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Relativistic approaches to structure functions of nuclei
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We employ a propagator technique to derive a new relativistag} #kpansion of the structure function of a
nucleus, composed of point nucleons. We exploit nonrelativistic features of low-momentum nucleons in the
target and only treat relativistically the nucleon after absorption of a high-momentum virtual photon. The new
series permits a three-dimensional reduction of each term and a formal summation of all final state interaction
terms. We then show that a relativistic structure function can be obtained from its nonrelativistic analog by a
mere change of a scaling variable and the addition of an energy shift. We compare the obtained result with an
ad hoc generalized Gersch-Rodriguez-Smith theory, previously used in computations of nuclear structure
functions.
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[. INTRODUCTION case in the relativistic IS treatment of structure functions.
In this paper we develop a relativistic GRS series for

The major tool for computing nuclear structure functions,structure functions exploiting manifestly nonrelativistic fea-
as measured in inclusive electron scattering on nuclei, is theures of the system. There we shall emphasize that only the
impulse (or Born series(IS) in the residual interaction be- nucleon which absorbs the virtual photon in inclusive scat-
tween the struck nucleon and the remaining spectatotering acquires a large momentum and has to be treated rela-
nucleus. The lowest-order term of that series is the widelyivistically. All others nucleons have nonrelativistic momenta
used impulse approximatiodA). Higher-order, final state and can be treated accordingly.
interaction(FSI) terms are essential for an accurate calcula- \We shall show below that the above nonrelativistic fea-
tion of the data, but their determination in practice consti-tyres permit an accurate three-dimensional reduction of all
tutes a formidable problersee, for instance, Reffl—6]).  terms in the relativistic GRS series for a structure function.

In the nonrelativistic regime there exists an alternativerhis feature gives the GRS series a definite advantage over

app_rﬁach, originarI]Iy pr(r)]posed by ?ersqh, Rodriguez, anghe |5 For it a three-dimensional reduction is very involved
Smith (GRS [7]. T ereF € str.ucture un(;t|on IS expre;sed Ndue to negative energy poles in relativistic nucleon propaga-
terms of commutators involving the residual interaction an ors

appears, for fixed values of a scaling variaplg7,d), as a The outline of this paper is as follows. In Sec. Il we

series in inverse powers of the three-momentum trangfer . o . X

. rederive the nonrelativistic GRS series, showing the way to a
That theory has extensively been used to compute StrUCturreelativistic extension, which is performed in Sec. Ill. In Sec
functions(or responsesof quantum gaseg3]. ' P o :

If convergent, the GRS and IS approaches, taken to alv we exploit nonrelativistic features of the problem and

orders, obviously produce identical results, but this is not the¢UPseauently prove a three-dimensional reduction of the
case if these series are truncated at some finite order. AgWwest-order and of all higher-order FSI terms of the relativ-
issue is then which of the truncated series is a better approxistic GRS series. We demonstrate that the latter can be
mation to the total structure function. Judged by the lowestsummed in a closed expression, involving a three-
order terms applied to classes of exactly solvable models, thdimensional Lippmann-SchwingéF,matrix. This reduces an
GRS expansion is to be preferred over thgd3310-13. evaluation of the relativistic nuclear structure functions to a

The availability of data obtained with high-energy beamshonrelativistic problem. In the end we relate our final expres-
requires a theory valid for the relativistic regime. In the 1S,sions with approximative representations of the relativistic
final state interactions are summed by means of a fourGRS series, which have been used in a description of nuclear
dimensional scattering operator, which satisfies a coupledstructure functions.
channel Bethe-Salpeter equation, but their solution remains a
complicated, relativistic many-body problem.

As regards the GRS approach, no satisfactory relativistic Il. NONRELATIVISTIC TREATMENTS OF THE
extension of the nonrelativistic GRS theory has been formu- STRUCTURE FUNCTION
lated before. A start has been made by one of the authors,
who previously exploited a propagator technique for the
desciption of the structure function of composite systems We start with the nonrelativistic structure function per
similar to the one used for nonrelativistic systems. Formallynucleon,W(v,q), appropriate to a nucleus @&f point nucle-
exact expressions have been derived for relativistic structurens wherev andq are the energy and momentum transferred
functions[12,13 in terms of four-dimensional integrals over to the target. In order to simplify the algebra, we restrict our
relativistic propagators and scattering operators, as is theerivation to the case of spinless particles. We focus on the

A. Impulse series
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incoherent part ofV which dominates for largég| and ex- 1

ploit its relation to the imaginary part of the forward Comp-  Gy(Ea+v—pg,0) = — —.

ton amplitude: Eatv—po—(p+a)/2M +in ©
1

W(v,q)=— —Im(D | Q1(1,q) GA(E,0) Q1(v,q)|DA) Substituting Eq(4) into Eq. (1) and performing the inte-
m gration overpg, one obtains the structure function in the IA:
1
=— —IM(D p|G1 A(Ea+ 7,0)|DA)- (1)

IAGAEs w3 [ e

Here®, is the ground state wave function of the target with

energyE,, andG(Ex,0)=(Ex—H,) 1, the exact Green's o (p—9)?

