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Relativistic approaches to structure functions of nuclei
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We employ a propagator technique to derive a new relativistic 1/uqu expansion of the structure function of a
nucleus, composed of point nucleons. We exploit nonrelativistic features of low-momentum nucleons in the
target and only treat relativistically the nucleon after absorption of a high-momentum virtual photon. The new
series permits a three-dimensional reduction of each term and a formal summation of all final state interaction
terms. We then show that a relativistic structure function can be obtained from its nonrelativistic analog by a
mere change of a scaling variable and the addition of an energy shift. We compare the obtained result with an
ad hoc generalized Gersch-Rodriguez-Smith theory, previously used in computations of nuclear structure
functions.
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I. INTRODUCTION

The major tool for computing nuclear structure function
as measured in inclusive electron scattering on nuclei, is
impulse~or Born! series~IS! in the residual interaction be
tween the struck nucleon and the remaining spect
nucleus. The lowest-order term of that series is the wid
used impulse approximation~IA !. Higher-order, final state
interaction~FSI! terms are essential for an accurate calcu
tion of the data, but their determination in practice cons
tutes a formidable problem~see, for instance, Refs.@1–6#!.

In the nonrelativistic regime there exists an alternat
approach, originally proposed by Gersch, Rodriguez,
Smith ~GRS! @7#. There the structure function is expressed
terms of commutators involving the residual interaction a
appears, for fixed values of a scaling variabley @7,9#, as a
series in inverse powers of the three-momentum transferuqu.
That theory has extensively been used to compute struc
functions~or responses! of quantum gases@8#.

If convergent, the GRS and IS approaches, taken to
orders, obviously produce identical results, but this is not
case if these series are truncated at some finite order
issue is then which of the truncated series is a better appr
mation to the total structure function. Judged by the lowe
order terms applied to classes of exactly solvable models
GRS expansion is to be preferred over the IS@5,10–13#.

The availability of data obtained with high-energy bea
requires a theory valid for the relativistic regime. In the I
final state interactions are summed by means of a fo
dimensional scattering operator, which satisfies a coup
channel Bethe-Salpeter equation, but their solution remai
complicated, relativistic many-body problem.

As regards the GRS approach, no satisfactory relativi
extension of the nonrelativistic GRS theory has been form
lated before. A start has been made by one of the auth
who previously exploited a propagator technique for
desciption of the structure function of composite syste
similar to the one used for nonrelativistic systems. Forma
exact expressions have been derived for relativistic struc
functions@12,13# in terms of four-dimensional integrals ove
relativistic propagators and scattering operators, as is
0556-2813/2002/65~2!/024310~12!/$20.00 65 0243
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case in the relativistic IS treatment of structure functions
In this paper we develop a relativistic GRS series

structure functions exploiting manifestly nonrelativistic fe
tures of the system. There we shall emphasize that only
nucleon which absorbs the virtual photon in inclusive sc
tering acquires a large momentum and has to be treated
tivistically. All others nucleons have nonrelativistic momen
and can be treated accordingly.

We shall show below that the above nonrelativistic fe
tures permit an accurate three-dimensional reduction of
terms in the relativistic GRS series for a structure functio
This feature gives the GRS series a definite advantage
the IS. For it a three-dimensional reduction is very involv
due to negative energy poles in relativistic nucleon propa
tors.

The outline of this paper is as follows. In Sec. II w
rederive the nonrelativistic GRS series, showing the way t
relativistic extension, which is performed in Sec. III. In Se
IV we exploit nonrelativistic features of the problem an
subsequently prove a three-dimensional reduction of
lowest-order and of all higher-order FSI terms of the relat
istic GRS series. We demonstrate that the latter can
summed in a closed expression, involving a thre
dimensional Lippmann-Schwinger,T matrix. This reduces an
evaluation of the relativistic nuclear structure functions to
nonrelativistic problem. In the end we relate our final expr
sions with approximative representations of the relativis
GRS series, which have been used in a description of nuc
structure functions.

II. NONRELATIVISTIC TREATMENTS OF THE
STRUCTURE FUNCTION

A. Impulse series

We start with the nonrelativistic structure function p
nucleon,W(n,q), appropriate to a nucleus ofA point nucle-
ons wheren andq are the energy and momentum transferr
to the target. In order to simplify the algebra, we restrict o
derivation to the case of spinless particles. We focus on
©2002 The American Physical Society10-1
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incoherent part ofW which dominates for largeuqu and ex-
ploit its relation to the imaginary part of the forward Com
ton amplitude:

W~n,q!52
1

p
Im^FAuQ 1

†~n,q!GA~EA,0!Q1~n,q!uFA&

[2
1

p
Im^FAuG1,A~EA1n,q!uFA&. ~1!

HereFA is the ground state wave function of the target w
energyEA , andGA(EA,0)5(EA2HA)21, the exact Green’s
function of theA-nucleon system at rest.

The operatorQ1(Q 1
†) shifts the energy and the mome

tum of a selected nucleon 1 byn andq due to the absorption
~emission! of a virtual photon. The second line in Eq.~1!
defines the corresponding shifted Green’s function. The la
is conveniently described, using a decomposition of the
get HamiltonianHA into a sum of the HamiltonianHA21 of
the A21 nucleon spectator, the kinetic energyK1 of a
nucleon~1!, and the residual interactionV15( i>2V1i , thus

G1,A~EA1n,q!5
1

EA1n2HA212K1~q!2V11 ih
, ~2!

where K1(q)5(p̂1q)2/2M is the kinetic energy operato
with the momentum operatorp̂ shifted by q and M is the
nucleon mass. We assume thatNN potentials are local,Vi j

[Vi j (r i2r j ). ConsequentlyQ 1
†(n,q)V1Q1(n,q)5V1 such

that the interaction is not affected by the shift as is explicit
Eq. ~2!.

