nW « and the spaceV will again be the length of its projection
into the spaceV, but it has the nice property that this set
orthogonal basis vectors stays orthogonal after the projec
into the spaceV,

cosu«5cos~nW « ,V!5unW «Vu,

nW «V5(
i ,a

n«
i ~EW i•eWa!eWa5(

i ,a
n«

i Q iaeWa ,
4-2
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TABLE I. Labels used to distinguish various calculations and the correspondingMJ50 dimensionalities.
The leading SU~3! irrep is denoted by~8,4! while ~8,4!& ~9,2! implies that ~9,2! irreps have also been
included. The SM(n) spaces correspond to spherical shell-model partitions withn valence particles excited
out of thed5/2 shell into thes1/2 andd3/2 levels.

Model space (8,4) (8,4)&(9,2) SM~0! SM~1! SM~2! SM~4! FULL

Space dimension 23 128 29 449 2829 18290 285
% of the full space 0.08 0.45 0.10 1.57 9.92 64.17 10
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unW «Vu25(
a

S (
i

n«
i Q iaD 2

5 (
a,i , j

n«
i Q ian«

j Q j a .

In matrix notation this reads

unW «Vu25nW «•Q̂•Q̂T
•nW « ,

where the natural basis vectorsnW « are eigenvectors of the
symmetric matrixQ̂•Q̂T

Q̂•Q̂T
•nW «5«2nW « . ~6!

It follows that unW «Vu25nW «•Q̂•Q̂T
•nW «5«2nW «•nW «5«2 and

thus the matrixQ̂•Q̂T is positive definite (unW «Vu25«2>0)
with eigenvalues determined by the cosu. This construction
allows for a simple visualization of the oblique-basis spa
Choose thex axis to correspond to the spaceV of all the
spherical shell-model basis vectors and represent the S~3!
space as a collection of unit vectors each at an angle cu
5« with respect to thex axis. In the following section this
construction will be applied to the geometry of oblique-ba
space calculations to demonstrate the relative orthogon
of the two vector sets,ea andEi .

III. AN ILLUSTRATIVE EXAMPLE

In this section the oblique-basis technique is tested
24Mg, which is a strongly deformed nucleus with we
known collective properties and one of the best manife
tions of the Elliott’s SU~3! symmetry@8#. In terms of dimen-
sionality of the model space, adding a few leading SU~3!
irreps to a highly truncated spherical shell-model basis
sults in significant gains in the convergence of the lo
energy spectra towards the full-space result. In particular,
addition of leading SU~3! irreps yields the right placement o
the K52 band and the correct order for most of the lo
lying levels. Indeed, an even more detailed analysis sh
that the structure of the low-lying states is significantly im
proved through the addition of a few SU~3! irreps. The
Hamiltonian used in our analysis is the Wildenthal intera
tion @19#.

Our model space for24Mg consists of four valence pro
tons and four valence neutrons in the 0\v sd shell. The
m-scheme dimensionality (MJ50) of this space is 28 503
which in the figures that follow is denoted FULL. To test th
effects of truncations, calculations were also carried out
permitting n particles to be excited out of the lowestd5/2

orbit, i.e., d5/2
82n(d3/2s1/2)

n, and are denoted as SM(n). The
02431
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SM~2! approximation is of particular interest since it allow
one to take into account the effect of pairing correlatio
~one pair max! in the ‘‘secondary levels’’ (s1/2 and d3/2 for
theds shell! with a minimum expansion of the model spac
The SU~3! part of the basis includes two scenarios: one w
only the leading representation of SU~3! included, which for
24Mg is the ~8,4! irrep with dimensionality 23 for theMJ
50 space and denoted in what follows by appending~8,4! to
the corresponding SM(n) notation; and another with the
~8,4! irrep plus the next most important representation
SU~3!, namely, the~9,2!. The ~9,2! irrep occurs three times
once with S50 (MJ50 dimensionality 15! and twice with
S51 (MJ50 dimensionality 2345590). All three~9,2! ir-
reps have totalMJ50 dimensionality of 151905105. The
~8,4!& ~9,2! case has totalMJ50 dimensionality of 231105
5128 and is denoted by appending~8,4!& ~9,2! to the corre-
sponding SM(n) notation. In Table I we summarize the d
mensionalities involved.

Now, the method described at the end of the preced
section is used to visualize the structure of the oblique-b
space. First consider the SM~2! space enhanced by the SU~3!
irreps ~8,4!& ~9,2!. Since the SM~2! and ~8,4!& ~9,2! spaces
are both relatively small~see Table I! we expect the basis
vectors in these spaces to be nearly orthogonal. This ortho
nality is clearly seen from inset~a! in Fig. 1. Inset~b! in Fig.
1 shows a loss of orthogonality between the SM~4! and the
~8,4!& ~9,2! basis vectors. This is due to the fact that SM~4!
space is about 64% of the fullsd-space and therefore there
a relatively high probability that some linear combinations
the SU~3! basis vectors lie in the SM~4! space. Indeed, it can
be shown that there are five vectors from~8,4!& ~9,2! that lie
within the SM~4! space. Such redundant vectors must,
course, be excluded from the calculation.