, X8| Eptv—Ey (79
function of theA-nucleon system at rest. 2M

The operatorQl(QD shifts the energy and the momen-
tum of a selected nucleon 1 byandq due to the absorption dp
(emission of a virtual photon. The second line in E(L) f (277)3f dEP(p.E)
defines the corresponding shifted Green’s function. The latter
is conveniently described, using a decomposition of the tar-
get HamiltonianH 4 into a sum of the Hamiltoniakl ,_ 4, of X6
the A—1 nucleon spectator, the kinetic ener¢fyy of a
nucleon(1), and the residual interactio, =>;-,V;;, thus  where (ps_\n)(p):<cl)s_\n21 ,p|®,) is an overlap amplitude and
A=E,_,—E,. We neglectirEY" , the tiny recoil energy of

1 _ 2) the spectatop?/2M ,_ ;. In Eq. (7b) appears the single-hole

Eatv—Ha 1= Ky(q)=Vi+in’ spectral function

v—E—A- (7b)

(p— q)z)
oM )

Gia(Eatrv,g)=

where K(q)=(p+0)%/2M is the kinetic energy operator
with the momentum operatq} shifted byg and M is the
nucleon mass. We assume tHNarN potentials are localy;; ) - o
=V (ri—r)). ConsequentlyQ I(v,0)V,0;(v,0) =V, such with &,=E)”; —E,_1, the spectator excitation energy.
that the interaction is not affected by the shift as is explicitin_ It will be useful to define the reduced structure function
Eq. (2). for nonrelativistic systems
At this point we comment on notation. We distinguish _
between external parameteEs,, g, and v and variables F(y.q)=(ldl/M)W(v.0), ©

do not display those variables, unless required for clar|ty in Eq. (7b) overp § one obtains for the Iowest order the 1A
The most common treatment of the structure function 'Spart of F,

the impulse approximation, obtained by takivig— 0 in Eq.

P(p,E) E 1o (p)[2S(E-&,), ®)

(2). The shifted Greens functio®; A(Ea+ »,0) in this ap- 1 Yo+2q Emax
proximationG, ,=G{? reads F'"(yo,9)= F[L | dppf dEP(p,E)
Yo 0
G{(Ea+v,0)= - e Loty [Cdpp [ ™aErpE) | (10
Eatv—Ha 1~ (P+Q22M +in R e A

With a relativistic extension in mind, we express theyjith y,, the IA scaling variable:
above G(O) as a convolution of Green’s functions for the
(A-1)- nucleon spectator and for the struck nuclebd),( Yo=—|d+V2M(v—A). (12)

dpg The integration limits in Eq(10) are
GIA(Eat v, q)—ujEGAﬂ(po)GN(EAw—po,q),

ot 2_ .2
4 _ p Yo— P
@ EMeX(yo,p,0) =~ ldl + 5 (12)
and where we shall use the spectral representatidbof; :
and, in particular,
[ (PR .
Ga 1(po)=2 — = (5) M EnadYo,P,a)=2*. (13
N po—Epl iy q—oe

Gy in Eq. (4) stands for the Green'’s function of the struck In order to go beyond the IA one expands the total
nucleon after absorption of the virtual photon. It reads Green’s functionG; 5, Eg. (2), in powers ofVlG(lfji. Sub-
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stituting this expansion into E¢l) one obtains the impulse tion T=V1+VlG(1(2T and clearly permits a formal summa-
series for the structure function tion of the FSI terms in Eq14). The total structure function
1 thus becomes
W= = —Im(®,|G{%+ GIRV1GIR+ GIRV1 GV, GIR
(Pl 1601AT 61 AVIGIAVIGIA We — ilm(CI)A|G(O) GOTCE ). (15
+o | D). (14 . . :
It is convenient to use the momentum representation for the
The first term is the 1A and the remainder are FSls. We nowucleon and, as in Eq$5) and(7), a representation for the
introduce the scattering operafbrwhich describes the scat- Spectator states, denoted loy The Lippmann-Schwinger
tering of the knocked-out nucleon from thA{ 1)-nucleon  €quation then becomes a set of coupled equations for transi-
spectator. It satisfies the Lippmann-Schwinger operator equdion amplitudesTnn,(E,p,p’)E(p,(Dg”ll|T|q>(” ) p'):

dp” Vinw(p—p") Ty (E, p”p)
Ton (Epp')=Vynw (P~ p>+2 cll Ul (16)

2
( 77) E gnrr M +|7]

HereVy.nn (p— p’)=(p,<b(“) 1|V1|d>§\n )1,p’) andE, the energy in the laboratory frame. In parallel the total reduced response
F(yo,9), EqQ. (9), reads(we chose the axis alongq)

dpdp’ e (P) T (Ena-1.p+ a0 + el (p)
FYo = FIA(yO'q)Jr %: f (2m)° ( 2~ Mé P—Yo yo +in||yo—ps— My —L_ygﬁn -
ld 2[q o ld 2
|
with the s_hifted Green’s functio®; o(Ex+ v,q) permits the ex-
Eun e Ae (yO;\LIqu 8 pansion

GlA:élA(l+VGlA+VGlAVGlA+"')1 (20)
the off-shell energy of the nucleon-spectator amplitudes.

where
B. GRS series 1
The expansior{14) of a structure function in powers of él,AEélA(v,q)= — - (213
the residual interactiolv; is not the only possible perturba- GiA(Eatv,0) =G A(EAD)
tive approach. In this section we shall expand the shifted
Green's functionG;A(Ex+v,0) in a different operatoV 1
:Vl+ K1£0)+ HA*]__EAE_G]T‘AJ-(EA!O)! for which by [ (0)(EA+V q)] 1_ [ (0)(EA,O)] 1’
definition V|® ,)=0. Then using the identity (21b)
GyA(Eat 1,0)= 1 Again we assum&, to be local and it therefore cancels out
AT GiA(Ea+1,9)—GIA(EA,0—V' in Eq. (21b). ExpressingG; , as a convolutior(cf. Eq. (4),
(19 Eq. (21b becomes
|
Buun =1 [ 52G 1(po - =i [ ReapoBura. @2
e 2m A Y Gy Eat v—Po, 0~ Gy (Ea—po0) ) 2w TATETOTE