At this point we comment on notation. We distinguis
between external parametersEA , q, and n and variables
which depend on the chosen representation of operators
do not display those variables, unless required for clarity

The most common treatment of the structure function
the impulse approximation, obtained by takingV1→0 in Eq.
~2!. The shifted Green’s functionG1,A(EA1n,q) in this ap-
proximationG1,A.G1,A

(0) reads

G1,A
(0)~EA1n,q!5

1

EA1n2HA212~ p̂1q!2/2M1 ih
. ~3!

With a relativistic extension in mind, we express t
above G1,A

(0) as a convolution of Green’s functions for th
(A21)-nucleon spectator and for the struck nucleon (N),

G1,A
(0)~EA1n,q!5 i E dp0

2p
GA21~p0!GN~EA1n2p0 ,q!,

~4!

and where we shall use the spectral representation ofGA21:

GA21~p0!5(
n

uFA21
(n) &^FA21

(n) u

p02EA21
(n) 1 ih

. ~5!

GN in Eq. ~4! stands for the Green’s function of the stru
nucleon after absorption of the virtual photon. It reads
02431
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GN~EA1n2p0 ,q!5
1

EA1n2p02~ p̂1q!2/2M1 ih
.

~6!

Substituting Eq.~4! into Eq. ~1! and performing the inte-
gration overp0, one obtains the structure function in the IA

WIA~n,q!5(
n
E dp

~2p!3
uwA

(n)~p!u2

3dS EA1n2EA21
(n) 2

~p2q!2

2M D ~7a!

5E dp

~2p!3E dEP~p,E!

3dS n2E2D2
~p2q!2

2M D , ~7b!

wherewA
(n)(p)5^FA21

(n) ,puFA& is an overlap amplitude and
D5EA212EA . We neglect inEA21

(n) the tiny recoil energy of
the spectatorp2/2MA21. In Eq. ~7b! appears the single-hol
spectral function

P~p,E!5(
n

uwA
(n)~p!u2d~E2En!, ~8!

with En[EA21
(n) 2EA21, the spectator excitation energy.

It will be useful to define the reduced structure functi
for nonrelativistic systems

F~y,q!5~ uqu/M !W~n,q!, ~9!

wherey[y(n,q) is some scaling variable. After integratio
in Eq. ~7b! over p̂•q̂ one obtains for the lowest order the I
part of F,

FIA~y0 ,q!5
1

4p2 F E
uy0u

y012q

dppE
0

Emax
dEP~p,E!

1u~y0!E
0

y0
dppE

Emin

Emax
dEP~p,E!G , ~10!

with y0, the IA scaling variable:

y052uqu1A2M ~n2D!. ~11!

The integration limits in Eq.~10! are

Emax
min

~y0 ,p,q!5
y06p

M
uqu1

y0
22p2

2M
~12!

and, in particular,

lim
q→`

Emax~y0 ,p,q!5`. ~13!

In order to go beyond the IA one expands the to
Green’s functionG1,A , Eq. ~2!, in powers ofV1G1,A

(0) . Sub-
0-2
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stituting this expansion into Eq.~1! one obtains the impulse
series for the structure function

W52
1

p
Im^FAuG1,A

(0)1G1,A
(0)V1G1,A

(0)1G1,A
(0)V1G1,A

(0)V1G1,A
(0)

1•••uFA&. ~14!

The first term is the IA and the remainder are FSIs. We n
introduce the scattering operatorT, which describes the sca
tering of the knocked-out nucleon from the (A21)-nucleon
spectator. It satisfies the Lippmann-Schwinger operator eq
f
-
te

e
.

02431
w

a-

tion T5V11V1G1,A
(0)T and clearly permits a formal summa

tion of the FSI terms in Eq.~14!. The total structure function
thus becomes

W52
1

p
Im^FAuG1,A

(0)1G1,A
(0)TG1,A

(0)uFA&. ~15!

It is convenient to use the momentum representation for
nucleon and, as in Eqs.~5! and ~7!, a representation for the
spectator states, denoted byn. The Lippmann-Schwinger
equation then becomes a set of coupled equations for tra
tion amplitudesTnn8(E,p,p8)[^p,FA21

(n) uTuFA21
(n8) ,p8&:
onse
Tnn8~E,p,p8!5V1;nn8~p2p8!1(
n9

E dp9

~2p!3

V1;nn9~p2p9!Tn9n8~E,p9,p8!

E2En92
p92

2M
1 ih

. ~16!

HereV1;nn8(p2p8)5^p,FA21
(n) uV1uFA21

(n8) ,p8& andE, the energy in the laboratory frame. In parallel the total reduced resp
F(y0 ,q), Eq. ~9!, reads~we chose thez axis alongq)

F~y0 ,q!5FIA~y0 ,q!1
M

puqu
Im(

nn8
E dpdp8

~2p!6

wA
(n)~p!Tnn8~EN,A21 ,p1q,p81q!wA

(n8)~p8!

S y02pz2
MEn

uqu
2

p22y0
2

2uqu
1 ih D S y02pz82

MEn8
uqu

2
p822y0

2

2uqu
1 ih D , ~17!
ut
with

EN,A215n2D5
~y01uqu!2

2M
~18!

the off-shell energy of the nucleon-spectator amplitudes.

B. GRS series

The expansion~14! of a structure function in powers o
the residual interactionV1 is not the only possible perturba
tive approach. In this section we shall expand the shif
Green’s functionG1,A(EA1n,q) in a different operatorṼ
5V11K1(0)1HA212EA[2G1,A

21(EA,0), for which by

definition ṼuFA&50. Then using the identity

G1,A~EA1n,q!5
1

G1,A
21~EA1n,q!2G1,A

21~EA,0!2Ṽ
,

~19!
d

the shifted Green’s functionG1,A(EA1n,q) permits the ex-
pansion

G1,A5G̃1,A~11ṼG̃1,A1ṼG̃1,AṼG̃1,A1••• !, ~20!

where

G̃1,A[G̃1,A~n,q!5
1

G1,A
21~EA1n,q!2G1,A

21~EA,0!
~21a!

5
1

@G1,A
(0)~EA1n,q!#212@G1,A

(0)~EA,0!#21
.

~21b!