We now turn to a consideration of the main results of t

FIG. 1. Orthogonality of the basis vectors in the oblique geo
etry. The SU~3! space consists of~8,4!& ~9,2! basis vectors with the
shell-model spaces@SM(n) with n52 and 4# indicated by a hori-
zontal line.~a! SM~2! and the natural SU~3! basis vectors and~b!
SM~4! and the natural SU~3! basis vectors. In the latter case the
are five SU~3! vectors that lie in the SM~4! space.
4-3
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GUEORGUIEV, ORMAND, JOHNSON, AND DRAAYER PHYSICAL REVIEW C65 024314
oblique-basis calculation, starting with ground-state conv
gence issues. The results shown in Fig. 2 illustrate that
oblique-basis calculation gives good dimensional conv
gence in the sense that the calculated ground-state energ
the SM~2!1~8,4!& ~9,2! calculation is 3.3 MeV below tha
calculated energy for the SM~2! space alone. Adding the
SU~3! irreps only increases the size of the space from 9.
to 10.4% of the full space. This 0.5% increase in the size
the space is to be compared with the huge~54%! increase in
going from SM~2! to a SM~4! calculation. For the latter the
ground-state energy is 4.2 MeV lower than SM~2! result,
somewhat better than for the SM~2!1~8,4!& ~9,2! calculation
but is 64.2% rather than 10.4% of the full-model space.

Figures 3 and 4 show that the oblique basis calcula
positions theK52 band head correctly. Furthermore, mo
of the other low-energy levels are also positioned correc
The results for pure spherical and pure SU~3! calculations

FIG. 2. Calculated ground-state energy for24Mg as a function of
the various model spaces. Note the dramatic increase in bin
~3.3 MeV! in going from SM~2! to SM~2!1~8,4!& ~9,2! ~a 0.5%
increase in the dimensionality of the model space!. Enlarging the
space from SM~2! to SM~4! ~a 54% increase in the dimensionali
of the model space! adds 4.2 MeV in the binding energy.

FIG. 3. Structure of the energy levels for24Mg: purem-scheme
spherical basis space calculations are on the left-hand side o
graph; pure SU~3! basis space calculations are on the right-ha
side; the spectrum from the FULL-space calculation is in the cen
02431
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are shown in Fig. 3. As can be seen from the Fig. 3 resu
an SM~4! calculation ~64% of the full model space! is
needed to get the ordering of the lowest angular momen
states correct. Also notice that in this case the third a
fourth energy levels are practically degenerate. On ot
hand, it only takes 0.5% of the full space to achieve com
rable success with SU~3!. In particular, Fig. 3 shows that a
SU~3! calculation using only the~8,4! and ~9,2! irreps gives
the right ordering of the lowest levels. Note that the first fe
low-energy levels for SM~2! are close in energy to the cor
responding low-energy levels for the~8,4!& ~9,2! result.
Since these two spaces are nearly orthogonal~see Fig. 1!,
these two sets of levels mix strongly in an oblique calcu
tion and yield excellent results. The comparable ground-s
energies of the SM~2! and ~8,4!& ~9,2! configurations can
also be seen from Fig. 2.

The spectra shown in Fig. 3 are to be compared with
results from the oblique-basis calculations shown in Fig.
From this comparison one can see that the correct level st
ture can be achieved by using 1.6%@SM~1!1~8,4!# of the
full sd space. However, one should also notice that for
SM~0!1~8,4! space, which is only 0.2% of the full space an
the minimum oblique-basis calculation, the results are qu
close to the correct level structure. Despite the fact that
ground-state energy of the oblique-basis calculations
higher than the ground-state energy for the SM~4!-type cal-
culation, the oblique calculations are favorable in terms
dimensionality considerations and correctness of the le
structure.

Figures 5–8 focus on the actual structure of the states
showing overlaps of eigenstates calculated in the SM(n),
SU~3!, and oblique bases with the corresponding states of
full-space calculation. Specifically, in Fig. 5 overlaps
states for pure SM(n) and pure SU~3!-type calculations are
given. Note that the SM~4! states have big overlap~90%! for
the first few eigenstates. This should not be too surpris
since SM~4! covers 64% of the full space.

The results of Fig. 5 show that in general SU~3! based
calculations give much better results then low-dimensio
SM(n)-type calculations. The SM(n) based calculations
have irregular overlaps along the low-lying states and req

ng

he
d
r.