Since Gﬁl, Eq. (6), is linear in the energy argument, the Eq. (5), one performs the, integral in Eq.(22) with the

spectator energg, andE, cancel in the denominator in Eq. result

(22). Thus in contrast t&3{%), Egs.(4)—(6), G, does not Bia(n. ) =B M 1 (23
. . ! ) . 1A Vvq - v q) | |

depend on the excitation ene@(&‘_1 of the spectator. Using A yw—p,+i 1;
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wherey,y is the GRS-West scaling variab]&,9]: We remark that the leading terms in the impulse and GRS
5 series, Eqs(10) and(26), are quite different. However, using
:M( B Q_) (24) limg_(Yyw—Yo0)=0 and Egs(13) and(27), one finds that
YW=\ Y 2m ) in the limit |g— o, F"A—FSRS,

Substitution of the serie€0) for G, 4 into Eq. (1), and Consider next highei—o~rder termglAENNGN)nl?A) in

use of Eq.(23) there, manifestly produces a power series inth€ series(25). Since[V,Gy]=[V1,Gy] and alsoV|® )

V/| | (the GRS seriasfor the nuclear response =0, each of those terms can be expressed by commutators,
g P involving the residual interactiol’; and the kinetic energy

1 o e operatorK ; of the struck nucleon, and nbt=H,—E . For
W(v,q)=— ;'m<®A|GN+GNVGN instance,
TONVGNVC--[a) (253 V8| a)=[V1,G{1| ),
* M j+1
:JZO (H) Filyw). (25D VGG @ a) ={[V1,GnI*+[(V1+K1),[ V1, G T @A),

28
with coefficientsF;, which are functions of the scaling vari- @8
able yy. The lowest-order GRS termj€0) is the . .
asymptotic limitg— e, of the reduced structure function Eq. From Eq.(25 one then f|nds for the corresponding reduced
9), structure function, Eq(9):

3p 1 * GRS_ |q| = = =
(p)pdp. FERS= — —Im(®,| Gy +[Gy, V1 1Gy

FOGR%yW):J' n(p)b‘()/w_pz)(zT)s:ﬁ Iyw\n i

(20 FIGW VAIBWV Bl - [0, (29)
Aboven(p) is the nucleon momentum distribution, which is
related to the spectral function E@) by Equation (29) is the GRS series for the response function
which, using a coordinate-time representation, was first de-
n(p)= fwP(p,E)dE. 27) riveéj in Ref.[7]. For instance, the leading FSI teff (yw)
0 reads

1 dodp’ (n) )V (D—0p' r_ n") /e
SRy, =—ImS) f P p6 ¢a (P)Vann (p_ P)(Pz Eoz)prz(p) (309
™ o J(2m) (Yw= P Tin)(yw—pz+in)
(= ds s - s - A
:_|f_w2_e wa fdrldrzpz(rl_sqyrz§"1,|’2)f0dU[Vlz(r_UQ)_Vlz(f—SQ)]y (30b)
|
with p, is the two-particle density matrix. The characteristic feature of the expressi@l) is the

~ In spite of the increasing complexity of the commutatorscommutatof Gy, T], involving T, Eq. (16), which describes
in the serieg29), it has been demonstrated in REf2] that,  the scattering of the struck nucleon and the spectator. That
like Eq. (15) for the IS,all FSI terms in the GRS series, EQ. commutator has a simple form in the momentum representa-

(29), can be summed in a closed expression, tion
lal . = 1 :
F=———Im(®AGn+ GG UGN, TIGR D), ~ 1= ) R
i M(PAl Gt GG TON TIGLAI ) (PIGN G TP =(PITIP) =7 (32)
(31 Yw— Pz T17

with G(&, given by Eq.(3). A derivation of Eq.(31) is given  Using the spectral representation of the Green’s function
in the Appendix. G{9, Egs.(4) and(5), one rewrites Eq(31) as
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dpdp’ (D) (P, = P) Tom (Ena-1:0+ 00 + el (p')
F(vaQ) FO %yW)_F 2 j 2,”_)6 MAn(pz) z MAn’(p ) ’
' (yw—pz—Tﬂn yw—pé—THn (Yw=pz+imn)
(33
|
where will also be applicable for nucleons and photons with spin.

The relativistic nuclear structure function is then again
(34) given by the imaginary part of tht_a\ forward Compton ampli-
tude. The latter can always be written as a sum of two terms,
which represent the 1A and FSI contributiofidg. 1):

p2
An(p)=A+E, +2M

and

1
. (ywtla)? p? W(a) = — _Im{T'sGn(PA)[GER(Pata) + GEA(Pata)
Ena 1= v—A="——F—r——A—— (35 77
: 2M 2M o
_ _ XT(Pa+a)GIAPA+ A IGN(PAIT A} (36)
is the off-shell energy oT in the laboratory frame.