Again we assumeV1 to be local and it therefore cancels o
in Eq. ~21b!. ExpressingG̃1,A as a convolution~cf. Eq. ~4!,
Eq. ~21b! becomes
G̃1,A~n,q!5 i E dp0

2p
GA21~p0!

1

GN
21~EA1n2p0 ,q!2GN

21~EA2p0,0!
5 i E dp0

2p
GA21~p0!G̃N~n,q!. ~22!
Since GN
21 , Eq. ~6!, is linear in the energy argument, th

spectator energyp0 andEA cancel in the denominator in Eq

~22!. Thus in contrast toG1,A
(0) , Eqs. ~4!–~6!, G̃1,A does not

depend on the excitation energyEA21
(n) of the spectator. Using
Eq. ~5!, one performs thep0 integral in Eq.~22! with the
result

G̃1,A~n,q![G̃N~n,q!5
M

uqu
1

yW2 p̂z1 ih
, ~23!
0-3



in

i-

q.

is

RS
g

tors,

ed

on
de-

S. A. GURVITZ AND A. S. RINAT PHYSICAL REVIEW C65 024310
whereyW is the GRS-West scaling variable@7,9#:

yW5
M

uqu S n2
q2

2M D . ~24!

Substitution of the series~20! for G1,A into Eq. ~1!, and
use of Eq.~23! there, manifestly produces a power series
Ṽ/uqu ~the GRS series! for the nuclear response

W~n,q!52
1

p
Im^FAuG̃N1G̃NṼG̃N

1G̃NṼG̃NṼG̃N•••uFA& ~25a!

5(
j 50

` S M

uqu D
j 11

F j~yW!, ~25b!

with coefficientsF j , which are functions of the scaling var
able yW . The lowest-order GRS term (j 50) is the
asymptotic limitq→`, of the reduced structure function E
~9!,

F0
GRS~yW!5E n~p!d~yW2pz!

d3p

~2p!3
5

1

4p2EuyWu

`

n~p!pdp.

~26!

Aboven(p) is the nucleon momentum distribution, which
related to the spectral function Eq.~8! by

n~p!5E
0

`

P~p,E!dE. ~27!
rs

q.

02431
We remark that the leading terms in the impulse and G
series, Eqs.~10! and~26!, are quite different. However, usin
limuqu→`(yW2y0)50 and Eqs.~13! and ~27!, one finds that
in the limit uqu→`, FIA→F0

GRS.

Consider next higher-order terms^FAuG̃N(ṼG̃N)nuFA& in
the series~25!. Since @Ṽ,G̃N#5@V1 ,G̃N# and alsoṼuFA&
50, each of those terms can be expressed by commuta
involving the residual interactionV1 and the kinetic energy
operatorK1 of the struck nucleon, and notṼ5HA2EA . For
instance,

ṼG̃NuFA&5@V1 ,GN
(0)#uFA&,

ṼG̃NṼG̃NuFA&5$@V1 ,G̃N#21@~V11K1!,@V1 ,G̃N##%uFA&,

••• . ~28!

From Eq.~25! one then finds for the corresponding reduc
structure function, Eq.~9!:

FGRS52
uqu

pM
Im^FAuG̃N1@G̃N ,V1#G̃N

1@G̃N ,V1#G̃N@V1 ,G̃N#1•••uFA&. ~29!

Equation ~29! is the GRS series for the response functi
which, using a coordinate-time representation, was first
rived in Ref.@7#. For instance, the leading FSI termF1(yW)
reads
F1
GRS~yW!5

1

p
Im(

nn8
E dpdp8

~2p!6

wA
(n)~p!V1,nn8~p2p8!~pz82pz!wA

(n8)~p8!

~yW2pz1 ih!~yW2pz81 ih!2
~30a!

52 i E
2`

` ds

2p
eisyWE E dr1dr2r2~r12sq̂,r2 ;r1 ,r2!E

0

s

ds@V12~r2sq̂!2V12~r2sq̂!#, ~30b!
hat
nta-

ion
with r2 is the two-particle density matrix.
In spite of the increasing complexity of the commutato

in the series~29!, it has been demonstrated in Ref.@12# that,
like Eq. ~15! for the IS,all FSI terms in the GRS series, E
~29!, can be summed in a closed expression,

F52
uqu

pM
Im^FAuG̃N1G1,A

(0)G̃N
21@G̃N ,T#G1,A

(0)uFA&,

~31!

with G1,A
(0) , given by Eq.~3!. A derivation of Eq.~31! is given

in the Appendix.
The characteristic feature of the expression~31! is the
commutator@G̃N ,T#, involving T, Eq. ~16!, which describes
the scattering of the struck nucleon and the spectator. T
commutator has a simple form in the momentum represe
tion

^puG̃N
21@G̃N ,T#up8&5^puTup8&

pz2pz8

yW2pz81 ih
. ~32!

Using the spectral representation of the Green’s funct
G1,A

(0) , Eqs.~4! and ~5!, one rewrites Eq.~31! as
0-4
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F~yW ,q!5F0
GRS~yW!1

M

puqu
Im(

nn8
E dpdp8

~2p!6

wA
(n)~p!~pz82pz!Tnn8~ẼN,A21 ;p1q,p81q!wA

(n8)~p8!

S yW2pz2
MDn~p!

uqu
1 ih D S yW2pz82

MDn8~p8!

uqu
1 ih D ~yW2pz81 ih!

,

~33!
s
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Dn~p!5D1En1
p2

2M
~34!

and

ẼN,A215n2D5
~yW1uqu!2

2M
2D2

p2

2M
~35!

is the off-shell energy ofT in the laboratory frame.
Expansion of the integrand~33! in powers of 1/uqu for

constantyW generates the entire GRS series, Eq.~29!. For
instance, the leading FSI term of the GRS seriesF1

GRS(yW),
Eq. ~30!, is retrieved from Eq.~33! by the replacementT
→V1 and disregardingMDn(p)/uqu. Likewise one assemble
terms of higher order in 1/uqu, all appearing as sums overn.
Those may in fact be evaluated and ultimately produce, a
the original presentation of the GRS theory, coefficientsF j in
terms of off-diagonal density matrices@7# @cf. Eq. ~30b! for
F1#.