FIG. 4. Energy levels for24Mg as calculated for different ob
lique bases. The SM~4! basis calculation is included for compar
son.
4-4
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FIG. 5. Overlaps of the pure spherical shell-model and p
SU~3! eigenstates with the corresponding FULL-space results
24Mg. The first four bars represent the SM~0!, SM~1!, SM~2!, and
SM~4! calculations, the next two bars represent SU~3! calculations,
etc.

FIG. 6. Overlaps of calculated eigenstates for oblique-basis
culations with the exact results from FULLsd-shell calculations.
Inset SM contains the overlaps for the pure spherical shell-mo
basis states only. Inset SM1~8,4! contains the overlaps of the SM
basis enhanced by the leading SU~3! irrep ~8,4!. Inset SM
1~8,4!& ~9,2! has the~9,2! irreps included as well.
02431
SM~4!, which is 64% of the full space, to get relatively we
behaved overlaps. This can be seen most clearly from
inset labeled SM in Fig. 6. Note that the SM~0! contributions
to the third, fifth, and sixth states are very low, while SM~1!
and SM~2! have varying contributions. The structure
states obtained in any SU~3!-type calculation leads to a
stable picture for the oblique calculations as shown in
inset SM(n)1(8,4) and SM(n)1(8,4)&(9,2) in Fig. 6.

In Fig. 7 the improvement in the structure of the calc
lated states is followed as the SU~3! states are added to th
SM(n) basis. From this graph one can see that the impro
ment to the SM~0!- and SM~1!-type calculation is due mainly

e
r

l-

el

FIG. 7. Overlaps of oblique-basis states with the exact eig
states from the FULLsd-shell calculation. Each inset represents
particular SM(n) –type calculation, showing how the overlap
change along the corresponding oblique-basis calculation.

FIG. 8. Representative overlaps of pure SM(n), pure SU~3!, and
oblique-basis results with the exact fullsd-shell eigenstates. A num
ber within a bar denotes the state with the overlap shown by the
if it is different from the number for the exact full-space calculati
shown on the abscissa. For example, for SM~2! the third eigenvec-
tor overlaps the most with the fourth exact eigenstate, not the th
while the fifth SM~2! eigenvector has the overlap shown with th
third exact eigenstate.
4-5
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GUEORGUIEV, ORMAND, JOHNSON, AND DRAAYER PHYSICAL REVIEW C65 024314
to the goodness of SU~3! itself. The improvement obtained i
the oblique calculation is due to the SU~3! enhancement o
the SM~2! space. From this graph one can also conclude
there is only a small gain in going to the SM~4! based ob-
lique calculation. However, this improvement cannot
achieved by any other means with such a small increas
the model space. This is clear from a careful examination
Fig. 2 where one can see that the SM~5! result, which has
25 142 basis vectors~88% of the full sd space!, gives the
same ground-state energy as the SM~4!1~8,4!& ~9,2! result
~64.6% of the fullsd space!.

Finally, to compare the three schemes—SU~3!, SM(n),
and the various oblique-basis combinations—representa
overlaps are shown in Fig. 8. From these results it is v
clear that SU~3!-type basis states yield the right structure
very low order. In particular, in Fig. 8 it can be seen tha
90% overlap with the exact eigenvectors can be achieved
using only 10% of the total space, SM~2!1~8,4!& ~9,2!. Fur-
thermore, Fig. 8 also shows that SU~3! enhances the SM~4!
results yielding eigenstates with overlaps that are very c
('98%) to the exact results.

IV. CONCLUSION AND DISCUSSIONS

In this paper we have shown that the knowledge about
important modes of a physical system can be used to ob
good eigenstates in relatively small model spaces. In part
lar, for the 24Mg example with typical one-body and two
body interactions, the proposed oblique scheme gives g
dimensional convergence for the ground-state energy, g
spectral structure for all the low-energy states, and g
overlaps of these states with fullsd-shell calculations.
-
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There are some natural choices for further developmen
the theory and its application. The most straightforward i
study of othersd-shell nuclei as well asp f-shell nuclei.
Such studies will further test the theory and the codes
have been developed. These are currently underway. Ano
possibility is to integrate the oblique-basis concept into n
core calculations of the type developed by@20#. Such an
extension would involve the symplectic group for multish
correlations rather than just SU~3! @21#. A third even broader
extension of the theory would involve a general proced
for the identification of dominant modes from any one- a
two-body Hamiltonian along with a complementary par
tioning of the model space into physically relevant subspa
with small overlaps. One can then start with eigenstates
an arbitrary subspace and constructively improve the res
by including corrections from the remaining subspaces
should be possible to do this by keeping only a small se
the calculated lowest energy states at each iteration.

The results presented here show very clearly that w
important modes can be isolated one can build an obli
theory that incorporates leading configurations of each m
and get good convergence in a limited model space.
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