Expansion of the integran@B3) in powers of 1Jg| for Gy andG(l(R are propagators for, respectively, a nucleon and
constanty,, generates the entire GRS series, E2f)). For  the noninteracting nucleon-spectator system, with four-
instance, the leading FSI term of the GRS seR§§Yy,,),  momentunP,+q. As before we display in Eq36) only the
Eq. (30), is retrieved from Eq(33) by the replacemenT  external parameter,=(M,,0) andq=(»,q). Only when
—V, and disregardin1A,(p)/|q|. Likewise one assembles necessary do we make explicit the fogr—momenta of target
terms of higher order in [ld|, all appearing as sums over ~ nucleons. Those appear, for example@g,

Those may in fact be evaluated and ultimately produce, as in

the original presentation of the GRS theory, coefficidhts Gu(P)=Gn(Pa—p)= : 3
terms of off-diagonal density matric¢g] [cf. Eq. (30b) for N(PAI=Cn(Pa—p) (Pa—p)*=M*+in’ 37
Fql. (0)

The expression&l7) and(33) permit a comparison of the and likewise inGj,,
total FSI contributions in the IS and GRS series. Both con- G (0) . _
tain nucleon-spectator transition amplitudes, which are® AP+ @)=GiaA(PaT0,p)=IGa-1(P)CN(PaT( (%)é)
strongly peaked for small momentum transfesé—p,.

However, the same momentum transfer also appears aSW'zhereGA 1 is the propagator of the fu||y |nteract|ng spec-

factor in the numerator of Eq33) and thus reduces FSIs in tator. The operatof = T(P,+q) in Eq. (36) again describes

the GRS series. elastic and inelastic scattering of thespectator subsystems
An additional suppression of FSls in that series comegnd satisfies the Bethe-Salpeter equafithh Eq. (16)]

from the different off-shell energies, Eq§l8) and (35).

From those one finds, folo=yw, Ena_1<Ena_1; i.€., the T(Pa+a)=Vi(PA+Q)[1+GR(PaA+a)T(Pa+0)].

energy of the GRS amplitude is farther from the energy shell (39

than is IS amplitude. Since the complete expressions for th

structure functions are identical, the forwarded argument

indicate that the leading GRS tefi§"*is a better approxi-

. : : Eq. (39).
mat|o|2 to the total structure function than is the correspond- We still have to define the target-spectatorertex func-
ing F'*. Experimental evidence is deferred to the end of Sec,
I\ Ction I' s in Eq. (36) (see also Fig. 1L It appears in the residue

of the bound state pole of the scattering operdid®):

he effective interactioV is defined as the sum of all irre-
ducible contributions, which drive the scattering operator in

Ill. RELATIVISTIC NUCLEAR STRUCTURE FUNCTION TA(P)Ta(p’)= lim (P2=M2)(p|T(P)|p’). (40)

In Sec. Il we have used an unconventional propagator P2—My
technique to rederive the GRS series, primarily because the
same will now be shown to lead to the desired relativistic R p P p P R
generalization of the GRS series, ER9). N L ) '

We start with the relativistic nuclear structure function W=-—1Im/| 47 ey B 4P
W,,. As in the previous case we consider for simplicity a7 4teP g q " Btap B+ap g
scalar nucleons and photons. This implies that we restrict
ourself to the longitudinal component of the structure func-  FIG. 1. Nuclear structure function expressed as the imaginary

tion W=[(q?— v?)/0?]Wy, (see, for instance}9,14]). We  part of the forward Compton amplitude. The first diagram repre-
presume that the techniques which we shall present belogents the IA and the second one FSls.
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One then derives from the Bethe-Salpeter equat®@h with
the four-momentun®, as the argument,

lﬁA(p):iJ (PIV1(PA)|[p")GA-1(P")

4.1

XGN(Pa—p" )T a(p") (41

(2m)*’

which is the Dyson equation, satisfied By . The latter can
be rewritten in a form similar to the Schdimger equation,
{[GIAPAT = Vi(PAIGIA(PATA=0, (42

with G{R(PA)T 4 a relativistic target wave function.

Next we link in a standard way the Green’s function of

the fully interactingA-nucleon target WiﬂGg(R and the scat-
tering operatofcf. Egs.(2) and(15)]:

Gia(Pat+ @) =GR(PaA+Q[L1+T(Pa+q)GR(PA+a)]

1
C[GQPA+A)] - Vi(Pat Q)

(43

The momentung of the virtual photon in the argument of

PHYSICAL REVIEW C65 024310

1
W(q)=— ;Im[FAGN(PA)Gl,A( Patd)Gn(PAT Al
(44)

Equations(43) and (44) are the relativistic analogs of Egs.
(1) and(2). Whereas the latter have been derived by explicit
use of a Hamiltonian, this is not so for the former.

The above equations serve as the starting point for various
perturbative approaches for the structure function. First one
expandsG; A(Pa+0) in powers ofV; which produces the
four-dimensional relativistic 1$cf. Eq. (14)]

1
W(@) =~ —Am{TxGn(PA)[GIA(Pa+ )+ GiA(Pa+a)

XVy(Pat ) GIA(Pa+a)+ - - - 1GN(PAT A}
(45)
As for the nonrelativistic casgsee paragraph before Eq.