The expressions~17! and~33! permit a comparison of the
total FSI contributions in the IS and GRS series. Both c
tain nucleon-spectator transition amplitudes, which
strongly peaked for small momentum transferspz82pz .
However, the same momentum transfer also appears
factor in the numerator of Eq.~33! and thus reduces FSIs i
the GRS series.

An additional suppression of FSIs in that series com
from the different off-shell energies, Eqs.~18! and ~35!.
From those one finds, fory05yW , ẼN,A21,EN,A21; i.e., the
energy of the GRS amplitude is farther from the energy s
than is IS amplitude. Since the complete expressions for
structure functions are identical, the forwarded argume
indicate that the leading GRS termF0

GRS is a better approxi-
mation to the total structure function than is the correspo
ing FIA. Experimental evidence is deferred to the end of S
IV.

III. RELATIVISTIC NUCLEAR STRUCTURE FUNCTION

In Sec. II we have used an unconventional propaga
technique to rederive the GRS series, primarily because
same will now be shown to lead to the desired relativis
generalization of the GRS series, Eq.~29!.

We start with the relativistic nuclear structure functio
Wmn . As in the previous case we consider for simplic
scalar nucleons and photons. This implies that we res
ourself to the longitudinal component of the structure fun
tion W5@(q22n2)/q2#W00 ~see, for instance,@9,14#!. We
presume that the techniques which we shall present be
02431
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will also be applicable for nucleons and photons with spi
The relativistic nuclear structure function is then aga

given by the imaginary part of the forward Compton amp
tude. The latter can always be written as a sum of two ter
which represent the IA and FSI contributions~Fig. 1!:

W~q!52
1

p
Im$GAGN~PA!@G1,A

(0)~PA1q!1G1,A
(0)~PA1q!

3T~PA1q!G1,A
(0)~PA1q!#GN~PA!GA%. ~36!

GN andG1,A
(0) are propagators for, respectively, a nucleon a

the noninteracting nucleon-spectator system, with fo
momentumPA1q. As before we display in Eq.~36! only the
external parametersPA5(MA,0) andq5(n,q). Only when
necessary do we make explicit the four-momenta of tar
nucleons. Those appear, for example, inGN ,

GN~PA![GN~PA2p!5
1

~PA2p!22M21 ih
, ~37!

and likewise inG1,A
(0) ,

G1,A
(0)~PA1q![G1,A

(0)~PA1q,p!5 iGA21~p!GN~PA1q2p!,
~38!

whereGA21 is the propagator of the fully interacting spe
tator. The operatorT5T(PA1q) in Eq. ~36! again describes
elastic and inelastic scattering of theN-spectator subsystem
and satisfies the Bethe-Salpeter equation@cf. Eq. ~16!#

T~PA1q!5V1~PA1q!@11G1,A
(0)~PA1q!T~PA1q!#.

~39!

The effective interactionV1 is defined as the sum of all irre
ducible contributions, which drive the scattering operator
Eq. ~39!.

We still have to define the target-spectator-N vertex func-
tion GA in Eq. ~36! ~see also Fig. 1!. It appears in the residue
of the bound state pole of the scattering operatorT(P):

GA~p!GA~p8!5 lim
P2→MA

2

~P22MA
2 !^puT~P!up8&. ~40!

FIG. 1. Nuclear structure function expressed as the imagin
part of the forward Compton amplitude. The first diagram rep
sents the IA and the second one FSIs.
0-5
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One then derives from the Bethe-Salpeter equation~39! with
the four-momentumPA as the argument,

GA~p!5 i E ^puV1~PA!up8&GA21~p8!

3GN~PA2p8!GA~p8!
d4p8

~2p!4
, ~41!

which is the Dyson equation, satisfied byGA . The latter can
be rewritten in a form similar to the Schro¨dinger equation,

$@G1,A
(0)~PA!#212V1~PA!%G1,A

(0)~PA!GA50, ~42!

with G1,A
(0)(PA)GA a relativistic target wave function.

Next we link in a standard way the Green’s function
the fully interactingA-nucleon target withG1,A

(0) and the scat-
tering operator@cf. Eqs.~2! and ~15!#:

G1,A~PA1q!5G1,A
(0)~PA1q!@11T~PA1q!G1,A

(0)~PA1q!#

5
1

@G1,A
(0)~PA1q!#212V1~PA1q!

. ~43!

The momentumq of the virtual photon in the argument o
the total Green’s function is ultimately the one absorbed
nucleon 1. Equation~36! can then be rewritten as
be
n

er

02431
y

W~q!52
1

p
Im@GAGN~PA!G1,A~PA1q!GN~PA!GA#.

~44!

Equations~43! and ~44! are the relativistic analogs of Eqs
~1! and~2!. Whereas the latter have been derived by expl
use of a Hamiltonian, this is not so for the former.

The above equations serve as the starting point for var
perturbative approaches for the structure function. First
expandsG1,A(PA1q) in powers ofV1 which produces the
four-dimensional relativistic IS@cf. Eq. ~14!#

W~q!52
1

p
Im$GAGN~PA!@G1,A

(0)~PA1q!1G1,A
(0)~PA1q!

3V1~PA1q!G1,A
(0)~PA1q!1•••#GN~PA!GA%.

~45!

As for the nonrelativistic case@see paragraph before Eq
~28!# we next look for a different expansion ofW in powers
of an operatorṼ which annihilates the target ground state.
choice which satisfies this requirement is provided by
bracketed operator in Eq.~42!:

Ṽ~PA!5V1~PA!2@G1,A
(0)~PA!#21. ~46!