(28)] we next look for a different expansion &Y in powers
of an operatoV which annihilates the target ground state. A

choice which satisfies this requirement is provided by the
bracketed operator in E¢42):

V(PR =Vi(PA)—[GR(P)] L. (46)

the total Green’s function is ultimately the one absorbed by

nucleon 1. Equatioii36) can then be rewritten as

Using Eq.(46) we then rewriteG; o(Pa+Q), EQ. (43), as

1
(47)

Gia(Pata)=

[GOAPA+ D] 1 [GRAPAT 1= Vy(Pat+q)+Vy(Pa) —V(Pa)

For further evaluation we assume that the interaction be- 1

tween theN and the spectator is the sum of local pair poten- élA( Pa,q)=
tials, each depending only on the four-momentum transfer:

(P1:P2, -+ ks - [ValPLP2s P )

=2 Vadpi=pD) 8 Api-p—pitp). (49

As a consequencé;(P,+q)—V1(Pa)=0, in Eq.(47). Ex-
panding there5; A(Pa+Q) in powers ofV and substituting
the result into Eq(44), one obtaingcf. Eq. (259)]

1 -
W(q)=— ;Im{FAGN(PA)[GlA(PA o))

+G1A(PA, Q) V(PR G1A(PA,Q)

+ - 1GN(PA)T A}, (49

with

[GRPA+ ] 1= [GRPA)] T
1
G (Pa+a—p)—Gyl(Pa—p)

EGAfl(p)éN(PA_ p.q).

=iGa-1(p)

(50

For clarity we made explicit the four-momentum of the
struck nucleon.
We now evaluate the modified Green'’s function of the

struck nucleonGy in Eq. (50). Using Eq.(37) one obtains

1
(Pa—p+q)2=(Pa—p)?+in
_ 1

2(Ma—po)v—2p,|q|—Q%*+i7n’

Gn(Pa—p.a)=

(51)
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with Q?=¢?—v? and where the negative axis has been containingq are truly relativistic. As Fig. 1 shows, this ap-
chosen in the direction of the momentum the virtual photonplies only to the recoiling nucleon with momentupi-q

One notes that in contrast to the nonrelativistic case, Eqs=qQ.

(22) and (23), the quadratic dependence on energy in the We thus apply nonrelativistic limits to all quantities which
relativistic propagator, Eq37), causes the spectator energy contain low-momentum nucleons. Those are the propagators
P, to persist in Eq(51). Gn(Pa—p) andGa-1(p), Eqgs.(37) and(38) [cf. Eqs.(5)

Next one exploits Eq(42) in order to replacd/ in each and ()],

term of this series by commutators involving the residual

interaction,V, [12,13. For instance, the leading FSI term Gn(PA— p):(i) L . _ (53)
[the second term of the expansi6t9)] becomes 2M/Ma—po—M—p?2M +i7
o and
1 d*pd*p’
WERSq)=——im f ~5 i TAPIGN(PA=P)GA-1(P) 6, (p)=S [ |21, p)(p, PR 4] -
(2m) A-alPI= 2 2Mp-1)Po=Ma-1—Etin

X[Gn(Pa=p.@).Va(P=P))] In the same limit one can use for the residual interaction
fe _n’ ' _n’ / Vi(p—p')=Vi(p—p') and for the vertex functiod’
X Gn(Pa= P A)Ca-2(P)Cn(PA=PITA(RY). %llgi(p)p. )Afterléﬁbsﬁit)ution of the above limits into E/éﬁlpl))
(52)  we consider the integration ovey,. One notes that the
Green’s functionsGy(PA—p) and G,_4(p) have poles in
where we made explicit the momentum of the struckthe complexp, plane which lie on different sides of the real
nucleon, but left implicit variables chosen to represent theaxis. One may thus close the integration contour around the
spectator nucleons. The entire series formally acquires thgpectator pole and perform tipg integration. The result is
same form as its nonrelativistic GRS counterpart, 29),
but each term contains four-dimensional integrals over inter-
mediate four-momenta.

The exact evaluation of these terms, as well of those in .
the relativistic IS, constitutes a formidable many-body prob-With
lem. We now discuss minimal assumptions which lead to 1
considerable simplifications.

Ea—Ha- 1=Ky~ V1| ®,=0, (59

AM,_ M

A o, MR,y Ky A
IV. THREE-DIMENSIONAL REDUCTION
o ) Equation(55) is now a standard three-dimensional Sehro
A. Nonrelativistic limit for target wave functions dinger equation for the target bound state wave function,
We start this section with the observation that nucleons irwith effective residual interaction (1X,_;M)V;.

ground states of nuclei and in not too highly excited states
have on the average three-mome(pi®)’<pe~0.3 GeV,
with pr the Fermi momentum. The above are thus essentially We consider the relativistic IS and first apply the above
nonrelativistic systems. Examples are the struck nucleon beronrelativistic limits to all quantities, depending on nucleons
fore the absorption of the virtual photon, the nucleons in thewith low momenta. This we illustrate below on the IA for the
target nucleus at rest and in the spectator, which recoils witstructure ~ function, WA= — (1/77)Im[FAGNG(1(}2GNFA],
momentump. Only particles or subsystems with momentawhich is the first term of the IS, Eq45). Explicitly,

B. Reduction of relativistic impulse series

WHA(p q)=—£lm2 f d°p dpo [(BMa—_1M?) (T a(p)| PR 1)|? 1
, T n (2m)3) 2m G . (Mapt V—po)z—ez_ +i7],
MA_PO_M_W‘HW (Po—=Ma-1=E+in) P
(57)
|
with e,= IMZ+p?, +€;-p—in lies both in the lower half of the complep,

One observes that the above-mentioned spectator polplane. One ought to include the two above-mentioned poles,
pPo=Ma_1+E&,—i7 and the negative energy nucleon pole in but we first disregard the one with negative energy and com-
the relativistic propagatorGy(Pa+q) at pp=Ma+v pute only the residue of the spectator pole, leading to
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d3p
W'A(v,q)=; f —————|oM(p)|28(r—A—E+ M

2ey_p(2m)3

—eq_p)- (58

Next we introduce the reduced relativistic structure function

Fyo,9)=2|qW(v,q), (59)

PHYSICAL REVIEW C65 024310

Emax(q,y;,p) =€y 4 (g~ €p=q - (62)
In contrast with Eq(13)
lim Emax(.Y0.P)=Yo+ P; (63

[g]—e

i.e., the asymptotic limit of the maximum excitation energy
is finite. Apart from the order of thp, E integration, Eq(60)

where the factor B has been adjusted to produce the cor-is identical to the result of Refl].

rect nonrelativistic limit, Eqg.(9), of F. Integration over
cosp,q) leads to

— 1 q+YO ma
f"‘(yo,q>=mM pdp | “P(pE10E

+6(Y0) foy"pd prEm_a’“P(p,E)d E} . (60)

It has the same form as the nonrelativistic 1A, E¢0),

where the scaling variable and the integration limits have

been replaced by relativistic ones

There actually is no difficulty in computing the residue of
the above-neglected negative energy pole in the IA. How-
ever, the same for higher-order FSI terms seriously compli-
cates a three-dimensional reduction. Rather than elaborating
on this point, we proceed towards our major goal; namely,
the three-dimensional reduction of the relativistic GRS se-
ries.

C. Reduction of the relativistic GRS series

We thus consider the relativistic GRS series, E49) and
(50), and start with its lowest-order termwSRS=

—(1/7-r)lm[FAGN(~31AGNFA]. Applying the above nonrela-

—|g+V2M(v—A)+(v—A)?, (61) tivistic limit one obtains
|
d*p d i(BMa_1M?) T A(p)| DM ,)]? 1
WERY v,q) = — Imz f( p po (8M4 1p ) 2A(p)| AL 1)l o e
. . - V— —
Ma=Po~M = 5o +i 7| (po=May=E+in) S A POVl 7

In contrast to the relativistic IS, the modified propagaqy
has only one pole in the lower half of the complex plane
and simple calculus produces

Wet =2 f(z leR (PIPa2(M —A—Eyv

—2pg—Q?]. (65)
Integration over cog(q) then yields
GR 1 * NEmax
Fo Ve .@=7—2| | pdp| "P(p.E)dE
™ lygl 0
yG Emax
+9(YG)L |od|0fE _ P(p,E)dE},
(66)
where
M A\ Q?
Ye=Tq |V 1=-v 2m (67)

(64)

is a relativistic generalization ofy,, Eq. (24), derived in
Refs.[12,13. The integration limits in Eq(66) are

(ye+p)lql

14

Emax(q,yg,p) = (69)

In particular,

lim Enaxd.Yc,P)=Yo+Pp. (69

lg| =

Sinceyg— Yy in the asymptotic limit, the abovTEmax and its
analogE, ., in the IA, Eqg.(63), coincide.

Equation(66), the first term of the relativistic GRS series,
is seen to contain the spectral function, E8). It does not
resemble its nonrelativistic counterpart, E26), which con-
tains exclusively the momentum distributiap). The latter
is due to the independence of the nonrelativistic nucleon
propagato@N, Eqg. (23) on pg, in contrast to its relativistic
counterpart, Eqs(50) and (51). The upper limitE .y, EQ.
(69), is always finite. Consequently E6) is not the non-
relativistic limit of F$7°, Eq. (66). In fact, the latter re-
sembles more the corresponding expression for the 1A, Eq.
(60).
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Since the momentum distributiar(p), Eq.(27), is a sim- placementE,,,— [and consequentl®(p,E) by n(p) in

pler function than_ the spe_ctral funct_ldﬁ(p,E) which de- Eq. (66)] is therefore less of an offense in the GRS case than
pends on two variables, it is of practical interest to compare—

_clA : .
expressions for the maximum excitation energy of the specEmax=Emax — in the 1A expression, E¢(60).
tator. One thus concludes from E@62) and(68) that in the We now turn to FSI terms in the relativistic GRS series,

nonrelativistic regimev<M, ECRS=E >E"™ . The re- EQq.(49), for instance the dominant FSI term:

d*pd*p’ (8M2M 1) "X TA(p)| DY 1)

2m)® P
(2m) (MA_po_M_mﬂﬂ

1
WERY v, q) = — ;'min: f

(Po—Ma_1—Et+im)
" [2v(Po—Po) —2[dl(Pz = P) Vi (P—P")
[2(Ma—po)v—2p,|d|— Q%+in][2(Ma—pg) v—2p,|dl — Q% +i 5]?
(@L)|Ta(p))

(Po—Ma_1—En+in)

X

12 (70)

—nl—= — — 4
MA pO M 2M '77)

As in Eq.(64) for WSRS, one reduce®VeRS, Eq.(70), by performing thep,,pg integrations over the isolated spectator poles
and the result for the corresponding reduced structure function(58.becomes

v ’ N (N
H(gn_gn’)_(pz_ pz)}vl;nn'(p_p )‘PA (p")

d3pd3p/ QDfAn)(p)
2 : (72)

1
GR __ =
FERY6.0)= ﬂ_'m%f (2m°

v . , vV .
Ye— Pz~ H‘gn—H 7\ Ye— Pz~ Hgn"'" n

Upon neglect of the small relativistic corrections/|d|) (&, shifts should therefore be retained in the denominator of Eq.