Using Eq.~46! we then rewriteG1,A(PA1q), Eq. ~43!, as
G1,A~PA1q!5
1

@G1,A
(0)~PA1q!#212@G1,A

(0)~PA!#212V1~PA1q!1V1~PA!2Ṽ~PA!
. ~47!
e

he
For further evaluation we assume that the interaction
tween theN and the spectator is the sum of local pair pote
tials, each depending only on the four-momentum transf

^p1 ,p2 , . . . ,pk , . . . uV1up18 ,p28 , . . . ,pk8 , . . . &

5 (
k>2

V1k~p12p18!d (4)~p12pk2p181pk8!. ~48!

As a consequenceV1(PA1q)2V1(PA)50, in Eq.~47!. Ex-
panding thereG1,A(PA1q) in powers ofṼ and substituting
the result into Eq.~44!, one obtains@cf. Eq. ~25a!#

W~q!52
1

p
Im$GAGN~PA!@G̃1,A~PA ,q!

1G̃1,A~PA ,q!Ṽ~PA!G̃1,A~PA ,q!

1•••#GN~PA!GA%, ~49!

with
-
-
:

G̃1,A~PA ,q!5
1

@G1,A
(0)~PA1q!#212@G1,A

(0)~PA!#21

5 iGA21~p!
1

GN
21~PA1q2p!2GN

21~PA2p!

[GA21~p!G̃N~PA2p,q!. ~50!

For clarity we made explicit the four-momentum of th
struck nucleon.

We now evaluate the modified Green’s function of t
struck nucleon,G̃N in Eq. ~50!. Using Eq.~37! one obtains

G̃N~PA2p,q!5
1

~PA2p1q!22~PA2p!21 ih

5
1

2~MA2p0!n22pzuqu2Q21 ih
,

~51!
0-6
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with Q25q22n2 and where the negativez axis has been
chosen in the direction of the momentum the virtual phot
One notes that in contrast to the nonrelativistic case, E
~22! and ~23!, the quadratic dependence on energy in
relativistic propagator, Eq.~37!, causes the spectator ener
p0 to persist in Eq.~51!.

Next one exploits Eq.~42! in order to replaceṼ in each
term of this series by commutators involving the resid
interaction,V1 @12,13#. For instance, the leading FSI ter
@the second term of the expansion~49!# becomes

W1
GRS~q!52

1

p
ImE d4pd4p8

~2p!8
GA~p!GN~PA2p!GA21~p!

3@G̃N~PA2p,q!,V1~p2p8!#

3G̃N~PA2p8,q!GA21~p8!GN~PA2p8!GA~p8!,

~52!

where we made explicit the momentum of the stru
nucleon, but left implicit variables chosen to represent
spectator nucleons. The entire series formally acquires
same form as its nonrelativistic GRS counterpart, Eq.~29!,
but each term contains four-dimensional integrals over in
mediate four-momenta.

The exact evaluation of these terms, as well of those
the relativistic IS, constitutes a formidable many-body pro
lem. We now discuss minimal assumptions which lead
considerable simplifications.

IV. THREE-DIMENSIONAL REDUCTION

A. Nonrelativistic limit for target wave functions

We start this section with the observation that nucleon
ground states of nuclei and in not too highly excited sta
have on the average three-momenta^p2&1/2&pF'0.3 GeV,
with pF the Fermi momentum. The above are thus essenti
nonrelativistic systems. Examples are the struck nucleon
fore the absorption of the virtual photon, the nucleons in
target nucleus at rest and in the spectator, which recoils w
momentump. Only particles or subsystems with momen
o
in

02431
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containingq are truly relativistic. As Fig. 1 shows, this ap
plies only to the recoiling nucleon with momentump1q
'q.

We thus apply nonrelativistic limits to all quantities whic
contain low-momentum nucleons. Those are the propaga
GN(PA2p) and GA21(p), Eqs. ~37! and ~38! @cf. Eqs. ~5!
and ~6!#,

GN~PA2p!.S 1

2M D 1

MA2p02M2p2/2M1 ih
~53!

and

GA21~p!.(
n

S 1

2MA21
D uFA21

(n) ,p&^p,FA21
(n) u

p02MA212En1 ih
. ~54!

In the same limit one can use for the residual interact
V1(p2p8)'V1(p2p8) and for the vertex functionGA(p)
'GA(p). After substitution of the above limits into Eq.~41!
we consider the integration overp0. One notes that the
Green’s functionsGN(PA2p) and GA21(p) have poles in
the complexp0 plane which lie on different sides of the re
axis. One may thus close the integration contour around
spectator pole and perform thep0 integration. The result is

S EA2HA212K12
1

4MA21M
V1DFA50, ~55!

with

FA5
1

~8MA21M2!1/2~EA2HA212K1!
GA . ~56!

Equation ~55! is now a standard three-dimensional Sch¨-
dinger equation for the target bound state wave functi
with effective residual interaction (1/4MA21M )V1.

B. Reduction of relativistic impulse series

We consider the relativistic IS and first apply the abo
nonrelativistic limits to all quantities, depending on nucleo
with low momenta. This we illustrate below on the IA for th
structure function, WIA52(1/p)Im@GAGNG1,A

(0)GNGA#,
which is the first term of the IS, Eq.~45!. Explicitly,
WIA~n,q!52
1

p
Im(

n
E d3p

~2p!3E dp0

2p

i ~8MA21M2!21u^GA~p!uFA21
(n) &u2

S MA2p02M2
p2

2M
1 ih D 2

~p02MA212En1 ih!

1

~MA1n2p0!22eq2p
2 1 ih

,

~57!
les,
m-
with ep5AM21p2.
One observes that the above-mentioned spectator p

p05MA211En2 ih and the negative energy nucleon pole
the relativistic propagatorGN(PA1q) at p05MA1n
le,
1eq2p2 ih lies both in the lower half of the complexp0

plane. One ought to include the two above-mentioned po
but we first disregard the one with negative energy and co
pute only the residue of the spectator pole, leading to
0-7
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WIA~n,q!5(
n
E d3p

2eq2p~2p!3
uwA

(n)~p!u2d~n2D2En1M

2eq2p)!. ~58!