—&,) in the numerator, one compares Egl) with its non-  (71). We neglected, however, their differences in the numera-

relativistic analog, Eq(303. The latter turns into the former tor of the same equation.

upon the following replacements of the scaling variable and The above three-dimensional reduction can be extended

Green’s function of the recoiling nucleon, E@3): straightforwardly to all higher-order terms of the relativistic
GRS series, leading to the result

Yw—Ye
= M 1 GRS A _ ) £GRg, A
GN%GK(y,q,p):(H) (72 FORya,lah jEO(q)f, Wyeld). (74
Yo Pz~ 1éntin

lal It obviously differs from its nonrelativistic analog, E@5b),
At this point we return to the nonrelativistic kinetic en- Py theq dependence of its expansion coefficients, which is
ergy p?/2M ,_, which has been neglected above and is valigdue to the ¢/|a[)&, term in Eq.(72). _
for all but the lightest spectators. It is actually straightfor- A Special case is the deuteron targefor which £,=0.
ward to include that energy, which amounts to replagigg This enables to reinstate in E/4) the g-independent ex-

Eq. (67), by the A-dependent scaling variable pansion coefficients " yg ,|d))=F*y3) and the con-
struction of the reduced relativistic structure function, Eq.
2y (74), from the nonrelativistic ongcf. Egs.(9) and (25)]
A G
Ye (73

1+V1+(2vyg/Ma_4ld)) FRELYR |d)=F R(yw—Yy2,|d)) (75)

One notes that the energy shift/(q|)&, in the propaga-
tor, Gy, Eq.(72), puts a finite upper limit to the maximum
excitation energy of the spectator JATR®, Eq. (71). The

same has been discussed for the lowest order tEffi°, WREL(V,Q)Z,gWNR(;,Q), (763
Eqg. (66), and occurs in all higher FSI terms. Those energy v

or, alternatively,
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A v (yg)Z comparison of the dominant FSI terfy, Eq. (309, of the
1— — m oMz | (76b  nonrelativistic GRS series with the summed FSI, B§).

It is shown in the Appendix that for the nonrelativistic
case, the summed FSI expressidthe second term in Eq.
Equation(75) implies that a calculation of the FSI part 8f  (33)] is obtained fronF,, Eq. (308, by V;— T and addition
requires the solution of a three-dimensional, instead of @f MA(p)/|g to the propagators. On account of the simi-
more complicated four-dimensional, scattering equation. larity of F, and F; [cf. Egs.(309 and(71)], we conjecture

It would be desirable to reach a similar simplification for that the relativistic summed FSIs are similarly generated
targets withA=3. A hint as to how to proceed comes from a from ffRS, Eq. (71). The final result is

d3pdp’
(2m)°

FORYye,a)=F5 " ye,0) — Z f

y e (P)(Py—P) T (Ena-1:p+ap + @i (p) -
y _p_V_&]_MAn(p)+| , Vgnr_MAnr(p)_l—i y _p,_ﬁdl—l .
¢ P g dl 7 Iq Iq n\YeT P g T

Ye— P~

We emphasize again the occurrence of three-dimensionglarticles. The reduction is a direct consequence of the sepa-
N-spectator transition amplitudeg,,, for off-shell energy ration in slow and fast target nucleons. Compared with a

[cf. Eq. (35)] nonrelativistic GRS theory, FSI interactions are summed by
a2 ) means of a three-dimensional scattering operator. Relativistic
Eai= (Ye+laD AP (79)  effects are only manifest in a relativistic scaling variable and
‘ 2M 2M° in an additional energy shift it propagators.

The occurrence of & operator usually indicates the sum- In spite of the role ¢/|q|)£, plays in the the limits of the

mation of GRS terms i, which is mandatory if the latter excitation energies of_the_ spe(_:tator, we wish tq explore clo-
is singular. As was the case for the nonrelativistic case, E ure %vert thOSEtIJ?XCItStIOHS.tIrE)I EGr?), repIamgg _srtr?.te-
(33), the relativistic expression for the structure function in ependent quantities by suitable a}veragérs,—>< )- IS
terms of the scattering operat®r Eq. (77) is more general leads to an operatof, which describes the scattering of
than the entire GRS series. nucleon 1 fromA—1, fixed spectator nucleor(see, for in-

Equations(75) and(77) are our main results. They are the Stance, Refl15)). In particular one may expanlin a Wat-
outcome of very accurate three-dimensional reduction of thé0n series of scattering operatoror nucleon pairs and re-
relativistic structure functions of targets composed of pointtain only the lowest-order term. The result is

M d3pd3p’
GR ~ TGR _ I ’.
FORIYe, =F5 s, 0) 1T|q|-mf (2m) p2(p.p’;0)
(p,—p){(p.—p+at(Ena_salp’, —p + )
W& M{Ap) )( T WH MAGY) )( G
R R AR T [dl 7)\Ye~P:

Ye— Pz~

(79

Above p,(p,p’,q) is the two-particle density matrix in the a theory and an example is a generalized convolution of
momentum representation: i.e., the Fourier transform of thetructure functions for nucleons and for a nucleus, composed

same in coordinate representatiaf. Eq. (30b)]. of point nucleong16|:

Clearly, for sufficiently high-energy transfers nucleons
may be exch:lited, and this is_manifest in the nucleon structure FAX,Q%) = fAdePN(Z QZ)FN(E,QZ)_ (80)
functionsF". Those dynamical features should be built into X
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107 : . the high momentum of the transferred photon in inclusive
scattering. Our focus is on an accurate three-dimensional re-
9=05° - duction of the expression, which is possible through a spe-
T . cific feature of a modified nucleon propagator: namely, its
e P linear momentum dependence. This is in contrast with the
107 T 8=30 1 standard relativistic IS.
] - In the case of a deuteron target, the above three-
f dimensional reduction leads to a perfect correspondence be-
;‘ tween the relativistic and the corresponding nonrelativistic
expressions for its structure function. The derivation of that
mapping does not employ light-cone kinematics which has
similar features, but without the need to relax spherical sym-
metry [21].