Next we introduce the reduced relativistic structure funct

F~ ȳ0 ,q![2uquW~n,q!, ~59!

where the factor 2uqu has been adjusted to produce the c
rect nonrelativistic limit, Eq.~9!, of F. Integration over
cos(p,q) leads to

F IA~ ȳ0 ,q!5
1

4p2 F E
u ȳ0u

2q1 ȳ0
pdpE

0

ĒmaxP~p,E!dE

1u~ ȳ0!E
0

ȳ0
pdpE

Ēmin

ĒmaxP~p,E!dEG . ~60!

It has the same form as the nonrelativistic IA, Eqs.~10!,
where the scaling variable and the integration limits ha
been replaced by relativistic ones

ȳ052uqu1A2M ~n2D!1~n2D!2, ~61!
02431
n
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e

Ēmax
min

~q,ȳ0 ,p!5eȳ01uqu2ep6uqu . ~62!

In contrast with Eq.~13!

lim
uqu→`

Ēmax~q,ȳ0 ,p!5 ȳ01p; ~63!

i.e., the asymptotic limit of the maximum excitation ener
is finite. Apart from the order of thep,E integration, Eq.~60!
is identical to the result of Ref.@1#.

There actually is no difficulty in computing the residue
the above-neglected negative energy pole in the IA. Ho
ever, the same for higher-order FSI terms seriously com
cates a three-dimensional reduction. Rather than elabora
on this point, we proceed towards our major goal; name
the three-dimensional reduction of the relativistic GRS
ries.

C. Reduction of the relativistic GRS series

We thus consider the relativistic GRS series, Eqs.~49! and
~50!, and start with its lowest-order termW0

GRS5

2(1/p)Im@GAGNG̃1,AGNGA#. Applying the above nonrela
tivistic limit one obtains
W0
GRS~n,q!52

1

p
Im(

n
E d3p

~2p!3

dp0

2p

i ~8MA21M2!21u^GA~p!uFA21
(n) &u2

S MA2p02M2
p2

2M
1 ih D 2

~p02MA212En1 ih!

1

2~MA2p0!n22pq2Q21 ih
.

~64!
s,

on

Eq.
In contrast to the relativistic IS, the modified propagatorG̃N
has only one pole in the lower half of the complexp0 plane
and simple calculus produces

W0
GRS~n,q!5(

n
E d3p

~2p!3uwA
(n)~p!u2d@2~M2D2En!n

22pq2Q2#. ~65!

Integration over cos(p,q) then yields

F 0
GRS~yG ,q!5

1

4p2 F E
uyGu

`

pdpE
0

ẼmaxP~p,E!dE

1u~yG!E
0

yG
pdpE

Ẽmin

ẼmaxP~p,E!dEG ,
~66!

where

yG5
M

uqu FnS 12
D

M D2
Q2

2M G ~67!
is a relativistic generalization ofyW , Eq. ~24!, derived in
Refs.@12,13#. The integration limits in Eq.~66! are

Ẽmax
min

~q,yG ,p!5
~yG6p!uqu

n
. ~68!

In particular,

lim
uqu→`

Ẽmax~q,yG ,p!5yG1p. ~69!

SinceyG→ ȳ0 in the asymptotic limit, the aboveẼmax and its
analogĒmax in the IA, Eq. ~63!, coincide.

Equation~66!, the first term of the relativistic GRS serie
is seen to contain the spectral function, Eq.~8! It does not
resemble its nonrelativistic counterpart, Eq.~26!, which con-
tains exclusively the momentum distributionn(p). The latter
is due to the independence of the nonrelativistic nucle
propagatorG̃N , Eq. ~23! on p0, in contrast to its relativistic
counterpart, Eqs.~50! and ~51!. The upper limitẼmax, Eq.
~68!, is always finite. Consequently Eq.~26! is not the non-
relativistic limit of F 0

GRS, Eq. ~66!. In fact, the latter re-
sembles more the corresponding expression for the IA,
~60!.
0-8
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Since the momentum distributionn(p), Eq.~27!, is a sim-
pler function than the spectral functionP(p,E) which de-
pends on two variables, it is of practical interest to comp
expressions for the maximum excitation energy of the sp
tator. One thus concludes from Eqs.~62! and~68! that in the
nonrelativistic regimen!M , Emax

GRS5Ẽmax@Emax
IA . The re-
r
n

-
li
r

rg

02431
e
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placementẼmax→` @and consequentlyP(p,E) by n(p) in
Eq. ~66!# is therefore less of an offense in the GRS case t

Ēmax5Emax
IA →` in the IA expression, Eq.~60!.

We now turn to FSI terms in the relativistic GRS serie
Eq. ~49!, for instance the dominant FSI term:
les
W1
GRS~n,q!52

1

p
Im(

n
E d4pd4p8

~2p!8

~8M2MA21!21^GA~p!uFA21
(n) &

S MA2p02M2
p2

2M
1 ih D ~p02MA212En1 ih!

3
@2n~p082p0!22uqu~pz82pz!#V1;nn8~p2p8!

@2~MA2p0!n22pzuqu2Q21 ih#@2~MA2p08!n22pz8uqu2Q21 ih#2

3
^FA21

(n8) uGA~p8!&

~p082MA212En81 ih!S MA2p082M2
p82

2M
1 ih D . ~70!

As in Eq.~64! for W0
GRS, one reducesW1

GRS, Eq. ~70!, by performing thep0 ,p08 integrations over the isolated spectator po
and the result for the corresponding reduced structure function, Eq.~59!, becomes

F 1
GRS~yG ,q!52

1

p
Im(

nn8
E d3pd3p8

~2p!6

wA
(n)~p!F n

uqu ~En2En8!2~pz2pz8!GV1;nn8~p2p8!wA
(n8)~p8!

S yG2pz2
n

uqu
En1 ih D S yG2pz82

n

uqu
En81 ih D 2 . ~71!
Eq.
ra-

ded
ic

is

q.
Upon neglect of the small relativistic corrections (n/uqu)(En
2En8) in the numerator, one compares Eq.~71! with its non-
relativistic analog, Eq.~30a!. The latter turns into the forme
upon the following replacements of the scaling variable a
Green’s function of the recoiling nucleon, Eq.~23!:

yW→yG ,

G̃N→G̃N
r ~n,q,p!5S M

uqu D 1

yG2pz2
n

uqu
En1 ih

. ~72!

At this point we return to the nonrelativistic kinetic en
ergyp2/2MA21 which has been neglected above and is va
for all but the lightest spectators. It is actually straightfo
ward to include that energy, which amounts to replacingyG ,
Eq. ~67!, by theA-dependent scaling variable

yG
A5

2yG

11A11~2nyG /MA21uqu!
. ~73!

One notes that the energy shift (n/uqu)En in the propaga-
tor, G̃N , Eq. ~72!, puts a finite upper limit to the maximum
excitation energy of the spectator inF 1

GRS, Eq. ~71!. The
same has been discussed for the lowest order termF 0

GRS,
Eq. ~66!, and occurs in all higher FSI terms. Those ene
d

d
-

y

shifts should therefore be retained in the denominator of
~71!. We neglected, however, their differences in the nume
tor of the same equation.

The above three-dimensional reduction can be exten
straightforwardly to all higher-order terms of the relativist
GRS series, leading to the result

F GRS~yG
A ,uqu!5(

j 50

` S M

q D j

F j
GRS~yG

A ,uqu!. ~74!

It obviously differs from its nonrelativistic analog, Eq.~25b!,
by the q dependence of its expansion coefficients, which
due to the (n/uqu)En term in Eq.~72!.

A special case is the deuteron targetD for which En50.
This enables to reinstate in Eq.~74! the q-independent ex-
pansion coefficientsF j

GRS(yG
D ,uqu)[F j

GRS(yG
D) and the con-

struction of the reduced relativistic structure function, E
~74!, from the nonrelativistic one@cf. Eqs.~9! and ~25!#

F REL~yG
D ,uqu!5FNR~yW→yG

D ,uqu! ~75!

or, alternatively,

WREL~n,q!5
n

ñ
WNR~ ñ,q!, ~76a!
0-9
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ñ5S 12
D

M
1

n

2M
2

~yG
D!2

2M2 D n. ~76b!

Equation~75! implies that a calculation of the FSI part ofF
requires the solution of a three-dimensional, instead o
more complicated four-dimensional, scattering equation.

It would be desirable to reach a similar simplification f
targets withA>3. A hint as to how to proceed comes from
on

-
r
E
in

e
th
in

e
th

tu
to
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comparison of the dominant FSI termF1, Eq. ~30a!, of the
nonrelativistic GRS series with the summed FSI, Eq.~33!.

It is shown in the Appendix that for the nonrelativist
case, the summed FSI expression@the second term in Eq
~33!# is obtained fromF1, Eq. ~30a!, by V1→T and addition
of MDn(p)/uqu to the propagators. On account of the sim
larity of F1 andF1 @cf. Eqs.~30a! and ~71!#, we conjecture
that the relativistic summed FSIs are similarly genera
from F 1

GRS, Eq. ~71!. The final result is
F GRS~yG ,q!5F 0
GRS~yG ,q!2

M

puqu
Im(

n,n8
E d3pd3p8

~2p!6

3
wA

(n)~p!~pz82pz!Tnn8~ẼN,A21 ;p1q,p81q!wA
(n8)~p8!

S yG2pz2
nEn

uqu
2

MDn~p!

uqu
1 ih D S yG2pz82

nEn8
uqu

2
MDn8~p8!

uqu
1 ih D S yG2pz82

nEn8
uqu

1 ih D . ~77!
epa-
a

by
istic
nd

lo-

f

-

We emphasize again the occurrence of three-dimensi
N-spectator transition amplitudesTnn8 for off-shell energy
@cf. Eq. ~35!#

ẼN,A215
~yG1uqu!2

2M
2D2

p2

2M
. ~78!

The occurrence of aT operator usually indicates the sum
mation of GRS terms inV1, which is mandatory if the latte
is singular. As was the case for the nonrelativistic case,
~33!, the relativistic expression for the structure function
terms of the scattering operatorT, Eq. ~77! is more general
than the entire GRS series.

Equations~75! and~77! are our main results. They are th
outcome of very accurate three-dimensional reduction of
relativistic structure functions of targets composed of po
al

q.

e
t

particles. The reduction is a direct consequence of the s
ration in slow and fast target nucleons. Compared with
nonrelativistic GRS theory, FSI interactions are summed
means of a three-dimensional scattering operator. Relativ
effects are only manifest in a relativistic scaling variable a
in an additional energy shift inN propagators.

In spite of the role (n/uqu)En plays in the the limits of the
excitation energies of the spectator, we wish to explore c
sure over those excitations in Eq.~77!, replacing state-
dependent quantities by suitable averages,En→^E&. This
leads to an operatorT, which describes the scattering o
nucleon 1 fromA21, fixed spectator nucleons~see, for in-
stance, Ref.@15#!. In particular one may expandT in a Wat-
son series of scattering operatorst for nucleon pairs and re
tain only the lowest-order term. The result is
F GRS~yG ,q!'F 0
GRS~yG ,q!2

M

puqu
ImE d3pd3p8

~2p!6
r2~p,p8;q!

3
~pz82pz!^p,2p1qut~ẼN,A21up8,2p81q!&

S yG2pz2
n^E&
uqu

2
M ^D~p!&

uqu
1 ih D S yG2pz82

n^E&
uqu

2
M ^D~p8!&

uqu
1 ih D S yG2pz82

n^E&
uqu

1 ih D .

~79!
of
sed
Above r2(p,p8,q) is the two-particle density matrix in th
momentum representation: i.e., the Fourier transform of
same in coordinate representation@cf. Eq. ~30b!#.