For targets withA=3 no such mapping can be proved
rigorously. We emphasized though the close correspondence
between the nonrelativistic and relativistic dominant FSI
terms and then conjectured that the same correspondence
holds between the nonrelativistic and relativistic summed
FSI contributions. The latter can then be calculated, using
three- instead of a more complicated four-dimensional scat-
tering equation. The above rests on the assumption that the
driving term of the four-dimensional Bethe-Salpeter scatter-
ing equation is local and given by a sum of pair interactions,
as has also been assumed in the nonrelativistic case.

s Our final remarks regarded the application of the obtained
2 3 results. In spite of the proven reduction and correspondence,
it is still nontrivial to solve multichannel scattering of a

FIG. 2. Double-differential cross section fer-*He—e+X in-  nucleon from a fully interactings— 1 nucleon spectator. We
clusive scattering as a function of The dashed line is the IAand Mentioned the approximation where man_y-body transition
the solid line corresponds to the lowest term of the relativistic GRSOP€rators are replaced by a sum of scattering operators for a
series. pair of nucleons. In addition we recalled the incorporation of

nucleons with internal dynamics. Both features are about the
Here fPN(x,Q?) is F°RYq,yA), Eqs. (73 and (77), ex-  basis of previously performed computatigrs].
pressed in the Bjorken variableand Q2. The above equa-
tions (79) and (80) come close to the expression used in ACKNOWLEDGMENTS
actual calculations of nuclear structure functiphg].

We conclude this section by stating that for the same rea- A.S.R. is grateful to Byron Jennings for having cooper-
sons as for the nonrelativistic case forwarded at the end gited in an initially different approach and having later com-
Sec. II, the relativistic GRS series is expected to show bettefnented on the present one. He also much profitted from the
convergence than the IS series. We shall provide proof’ usinﬁUith' discussions with Roland Rosenfelder. S.A.G. thanks
inclusive scattering of 3.595 GeV electrons dhle, for Cyclotron Institute at Texas A&M University for kind hospi-
which the nuclear input can be computed with high preci-tality.
sion. Figure 2 thus shows cross sections for two scattering
anglesf#=25°,30° as a function of the energy loss in a stan-
dard way related to théHe structure function, E¢80).

Inspection shows that, except for the smallestthe
drawn lines representing the lowest-order GRS prediction In the following we expand on the derivation of E§1)
using Eq.(66) nearly account for the dafd 8]. In contrast for the summed FSI contribution, which was previously
the dashed lines for the IA based on E60) show sizable given in Ref[12]. Consider nonrelativistic structure function
discrepancies. Details can be found in R&B]. Similar evi-  given by the GRS series, Eq&5d. Using Eq.(20) [with

dence comes fror® data[12,20. G,4=Gy, EQ. (23], we can rewrite the FSI part of the
structure function as
¢A>

1 -~
=- ;Im<¢)A|GNVG1,A|¢A>1 (A1)

10° |

-4

107

(1/A)d 6/dQdv [ub/ster/GeV]

10

v [GeV]

APPENDIX: FINAL STATE INTERACTION
IN THE GRS EXPANSION

V. SUMMARY

In this paper we studied a relativistic GRS series for struc-
ture functions of a nucleus composed of point nucleons. The
latter we simplified, exploiting nonrelativistic features of all
guantities there, which are related to slow target nucleons,
and only treated relativistically the nucleon which absorbs

> Gu(VGy)"
n=1

1
Wes((v,q)=— ;Im< Dp
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whereG; ,=G3 A(Ea+ 7,0) is the total Green’s function af- At the last step we use the following relation between the
ter the absorption of the virtual photon, E@). Using the  scattering operatof and the target wave function, valid for
Lippmann-Schwinger equatiofl6) one can expres§; o in  any local interactions:

terms of the scattering operatory

Gia=(1+GIATIGI, (A2) (Palgy "= (@Al GRGL'T. (A5)
whereG{=GQ(Ea+»,0), Eq. (3). Substituting Eq(A2)

into Eq. (A1) and usingV=H,—Ex=V;—g,* with g,
EG(&(EA,O), we obtain

The relation can easily obtained by multiplying the
Lippmann-Schwinger equatioli=V,(1+G{QT) by (P,
and using the Schdinger equation for the target wave func-
1 _ tion: (®A|V,=(®P4|gy L. Then Eq.(A4) can be rewritten as
Wesi= = —Im(® 4| Gn(V1— 8o H(1+GIRTGR @),
(A3) 1 o
o _ Wes = — —Im(®,|GIRTGIR - GIRG ' TGNGIR @ a)
One easily finds from Eqgs(21) and (23) that GN—G(l?A) m

=Gngo "G . Then using/; (1+ G{%T) =T we can rewrite 1 - o
Eq. (A3) as == —Im(@4| GG Gy TIGIA®a),  (AG)

1
—_ = (0)T=(0) _ - 1A (0)
Wes) wlm<¢)A|GLATGlA Jo GNGLA Pa)- thus obtaining the desired expression for the summed FSI

(A4) contribution in the GRS series.
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