Clearly, for sufficiently high-energy transfersn, nucleons
may be excited, and this is manifest in the nucleon struc
functionsFN. Those dynamical features should be built in
e

re

a theory and an example is a generalized convolution
structure functions for nucleons and for a nucleus, compo
of point nucleons@16#:

F2
A~x,Q2!5E

x

A

dz fPN~z,Q2!F2
NS x

z
,Q2D . ~80!
0-10
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Here f PN(x,Q2) is F GRS(q,yG
A), Eqs. ~73! and ~77!, ex-

pressed in the Bjorken variablex and Q2. The above equa
tions ~79! and ~80! come close to the expression used
actual calculations of nuclear structure functions@17#.

We conclude this section by stating that for the same r
sons as for the nonrelativistic case forwarded at the en
Sec. II, the relativistic GRS series is expected to show be
convergence than the IS series. We shall provide proof, u
inclusive scattering of 3.595 GeV electrons on4He, for
which the nuclear input can be computed with high pre
sion. Figure 2 thus shows cross sections for two scatte
anglesu525°,30° as a function of the energy loss in a sta
dard way related to the4He structure function, Eq.~80!.

Inspection shows that, except for the smallestn, the
drawn lines representing the lowest-order GRS predic
using Eq.~66! nearly account for the data@18#. In contrast
the dashed lines for the IA based on Eq.~60! show sizable
discrepancies. Details can be found in Ref.@19#. Similar evi-
dence comes fromD data@12,20#.

V. SUMMARY

In this paper we studied a relativistic GRS series for str
ture functions of a nucleus composed of point nucleons.
latter we simplified, exploiting nonrelativistic features of a
quantities there, which are related to slow target nucleo
and only treated relativistically the nucleon which abso

FIG. 2. Double-differential cross section fore14He→e1X in-
clusive scattering as a function ofn. The dashed line is the IA and
the solid line corresponds to the lowest term of the relativistic G
series.
02431
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the high momentum of the transferred photon in inclus
scattering. Our focus is on an accurate three-dimensiona
duction of the expression, which is possible through a s
cific feature of a modified nucleon propagator: namely,
linear momentum dependence. This is in contrast with
standard relativistic IS.

In the case of a deuteron target, the above thr
dimensional reduction leads to a perfect correspondence
tween the relativistic and the corresponding nonrelativis
expressions for its structure function. The derivation of th
mapping does not employ light-cone kinematics which h
similar features, but without the need to relax spherical sy
metry @21#.

For targets withA>3 no such mapping can be prove
rigorously. We emphasized though the close corresponde
between the nonrelativistic and relativistic dominant F
terms and then conjectured that the same correspond
holds between the nonrelativistic and relativistic summ
FSI contributions. The latter can then be calculated, us
three- instead of a more complicated four-dimensional s
tering equation. The above rests on the assumption tha
driving term of the four-dimensional Bethe-Salpeter scatt
ing equation is local and given by a sum of pair interactio
as has also been assumed in the nonrelativistic case.

Our final remarks regarded the application of the obtain
results. In spite of the proven reduction and corresponde
it is still nontrivial to solve multichannel scattering of
nucleon from a fully interactingA21 nucleon spectator. We
mentioned the approximation where many-body transit
operators are replaced by a sum of scattering operators
pair of nucleons. In addition we recalled the incorporation
nucleons with internal dynamics. Both features are about
basis of previously performed computations@17#.

ACKNOWLEDGMENTS

A.S.R. is grateful to Byron Jennings for having coope
ated in an initially different approach and having later co
mented on the present one. He also much profitted from
fruitful discussions with Roland Rosenfelder. S.A.G. than
Cyclotron Institute at Texas A&M University for kind hosp
tality.

APPENDIX: FINAL STATE INTERACTION
IN THE GRS EXPANSION

In the following we expand on the derivation of Eq.~31!
for the summed FSI contribution, which was previous
given in Ref.@12#. Consider nonrelativistic structure functio
given by the GRS series, Eqs.~25a!. Using Eq.~20! @with
G̃1,A[G̃N , Eq. ~23!#, we can rewrite the FSI part of th
structure function as

WFSI~n,q!52
1

p
ImK FAU(

n51

`

G̃N~ṼG̃N!nUFAL
52

1

p
Im^FAuG̃NṼG1,AuFA&, ~A1!

S
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whereG1,A[G1,A(EA1n,q) is the total Green’s function af
ter the absorption of the virtual photon, Eq.~2!. Using the
Lippmann-Schwinger equation~16! one can expressG1,A in
terms of the scattering operatorT,

G1,A5~11G1,A
(0)T!G1,A

(0) , ~A2!

whereG1,A
(0)[G1,A

(0)(EA1n,q), Eq. ~3!. Substituting Eq.~A2!

into Eq. ~A1! and using Ṽ5HA2EA5V12g0
21 with g0

[G1,A
(0)(EA,0), we obtain

WFSI52
1

p
Im^FAuG̃N~V12g0

21!~11G1,A
(0)T!G1,A

(0)uFA&.

~A3!

One easily finds from Eqs.~21! and ~23! that G̃N2G1,A
(0)

5G̃Ng0
21G1,A

(0) . Then usingV1(11G1,A
(0)T)5T we can rewrite

Eq. ~A3! as

WFSI52
1

p
Im^FAuG1,A

(0)TG1,A
(0)2g0

21G̃NG1,A
(0)uFA&.

~A4!
e

n-

d A

C

. A

s
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At the last step we use the following relation between
scattering operatorT and the target wave function, valid fo
any local interactions:

^FAug0
215^FAuG1,A

(0)G̃N
21T. ~A5!

The relation can easily obtained by multiplying th
Lippmann-Schwinger equationT5V1(11G1,A

(0)T) by ^FAu
and using the Schro¨dinger equation for the target wave fun
tion: ^FAuV15^FAug0

21. Then Eq.~A4! can be rewritten as

WFSI52
1

p
Im^FAuG1,A

(0)TG1,A
(0)2G1,A

(0)G̃N
21TG̃NG1,A

(0)uFA&

52
1

p
Im^FAuG1,A

(0)G̃N
21@G̃N ,T#G1,A

(0)uFA&, ~A6!

thus obtaining the desired expression for the summed
contribution in the GRS series.
-
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